珠江流域主要水文站设计洪水、设计潮位及水位~流量关系

珠江流域主要水文站设计洪水、设计潮位及水位~流量关系
珠江流域主要水文站设计洪水、设计潮位及水位~流量关系

2.1 流域暴雨洪水特性

2.1.1 暴雨特性

珠江流域地处我国南部低纬度地带,多属亚热带季风区气候,水汽丰沛,暴雨频繁。由于流域广阔,东部与西部、南部与北部以及上、下游之间的地面高程差异较大,地形、地貌变化复杂,气候及降雨、暴雨量级的差异和沿程变化极为明显。

1)暴雨时程分布

流域暴雨主要由地面冷锋或静止锋、高空切变线、低涡和热带气旋等天气系统形成,强度大、次数多、历时长。暴雨多出现在4月~10月(约占全年暴雨次数的58.0%),大暴雨或特大暴雨也多出现在此期间。一次流域性的暴雨过程一般历时7天左右,而雨量主要集中在3天,3天雨量占7天雨量的80%~85%、暴雨中心地区可达90%。

2)暴雨空间分布

暴雨空间分布差别明显,雨量通常由东向西递减,一般山地降水多,平原河谷降水少,降水高值区多分布在较大山脉的迎风坡。一年中日雨量在50mm以上的天数,东江、北江中下游平均为9天~13天,桂北和桂南为4天~8天,滇、黔为2天~5天,滇东南为1天~2天。

3)暴雨强度

暴雨强度的地区分布一般是沿海大、内陆小,东部大、西部小。由于特定的自然环境和地形条件,流域暴雨的强度、历时皆居于全国各大流域的前列。绝大部分地区的24小时暴雨极值都在200mm以上,暴雨高值区最大24小时雨量可达600mm以上,最大3天降雨量可超过1000mm。如柳江“96.7”大暴雨,其中心最大24小时降雨量达779mm(再老站),最大3天降雨量达1336mm。

2.1.2 洪水特性

流域洪水由暴雨形成,按其影响范围的不同,可分为流域性洪水和地区性洪水。流域性洪水主要由大面积、连续的暴雨形成,洪水量级及影响区域较大,如珠江流域的1915年洪水和1994年洪水等。地区性洪水由局部性暴雨形成,暴雨持续时间短,笼罩面积较小,相应洪水具有峰高、历时短的特点,破坏性较大,但影响范围相对较小,如1988年8月的柳江洪水、1982年5月的北江洪水等。

流域洪水的出现时间与暴雨一致,多集中在4月~10月,根据形成暴雨洪水的天气系统的差异,可将洪水期分为前汛期(4月~7月)和后汛期(7月底~10月)。前汛期暴雨多为锋面雨,洪水峰高、量大、历时长,流域性洪水及洪水灾害一般发生在前汛期。后汛期暴雨多由热带气旋造成,洪水相对集中,来势迅猛,峰高而量相对较小。

由于暴雨历时长、强度大、范围广,流域水系发达,上中游地区多山丘,洪水汇流速度快,易于同时汇集到干流,加之缺少湖泊调蓄,中下游及三角洲洪水具有峰高、量大、历时长的特点,局部地区易形成山洪、泥石流。

1)西江洪水

西江为珠江的主流,思贤滘以上的流域面积为35.31万km2,占珠江流域总面积的77.8%。西江水系支流众多,源远流长,水量充沛,较大洪水多发生在5月~8月。根据干流武宣、梧州站实测洪水发生时间及量级变化情况,一般可将7月底~8月初作为前、后汛期洪水的分界点,年最大洪水多发生在前汛期,其发生机率分别占武宣、梧州站年最大洪水发生机率的82.0%、77.5%,尤以6、7月洪水最盛,分别占到72.1%、69.0%;后汛期洪水一般发生在8月~10月(个别年份11月也有洪水发生),尤以8月发生洪水最多,分别占武宣站和梧州站后汛期洪水的75.4%、71.9%。由于流域面积较大,各地区的气候条件存在一定的差异,干、支流洪水的发生时间有从东北向西南逐步推迟的趋势。较大洪水往往由几场连续暴雨形成,具有峰高、量

大、历时长的特点,洪水过程以多峰型为主,下游控制断面梧州水文站的多峰型洪水过程约占80%以上。一次较大的洪水过程一般历时30天~40天,年最大场洪水的洪量平均值一般占年径流量的27%,最高可达48%。

西江洪水主要来源于中上游的黔江以上,梧州站年最大30天洪量的平均组成情况为:干流武宣站占64.2%,郁江贵港站占21.5%,桂江马江站占6.9%,武宣至梧州区间占7.4%。形成西江较大洪水的干、支流洪水遭遇情况大致有三种:一是红水河洪水与柳江洪水遭遇;二是黔江洪水与郁江洪水,浔江洪水与桂江洪水遭遇;三是黔江一般洪水与郁江、桂江和武宣~梧州区间较大洪水遭遇。西江防洪控制断面梧州站历年实测最大洪峰流量为53900 m3/s (2005年6月),调查历史洪水最大洪峰流量为54500 m3/s(1915年7月)。近年来,西江水系的郁江、浔江及西江干流沿岸的部分河段进行了较大规模的堤防建设,减轻了一般洪水对沿江两岸的威胁,同时也改变了河道原来的洪水汇流特性,使得河道对洪水的槽蓄能力减弱,洪水归槽作用明显。

2)北江洪水

北江是珠江流域的第二大水系,思贤滘以上的流域面积为4.67万km2,占珠江流域总面积的10.3%。北江的较大洪水主要发生在5月~7月,峰高量较小,历时相对较短,暴涨暴落,水位变幅较大,具有山区性河流的特点。洪水过程以单峰和双峰为多,多峰型过程较少出现。一次连续降雨(3天~5天)所形成的洪水过程一般历时约7天~20天。北江洪水主要来自横石以上地区,下游防洪控制断面石角站年最大洪水的15天洪量中,横石站来量占84%。由于流域面积不大,一次较大的降雨过程几乎可以笼罩整个流域,加之流域坡降较陡,横石以上的干、支流洪水常常遭遇。横石以下支流的发洪时间一般稍早于干流,较少与干流洪水遭遇。石角站历年实测最大洪峰流量为16700 m3/s(1994年6月),实测洪水中,经归槽计算后的最大洪峰流量为19000 m3/s(1982年5月)。调查历史洪水的最大归槽洪峰流量为22000 m3/s(1915年7月)。北江洪水与西江洪水在思贤滘遭遇,经重新组合与分配后,进入西北江三角洲河网区。

