拉曼光谱常见问题汇总

拉曼光谱常见问题汇总
拉曼光谱常见问题汇总

拉曼光谱问题汇总

问题目录

一、测试了一些样品,得到的是Ramanshift,但是文献是wavenumber,不知道它们之间的转换公式是怎么样的?激光波长632.8nm。

二、如何用拉曼光谱仪测透明的有机物液体,测试时放到了玻璃片上测出来的结果是玻璃的光谱。

三、我们这里有做生物样品的拉曼光谱的,在获得的图里面有很强的荧光,有的说,如果拉曼得不到就用其荧光谱。可我想问一下,在拉曼谱里面得到的荧光背景,是真正的荧光特征谱吗?这和荧光光谱仪里面的荧光图有什么区别?

四、什么是共焦显微拉曼光谱仪?

五、请问,测固体粉末的拉曼图谱时,对于荧光很强的物质,应该如何处理?特别是当荧光将拉曼峰湮灭时,应该怎么办?增加照射时间的方法,我试过,连续照射了4小时,结果还是有很强的荧光。我只有一台532nm的激光器,所以更换激光波长的方法目前我不能用。想问问各位,还有别的方法吗?

六、请问用激光拉曼仪能测量薄膜的厚度、折射率及应力吗?它能对薄膜进行那些方面的测量呢?

七、拉曼做金属氧化物含量的下限是多少? 我有一几种氧化物的混合物,其中MoO3含量只有5%,XRD检测不到,拉曼可以吗?

八、小弟是刚涉足拉曼这个领域,主打生物医学方面。实验中,发现温度不同时,拉曼好像也不一样。不知到哪位能帮忙解释一下这个现象

九、文献上说,拉曼的峰强与物质的浓度是成正比关系,那么比如我配置1mol/L的某溶液,和0.5mol/L的溶液,其峰强度是正好一半的关系吗?应用拉曼,是否能采用峰积分,或者用近红外那样的多元统计的办法来定量吗?准确度怎么样?

十、拉曼峰1640对应的是什么东西啊?无机的

十一、1 红外分析气体需要多高的分辨率?

2 拉曼光谱仪是否可分析纯金属?

3 红外与拉曼联用,BRUKER和NICOLET哪个好些?

十二、我想请问一下这里的高手测定过渡金属络合物水溶液中金属与有机物中的某个原子是否成键可以用拉曼光谱分析吗?

十三、金红石和锐钛矿对紫外Raman的响应差别大不大?同样条件下的金红石和锐钛矿的Raman峰会不会差很多?

十四、什么是3CCD?

十五、请教我所作的实验是用柠檬酸金属盐溶胶拉制成纤维,想做一下拉曼光谱来证明是否有线性分子的存在,可以吗

十六、在测量拉曼光谱仪的灵敏度参数时,有人提出,单晶硅的三阶拉曼峰的强度跟硅分子的取向(什么111,100之类)的有关,使用不同取向的硅使用与其相匹配的激光照射时,其强度严重不一样,是这样吗?不知道大家测量激光拉曼光谱仪的灵敏度时都是怎么测量的

十七、请问如何进行拉曼光谱数据处理?

十八、拉曼系统自检具体是检测哪些硬件?是个什么过程?

十九、请教作激光拉曼测试,样品如何预处理?

二十、请问激光拉曼光谱是什么意思?

二十一、请教喇曼谱实验时,如何选择激发波长,1064nm?还是785nm或633nm?

二十二、拉曼信号对入射角和出射角的响应又是什么样?我的样品是有衬底支持的薄膜样品(膜厚几百纳米--几微米),怎样扣除衬底的影响?

二十三、微区拉曼和普通拉曼有区别吗,尤其在图谱上?多晶,单晶和非晶拉曼有何区别?

二十四、我是做复合材料的研究的,主要是想研究纤维增强复合材料的界面性能?

二十五、学校有一套天津港东的拉曼光谱仪,计划给学生开一个测量固体(或粉末)拉曼光谱的实验。试了几种材料都不明显,各位高人能推荐几种容易找到的象四氯化碳拉曼光谱那么明显的固体,晶体,或者粉末吗?

二十六、我们研究小组新近涉及碳纳米管的领域。由于纳米管的Raman信号很弱,就是要重复不断的测试才能在1600cm-1的附近得到峰。请问具体操作条件应该怎么选。如laser的功率,解析度,扫描数scannumber等等,我们用的Raman仪器是(Brucker,

RFS-100/S)。

二十七、激光拉曼光谱仪应该可以实现快速的定量分析,但经过前段时间一些咨询,使我对其是否可进行快速分析颇存疑问,尤其是气体分析。请问,一般来说分析一次样品(气体或固体)的时间是多长

二十八、激光拉曼仪的外光路调整好之后,在换一个样品再进行测试时要重新调试外光路吗?如果不需要,一般还要做哪些调整呢? 二十九、Raman能测出硅氢键吗??若能具体对应多少波长。

三十、拉曼光谱改变能确定物质结构相变吗?

三十一、我用阳极氧化方法做了一种Zr合金的氧化膜,阳极氧化的溶液含有磷酸盐,硅酸盐等成分。用XRD测表面膜的成分时发现膜中只有溶液金属阳离子的硅酸盐有衍射峰(而这个成分预计只占表面膜物质的很小的一部分),而占表面膜物质绝大部分的ZrO2可能是非晶态物质(XRD显示有很明显的非晶包)。请问用Raman光谱可以确定表面氧化膜中是否含有ZrO2及其他一些硅酸盐、磷酸盐成分呢?

三十二、有很多晶体的拉曼光谱,在加压或改变温度后拉曼峰变宽,然后就说该晶体此时是非晶相的,那末我想知道他衡量的尺度和标准是什么?

三十三、拉曼图谱中峰位的强弱是什么因数造成的?

三十四、我想做气液包裹体的成分,用激光拉曼光谱怎么样,做的效果好不好?

三十五、我现在正在做拉曼光谱试验,用金金属做底物,分析CNBP(4-Cyanobiphenyl)和Cyclodextrin 如何镶嵌在一起,用检测CNBP在金金属底物上的角度和方向,平行还是垂直,来确定是否进入到Cyclodextrin 里面,制备金属底物需要购买金属板,用硫酸洗,在用氮气吹平,进行粗糙化,但我不知道配好的金属胶体溶液和金属底物之间有什么关系,我刚做完金属胶体溶液,进行紫外光谱测定波长为520纳米,就是不知道下一步该怎么做?

三十六、求助拉曼光谱选择扫描围和激发波长,我作了个样,用拉曼光谱表征,物质为硅胶负载有机物(对甲苯磺酸盐类),但好像荧光比较明显,干扰大,检测老师叫我提供扫描围和激发波长

三十七、有几种激光光源?

三十八、什么是CCD ?

三十九、我要用激光拉曼做一种在-20度下就分解的物质,请问把样品保存在低温下测定可以吗?激光是否会使样品分解?

四十、我想做一个样品的标准曲线,溶剂是CF2H-CF2-CF2-CF2-CF2H,溶质是含有-O-的全氟化高分子,好像是直链的(UV-Visual 无吸收峰)。想用拉曼光谱作定量分析,请问能不能做到?

四十一、用普通拉曼光谱仪对肿瘤细胞和正常细胞的光谱进行检测,我发现信号完全被玻璃信号所掩盖。但是培养细胞的容器大都是玻璃的,请问各位高手,我该如何设计实验方案?

四十二、我现在在为拉曼光谱仪进行波长校准说明书上说就用汞灯就可以但是我却根本测量不出来峰更不用说准确位置的峰了四十三、本人才用硝酸刻蚀银片的方法制备活性基底,但在制备过程种无法得到理想的效果,是否在制备中有什么地方应该特别注意?

四十四、实验室攒的激光拉曼,共聚焦的。刚开始使用,做实验的时候有人需要这个数据,但是没有现成的。有什么办法可以测量样品位置激光光斑大小么?

四十五、碳中的两个峰:D-band 和G-band,这两个峰到底是什么意思啊,有的文献上说d peask是指disordered carbon, G peak 是指graphitic carbon,而另有一些文献是以sp2原子的键来分,到底这两个是什么意思呢?

四十六、激光和FT拉曼的区别?

四十七、激光激发的拉曼谱线是高斯线型还是洛仑兹线型?是否与激光的线型有关?

四十八、我用的是GPIB-PCIIA数据采集卡,这是不是即插即用的卡?

四十九、请问如何确定多壁碳纳米管拉曼光谱的 D'和G' lines 和 D+G line 的位置?

五十、怎样计算拉曼光谱图形中的应力值?

五十一、最近用氧化钨和氧化镓烧制合成了钨酸镓.测试了RAMAN谱后,在波数1400附近出现了强度很大的一个峰值,经过比较分析其不是氧化镓和氧化钨的的RAMAN峰,不确定是荧光干扰峰还是生成物钨酸镓的一个峰值.请高手帮忙!

五十二、天然钻石及辐照处理钻石怎样用拉曼光谱鉴别?现在市场上很多深色钻石,如黄色、绿色等,与天然彩色钻石怎样区别?能用拉曼光谱区别否?

五十三、有谁知道什么是蓝移什么是红移?

五十四、蓝移vs红移?

五十五、我要测水的Raman谱但是什么信号也没有,我用的是共聚焦Raman。我的激光功率加的不大,如果光太强热效应就非常明

显了。那位高人给点意见?

五十六、要对Raman谱进行线宽分析,请教进行Lorentzian拟合?

五十七、总看到文献上要算碳材料ID/IG的值,网上搜了半天只弄明白要用面积法算,origin能算么?