3)东江洪水

东江是珠江流域的第三大水系,东莞石龙以上的流域面积为2.70万km2,占珠江流域总面积的6.0%。东江洪水一般出现在5月~10月,以6月~8月最为集中,洪水涨落较快,一次洪水过程历时约10天~20天,多为单峰型。东江洪水主要来自河源以上,由于面积较小,干、支流洪水发生遭遇的机会较多。1959年支流新丰江上建成了新丰江水库,1973年和1985年又先后在干流及西枝江建成枫树坝水库和白盆珠水库,三库共控制流域面积1.17万km2,占下游防洪控制断面博罗站以上流域面积的46.4%。三库建成后,东江流域的洪水基本得到了控制。经三库联合调洪,可将博罗站100年一遇的洪峰流量由14400 m3/s降低为11670 m3/s~12070 m3/s,接近20年一遇洪峰流量11200 m3/s。博罗站历年实测最大洪峰流量为12800 m3/s(1959年6月),实测洪水中,经还原后的最大洪峰流量为14300m3/s(1966年6月)。

2.1.3 1915年流域性洪水

1915年7月,东、西、北三江同时发生大洪水或特大洪水。红水河迁江站洪峰流量21200 m3/s,柳江柳州站洪峰流量22000 m3/s,两江洪水遭遇后,黔江武宣站洪峰流量41000m3/s;支流郁江南宁站洪峰流量13500 m3/s,洪峰出现时间滞后于梧州站两天;支流桂江昭平站洪峰流量14700 m3/s,桂平至梧州区间的支流蒙江、北流河洪水也很大,干、支流洪水再次遭遇。7月10日,西江干流梧州站出现最高水位27.07m(珠江基面,以下高程如无特别说明,均指珠江基面),洪峰流量54500 m3/s,为1784年以来最大的一场洪水。北江横石站洪峰流量21000 m3/s,为1764年以来的最大洪水。东江洪水较小,在博罗单氏宗祠处调查到1915年最高洪水位为13.25m,改正到水文站断面的相应水位为13.19m。

东江博罗站7月9日出现最高洪水位,稍先进入三角洲,西、北江洪水接踵而至,西江梧州、北江横石均在7月10日出现最大洪峰。三江洪水基本上同时于三角洲遭遇,适逢农历六月初一(7月12日)大潮,使珠江三角洲地区遭到前所未有的水灾。

2.2 设计洪水

本次规划将珠江流域各主要水文与潮位站的洪水与潮位资料系列延长至1997年(部分站点至1998年),对设计洪水与潮位进行了复核。鉴于1994年6月西江中下游发生约50年一遇的洪水后,沿江两岸工情和水文情势发生显著变化,本次防洪规划分析计算了西江大湟江口、梧州、高要、马口和北江石角、三水等站在洪水归槽条件下的设计洪水。

目前,在全力防守的情况下,西江干流沿岸及西北江三角洲堤防,大多具备防御10年一遇洪水的能力,少数重点堤防可防御50年一遇的洪水。因此,发生10年一遇的洪水时,浔江、西江及西北江三角洲基本上不会发生洪水漫堤的现象,河道洪水处于全归槽状态;当洪水大于10年一遇时,部分堤防将发生漫顶或溃决,河道两岸的滞洪作用逐渐加大,洪水呈部分归槽状态,且洪水越大,越接近天然状况;当浔江出现大于50年一遇的洪水、西江出现大于100年一遇的洪水时,按堤防设计标准,沿江两岸将基本恢复天然条件下的蓄滞洪能力。

本次防洪规划根据西、北江干流历年的堤防工程变化情况及规划选定的堤防标准,采用马斯京根法,对西江干流的大湟江口站和梧州站、北江石角站、西北江三角洲的马口站、三水站及思贤滘断面受堤防溃决影响的实测洪水过程线进行了全归槽计算,并通过建立各站天然(实测)洪水与全归槽洪水的峰、量相关关系,由天然条件下的设计洪水推求出各站全归槽情况下的设计洪水。根据沿江堤防规划标准和近年实际发生的水情,浔江大湟江口站部分归槽情况下的设计洪水,由该站天然条件下的50年一遇设计洪水与全归槽情况下的10年一遇设计洪水内插求出;西江梧州站和高要站、西北江三角洲马口站、三水站和思贤滘断面部分归槽情况下的设计洪水,分别由各站天然条件下的100年一遇设计洪水与全归槽情况下的10年一遇设计洪水内插求出;北江石角站部分归槽情况下的设计洪水,在北江干流飞来峡至河口河段规划中进行过详细的分析计算,本次规划的复核结果表明,原有成果仍

可继续使用。

本次规划采用的主要水文测站的设计洪水成果见表2-1及附表4。

表2-1 珠江流域防洪控制水文站设计洪峰流量成果表

注:浔江大湟江口站50年一遇以上的洪水为天然条件下的设计洪水,10年~50年一遇的洪水为部分归槽条件下的设计洪水,10年一遇以下的洪水为全归槽条件下的设计洪水;西江梧州站和高要站、西北江三角洲马口站、三水站和思贤滘断面100年一遇以上的洪水为天然条件下的设计洪水,10年~100年一遇的洪水为部分归槽条件下的设计洪水,10年一遇以下的洪水为全归槽条件下的设计洪水;北江石角站洪水为部分归槽情况下的设计洪水。

2.3 潮汐特征及设计潮位

珠江三角洲的潮汐均属不规则半日潮,日潮不等现象显著,月内有朔、望大潮和上、下弦小潮,约15天为一周期。在一年中,夏潮高于冬潮,最高、最低潮位分别出现在秋分和春分前后,且潮差最大,夏至、冬至潮差最小。径流量和风暴对潮位有很大影响,最高潮位一般出现于汛期,高、低潮年际变化不大。

本次规划对西北江三角洲主要潮位站的设计潮位进行了分析,计算资料系列为1952年(或建站时间)至1998年。东江三角洲设计潮位采用广东省水利厅1995年5月发布的《广东省最高潮位频率计算成果》。珠江三角洲主要潮位站设计潮位成果见表2-2。

表2-2 珠江三角洲主要潮位站设计潮位成果表

2.4 主要防洪控制断面水位流量关系

武宣、大湟江口、梧州、高要、石角和三水、马口分别是西、北江干流和三角洲的主要控制水文站。经复核,武宣、大湟江口、梧州、高要、石角站水位流量关系变化不大,原水位流量关系曲线仍可继续使用。三水、马口站因下游主要河道河床边界条件发生了较大的变化,出现同级流量水位下降的现象。考虑到三水站、马口站附近河段的西、北江堤防已按珠江流域综合利用规划确定的设计水位修建,本次规划对两站分别提出上、下两条水位流量关系曲线,实际运用时,可根据不同情况合理选取。两站水位流量关系曲线的上线均为原规划采用线,三水站的下线为1996年~1998年的综合水位流量关系线,马口站的下线为1996年~1998年的水位流量关系曲线簇的下包线。

2.5 设计洪、潮水面线

本次防洪规划,根据新的实测河道地形资料、设计洪水成果和水位流量关系曲线,对各规划河段的设计洪水水面线进行了复核,并推荐采用复核成果。考虑到归槽洪水对西江干流大藤峡以下河段和北江干流飞来峡以下河段的影响较大,水面线复核采用了部分归槽情况下的设计洪水成果。其中,北江干流设计洪水水面线复核成果,与目前北江大堤除险加固所采用的设计水面线及《北江干流飞来峡~河口河段补充规划报告》所列设计水面线基本一致;受洪水归槽的影响,西江干流复核水面线高于原水面线。近年来,西北江三角洲河网区的河道断面发生了较大的变化,导致部分水道洪水分流比随之改变,由于河道仍在变化中,为安全计,规划设计洪、潮水面线采用原水面线和复核水面线的上包线。

2.6 泥沙特征

珠江是我国七大江河中含沙量最小的河流,多年平均含沙量0.28 kg/m3,多年平均输沙量9210万t。

西江上游地区坡度大,植被较差,河流含沙量较大。其中以北盘江含沙量最大,上游大渡口站多年平均含沙量为3.00kg/m3;其次是南盘江的江边街站和红水河的天峨站,多年平均含沙量分别为1.05 kg/m3和1.01 kg/m3。西江中游地处广西盆地岩溶发育地区,主要一级支流多年平均含沙量在0.11kg/m3~0.56kg/m3之间。西江干流含沙量自上游向下游递减,武宣站的多年平均含沙量为0.45kg/m3,梧州站为0.36kg/m3,高要站为0.34kg/m3。北江和东江的含沙量比西江小,北江石角站和东江博罗站的多年平均含沙量分别为0.14kg/m3和0.12kg/m3。

珠江流域的河流输沙量主要来自西江,西江梧州站多年平均年输沙量为7490万t,占珠江流域年总输沙量的81.3%;北江石角站为597万t,占6.5%;东江博罗站为288万t,占3.1%。

含沙量的季节变化与降水量及暴雨强度有关。西江上游汛期5月~10月的月平均含沙量为0.46kg/m3~7.43kg/m3,非汛期11月~翌年4月为0.02kg/m3~0.67kg/m3。最大月平均含沙量出现在5月或6月,北盘江大渡口站5月的平均含沙量为7.43 kg/m3;南盘江江边街站6月的平均含沙量为

1.75 kg/m3;红水河天峨站6月的平均含沙量为1.91kg/m3。西江中下游及北江、东江在汛期4月~9月的月平均含沙量为0.03kg/m3~0.70kg/m3,最大月含沙量在6月或7月,非汛期10月~翌年3月的月平均含沙量为0.003kg/m3~0.25kg/m3。由于汛期含沙量与径流量均大,因此输沙量高度集中,各水系4月~9月的输沙量占全年输沙量的90%以上,最大月输沙量多出现在6月或7月,约占全年的27.2%~39.6%。

泥沙的年际变化也很大,且输沙量的年际变化与径流的年际变化相应,丰水年多沙,枯水年少沙。

流域的输沙模数以西江为大,梧州站多年平均输沙模数为229t/km2?a;北江次之,石角站多年平均输沙模数为156t/km2?a;东江最小,博罗站多年平均输沙模数为114t/km2?a。

洪峰流量的计算

3.4设计洪水 3.4.1暴雨洪水特性 鸭嘴河流域洪水主要由暴雨形成。流域内暴雨一般出现在6~9月,且多连续降雨,受地形影响,降雨量不大。据木里县气象站1970~2002年33年实测资料统计,最大一日降水量为77.4mm(1997年8月15日)、最大三日降水量111.6mm (1981年7月14日~16日)、最大五日降水量144.8mm(1981年7月14日~18日)。 鸭嘴河洪水出现时间与暴雨一致,洪水最早出现在5月,最迟出现在11月,但量级和强度较大的洪水一般出现在6~9月。据邻近流域九龙河乌拉溪水文站1985~2004年20年实测资料统计,年最大流量最早出现在6月20日,最迟出现在9月4日,年最大洪水出现在6~7月的次数占全年的70%。 鸭嘴河流域的洪水具有峰不高、量较大、洪水历时长的特点。一次洪水过程约2~3天,但洪水总量主要集中在一天。鸭嘴站1990~1992年3年实测资料中,最大洪水发生在1991年,最大一日降水量58.5mm,洪峰流量为150m3/s,最大一日洪量1123万m3,三日洪量2809万m3,最大一日洪量占三日洪量的40%。 3.4.2设计洪水 鸭嘴站仅有1990~1992年3年实测水文资料,且无法插补延长其洪水系列。故采用推理公式法由设计暴雨推求布西水库设计洪水。 3.4.2.1布西水库坝址设计洪峰流量计算 推理公式法洪峰流量计算公式: Q=0.278ψ(s/τn)F 式中:Q——最大流量,m3/s; ψ——洪峰径流系数; s——暴雨雨力,mm/h; τ——流域汇流时间,h; n——暴雨公式指数; F——流域面积,km2。 (1)流域特征值 在1/50000的地形图上,量算鸭嘴河布西水库坝址的流域特征值,见表3.7。