五十八、请问做raman时液体样品要怎么封?样品只能密封起来测,用玻璃毛细管据说不行,请问该怎么办?

五十九、请问粉末样品的raman如何操作?

六十、固体粉末样品,有毒,应该怎样处理?直接用双面胶粘到载波片上,可以吗?还是需要其他处理方法?

六十一、我是搞量化的,想通过拉曼来验证我计算的准确性。问了很多人:拉曼和红外的区别,他们大概的意思就是这2者之间的原理一样,只是波长不一样。请教高手,是这样么?

六十二、拉曼光是激光作用到样品上立即产生的?还是经过一段延迟时间后产生的?

六十三、我现在测固体粉末的拉曼谱,完全得不到拉曼谱线,只能看到很宽的轮廓线,将拉曼峰完全湮灭了。刚才看到测近红外谱线需要先测一个参考谱,想在这里弱弱的问一下,测拉曼应该不需要吧?

六十四、用激光粒度仪做固体样品时,应该怎样制备样品?

六十五、最近学习拉曼光谱有一点不明白,拉曼光谱采用的是激光,不是单波长光吗,那谱图上怎么会有波长选择围的呢?

六十六、请问什么样的样品需要用表面增强拉曼来测量,具体有没有一个标准?不同材料的表面增强剂要如何制作?

六十七、为什么金属没有Raman峰?

六十八、告知我锰、镍、钴、钛的raman峰值区

六十九、现在正在学习拉曼理论的知识,看到GF矩阵方法来计算分子的振动频率时可能需要用编程来计算,不知哪位老师有好的程序?(我想用理论数值与观察值比较下)

如果文献上查不到某种物质的拉曼频移,大家是如何分析这种物质是不是你所要的东西呢?

七十、RAMAN的强度受到哪些因素的影响?

七十一、我做了一些拉曼的样品,但原始数据在orign中是一个斜线,上面有些小峰,和以前看到的拉曼的谱图差别很大,不知大家都是用什么样的软件来处理?

七十二、Pt和Pd的增强因子为多少?

七十三、请教哪些样品容易测得拉曼信号?

七十四、有没有专门扣除拉曼背底、平滑拉曼图的软件?

七十五、傅立叶变换拉曼光谱与激光拉曼光谱有什么区别?

七十六、激光拉曼光谱技术在生物分析中的应用研究?

七十七、为什么荧光会影响raman谱?

七十八、在激光拉曼光谱仪中,仪器探测器项描述为:瑞利散射抑制O.D.>7。。不明白其中物理意义?

七十九、我将做一个用光谱仪来测量细胞的散射光谱实验。现在有一台海洋公司的型号是hr4000cg-uv-nir的光谱仪。不知可不可以用来测量细胞的散射光谱。

八十、怎样用简单的方法判断拉曼光谱的光路有偏差,除了看信号差以外?

八十一、看到一些文献上当几个峰重合时,用到分峰技术,常用的是计算机去卷积,请问各位大侠,有什么软件或方法可以进行分峰处理?

八十二、比如说我做了几种矿泉水样品的拉曼谱,发现出现一个未知的峰,我用什么方法知道这是什么物质呢?

八十三、请问激光拉曼光谱和红外光谱有什么区别?

问题回答

一、测试了一些样品,得到的是Ramanshift,但是文献是wavenumber,不知道它们之间的转换公式是怎么样的?激光波长632.8nm。

1. 两者是一回事。ramanshift即为拉曼位移或拉曼频移,频率的增加或减小常用波数差表示,拉曼光谱仪得到的谱图横坐标就是波数wavenumber,单位cm-1。

2.两者一回事。

拉曼频移ramanshift指频率差,但通常用波数wavenumber表示,单位cm-1,可以说某个谱峰拉曼位移是??波数,或??cm-1。

3.在Raman谱中,wavenumber有两种理解,一种是相对波数,这时就等于Ramanshift;另一种是绝对波数(这在荧光光谱中用的比较多),这个绝对波数是与激发波长有关,不同的激发波长得到的绝对波数是不一样的,这时Ramanshift等于(10000000/激发波长减去Raman峰的绝对波数)。

所以通常在Raman谱中,wavenumber一般可理解为Ramanshift。

二、如何用拉曼光谱仪测透明的有机物液体,测试时放到了玻璃片上测出来的结果是玻璃的光谱。

1. 我今天还在用激光拉曼测聚苯乙烯,没有出现你说的情况啊是不是玻璃管被污染的厉害?

2. 你测出的玻璃的信号,有没有可能们焦点位置不对?

3. 应该是聚焦位置不对,聚在玻璃上了,我以前也犯过同样的错误。

4. 用凹面载玻片,液体量会比较多,然后用显微镜聚焦好就可以了,如果液体有挥发性,最好液体上用盖玻片,然后焦点聚焦到盖玻片以下。

如果还不行,你可以查一下“液芯光纤”这个东东

5.建议:

(1)有机液体里面的分析物质浓度多大? Raman测定的是散射光,所以在溶液中的强度相对比较底,故分析物浓度要大些。

(2)你用的是共聚焦Raman吗?聚焦点要在毛细管的溶液里面才好。可以在溶液中放点“杂物”方便聚焦。

(3)玻璃是无定形态物质,应该Raman信号比较弱才对。

三、我们这里有做生物样品的拉曼光谱的,在获得的图里面有很强的荧光,有的说,如果拉曼得不到就用其荧光谱。可我想问一下,在拉曼谱里面得到的荧光背景,是真正的荧光特征谱吗?这和荧光光谱仪里面的荧光图有什么区别?

1. 原则上说,拉曼谱中的荧光和荧光谱中的荧光是一样的,只要激发波长和功率密度相同。注意横坐标要从波数变换为纳米,即用10000000nm(1cm)除以波数就行了。但有一点要注意,不同波长的激发光照射样品,得到的拉曼相近,但荧光可以有很大不同,甚至相同波长不同功率激发,荧光谱都大不一样。

2. “注意横坐标要从波数变换为纳米,即用10000000nm(1cm)除以波数就行了”?

Raman测定的是散射光,得到的是Raman shift. Raman shift和绝对波长(荧光光谱)之间要一个转换的吧。

3. 生物样品一般荧光峰比较宽,用荧光光测试之前一般先会做仪器本身曲线校正也就是仪器本身的响应曲线,这样测出的荧光峰才比较准,特别是对于宽峰更要做这个较准。

而Raman光谱一般采集的区域比较窄(指的是波长区域),一般在窄的波长围变化不大,因此一般不考虑仪器本身响应曲线误差,但是Raman光谱来测宽荧光峰,影响就比较大。

四、什么是共焦显微拉曼光谱仪?

1. 共焦拉曼指的是空间滤波的能力和控制被分析样品的体积的能力。通常主要是利用显微镜系统来实现的。

仅仅是增加一个显微镜到拉曼光谱仪上不会起到控制被测样品体积的作用的—为达到这个目的需要一个空间滤波器。

2.(1)、显微是利用了显微镜,可以观测并测量微量样品,最小1微米左右

(2)、共焦是样品在显微镜的焦平面上,而样品的光谱信息被聚焦到CCD上,都是焦点,所以叫共聚焦

3. 拉曼仪器的共焦有2种呢,一种是针孔共焦,一种是赝共焦.我觉得好像不应该称为赝共焦,共聚焦有真正的定义说一定要针孔才是共聚焦吗?好像没有,顶多称为传统共聚焦或者针孔共聚焦、简单共聚焦之类的。

个人想法,大家指正。

五、请问,测固体粉末的拉曼图谱时,对于荧光很强的物质,应该如何处理?特别是当荧光将拉曼峰湮灭时,应该怎么办?增加照射时间的方法,我试过,连续照射了4小时,结果还是有很强的荧光。我只有一台532nm的激光器,所以更换激光波长的方法目前我不能用。想问问各位,还有别的方法吗?

1. 使用SERS技术或者使用很少量的样品进行测量,或者稀释你的样品到一些别的基体里面去,比如说KBr。

2. 波长不可调的话,激光强度应该是可调的,你把激光强度调低点试试。这个在光源和软件上都有调的。全调到比较低的,然后

再用长时间试试。

3. 可以尝试找一种溶剂溶解粉末,看能不能猝灭荧光背景。采用反斯托克斯,滤光片用Nortch滤光片。

六、请问用激光拉曼仪能测量薄膜的厚度、折射率及应力吗?它能对薄膜进行那些方面的测量呢?

1. 应该不能测薄膜的厚度、折射率及应力吧

2. 现在的共焦显微拉曼可以做膜及不同层膜的,你的问题我觉得用椭偏仪更好

3. 拉曼光谱可以测量应力,厚度好像不行

4. 应力可以测,应力有差别的时候拉曼会有微小频移,其他两种没听说过拉曼能测

七、拉曼做金属氧化物含量的下限是多少? 我有一几种氧化物的混合物,其中MoO3含量只有5%,XRD检测不到,拉曼可以吗?

应该和待测样品的拉曼活性有关,并不能绝对说一定能测到多少检测线,有些氧化物可能纯的样品也测不出光谱,信号强的则可能会低一些

八、小弟是刚涉足拉曼这个领域,主打生物医学方面。实验中,发现温度不同时,拉曼好像也不一样。不知到哪位能帮忙解释一下这个现象

温度升高,拉曼线会频移,线宽会变宽,只要物质状态不变,特征峰不会有太大变化,除非高温造成化学反应或者其他变化

九、文献上说,拉曼的峰强与物质的浓度是成正比关系,那么比如我配置1mol/L的某溶液,和0.5mol/L的溶液,其峰强度是正好一半的关系吗?应用拉曼,是否能采用峰积分,或者用近红外那样的多元统计的办法来定量吗?准确度怎么样?