第8章习题_由暴雨资料推求设计洪水

第八章 由暴雨资料推求设计洪水 本章学习的内容和意义:在设计流域实测流量资料不足或缺乏时,或人类活动破坏了洪水系列的一致性,就有必要研究由暴雨资料推求设计洪水的问题。另外,可能最大洪水和小流域设计洪水也常用暴雨资料推求。由暴雨资料推求设计洪水的基本假定是:暴雨与洪水同频率。对于比较大的洪水,大体上可以认为某一频率的暴雨将形成同一频率的洪水,即假定暴雨与洪水同频率。因此,推求设计暴雨就是推求与设计洪水同频率的暴雨,再按照降雨形成径流的原理和计算方法,由设计暴雨推求出设计洪水。 本章习题内容主要涉及:暴雨资料的选样;不同资料情况下设计暴雨的计算;推求设计净雨;推求设计洪水过程线;可能最大暴雨和可能最大洪水的推求;小流域设计洪水的计算。 一、概 念 题 (一)填空题 1.设计暴雨的设计频率一般假定与相应的 具有相同的频率。 2.暴雨点面关系是 ,它用于由设计点雨量推求 。 3.由暴雨资料推求设计洪水时,假定设计暴雨与设计洪水频率 。 4.推求设计暴雨过程时,典型暴雨过程的放大计算一般采用 法。 5.判别暴雨资料是否为特大值时,一般的方法是 。 6.由暴雨资料推求设计洪水的一般步骤是 _______________、 、 。 7.暴雨资料的插补延展方法有 。 8.流域内测站分布均匀时,可采用 计算面雨量。 9.流域内侧站分布不均匀时,宜采用 计算面雨量。 10.一般情况下,用泰森多边形法计算流域平均雨量比用算术平均法合理些,但在 情况下,两种方法可获得相同的结果。 11.暴雨频率分析,我国一般采用 法确定其概率分布函数及统计参数。 12.暴雨点面关系有两种,其一是 ;其二 。 13.设计面雨量的时程分配通常选取 作为典型,经放大后求得。 14.对暴雨影响最大的气象因子,包括 和 两大类。 15.用W m 折算法(m p a rW P ,)计算设计暴雨的前期影响雨量P a 时,在湿润地区,当设计标准较高时,r 应取较 值;在干旱地区,当设计标准较低时,r 应取较 值。 16.由设计暴雨推求设计净雨时,要处理的主要问题有 的确定和 的拟定。

污水设计流量计算

污水设计流量 1. 定义 污水设计流量是设计终了时的最大日最大时污水流量。包括生活污水和工业废水,此外在地下水位高的地区需要考虑地下水渗入量。注意不是瞬间流量,也不是平均流量。 2. 变化系数 日变化系数:一年中最大日污水量与平均日污水量的比值成为日变化系数K; 时变化系数:最大日中最大污水量与该日平均污水量的比值称为时变化系数K; 总变化系数:最大日最大时的污水量与平均日平均时污水量的比值称为总变化系数K; K=K×K(1-1) K也可按下式计算: K=2.7Q.(1-2) 3. 旱流污水设计流量 ①城镇旱流污水设计流量,应按下列公式计算: Q=Q+Q(1-3)式中:Q——截留井以前的旱流污水设计流量,L/s; Q——设计综合生活污水量,L/s; Q——设计工业废水量,工厂生产区生活污水和工业生产废水总和,L/s; ②工业废水量按式(1-4)计算: Q=Q+Q(1-4)式中:Q——工业生产区生活污水流量,L/s; Q——工业生产废水流量,L/s; ③城镇旱流污水总设计流量(工业直接排入管网),按下式计算: Q=Q+Q+Q(1-5)式中:Q——地下水渗入量,可根据地下水位的高低确定是否需要此项,L/s; 4. 居民综合生活污水量 综合生活污水量按下式计算: Q d=q d NK Z24×3600(1-6)式中:q——居民生活污水定额,可按当地相关用水定额的80~90%,L/d; N——设计人口; 注意:综合生活污水需加上公共建筑污水,可按照30%计算。 5. 设计人口 设计人口可按式(1-7)和式(1-8)计算: N=P·A(1-7) N=N(1+y)(1-8)

式中:P——人口密度; A——排水区域面积; N——初始人口数量; y——人口年均增长率; n——发展年限; 6.比流量 由式(1-5)和式(1-6)得: Q=q PAK24×3600(1-9)令: Q=Q AK(1-10)则有: Q=q P24×3600(1-11)Q称为比流量,其含义为单位排水面积(ha)的平均流量。 7. 工业废水量 ①工业生产区生活污水流量按下式计算: Q=25×3.0N+35×2.5N+40N+60N(1-12)式中:N——一般车间生活人数; N——热车间生活人数; N——一般车间使用淋浴人数; N——热车间使用淋浴人数; 25、35为生活用水定额,40、60为淋浴用水定额。具体参数以《建筑给水排水设计规 范》等为准。 ②工业生产废水流量按下式计算: (1-13) Q3=1000 K Z q M 3600T 式中:K——总变化系数,不同类型工业企业其数值各不相同,需要实际调查; q——单位产品产生废水量,m3/件; M——生产产品的日产量,件/d; T——每天生产时间,hr/d; 8. 地下水渗入量 因当地土质、地下水位、管道和接口材料以及施工质量等因素的影响,当地下水位高于排水管渠时,排水系统设计应适当考虑地下水渗入量。 地下水渗入量宜按调查资料确定,也可按平均日综合生活污水和工业废水总量的10~15%计,还可按每天每单位服务面积渗入的地下水量计。

由暴雨资料推求设计洪水习题集

由暴雨资料推求设计洪水复习思考题 1. 用暴雨资料推求设计洪水的原因是( C) A. 用暴雨资料推求设计洪水精度高 B. 用暴雨资料推求设计洪水方法简单 C. 流量资料不足或要求多种方法比较 D. 大暴雨资料容易收集 2. 由暴雨资料推求设计洪水时,一般假定(C )。 A. 设计暴雨的频率大于设计洪水的频率 B. 设计暴雨的频率小于设计洪水的频率 C. 设计暴雨的频率等于设计洪水的频率 D. 设计暴雨的频率大于、等于设计洪水的频率 3. 由暴雨资料推求设计洪水的方法步骤是( A) A. 暴雨选样、推求设计暴雨、推求设计净雨、推求设计洪水 B. 暴雨观测、暴雨选样、推求设计暴雨、推求设计净雨 C. 推求设计暴雨、推求设计净雨、推求设计洪水 D. 暴雨选样、推求设计暴雨、推求设计净雨、选择典型洪水、推求设计洪水 3. 对于中小流域,其特大暴雨的重现期一般可通过(A ) A. 现场暴雨调查确定 B. 对河流洪水进行观测 C. 查找历史文献灾情资料确定 D. 调查该河特大洪水,并结合历史文献灾情资料确定 4. 当一个测站实测暴雨系列中包含有特大暴雨时,若频率计算不予处理,那么与处理的相比,其配线结果将使推求的设计暴雨(A )。 A. 偏小 B.偏大 C. 相等 D.三者都可能 5. 暴雨资料系列的选样是采用(A ) A. 固定时段选取年最大值法 B. 年最大值法 C. 年超定量法 D. 与大洪水时段对应的时段年最大值法 6. 若设计流域暴雨资料系列中没有特大暴雨,则推求的暴雨均值、离势系数CV可能会(B) A. 均值、离势系数CV都偏大 B. 均值、离势系数CV偏小 C. 均值偏小、离势系数CV偏大 C. 均值偏大、离势系数CV偏小 7. 对雨量观测仪器和雨量记录进行检查的目的是(D )。 A.检查暴雨的一致性 B. 检查暴雨的大小 C.检查暴雨的代表性 D. 检查暴雨的可靠性 8. 对设计流域历史特大暴雨调查考证的目的是(C )。 A.提高系列的一致性 B.提高系列的可靠性 C.提高系列的代表性 D.使暴雨系列延长一年 9. 暴雨动点动面关系是(D) A. 暴雨与其相应洪水之间的相关关系 B. 不同站暴雨之间的相关关系 C. 任一雨量站雨量与流域平均雨量之间的关系 D. 暴雨中心点雨量与相应的面雨量之间的关系 10. 暴雨定点定面关系是(C ) A. 固定站雨量与其相应流域洪水之间的相关关系 B. 流域出口站暴雨与流域平均雨量之间的关系 C. 流域中心点暴雨与流域平均雨量之间的关系 D. 各站雨量与流域平均雨量之间的关系

设计洪水计算

项目二:设计洪水计算 由流量资料推求设计洪水 一、填空题 1.洪水的三要素是指、、。 2.防洪设计标准分为两类,一类是、另一类是。 3.目前计算设计洪水的基本途径有三种,它们分别是、 、。 4.在设计洪水计算中,洪峰及各时段洪量采用不同倍比,使放大后的典型洪水过程线的洪峰及各历时的洪量分别等于设计洪峰和设计洪量值,此种放大方法称为。 5.在洪水峰、量频率计算中,洪峰流量的选样采用、时段洪量的选样采用。 6.连序样本是指。不连序样本是指 。 7.对于同一流域,一般情况下洪峰及洪量系列的C V值都比暴雨系列的C V值,这主要是洪水受_和影响的结果。 二、问答题 1.什么是特大洪水?特大洪水在频率计算中的意义是什么? 2.对特大洪水进行处理时,洪水经验频率计算的方法有哪两种?分别是如何进行计算的? 3.洪水频率计算的合理性分析应从几个方面进行考虑? 4.采用典型洪水过程线放大的方法推求设计洪水过程线,典型洪水过程线的选择原则是什么? 5.采用典型洪水过程线放大的方法推求设计洪水过程线的两种放大方法是什么?分别是如何计算的? 6.在洪水峰、量频率计算工作中,为了提高资料系列的可靠性、一致性和代表性,一般要进行下列各项工作,试在下表的相应栏中用“+”表明该项措施起作用,用“-”表明该项措施不起作用。

三、计算题 1.某水库坝址断面处有1958年至1995年的年最大洪峰流量资料,其中最大的三年洪峰流量分别为 7500 m3/s、 4900 m3/s和 3800 m3/s。由洪水调查知道,自1835年到1957年间,发生过一次特大洪水,洪峰流量为 9700 m3/s ,并且可以肯定,调查期内没有漏掉 6000 m3/s 以上的洪水,试计算各次洪水的经验频率,并说明理由。 2.某水文站根据实测洪水和历史调查洪水资料,已经绘制出洪峰流量经验频率曲线,现从经验频率曲线上读取三点(2080,5%)、(760,50%)、(296,95%),试按三点法计算这一洪水系列的统计参数。 3.已知设计标准P=1%洪水过程的洪峰、1天、3天洪量和典型洪水的相应特征值及其过程线(见表1和表2),试用同频率放大法推求P=1%的设计洪水过程线(保留三位有效数字,不需修匀)。 表1 设计洪水和典型洪水峰、量特征值 表2 典型洪水过程

第8章答案_由暴雨资料推求设计洪水

第八章由暴雨资料推求设计洪水 一、概念题 (一)填空题 1.设计洪水 2. 流域中心点雨量与相应的流域面雨量之间的关系,设计面雨量 3.同频率 4.同频率法 5.从经验频率点据偏离频率曲线的程度、模比系数K、暴雨量级、重现期等分析判断 6.推求设计暴雨,推求设计净雨,推求设计洪水 7.邻站直接借用法,邻近各站平均值插补法,等值线图插补法,暴雨移植法,暴雨与洪水峰或量相关法 8.算术平均法 9.泰森多边形法 10.流域上雨量站分布均匀,即各雨量站面积权重相同 11.适线 12.暴雨定点定面关系,暴雨动点动面关系 13.实测大暴雨 14.水汽因子,动力因子 15.大,小 16.设计的前期影响雨量P a,p,降雨径流关系 17. W m折算法,扩展暴雨系列法,同频率法 18.在现代气候条件下,一个特定流域一定历时的理论最大降水量 19.可能最大暴雨产生的洪水 20.垂直地平面的空气柱中的全部水汽凝结后 21.在现代气候条件下,一个特定地区露点的理论最大值 22.饱和湿度 23.水汽条件,动力条件 24.水汽压,饱和差,比湿,露点 25.大,低

26.假湿绝热过程 27. 0.2/h 28. P W W P m m = ,P W W P m m m ηη= 29.历史最大露点加成法,露点频率计算法,露点移植法 30. 24℃ 31.(1)通过暴雨径流查算图表(或水文手册)查算统计历时的设计暴雨量,(2)通过暴雨公式将统计历时的设计雨量转化为任一历时的设计雨量 ㈡选择题 1.[c] 2.[c] 3.[a] 4.[b] 5. [a] 6. [d] 7. [d] 8. [c] 9. [b] 10.[d] 11.[c] 12.[a] 13.[b] 14.[b] 15.[b] 16.[d] 17.[b] 18.[d] 19.[d] 20.[c] 21.[d] 22.[b] 23.[a] 24.[b] 25.[b] 26.[c] 27.[a] 28.[c] 29. [b] ㈢判断题 1.[T ] 2.[F] 3.[F] 4.[F ] 5. [T ] 6. [F ] 7. [T] 8. [T] 9. [T] 10.[T] 11.[T] 12.[T] 13.[T] 14.[T] 15.[F] 16.[T] 17.[T] 18.[F ] 19.[T ] 20.[F] 21.[T] 22.[F] 23.[T] 24.[F ] 25.[T ] 26.[T] 27.[T] 28.[T] 29.[F] 30.[F ] (四)问答题 1、答:由流量资料推求设计洪水最直接,精度也较高。但在以下几种情况,则必须由暴雨资料推求设计洪水,即:①设计流域实测流量资料不足或缺乏时;②人类活动破坏了洪水系列的一致性; ③要求多种方法,互相印证,合理选定;④PMP 和小流域设计洪水常用暴雨资料推求。 2、答: 洪水与暴雨同频率,即某一频率的暴雨,就产生某一频率的洪水。如百年一遇的暴雨,就产生百年一遇的洪水。 3、答:由暴雨资料推求设计洪水的方法步骤是:①暴雨选样;②推求设计暴雨;③推求设计净雨;④推求设计洪水过程线 4、答:判断大暴雨资料是否属于特大值,一般可从经验频率点据偏离频率曲线的程度、模比系数K 的大小、暴雨量级在地区上是否很突出,以及论证暴雨的重现期等方面进行分析判断。 5、答:特大值处理的关键是确定重现期。由于历史暴雨无法直接考证,特大暴雨的重现期只能通