存在激发效率的问题,拉曼一直以来被认为只能做半定量的研究,就是因为不是线性的,有这方面的文献,具体记不清了。

十、拉曼峰1640对应的是什么东西啊?无机的

1. 这个峰一般来说是C=O双键的峰,可是你说是无机物,很有可能是某一个基团的倍频峰,看看820左右或者是某两个峰的叠加。

2. 也有可能是你在测量过程当中由于激光引起的碳化物质。还有一种可能就是C=C.

3. 拉曼在1610-1680波数区间有C=N双键的强吸收

十一、1 红外分析气体需要多高的分辨率?

2 拉曼光谱仪是否可分析纯金属?

3 红外与拉曼联用,BRUKER和NICOLET哪个好些?

1,分析气体时理论上最高只需0.5cm-1。实际应用上绝大部分情况下4cm-1已足够。对于气体,还是希望分辨率高一些好,一般都用1cm-1一下,这样对气体的一些微小峰的变化检测更好

2,基本上不可能。

金属不太可能作出来,因为一般不发生分子极化率改变。

3,这两家公司的红外各有千秋相差不多,关键是你更看重哪些指标。

十二、我想请问一下这里的高手测定过渡金属络合物水溶液中金属与有机物中的某个原子是否成键可以用拉曼光谱分析吗?

如果键能对应的波数在100cm-1以上,估计是可以的,现在比较新的拉曼光谱仪就可以

十三、金红石和锐钛矿对紫外Raman的响应差别大不大?同样条件下的金红石和锐钛矿的Raman峰会不会差很多?

用不同的激发光激发样品,若激光对样品没有破坏作用,拉曼谱图中谱峰的相对强度有时会发生一些变化,但不会完全变了,否则就很难用拉曼光谱进行定性分析了。

TiO2矿物的情况比较特殊,它们有三种晶型:锐钛矿、板钛石和金红石,其中板钛矿比较少见。锐钛石的特征是142cm-1左右的强峰,金红石中此峰消失或很弱。但我们经常见到的不是这两种极端情况,而多是介于金红石或锐钛石中间的TiO2相。有时一个颗粒中,若激光作用在不同的点上,也会打出差别较大的谱图来。

你说的情况,可能有两个原因:一是换波长后,激光与样品的作用点移动;二是激光的能量使样品的晶型发生变化。我个人觉得第一种的可能性较大。

十四、什么是3CCD?

CCD,是英文Charge Coupled Device 即电荷耦合器件的缩写,它是一种特殊半导体器件,上面有很多一样的感光元件,每个感光元件叫一个像素。CCD在摄像机里是一个极其重要的部件,它起到将光线转换成电信号的作用,类似于人的眼睛,因此其性能的好坏将直接影响到摄像机的性能。

衡量CCD好坏的指标很多,有像素数量,CCD尺寸,灵敏度,信噪比等,其中像素数以及CCD尺寸是重要的指标。像素数是指CCD上感光元件的数量。摄像机拍摄的画面可以理解为由很多个小的点组成,每个点就是一个像素。显然,像素数越多,画面就会越清晰,如果CCD没有足够的像素的话,拍摄出来的画面的清晰度就会大受影响,因此,理论上CCD的像素数量应该越多越好。但CCD像素数的增加会使制造成本以及成品率下降,而且在现行电视标准下,像素数增加到某一数量后,再增加对拍摄画面清晰度的提高效果变得不明显,因此,一般一百万左右的像素数对一般的使用已经足够了。

单CCD摄像机是指摄像机里只有一片CCD并用其进行亮度信号以及彩色信号的光电转换,其中色度信号是用CCD上的一些特定的彩色遮罩装置并结合后面的电路完成的。由于一片CCD同时完成亮度信号和色度信号的转换,因此难免两全,使得拍摄出来的图像在彩色还原上达不到专业水平很的要求。为了解决这个问题,便出现了3CCD摄像机。

3CCD,顾名思义,就是一台摄像机使用了3片CCD。我们知道,光线如果通过一种特殊的棱镜后,会被分为红,绿,蓝三种颜色,而这三种颜色就是我们电视使用的三基色,通过这三基色,就可以产生包括亮度信号在的所有电视信号。如果分别用一片CCD接受每一种颜色并转换为电信号,然后经过电路处理后产生图像信号,这样,就构成了一个3CCD系统。

和单CCD相比,由于3CCD分别用3个CCD转换红,绿,蓝信号,拍摄出来的图像从彩色还原上要比单CCD来的自然,亮度以及清晰度也比单CCD好。但由于使用了三片CCD,3CCD摄像机的价格要比单CCD贵很多,所以只有专业用的摄像机才会使用3CCD。

十五、请教我所作的实验是用柠檬酸金属盐溶胶拉制成纤维,想做一下拉曼光谱来证明是否有线性分子的存在,可以吗

1. 当然可以了,但是这要拉曼方面比较深厚的基础,可以先建立模型进行模拟,然后跟实验相对照,能对应就是最大的说服力了,说不定能发到国际上影响力很高的杂志呢

2. 拉曼光谱应该和分子的对称性相关,通过群论可以知道那些谱峰是有活性的,理论上是可以做到的。但对于较大的分子可能不容易啊

十六、在测量拉曼光谱仪的灵敏度参数时,有人提出,单晶硅的三阶拉曼峰的强度跟硅分子的取向(什么111,100之类)的有关,使用不同取向的硅使用与其相匹配的激光照射时,其强度严重不一样,是这样吗?不知道大家测量激光拉曼光谱仪的灵敏度时都是怎么测量的

1. 是的,硅单晶片放置的方向不同峰的强度不同。一般只观察520cm-1峰的强度,不同的硅片取向,不同倍数的物镜,长焦物镜或短焦物镜,520cm-1峰的强度都不同。

2. 520cm-1处好像不是硅的三阶峰的位置吧,测试灵敏度的时候一般是硅的三阶峰的信噪比来衡量呀。520处是跟硅的取向有关系,但是单晶硅的三阶拉曼峰呢?

3. 硅三阶峰位置1440cm-1。

4. 关于硅晶体各向异性的说明可以做偏振拉曼光谱,有些楼主同志说拉曼强度跟光源强度,透镜倍数,等因素有关,说法没错,但是这个跟硅的各向异性并没多大关系,随便一个样品的拉曼强度都跟这些因素有关!!!

硅的各向异性,比如以VV偏振沿硅的111和110面做谱图,在光源强度,透镜倍数等因素都相同条件下拉曼强度是不一样的,根据这些强度还有入射角度,偏振配置可以计算出硅的各向异性指标!!!

这里可能涉及到很多拉曼光谱的原理和偏振光学,偏振配置,等等的一些计算方法(涉及到的理论包括:群论,晶体结构理论,固体物理,偏振光学,拉曼原理等理论)

十七、请问如何进行拉曼光谱数据处理?

1. 可以找相关的拉曼书上有一些特征峰的波数,自己对照分析。也可以在仪器软件中的标准谱图搜索,不过标准谱图不太多的

2. 如果你有数据库可以先比对一下能否确定物质种类,其次可以对峰位、信号强度等信息用曲线拟合方式进行分析。

十八、拉曼系统自检具体是检测哪些硬件?是个什么过程?

主要是检测仪器的运动部件,如需要旋转角度的光栅等。这种部件都会有自己的“机械零点”作为参考点。

十九、请教作激光拉曼测试,样品如何预处理?

1. 一般来说,样品都不需要做预处理,不象红外那样麻烦。分析固体和液体比较容易,气体就难了,除非密度很大,否则只能用大型拉曼

2. 表面打磨一下或用酒精丙酮一类的东西清洗一下更好,不这样也行,在做的时候聚焦在比较干净平整的地方就行。

二十、请问激光拉曼光谱是什么意思?

拉曼光谱是一种散射光谱,利用激光(多用可见激光,有时也用紫外激光,在付里叶变换拉曼光谱仪中则用近红外激光)照射样品,通过检测散射谱峰的拉曼位移及其强度获取物质分子振动-转动信息(这些信息在红外光谱区)的一种光谱分析法。

拉曼光谱与红外光谱俗称姊妹谱,都用于检测物质分子的振动-转动信息。所不同的是,红外光谱是通过直接检测样品对红外光的吸收情况来获得的。

二十一、请教喇曼谱实验时,如何选择激发波长,1064nm?还是785nm或633nm?

1. 多看看相关文献,我做的蛋白质常用514nm,也可以用紫外200nm附近激发即为共振拉曼,浓度低也可以测。

2. 理论上讲,拉曼光谱与激发光的波长无关。但有的样品在一种波长的激光激发下会产生强烈荧光,对拉曼光谱产生干扰。这时要换一种激发光,以避开荧光的干扰。若样品在不同激光激发下都不发荧光,则随使用哪一种激光都可以。

3. 根据瑞利定律,拉曼散射线的强度与激发光波长的四次方成反比。如果不考虑检测器等因素,当然是激发光的波长越短越好,最好是紫外激光。但可惜的是,现在用于拉曼光谱仪上的CCD最好的响应波长在620nm左右,480nm以下的响应非常差,若CCD技术不进一步改进,紫外激光器对拉曼光谱仪很难说是一种有用的激光器。

二十二、拉曼信号对入射角和出射角的响应又是什么样?我的样品是有衬底支持的薄膜样品(膜厚几百纳米--几微米),怎样扣除衬底的影响?