根据流量资料计算设计洪水

FCD11020 FCD 水利水电工程初步设计阶段 根据流量资料计算设计洪水 大纲范本 水利水电勘测设计标准化信息网 1997年8月 1

水电站技术设计阶段 根据流量资料计算设计洪水大纲 主编单位: 主编单位总工程师: 参编单位: 主要编写人员: 软件开发单位: 软件编写人员: 勘测设计研究院 年月 2

目次 1. 引言 (4) 2. 设计依据文件和规范 (4) 3. 基本资料 (4) 4. 设计原则 (8) 5. 设计内容与方法 (8) 6.专题研究 (12) 7.设计成果 (12) 3

1 引言 流域及工程概况: 本工程位于江(河)上。距上(下)游市(县) km。 工程所在河流发源于省山麓,自向,流经等省(市),于进入,最后注入海,全长km,流域面积km2。 坝址以上流域位于东经~;北纬~,集水面积km2,河道长度km,河道比降,河谷形态,河网分布呈。流域平均高程m,山为最高峰,海拔m,年平均雨量mm,年平均蒸发量mm。植被率。流域内已建大中型水电站(水库)有等;引水、蓄水工程有和工程;分洪、滞洪工程有和工程以及水土保持措施。 本工程为坝(闸),以为主,兼顾等任务。大坝设计洪水标准为;校核洪水标准为。 2 设计依据文件和规范 2.1 有关本工程(或专业)的文件 (1) 可行性研究报告; (2) 可行性研究报告专题报告; (3) 可行性研究报告审批文件; (4) 初步设计任务书和项目卷册任务书及其他专业对本专业的要求。 2.2 主要设计规范 (1) DL5020-93 水利水电工程可行性研究报告编制规程; (2) DL5021-93 水利水电工程初步设计报告编制规程; (3) SL44-93 水利水电工程设计洪水计算规范。 3 基本资料 3.1 资料搜集与复核 3.1.1 资料搜集 4

污水管道系统设计计算公式

1.生活污水量 Q1= n?N?K z Q1---居民生活污水设计流量,L/s; n---居民生活污水量定额,L/(cap·d) N---设计人口数, cap; K z---生活污水量总变化系数。 2.设计人口数 N=ρ?F N---设计人口数,cap; ρ---人口密度,cap/h m2 F---居住面积,h m2 cap---“人”的计量单位。 3.工业企业生活污水和淋浴污水设计流量 Q3=A1B1K1+A2B2K2 3600T + C1D1+C2D2 3600 Q3---工业企业生活污水和淋浴污水设计流量, L/s; A1---一般车间最大班职工人数,cap; B1---一般车间职工生活污水定额,以25L/(cap·班)计; K1---一般车间生活污水量时变化系数,以3.0计; A2---热车间和污染严重车间最大班职工人数,cap; B2---热车间和污染严重车间职工生活污水量定额,以35L/(cap·班)计;K2---热车间和污染严重车间生活污水量时变化系数,以2.5计; C1---一般车间最大班使用淋浴的职工人数,cap; D1---一般车间的淋浴污水量定额,以40L/(cap·班)计; C2---热车间和污水严重车间最大班使用淋浴的职工人数,cap;

D2---热车间和污水严重车间的淋浴污水量定额,以60L/(cap·班)计;T---每工作班工作时数,h。 4.工业废水设计流量 Q4=m·M·K z 3600T Q4---工业废水设计流量,L/s; m---生产过程中每单位产品的废水量定额,L/单位产品;M---产品的平均日产量,单位产品/d; T---每日生产时数,h; K z---总变数系数。

由流量资料推求设计洪水部分测试题

由流量资料推求设计洪水部分测试题 一、填空题 1.设计洪水的标准高时,其相应的洪水数值就____,则水库规模亦____;造价亦____;水库安全所承担风险则____。 2.目前我国的防洪规划及水利水电工程设计中采用先选定_____________,再推求与此 __________相应的洪峰、洪量及洪水过程线。 3.通常用_______________、__________________、_____________三要素描述洪水过程。 4.洪水资料系列有两种情况,一是系列中没有特大洪水值,称为______________系列,二 是系列中有特大洪水值,称为______________________。 5.在洪水峰、量频率计算中,洪水资料的选样采用________________ 法。 6.对特大洪水进行处理时,洪水经验频率计算的方法有_____________和____________。 7.入库洪水包括___________________、___________________和___________________。 8.在进行设计洪水成果合理性分析时,将1天、3天和7天洪量系列的频率曲线画在同一 张频率格纸上,它们不应_____________,且间距________________。 9.典型洪水同频率放大法推求设计洪水时,其放大的先后顺序是____________、 ____________、______________。 10.洪水事件是随机事件,某水库按百年一遇洪水设计,在水库运行期间,连续两年发生等 于、大于该标准洪水的可能性是___________________。 二、简答题 1.用矩法计算不连续系列统计参数时的假设条件是什么? 2.什么叫设计洪水?其包括的三要素是什么? 3.选择典型洪水的原则是什么? 4.典型洪水放大有哪几种方法?它们各有什么优缺点? 5.设计洪水和设计年径流频率计算有哪些异同点? 三、计算题 1.某水库坝址处有1950-1992年实测洪水资料,其中最大的两年洪峰流量为1560m3/s、1250m3/s,此外洪水资料如下:(1)经实地洪水调查,1935年曾发生过流量为5100m3/s的大洪水,1896年曾发生过流量为5000m3/s的大洪水,依次为1896年以来的首两项大洪水,

9.1.城市污水设计流量计算

<第2 节> 地市污水量规化计算 城市污水量包括城市生活污水量和部分工业废水量,它与城市规划年限、发展规模有关,是城市污水管道系统规划设计的基本数据。 生活污水量的大小取决于生活用水量。在城市人民生活中,绝大多数用过的水都成为污水流入污水管道。根据某些城市的实测资料统计,污水量约占用水量的80~100%。生活污水量和生活用水量的这种关系符合大多数城市的情况。如果已知城市用水量,在城市污水管道系统规划设计时,可以根据当地的具体条件取城市生活用水量的80~lOO %作为城市生活污水量。在详细规划中也可以根据城市规模、污水量标准和污水量的变化情况计算生活污水量。 工业废水量则与工业企业的性质、工艺流程、技术设备等有关。 一、居住区生活污水量的计算 1.居住区平均日污水量的计算 Q p = 3600 240?N q (L/s) 2.居住区最高日最高时污水量的计算 Q 1 = Q p K z (L/s) 3. 总变化系数K z 的计算 总变化系数K z = K d ? K h = 11.07.2p Q 当Q ≤5L/s 时,K z = 2.3;当Q ≥1000L/s 时,K z = 1.3; 当5L/s <5Q <1000L/s 时,按公式计算或者查表 式中 q 0———居住区生活污水量标准(升/人?曰)( L/cap ?s) K d ———曰变化系数 = 平均日污水量 最高日污水量 K h ———时变化系数 = 最高日平均时污水量最高日最高时污水量 K z ———总变化系数 =曰变化系数?时变化系数 二、公共建筑污水设计流量 公共建筑的污水量可与居民生活污水量合并计算,此时应选用综合生活污水量定额,也可以单独计算。公共建筑排放的污水量比较集中,例如公共浴室、旅馆、医院、学校住宿区、洗衣房、餐饮娱乐中心等。若有条件获得充分的调查资料,则可以分别计算这些公共建筑各自排出的生活污水量。其污水量定额可参照《建筑给水排水设计规范》中有关公共建筑的用水量标准采用。 公共建筑污水设计流量Q 。用下式计算: Q 2 = ∑3640024?h g g K q N (L/s) 式中q g ——各公共建筑最高日污水量标准,L /(用水单位·d); N g ——各公共建筑在设计使用年限终期所服务的用水单位数;

第八章污水管道系统的设计计算教程文件

第八章 污水管道系统的设计计算 (一)教学要求 熟练掌握污水管道的设计计算过程 (二)教学内容 1、污水设计流量 2、污水管道的设计参数 3、污水管道的水力计算 (三)重点 污水管道的水力计算 第一节 污水设计流量的计算 污水管道系统的设计流量是污水管道及其附属构筑物能保证通过的最大流量。通常以最大日最大时流量作为污水管道系统的设计流量,其单位为L/s 。它包括生活污水设计流量和工业废水设计流量两大部分。就生活污水而言又可分为居民生活污水、公共设施排水和工业企业内生活污水和淋浴污水三部分。 一、生活污水设计流量 1.居民生活污水设计流量 居民生活污水主要来自居住区,它通常按下式计算: 1Q = 3600 24???z K N n (8-1) 式中: Q 1—— 居民生活污水设计流量,L /s ; n ——居民生活污水量定额,L /(cap ·d); N ——设计人口数,cap ; K Z ——生活污水量总变化系数。 (1)居民生活污水量定额 居民生活污水量定额,是指在污水管道系统设计时所采用的每人每天所排出的平均污水量。 在确定居民生活污水量定额时,应调查收集当地居住区实际排水量的资料,然后根据该地区给水设计所采用的用水量定额,确定居民生活污水量定额。在没有实测的居住区排水量资料时,可按相似地区的排水量资料确定。若这些资料都不易取得,则根据《室外排水设计规范》(GBJl4-87)的规定,按居民生活用水定额确定污水定额。对给水排水系统完善的地区可按用水定额的90%计,一般地区可按用水定额的80%计。 (2)设计人口数 设计人口数是指污水排水系统设计期限终期的规划人口数,是计算污水设计流量的基本数据。它是根据城市总体规划确定的,在数值上等于人口密度与居住区面积的乘积。即: F N ?=ρ (8-2) 式中: N ——设计人口数,cap ; ρ——人口密度,cap/hm 2 ;

第6章习题_由流量资料推求设计洪水

第六章由流量资料推求设计洪水 本章学习的内容和意义:在进行水利水电工程设计时,为了建筑物本身的安全和防护区的安全,必须按照某种标准的洪水进行设计,这种作为水工建筑物设计依据的洪水称为设计洪水。设计洪水包含三个要素,即设计洪峰流量、设计洪水总量和设计洪水过程线。按工程性质不同,设计洪水分为:水库设计洪水; 下游防护对象的设计洪水; 施工设计洪水; 堤防设计洪水、桥涵设计洪水等。推求设计洪水有多种途径,本章研究由流量资料推求设计洪水,目的是解决水库、堤防、桥涵等工程设计洪水的计算问题。 本章习题内容主要涉及:防洪标准及其选择;洪峰、洪量样本系列的选样,资料的可靠性、一致性、代表性审查;特大洪水的处理,即不连续系列的经验频率和统计参数的计算方法;典型洪水的选择及放大方法;入库洪水、分期洪水、洪水地区组成等内容。 一、概念题 (一)填空题 1.设计洪水的标准按保护对象的不同分为两类:第一类为保障 的防洪标准;第二类为确保水库大坝等水工建筑物自身安全的洪水标准。 2.设计洪水的标准按保护对象的不同分为两类:第一类为保障防护对象免除一定洪水灾害的防洪标 准;第二类为确保的洪水标准。 3.设计洪水的标准高时,其相应的洪水数值就;则水库规模亦,造价亦;水库安 全所承担风险则。 4.目前我国的防洪规划及水利水电工程设计中采用先选定,再推求与此 相应的洪峰、洪量及洪水过程线。 5.设计永久性水工建筑物需考虑及两种洪水标准,通常称前者为设计 标准,后者为校核标准。 6.目前计算设计洪水的基本途径有三种,它们分别是、 、。 7.通常用、及三要素描述洪水过程。 8.洪水资料系列有两种情况:一是系列中没有特大洪水值,称为系列;二是系列中有特大 洪水值,称为系列。 9.用矩法计算不连续系列(N年中有a次特大洪水) 统计参数时,假定实测洪水(n年) 除去实测特大洪 水( l次)后构成的(n-l)年系列的和与除去特大洪水后的(N-a)年系列