1. 从散射载面看,散射光的收集方向与入射光方向成90度效果最好,但现在的小拉曼光谱仪都是用背散射方向,因为仪器的灵敏度提高了,接收方向一般不是个问题,除非想做偏振研究。

2. 扣背底问题:有一个说法是“样品+衬底”做一图,“衬底”做一图,然后数据相减,但实践证明这种方法不是很好,经常出现负峰或谱图怪异现象。干吗非要扣背底呢?背底留着也能说明点问题,除非样品峰与背底峰有干扰。如果有干扰,试试所谓共焦(confocal)技术看看灵不灵。

二十三、微区拉曼和普通拉曼有区别吗,尤其在图谱上?多晶,单晶和非晶拉曼有何区别?

1. 1)微区拉曼和普通拉曼只是实验方法不同,拉曼谱图的形状原则上只取决于样品,当然实验方法不同对拉曼光谱图的记录效果有影响。

2)若不做偏振实验,单晶和粉晶的拉曼光谱图不会有太大差别,只是某些谱峰的相对强度有些不同。单晶与粉晶的拉曼光谱图中的谱峰较尖锐,而非晶的谱峰趋于宽化。

2. 微区拉曼和普通拉曼应是测试围上的不同吧

二十四、我是做复合材料的研究的,主要是想研究纤维增强复合材料的界面性能?

确实,理论上是可以。目前使用拉曼光谱测定晶体应力分布已经很成熟了,如在半导体行业已经作为质量控制的主要手段-对半导体器件进行逐点扫描,再以特征信号的峰位为参量生成图像,便可反映出应力空间分布情况,从而指导工艺尽量避免应力的发生。

二十五、学校有一套天津港东的拉曼光谱仪,计划给学生开一个测量固体(或粉末)拉曼光谱的实验。试了几种材料都不明显,各位高人能推荐几种容易找到的象四氯化碳拉曼光谱那么明显的固体,晶体,或者粉末吗?

1. 路边抓点沙子就可以了。沙子中多是石英晶体,测拉曼光谱应该很容易,当年在拉曼发现拉曼效应的同时,联科学家就是在石英中发现了同样的效应,我想那时的实验条件绝不会比现在的好。

2. 金刚石或合成金刚石的峰非常特征,很强很明显。小粒的合成金刚石极便宜

3. 特氟隆就很好。单晶硅更好

4. 散射太强是因为瑞利线滤除的程度不够,你可尝试低反射样品,如液体(四氯化碳、酒精等)。港东的谱仪恐怕测石英有困难,

散射光太强,其灵敏度可能也不足以测得石英信号。硅片也一样,抛光的表面会使得探测器被饱和掉。

二十六、我们研究小组新近涉及碳纳米管的领域。由于纳米管的Raman信号很弱,就是要重复不断的测试才能在1600cm-1的附近得到峰。请问具体操作条件应该怎么选。如laser的功率,解析度,扫描数scannumber等等,我们用的Raman仪器是(Brucker, RFS-100/S)。

1. 用514激发光,很好测定。

2. 你用的谱仪灵敏度太差。现在单根碳纳米管的拉曼信号都能测的很好,只不过有的用514效果好一些,而有的用633好一些。

二十七、激光拉曼光谱仪应该可以实现快速的定量分析,但经过前段时间一些咨询,使我对其是否可进行快速分析颇存疑问,尤其是气体分析。请问,一般来说分析一次样品(气体或固体)的时间是多长

1. 分析速度取决于仪器的灵敏度和样品本身。通常分析一个样品,强信号几秒钟即可,若信号较弱,则需几分钟。

2. 做定量分析,仪器本身所需的时间很短,秒级。

3. 我用拉曼光谱测过白酒,但是光谱的重现性很差,而且检测限不是很好。采样软件上有自带的基线扣除功能。对于一个样品,如果我要测定三次。如果每次都扫描了本底,然后测光谱,那么三条光谱的重现性就比较差,如果说只测定一次本底,然后扫描三次样品,那么样品的重现性就比较好。总体做下来,拉曼的定量效果肯定是不如近红外,但是拉曼光谱到底能否应用于定量,有待进一步验证,我做的是低档的白酒,几乎都是勾对的,所以定量的时候预测的效果还可以,采用原始光谱预测标准差可达到86%。不知换了其他样品的效果如何,有待进一步研究。

4. 时快时慢,跟参数设置有关。我做的时候,快则3分钟,慢则30分钟,这都有的。

二十八、激光拉曼仪的外光路调整好之后,在换一个样品再进行测试时要重新调试外光路吗?如果不需要,一般还要做哪些调整呢?

1. 如果不换光源,应该不需要,只需要校正光路和强度就可以了,当让还需要校正峰位。

2. 其实不需要,只有在开机的时候才需要初始化.

3. 其实不需要的,如果要更换激光来测样品,才需要再次校正.

4. 没有重新开机就不需要调光路,但需要重新调焦,设置围。

二十九、Raman能测出硅氢键吗??若能具体对应多少波长。

很简单,硅片在HF中泡一下直接洗干测量,约在2100 cm-1附近,很强

三十、拉曼光谱改变能确定物质结构相变吗?

拉曼光谱改变只能说可能会发生相变,但不能绝对说发生相变。测定结构最好的方法还是x-ray.

三十一、我用阳极氧化方法做了一种Zr合金的氧化膜,阳极氧化的溶液含有磷酸盐,硅酸盐等成分。用XRD测表面膜的成分时发现膜中只有溶液金属阳离子的硅酸盐有衍射峰(而这个成分预计只占表面膜物质的很小的一部分),而占表面膜物质绝大部分的ZrO2可能是非晶态物质(XRD显示有很明显的非晶包)。请问用Raman光谱可以确定表面氧化膜中是否含有ZrO2及其他一些硅酸盐、磷酸盐成分呢?

1. 非晶很难的,建议作别的测试

2. 测非晶的难度的确较大,但振动光谱(红外+拉曼)方法是测非晶材料较好的方法,有时可以说是唯一可选的方法。如利用红外、拉曼光谱光谱研究玻璃结构方法面的论文就很多。

三十二、有很多晶体的拉曼光谱,在加压或改变温度后拉曼峰变宽,然后就说该晶体此时是非晶相的,那末我想知道他衡量的尺度和标准是什么?

1. 晶体的拉曼信号经常用来表征结晶程度和应力. 如果是结晶非常纯净的单晶,那么其晶格震动能量一定很'纯',也就是光谱峰宽很窄. 如果晶格被破坏,或结晶程度不够好,激发后的震动能就是一个比较宽的围,表现在光谱峰宽就是展宽了. 晶格在不被破坏情况下被压缩或拉伸就产生了应力,表现为峰位位移.

2.拉曼峰变宽是晶体的结晶程度不好

3. 应该和能带变宽有关系吧

拉曼光谱的原理及应用.doc

拉曼光谱的原理及应用 拉曼光谱由于近几年来以下几项技术的集中发展而有了更广泛的应用。这些技术是:CCD检测系统在近红外区域的高灵敏性,体积小而功率大的二极管激光器,与激发激光及信号过滤整合的光纤探头。这些产品连同高口径短焦距的分光光度计,提供了低荧光本底而高质量的拉曼光谱以及体积小、容易使用的拉曼光谱仪。 (一)含义 光照射到物质上发生弹性散射和非弹性散射. 弹性散射的散射光是与激发光波长相同的成分.非弹性散射的散射光有比激发光波长长的和短的成分, 统称为拉曼效应 当用波长比试样粒径小得多的单色光照射气体、液体或透明试样时,大部分的光会按原来的方向透射,而一小部分则按不同的角度散射开来,产生散射光。在垂直方向观察时,除了与原入射光有相同频率的瑞利散射外,还有一系列对称分布着若干条很弱的与入射光频率发生位移的拉曼谱线,这种现象称为拉曼效应。由于拉曼谱线的数目,位移的大小,谱线的长度直接与试样分子振动或转动能级有关。因此,与红外吸收光谱类似,对拉曼光谱的研究,也可以得到有关分子振动或转动的信息。目前拉曼光谱分析技术已广泛应用于物质的鉴定,分子结构的研究谱线特征 (二)拉曼散射光谱具有以下明显的特征: a.拉曼散射谱线的波数虽然随入射光的波数而不同,但对同一样品,同一拉曼谱线的位移与入射光的波长无关,只和样品的振动转动能级有关; b. 在以波数为变量的拉曼光谱图上,斯托克斯线和反斯托克斯线对称地分布在瑞利散射线两侧, 这是由于在上述两种情况下分别相应于得到或失去了一个振动量子的能量。 c. 一般情况下,斯托克斯线比反斯托克斯线的强度大。这是由于Boltzmann分布,处于振动基态上的粒子数远大于处于振动激发态上的粒子数。 (三)拉曼光谱技术的优越性 提供快速、简单、可重复、且更重要的是无损伤的定性定量分析,它无需样品准备,样品可直接通过光纤探头或者通过玻璃、石英、和光纤测量。此外 1 由于水的拉曼散射很微弱,拉曼光谱是研究水溶液中的生物样品和化学化合物的理想工具。 2 拉曼一次可以同时覆盖50-4000波数的区间,可对有机物及无机物进行分析。相反,若让红外光谱覆盖相同的区间则必须改变光栅、光束分离器、滤波器和检测器 3 拉曼光谱谱峰清晰尖锐,更适合定量研究、数据库搜索、以及运用差异分析进行定性研究。在化学结构分析中,独立的拉曼区间的强度可以和功能集团的数量相关。 4 因为激光束的直径在它的聚焦部位通常只有0.2-2毫米,常规拉曼光谱只需要少量的样品就可以得到。这是拉曼光谱相对常规红外光谱一个很大的优势。而且,拉曼显微镜物镜可将激光束进一步聚焦至20微米甚至更小,可分析更小面积的样品。 5 共振拉曼效应可以用来有选择性地增强大生物分子特个发色基团的振动,这些发色基团的拉曼光强能被选择性地增强1000到10000倍。(四)几种重要的拉曼光谱分析技术 1、单道检测的拉曼光谱分析技术 2、以CCD为代表的多通道探测器用于拉曼光谱的检测仪的分析技术 3、采用傅立叶变换技术的FT-Raman光谱分析技术 4、共振拉曼光谱分析技术 5、表面增强拉曼效应分析技术 (五) 拉曼频移,拉曼光谱与分子极化率的关系 1、拉曼频移:散射光频与激发光频之差,取决于分子振动能级的改变,所以它是特征的,与入射光的波长无关,适应于分子结构的分析 2、拉曼光谱与分子极化率的关系 分子在静电场E中,极化感应偶极矩P为静电场E与极化率的乘积 诱导偶极矩与外电场的强度之比为分子的极化率 分子中两原子距离最大时,极化率也最大 拉曼散射强度与极化率成正比例 (六)应用激光光源的拉曼光谱法 应用激光具有单色性好、方向性强、亮度高、相干性好等特性,与表面增强拉曼效应相结合,便产生了表面增强拉曼光谱。其灵敏度比常规拉曼光谱可提高104~107倍,加之活性载体表面选择吸附分子对荧光发射的抑制,使分析的信噪比大大提高。已应用于生物、药物及环境分析中痕量物质的检测。共振拉曼光谱是建立在共振拉曼效应基础上的另一种激光拉曼光谱法。共振拉曼效应产生于激发光频率与待测分子的某个电子吸收峰接近或重合时,这一分子的某个或几个特征拉曼谱带强度可达到正常拉曼谱带的104~106倍,有利于低浓度和微量样品的检测。已用于无机、有

拉曼光谱基线校正解读

2 Spectroscopy 29(2) February https://www.360docs.net/doc/6e12517900.html,Baseline Correction for Raman Spectra Based on Piecewise Linear Fitting The correction of baseline drift is an import part for data preprocessing. An interval linear fitting method based on automatic critical-point-seeking was improved, which made it possible for the baseline to drift automatically. Experimental data were acquired from the sulfamic acid catalytic reaction of the aspirin system, which consisted of different proportions of aspirin. A simulated base-line with different interval values of moving average smoothing determined setting parameters in this method. After baseline drifts caused by fluorescence are removed, the differences of character-istic aspirin peaks proved the efficiency of this method. Kuo Sun, Hui Su, Zhixiang Yao, and Peixian Huang Rcharacterization for its ability to obtain information on vibrations from samples. It can also be used for on-line monitoring using a fiber-optic Raman probe (1,2). The Raman spectra show the characteristics for species in sharp and dense peaks. However, during the application of Raman spectroscopy, fluorescence of organic compounds in the samples, which are sometimes several orders of magnitude more intense than the weak Raman scatter, can interfere with the Raman signals (3). A phenomenon of baseline drift shows up, making the resolution and analysis of Raman spectra impractical.Both instrumental (4) and mathematical methods have been developed to reduce the drifted baseline caused by fluorescence. The use of an excitation wavelength such as 785–1064 nm lasers, which does not eliminate fluorescence (5), is the most traditional instrumental method. Raman scattering is directly proportional to the fourth power of frequency; as the excitation wavelength increases, the sen-sitivity of the Raman becomes severely reduced. The use of anti-Stokes Raman spectroscopy is another method, based on theory (6). Mathematical methods (7–10) include the first and second order derivatives, wavelet transform, me-dian filter, and manual polynomial fitting. These methods are useful in certain situations, but still have some limita-tions. For example, derivatives are effective, but as a result the shape of the Raman spectrum is changed; wavelet trans-form can be differentiable in the high- and low-frequency components of the signals; however, it is difficult to choose a decomposition method. Manual polynomial fittings re-quire the user to identify the “non-Raman” locations manu-ally (11), and afterwards the baseline curve is formed by fitting these locations. Consequently, the result involves the inevitable subjective factors and, in addition, the

拉曼光谱解读

激光拉曼光谱 [实验目的] 1、学习使用光谱测量中常用的仪器设备; 2、测量4CCl (液体)的拉曼光谱; 3、学习简单而常用的光谱处理方法,并对4CCl 的拉曼光谱进行处理,求出4CCl 的主要拉曼线的拉曼位移。 [拉曼光谱基本原理] 1、 现象 频率0v 的单色辐射入射到透明气体、液体或光学上完整透明的固体上时,大部分辐射无改变地透过,还有一部分受到散射。其中将出现频率为0m v v ±的辐射对。这种辐射频率发生改变的散射成为拉曼(Raman )散射;还有辐射频率不发生改变的散射称为瑞利散射。一般把瑞利散射和拉曼散射合起来所形成的光谱称为拉曼光谱,即0v 和0m v v ±合起来构成拉曼光谱。0v 称为瑞利线,0m v v ±称为拉曼线,m v 称为拉曼位移。且频率为0m v v -的拉曼线称为斯托克斯线,频率为0m v v +的拉曼线称为反斯托克斯线。瑞利散射的强度通常约为入射辐射强度的310-,强的拉曼散射的强度一般约为瑞利散射强度的310-, 2、 解释 对拉曼散射的完整理论解释是非常复杂的,限于篇幅这里不作介绍,请大家参看附后的有关参考书。下面用一个简单模型——散射系统与入射辐射之间的能量交换模型对其加以解释。 设散射系统有两个能级1E 、2E ,且有21E E >,210E E hv ->。由于入射辐射的相互作用,系统可以从低能级1E 跃迁到高能级2E ,这是必须要从入射辐射中获得所需能量21E E E ?=-。这个过程可以认为是系统吸收一个能量为0hv 的入射光子,从1E 能级跃迁到某一更高能级(通常散射系统并没有这样一个能级,所

以称其为虚能级),然后,放出一个能量为0hv E -?的散射光子而跃迁到2E 能级。此时,散射光子的频率可表述为: 000m hv E E v v v v h h -??= =-=- 另一方面,如果散射系统处于激发能级2E ,由于相互作用的存在,它可以从高能级2E 跃迁到低能级1E 。此时系统必须把能量21E E E ?=-交给入射辐射。同样这一过程可认为是系统吸收一个能量为0hv 的入射光子。从2E 能级跃迁到某一高的虚能级,然后以放出一个能量为0hv E +?的散射光子而跃迁到1E 能级。此时,散射光子的频率可表述为: 000m hv E E v v v v h h +??==+=+ 以上的描述可用图1来直观表示。 拉曼散射所涉及到得能级1E 、2E ,一般为散射系统的振动、转动能级(对于分子系统而言),或为晶格振动能级(对于晶体而言)。即拉曼位移m v 通常对应系统的振动、转动频率或晶体振动频率。

表面增强拉曼光谱的目标之一是制作SERS活性的纳米结构(精)

[1]Gary Braun, Ioana Pavel, Andrew R. Morrill, Dwight S. Seferos, Guillermo C. Bazan,Norbert O. Reich,and Martin Moskovits.Chemically Patterned Microspheres for Controlled Nanoparticle Assembly in the Construction of SERS Hot Spots.J. AM. CHEM. SOC. 2007, 129, 7760-7761 表面增强拉曼光谱的目标之一是制作SERS活性的纳米结构,重现性好,可靠,灵敏,通过控制密度和分布的电磁(EM)的“热点”(地方的SERS增强和安置在这些区域内的分析物分子)。 纳米技术,纳米线捆包括二聚体团聚的建设,提出一个超敏感的SERS有为平台,以满足这一挑战。排列高度有序的筏或紧密堆积的纳米粒子或金属薄膜组成的2-D定期纳米蒸发超过模板领域。 在这种沟通中,我们证明化学方法驱动SERS活性系统克服了这一挑战。使用短链接分子作为模型分析物结合了一种新型的微球(MS)的图形技术,使用常规的光学显微镜,拉曼光谱和TEM分析可以发现纳米粒子(NP)热点。消除了测绘大面积的SERS信号的需要。此外,NP的聚合由MSs大小限制。这单一的NP集群的分析,所以匹配的激光探头直径和MS(1uM 0.88uM 分别的NP集群分析是可能的,我们描述了如何自我组装技术允许跨越多个尺度的光学识别和结构与功能分配。掩蔽过程模式二氧化硅微球的支撑面与不同地区的两个化学亲和力。有选择性地结合纳米银(银粒子) 使他们成为MS的表面上的离散点的本地化。 随着银结合的双功能连接器的NP随后交联步骤绘制的MSs小的银纳米粒子团聚在一起,形成一个设在路口的连接器数量。 MSs的微米大小,

拉曼光谱原理及应用简介

拉曼光谱由于近几年来以下几项技术的集中发展而有了更广泛的应用。这些技术是:CCD检测系统在近红外区域的高灵敏性,体积小而功率大的二极管激光器,与激发激光及信号过滤整合的光纤探头。这些产品连同高口径短焦距的分光光度计,提供了低荧光本底而高质量的拉曼光谱以及体积小、容易使用的拉曼光谱仪。(一)含义 光照射到物质上发生弹性散射和非弹性散射.弹性散射的散射光是与激发光波长相 同的成分.非弹性散射的散射光有比激发光波长长的和短的成分,统称为拉曼效应 当用波长比试样粒径小得多的单色光照射气体、液体或透明试样时,大部分的光会按原来的方向透射,而一小部分则按不同的角度散射开来,产生散射光。在垂直方向观察时,除了与原入射光有相同频率的瑞利散射外,还有一系列对称分布着若干条很弱的与入射光频率发生位移的拉曼谱线,这种现象称为拉曼效应。由于拉曼谱线的数目,位移的大小,谱线的长度直接与试样分子振动或转动能级有关。因此,与红外吸收光谱类似,对拉曼光谱的研究,也可以得到有关分子振动或转动的信息。目前拉曼光谱分析技术已广泛应用于物质的鉴定,分子结构的研究谱线特征 (二)拉曼散射光谱具有以下明显的特征: a.拉曼散射谱线的波数虽然随入射光的波数而不同,但对同一样品,同一拉曼谱线的位移与入射光的波长无关,只和样品的振动转动能级有关; b.在以波数为变量的拉曼光谱图上,斯托克斯线和反斯托克斯线对称地分布在瑞利散射线两侧,这是由于在上述两种情况下分别相应于得到或失去了一个振动量子的 能量。

c.一般情况下,斯托克斯线比反斯托克斯线的强度大。这是由于Boltzmann分布,处于振动基态上的粒子数远大于处于振动激发态上的粒子数。 (三)拉曼光谱技术的优越性 提供快速、简单、可重复、且更重要的是无损伤的定性定量分析,它无需样品准备,样品可直接通过光纤探头或者通过玻璃、石英、和光纤测量。此外 1由于水的拉曼散射很微弱,拉曼光谱是研究水溶液中的生物样品和化学化合物的理想工具。 2拉曼一次可以同时覆盖50-4000波数的区间,可对有机物及无机物进行分析。相反,若让红外光谱覆盖相同的区间则必须改变光栅、光束分离器、滤波器和检测器3拉曼光谱谱峰清晰尖锐,更适合定量研究、数据库搜索、以及运用差异分析进行定性研究。在化学结构分析中,独立的拉曼区间的强度可以和功能集团的数量相关。4因为激光束的直径在它的聚焦部位通常只有0.2-2毫米,常规拉曼光谱只需要少量的样品就可以得到。这是拉曼光谱相对常规红外光谱一个很大的优势。而且,拉曼显微镜物镜可将激光束进一步聚焦至20微米甚至更小,可分析更小面积的样品。5共振拉曼效应可以用来有选择性地增强大生物分子特个发色基团的振动,这些发色基团的拉曼光强能被选择性地增强1000到10000倍。 (四)几种重要的拉曼光谱分析技术 1、单道检测的拉曼光谱分析技术

可循环表面增强拉曼光谱基底的制备及其应用

第3  1卷,第2期 光谱学与光谱分析Vol.31,No.2,pp 394-3972 0 1 1年2月 Spectroscopy and Spectral Analysis February,2 011 可循环表面增强拉曼光谱基底的制备及其应用 倪丹丹1,王伟伟,姚建林*,张雪姣,顾仁敖 苏州大学材料与化学化工学部,江苏苏州 215123 摘 要 以氨基硅烷为偶联剂,硅酸钠为硅源,合成了一种以金为核,二氧化硅为壳的核壳纳米粒子。通过调节硅酸钠的量,反应温度和反应时间控制二氧化硅壳层厚度,获得理想的表面增强效应。通过研究表面增强拉曼光谱(SERS)信号强度和二氧化硅层厚度之间的关系优化基底的制备条件。采用对巯基苯和联吡啶作为探针分子进行SERS实验,在一定浓度范围内得到SERS信号强度和浓度的对数之间的线性关系,实验结果表明此组装有Au@SiO2的ITO基底作为可循环利用基底可定量分析吸附物种的浓度。关键词 Au@SiO2纳米粒子;表面增强拉曼光谱;基底;循环;定量分析 中图分类号:O652.7 文献标识码:A DOI:10.3964/j .issn.1000-0593(2011)02-0394-04 收稿日期:2010-04-28,修订日期:2010-08- 03 基金项目:国家自然科学基金项目( 20773091,20973120)资助 作者简介:倪丹丹,女,1985年生,苏州大学材料与化学化工学部硕士研究生 e-mail:soochow_ndd@1 26.com*通讯联系人 e-mail:jly ao@suda.edu.cn引 言 表面增强拉曼光谱(surface enhanced Raman sp ectrosco-py ,SERS)是一种重要的表面谱学技术,它不仅可以从分子水平上提供丰富的光谱信息鉴别吸附在金属表面的物 种[ 1,2] ,给出有关吸附分子表面取向的信息,还可以通过控制表面粗糙度、溶胶粒子尺寸获得理想的SERS效应,特别是纳米科技的飞速发展赋予SERS光谱新的生机和活力,其 可望成为表面科学研究的重要工具之一[3,4] 。虽然SERS的 机理及应用均得到了快速的进展,但迄今为止,将SERS技术用于定量分析仍然存在较大困难,这主要由于SERS增强效应重现性不理想,基底循环使用较困难以及结果横向对比性较差等原因造成的。 虽然裸露的单金属或复合金属纳米粒子具有极高的SERS效应,但由于部分物种的吸附是不可逆的,因此此类 基底无法作为第二次检测的基底,特别是纳米粒子的尺寸、表面状态以及纳米粒子的间距等都极大地影响了其SERS效应,这造成了不同基底之间的横向可比性较差,只能用于高 灵敏度的定性检测,而无法用于定量检测[ 5] 。最近表面惰性氧化物包裹的币族金属纳米粒子具有较好的稳定性,良好的 SERS效应[6] ,Tian等将其用于研究单晶表面的吸附行为,通过内核金的长程SERS效应获得了单晶表面分子的信号, 同时由于SiO2层对单晶表面的吸附行为并没有影响 [7] ,由 此可见包裹SiO2层后可使分子在核壳粒子表面的吸附仅靠 物理作用,而内核的SERS效应仍可表达。本文制备Au@ SiO2核壳纳米粒子并研究其S ERS增强效应及其作为可重复利用基底进行定量分析的可行性。 1 实 验 1.1 试剂与仪器 3-氨丙基-三甲氧基硅烷(3-aminopropyl)trimethoxy si-lane,APTMS)(纯度97%)购自Alfa Aesar,硅酸钠(Na2O(SiO2)3-5,27Wt%SiO2)和聚乙烯吡啶(poly(4-vinylpyri-dine),Mw=160 000,PVP)购自Sigma-Aldrich,其余试剂均为分析纯;实验所用水均为Millipore公司超纯水仪提供的电阻率大于18.0MΩ·cm的超纯水。使用Tecnai F30透射电子显微镜及Hitachi S-4800场发射扫描电子显微镜表征纳米粒子及组装基底。Raman光谱实验采用Horiba的LabRamHR800型共聚焦显微拉曼光谱仪,激发光波长为632.8nm。1.2 纳米粒子的制备 直径为55nm的金种子的合成采用柠檬酸三钠还原氯金 酸的方法[8]。步骤如下:将100mL浓度为1.0×10-4  g· mL-1氯金酸水溶液加热至沸腾,迅速加入0.7mL  1.0×10-2  g ·mL-1柠檬酸三钠水溶液,3min之内溶液由透明淡黄色变为黑色最后变成紫红色[9] ,继续搅拌回流15min ,拆除装置待溶胶自然冷却至室温备用。 Au@SiO2纳米粒子的合成采用水解硅酸钠的方法 [10] ,步骤如下:取30mL上述制备的金溶胶,室温搅拌下加入新

拉曼光谱仪助力药品检测R1解读

拉曼光谱仪助力药品检测 拉曼光谱技术作为一个新兴的检测技术,在药品检测应用方面有着一些得天独厚的优点。与红外光谱相比,其样品制备简单甚至不需要制备,并可在密封的透明容器中进行检测,同时还可以直接测试水溶液; 与近红外光谱相比,其数据具有高度特异性,不需要复杂的建模,便于定性或定量;同时与液相色谱相比,其检测速度大大加快,检测时间可缩短到几分钟甚至几秒钟。由于其具有的这些优点,使其非常适合于药品检测的应用。尤其随着近几年来Raman技术的不断发展和成熟,越来越多的轻巧便携、功能强大、低维护成本的便携式拉曼光谱仪不断面世,使得拉曼光谱仪的应用场合可从实验室内扩展到了仓储和生产现场,大大扩展了拉曼的应用领域。另外,随着美国FDA过程分析技术(PAT)的启动,拉曼光谱技术也被认为是一种非常有希望的在线、实时监测制药全过程的技术。 B&W TEK公司是世界知名的便携式拉曼光谱仪生产商,拥有多种轻巧便携、功能强大的便携式拉曼光谱仪。同时公司还针对制药行业中对药品生产原材料的监测及药品真伪的鉴定应用需要,专门开发了符合21 CFR Part 11标准的BWID TM快速鉴定软件。该软件能快速的分析可疑物质,并立刻给出鉴定结果(匹配/不匹配)或检验结果(通过/不通过)。并具有直观的用户界面和规范化的工作流程,从而使得用户造成的人为误差最小化,保证即使是新手也能很快上手。同时该软件还支持用户对样品鉴定方法进行自定义,并自建光谱数据库。而预定义的方法允许所有的仪器操作者能够通过一键点击就完成样品的鉴定过程。另外该软件还支持FDA 21 CFR Part 11关于电子记录与电子签名规则。可提供增强的系统存取安全性,数据活动记录的审核追踪以及包括IQ和OQ流程的系统校验。完全符合现行药品生产管理规范的要求。 图1. BWID TM用户界面 实验与结果: 采用B&W TEK 公司的MiniRamII便携式拉曼光谱仪和BWID TM软件,对四种常见药品:复方磺胺甲恶唑、泰诺、阿司匹林和安乃近的标准样片进行拉曼检测(对有包衣的药品刮除其包衣后进行检测),并利用得到的拉曼光谱仪建立数据库。然后每种药品再各选取4个样品对建立的数据库进行检验,其结果如下:

表面增强拉曼光谱技术在食品安全现场快速检测中的应用

表面增强拉曼光谱技术在食品安全现场快速检测中的应用 欧普图斯(苏州)光学纳米科技有限公司(OptoTrace?,光纳科技?) 摘要: 本文综述了表面增强拉曼光谱技术在食品安全检测领域中的应用,具体介绍了表面增强拉曼光谱技术用于快速检测三聚氰胺、苏丹红Ⅰ号、孔雀石绿等违禁添加剂。利用光纳科技开发的RamTracer?系列便携式激光拉曼光谱仪和拥有专利技术的表面增强试剂以及芯片(NanoDog?),通过简单的样品前处理手段,即可实现对食品中非法添加剂和过量添加剂进行现场实时检测。其中,三聚氰胺标准品系统检测时间小于1分钟,方法检测限为2mg/L;苏丹红Ⅰ号标准品系统检测时间约为1分钟,方法检测限为10μg/L;孔雀石绿标准品系统检测时间约为2分钟,方法检测限为1μg /L。因而表面增强拉曼光谱技术提供了食品安全领域现场快速检测的应用前景。 概述: 拉曼光谱(Raman Spectroscopy) 分析技术是以拉曼效应为基础建立起来的分子结构表征技术,其谱线位置(位移值)、谱线数目、和谱带强度等直接反映了基于化学分子键的延伸和弯曲的振动模式信息,进而可以了解分子的构成及构象信息。20世纪60年代随着激光的问世并引入到拉曼光谱仪作为光源之后, 拉曼光谱技术得到了迅速的发展,出现了很多新的拉曼光谱技术,从而应用到许多领域。 光纳科技研发的RamTracer?系列便携式激光拉曼光谱仪体积远小于普通大型激光拉曼光谱仪,便于携带,适应现场检测需求,内置高容量可充电锂电池,可在现场持续工作约5小时以上;光源采用785nm稳频激光,功率可在0-300mW范围内连续调节,能够根据不同检测对象的性质进行实时调整;该系列激光拉曼光谱仪的光谱范围可达100cm-1-3300cm-1,可检测绝大多数常见物质,而6cm-1的高分辨率可解析复杂结构的分子信息,即便是检测含有多成份的混合物,也能得到清晰易辨识的拉曼谱图。

拉曼光谱的数据初步处理

摘要 欧阳学文 本文主要目的是熟悉拉曼光谱仪原理,并掌握拉曼光谱仪的实验测量技术以及拉曼光谱的数据初步处理。 文章首先论述了拉曼光谱仪开发设计、安装调试中所应用的基本理论、设计原理与关键技术,介绍了激光拉曼光谱仪的发展动态、研究方向和国内外总体概况。其次阐述了拉曼散射的经典理论及其量子解释。并说明了分析拉曼光谱数据的各种可行的方法,包括平滑,滤波等。再次根据光谱仪器设计原理详细论述了分光光学系统的结构设计和激光拉曼光谱仪的总体设计,并且对各个部件的选择作用及原理做了详细的描述。最后,测量了几种样品的拉曼光谱,并利用文中阐述的光谱处理方法进行初步处理,并且进行了合理的分析对比。 总之,本文主要从两个方面来分析拉曼光谱仪的实验测量和光谱数据处理研究:一、拉曼光谱仪的结构,详细了解拉曼光谱仪的工作原理。二、拉曼光谱数据处理分析,用合理的方法处理拉曼光谱可以有效便捷的得到较为理想的实验结果。通过对四氯化碳、乙醇、正丁醇的光谱测量以及光谱数据分析,得到了较为理想实验效果,证明本文所论述方法的可行性和正确性。 关键词: 拉曼光谱仪光栅光谱分析 Abstract

Purpose of this paperisfamiliar withRamanSpectrometer, and mastery of experimental measurements ofRaman spectroscopyandRaman spectroscopytechniquespreliminarydataprocessing. The article firstdiscusses theRaman spectrometerdevelopment, design,installation and commissioningin theapplication of the basictheory, designprinciples andkey technologies,laserRaman spectrometerdevelopments,research direction andoverall profileat home and abroad. The second section describesthe classical theoryof Ramanscatteringandquantumexplanation.And showsthe Ramanspectraofthe variouspossible ways, includingsmoothingand filtering.Againaccording tospectrometerdesign principlesdiscussed in detail thespectroscopicoptical systemdesignand laserRaman spectrometeroveralldesign, andthe choiceforthe role ofthe various componentsand the principle ofa detaileddescription. Finally, themeasuredRaman spectraof severalsamples, and use paper describesmethodsforspectralprocessinginitial treatment, and for a reasonableanalysis and comparison. In summary, this paper mainly fromtwoaspects to analyzeexperimental measurementsof Ramanspectroscopyand spectral dataprocessing research: First, the structure ofRaman spectroscopy, Raman spectroscopydetailed understanding ofthe working principle. Second,Raman spectroscopydata processing and analysis, a reasonableapproach toeffectiveand convenientRaman spectroscopycanbemore idealresults. Throughcarbon tetrachloride, ethanol, nbutanolandspectraldata analysisspectral

ADF教程:计算表面增强拉曼光谱SERS

ADF软件教程:计算表面增强拉曼光谱SERS 表面增强拉曼(Surface-Enhanced Raman Scattering,简称SERS),用通常的拉曼光谱法测定吸附在胶质金属颗粒如银、金或铜表面的样品,或吸附在这些金属片的粗糙表面上的样品。人们发现被吸附的样品其拉曼光谱的强度可提高103-106倍。 参数设置 将体系分为两个区,其中一个区是我们关心的分子,另一个区是材料表面: 基本参数设置,注意任务类型选择Frequencies:

ADFinput > Model > DIM/QM,设置DIM/QM参数: 其中Method中: §DRF:用于溶液-溶质的情况 §CPIM:用于小的金属纳米颗粒表面的情况 §PIM:用于大金属颗粒表面的情况 Region:分别将金属和分子勾选未DIM、QM part Dim Parameters:软件对一些金属元素已经内置了参数,因此本例中已经自动显示出来,如下图所示。如果某些金属材料没有参数,就需要用户自己设定。 Options: §Local field:当分子与表面相互作用时,包括两种相互作用:image field、local field。 前者默认包括,这里勾选是否包括后者。 §Frequency:开启依赖于频率的参数。但这对某些Method不支持。 §Forefield:使用Lenard-Jones势。 具体参数设置如下: ADFinput > Properties > Raman, VROA,选择拉曼光谱的参数:Calculate选择Raman Full AORESPONSE,Frequency value设置入射激光的频率,本例为3.55eV;Damping 设置lifetimes。本例为0.0036749

拉曼光谱现状研究

拉曼光谱现状研究 拉曼光谱(Raman spectra),是一种散射光谱。它是1928年印度物理学家C.V. Raman发现的。对与入射光频率不同的散射光谱进行分析以得到分子振动、转动方面信息,并应用于分子结构研究的一种分析方法。拉曼光谱作为一种物质结构的分析测试手段而被广泛应用,尤其是60年代以后,激光光源的引入、微弱信号检测技术的提高和计算机的应用, 拉曼光谱得到了迅速的发展,出现了很多新的拉曼光谱技术,使拉曼光谱分析在许多应用领域取得很大的发展。目前,拉曼光谱已广泛应用于材料、化工、石油、高分子、生物、环保、地质等领域。 一拉曼光谱的发展 拉曼光谱又称拉曼效应,是起用发现者印度人C.V.Raman命名的。德文文献中常称之为迈克尔-拉曼(Smekal-Raman)效应,而苏联前若干年的文献中则称之为联合散射,是拉曼于1919年从水分子散射现象中发现的。拉曼光谱最初用的光源是聚焦的日光,后来使用汞弧灯由于它强度不太高和单色性差,限制了拉曼光谱的发展。60年代激光技术的兴起,以及光电讯号转换器件的发展才给拉曼光谱带来新的转机。70年代中期,激光拉曼探针的出现,给微区分析注入活力。80年代以来,一些公司相继推出了拉曼探针共焦激光拉曼光谱仪,入射光的功率可以很低,灵敏度得到很大的提高。这些性质使拉曼光谱的应用无论在广度和特异性等方面都得到了空前发展。 二拉曼光谱特点 拉曼光谱产生的原理和机制都与红外光谱不同,但它提供的结构信息却是类似的,都是关于分子内部各种简正振动频率及有关振动能级的情况,从而可以用来鉴定分子中存在的官能团。分子偶极矩变化是红外光谱产生的原因,而拉曼光谱是分子极化率变化诱导产生的,它的谱线强度取决于相应的简正振动过程中极化率的变化的大小。在分子结构分析中,拉曼光谱与红外光谱是相互补充的。因此,一些在红外光谱仪无法检测的信息在拉曼光谱能很好地表现出来。拉曼效应普遍存在于一切分子中,无论是气态,液态和固态,拉曼散射光谱对于样品制备没有特殊要求;对于样品数量要求比较少,可以是毫克甚至微克的数量级。拉曼散射最突出的优点是采用光子探针,对于样品是无损伤探测,尤其适合对那些稀有或珍贵的样品进行分析,甚至可以用拉曼光谱检测活体中的生物物质。 拉曼光谱的缺点之一是会产生荧光干扰,样品一旦产生荧光,拉曼光谱会被荧光所湮灭检测不到样品的拉曼信号。二是检测灵敏度低。 三几种常见的拉曼光谱技术 3?1共焦显微拉曼光谱技术 显微拉曼光谱技术是将拉曼光谱分析技术与显微分析技术结合起来的一种

表面增强拉曼光谱在食品质量检测中的应用

表面增强拉曼光谱在食品质量检测中的应用 石绍华 (临沂师范学院物理系,山东临沂276005) [摘要]表面增强拉曼光谱在物质检测中具有极高的灵敏度和操作简单等优点,本文探讨了奶粉中三聚氰胺的表面增强拉曼散射检测技术。 [关键词]表面增强拉曼光谱;三聚氰胺;检测 [中图分类号】TS207[文献标识码]A[文章编号】1009-5489(2009)14-0112∞1 l、引言 拉曼光谱分析是基于拉曼散射效应,拉曼散射效应由印度人拉曼首先发现,并因此获得1930年诺贝尔奖。拉曼散射现象的实质是入射到待检测物质的电磁场(光)与待检测物质分子的诱导偶极矩发生相互作用,从而使从待检测物质中出射的散射电磁场(光)的频率发生改变,拉曼光谱的频移对应于待检测物质的分子转动、振动能级跃迁。m因此可以指纹化的对物质进行定性或定量鉴定,识别准确率极高。它无需对样品进行特殊准备,可对有机物及无机物进行无损伤的快速分析。但是拉曼散射与瑞利散射相比强度极低,约为瑞利散射的百万分之一。嘲但是采用激光作为强入射光源,同时使用表面增强技术采集待测样品的拉曼光谱,可以较大幅度的提高待检测物质的拉曼光谱强度。吸附在粗糙化金属表面的化合物由于表面局域等离子激元被激发所引起的电磁增强(即物理增强),以及粗糙表面上的原子簇及吸附其一卜的分子构成拉曼增强的活性点(即化学增强),通常认为这两者的作用使被测定化合物的拉曼散射产生极大的增强效应。增强因子甚至可以达到千万量级。因此表面增强拉曼光谱分析技术在物质结构分析以及物质检测领域得到广泛应用。 2、奶粉中三聚氰氨的柃测 2.1常用的三聚氰氨检测技术。自2007年3月,美国爆出宠物饲料被三聚氰胺污染事件以来,美国食品及药物管理局(FDA)先后提供了可用于三聚氰胺检测的气相色谱一质谱联.Hj法、高效液相色谱法、液相色谱一质谱联用法。2008年3月FDA又在 JournalofFoodProtection上发表了传统的免疫法ELISA试剂盒检测法。 针对奶粉中三聚氰氨事件,我国质量监督检验检疫总局、国家标准化管理委员会2008年10月7日批准发布了<原料乳与乳制品中三聚氰胺检测方法》国家标准,标准规定了高效液相色谱法、气相色谱一质谱联用法、液相色谱一质谱法三种方法为三聚氰胺的检测方法,检测定量限分别为2ppm、0.05ppm和0.Olppm。标准适用于原料乳、乳制品以及含乳制品中三聚氰胺的定量测定。 虽然高效液相色谱法、液相色谱一质谱法、气相色谱一质谱法等检测技术的使用也比较简便,能够对未知样品进行定量检测,确定其物质成分,但是设备造价动辄几十万、上百万元,并不具有快速推广应用的条件,而长达数小时的检测时间也成为三种主流检测方法推广受限。 鉴于表面增强拉曼光谱高的灵敏度和操作简单等优点,我们尝试利用表面增强托曼光谱检测奶粉中三聚氰胺。 2.2采用胶态纳米银为表面增强物质对奶粉中的三聚氰氨进行检测。将含有三聚氰氨的奶粉溶于吡啶,2分钟摇匀,放置2分钟,取上=层清液,按l:l加入制备好的胶态纳米银溶液,摇匀后滴在载波片,自然晾干,待测。 拉曼检测利用类尼绍公司invai型激光拉曼仪,激发光源为波长785nm的激光,光谱采集方式采用背反射模式。 根据事先采集的三聚氰氨固体的表面增强拉曼光谱图,其在500—1lOOcm.1区域有3条特征峰,分别位于563,670,971cm?l。我们以最强的670era.1处峰检测奶粉中是否存在三聚氰氨。 对制作好的待测三聚氰氨吡啶溶液进行拉曼光谱采集,与三聚氰氨的固体表面增强拉曼光谱相比,670处的拉曼光谱峰稍有红移,这是因为吡啶分子与三聚氰氨相互作用使得三聚氰氨品格常数发生变化造成的。 改变奶粉中的三聚氰氨含量,分别采集表面增强拉曼光谱:三聚氰氨含量分别为900mg瓜g,100mg/kg,54mg/kg(高效液相检测结果),由各自光谱数据图对比可以看出,随着三聚氰氨含量的降低,670处峰强度相心降低。这说明三聚氰氨的光谱强度与其含量之间具有关联。规范设计实验检测步骤,通过对已知含量样品的相应数据的统计。标定三聚氰氨的光谱强度与其含量之间的数学关系,可以定量检测未知样品中三聚氰氨的含量。 3、总结 通过以上实验表明可以利用表面增强拉曼散射技术检测奶粉中三聚氰氨含量。但也存在以下问题: 3.1由于实验技术以及实验条件的限制,检测下线仍然需要降低。对于降低检测下限的降低可以考虑以下思路:因为银胶吸收峰位于480hm左右,与激发光波长785nm差别较大,小容易发生共振效应,如采用金胶效果可能会更好。 3.2如果对检测流程进行合理规范,比如,常备纳米银胶以及采用干燥设备制备样品,检测速度还有提高的空间。 【参考文献】 【l】程光熙.拉曼、布里渊散射【M】.北京:科学出版社,2003A. 【2】范康年.谱学导论【M】.北京:高等教育出版社,2005.12. (上接第106页)自己的学科知识,而且是学生的导师,指导学生发展自己的个性,督促其自我参与,学会生存,成才成人。教师的劳动不再是机械的重复,不再是在课堂上千篇一律的死板讲授,代之而行的是主持和开展种种认知性学习活动,师生共同参与探讨数学的神奇世界;新课程标准下的教师也不再是学生知识的唯一源泉,而是各种知识源泉的组织者、协调者,他们让学生走出校门,感受社会和整个教育的文化。可以说,促进人的发展,促进文化和科学技术的发展,促进社会生产的发展,这是新课程标准下数学教师的根本任务。 作者简介:石绍华,临沂师范学院物理系。 对教师和学生都提出了新的要求,面对新课程,教师要在数学 教学过程中充分理解新课程的要求,要树立新形象,把握新方法,适应新课程,把握新课程,掌握新的专业要求和技能一学会关爱、学会理解、学会宽容、学会给予、学会等待、学会分享、学会选择、学会激励、学会合作、学会“IT"、学会创新,这只有这样,才能与新课程同行,才能让新课程标准下的数学教学过程更加流畅。 【参考文献】 【11鲍玉发.数学课程标准【M1.北京师范大学出版社. 【2】王安忠.科教文汇。2000.  万方数据

拉曼光谱的数据初步处理34577

摘要 本文主要目的是熟悉拉曼光谱仪原理,并掌握拉曼光谱仪的实验测量技术以及拉曼光谱的数据初步处理。 文章首先论述了拉曼光谱仪开发设计、安装调试中所应用的基本理论、设计原理与关键技术,介绍了激光拉曼光谱仪的发展动态、研究方向和国外总体概况。其次阐述了拉曼散射的经典理论及其量子解释。并说明了分析拉曼光谱数据的各种可行的方法,包括平滑,滤波等。再次根据光谱仪器设计原理详细论述了分光光学系统的结构设计和激光拉曼光谱仪的总体设计,并且对各个部件的选择作用及原理做了详细的描述。最后,测量了几种样品的拉曼光谱,并利用文中阐述的光谱处理方法进行初步处理,并且进行了合理的分析对比。 总之,本文主要从两个方面来分析拉曼光谱仪的实验测量和光谱数据处理研究:一、拉曼光谱仪的结构,详细了解拉曼光谱仪的工作原理。二、拉曼光谱数据处理分析,用合理的方法处理拉曼光谱可以有效便捷的得到较为理想的实验结果。通过对四氯化碳、乙醇、正丁醇的光谱测量以及光谱数据分析,得到了较为理想实验效果,证明本文所论述方法的可行性和正确性。 关键词: 拉曼光谱仪光栅光谱分析 目录 第1章引言 (1) 1.1 拉曼光谱分析技术 (1)

1.2 现代拉曼光谱技术与特点 (1) 1.3研究拉曼光谱仪的意义 (2) 1.4 本文的主要容 (2) 第2章基本理论 (3) 2.1拉曼散射经典解释[8] (3) 2.2拉曼散射的量子解释 (5) 2.2.1散射过程的量子跃迁 (5) 2.2.2量子力学结果 (5) 2.2.3 Placzek近似 (10) 2.3拉曼光谱数据分析方法 (13) 2.3.1数据平滑处理 (13) 2.3.2基线校正 (14) 2.3.3数据求导处理 (14) 2.3.4数据增强算法 (15) 2.3.5傅里叶变换 (15) 2.3.6小波变换 (16) 2.3.7 数字滤波 (16) 第3章常规拉曼检测系统 (17) 3.1 光源 (18) 3.2 滤光片 (19) 3.3 拉曼光谱仪及计算机软件 (20) 3.3.1光栅 (20) 3.3.2光电倍增管 (22) 第4章拉曼光谱测量及数据处理和结论 (23) 4.1 物质的拉曼光谱测量 (23) 4.2拉曼光谱数据处理与分析 (26) 4.2.1平滑处理 (26) 4.2.2 低通滤波处理 (29) 4.3结论 (30) 第5章论文总结与展望 (31) 致: (31) 参考文献:............................................... 错误!未定义书签。

相关文档
最新文档