第七章-由流量资料推求设计洪水

第9章水文预报 内容简介 研究对象 本章研究水文现象的客观规律,利用现时已经掌握的水文、气象资料,预报水文要素未来变化过程。 研究内容 1.短期洪水预报; 2.枯水预报; 3.施工水文预报; 4.水文实时预报方法。 研究目的 在防汛工作中,及时准确的水文预报,是防汛抗洪指挥决策的重要科学依据;在水能、水资源的合理调度、开发利用和保护以及航运等工作中,都需要有水文预报作指导。 第9.1节概述 内容提要 1. 水文预报的重要作用; 2. 水文预报的分类; 3. 水文预报工作的基本程序 学习要求 掌握预见期的定义及水文预报工作的基本程序。 9.1.1水文预报的重要作用 可靠的洪水预报对防止洪水灾害具有特别重要的作用。例如在河流防洪抢险中,需要及时预报出防洪地点即将出现的洪峰水位、流量,以便在洪峰到来之前,迅速加高加固堤防、转移可能受淹的群众和物资,动用必要的防洪设施等,把洪水灾害减小到最低限度。图9.1.1为1998年长江沙市水位预报与实测情况。

图9.1.1 1998年长江沙市水位预报与实测情况

在水库管理中,可以利用洪水预报,使上游来的洪水与区间洪水的高峰段彼此错开(称错峰),即下游洪水很大时,水库把上游来的洪水暂时蓄存起来,待下游洪峰过后,再加大水库泄量,把上游来的洪水放出来,从而大大减低下游的洪峰和洪水灾害,例如1998年8月长江中下游发生近百年一遇的特大洪水,由于及时准确的洪水预报,对葛洲坝水库、隔河岩水库和漳河水库科学调度,使三峡以上来的洪水和清江、沮漳河洪水的洪峰互相错开,大大降低了荆江河段的洪峰水位,避免了荆江分洪损失,为战胜该年发生的特大洪水做出了巨大贡献。表9.1.1为1998葛洲坝水库、隔河岩水库在错峰、调峰中,降低沙市水位发挥作用的分析结果。 表9.1.1葛洲坝水库、隔河岩水库在错峰调度对沙市水位的影响 另外,洪水预报还可较好地解决水库防洪与兴利的矛盾,在预报的洪水未进库之前,先打开泄洪闸门腾空一部分库容,以便洪水来临时能蓄存更多的水量;当洪水即将结束时,预知近期没有很大的洪水入库,则可超蓄洪水尾部的一些水量,用于多发电、多灌溉,使现有工程发挥更多的效益。 9.1.2水文预报的分类 1.按预报的项目,水文预报可分为 ●径流预报:预报的要素主要是水位和流量,水位预报指的是水位高程及其出现时 间;流量预报则是流量的大小、涨落时间及其过程。径流预报又可分洪水预报和 枯水预报。 ●冰情预报:冰情预报是利用影响河流冰情的前期气象因子,预报流凌开始、封冻 与开冻日期,冰厚、冰坝及凌汛最高水位等。

暴雨洪水计算分析

《灌溉与排水工程设计规范》 表3.1.2灌溉设计保证率 灌水方法地区作物种类灌溉设计保证率 (%) 地面灌溉干旱地区 或水资源紧缺地区 以旱作为主50~75 以水稻为主70~80本干旱地区 或水资源不稳定地区 以旱作为主70~80 以水稻为主75~85湿润地区 或水资源丰富地区 以旱作为主75~85 以水稻为主80~95 喷灌、微灌各类地区各类作物85~95 表3.3.3灌排建筑物、灌溉渠道设计防洪标准 建筑物级别12245防洪标准(重现 期a) 100~5050~3030~2020~1010 3.3.3灌区内必须修建的排洪沟(撇洪沟),其防洪标准可根据排洪流量的大小,按5~10a确定。 附录C排涝模数计算 C.0.1经验公式法。平原区设计排涝模数经验公式:

Q=KR m A n (C.0.1) 式中:q——设计排涝模数(m3/s·km2) R——设计暴雨产生的径流深(mm) K——综合系数(反应降雨历时、流域形状、排水沟网密度、沟底比降等因素) m——峰量指数(反应洪峰与洪量关系) N——递减指数(反应排涝模数与面积关系) K、m、n应根据具体情况,经实地测验确定。(规范条文说明中有参考取值范围) C.0.2平均排除法 1平原区旱地设计排涝模数计算公式: 式中 q d——旱地设计排涝模数(m3/s·km2) R——设计暴雨产生的径流深(mm) T——排涝历时(d)。 说明:一般集水面积多大于50km2。 参考湖北取值,K=0.017,m=1,n=-0.238,d=3 2.平原区水田设计排涝模数计算公式: 式中q w——水田设计排涝模数(m3/s·km2) P——历时为T的设计暴雨量(mm) h1——水田滞蓄水深(mm) ET`——历时为T的水田蒸发量(mm),一般可取3~5mm/d。 F——历时为T的水田渗漏量(mm),一般可取2~8mm/d。 说明:一般集水面积多小于10km2。 h1=h m-h0计算。h m、h0分别表示水稻耐淹水深和适宜水深。 《土地整理工程设计》培训教材 第四章农田水利工程设计

洪水计算

洪水计算 ㈠、洪水设计标准 大乐亭水库属小(二)型水利工程,其等级划分按照《水利水电工程等级划分及洪水标准》(SL252—2000),该工程为五等五级建筑,对山区、丘陵区水利水电工程永久性水工建筑的洪水标准其重视期按30—20年一遇设计,300—200年一遇校核,因此,洞甲水库采用防洪标准按30年一遇设计,300年一遇校核。 ㈡、洪水复核 大乐亭水库坝址以上集雨面积为1.35km2,由于集雨面积及其上下游无水文站,无法取得确切的水文资料,其洪水计算采用《贵州省暴雨洪水计算实用手册(修订本)小汇水流域部分》中简化公式进行计算。 ①、洪峰流量的计算采用公式 QP=ψp″F0.89 式中:Qp—相应频繁下的洪峰流量(m3/S) ψp″—经验性系数(设计时为23.8,校核时为43.0) F—坝址以上集雨面积km2 即设计洪峰流量为16.89m3/S,校核洪峰流量为30.51 m3/S, ②、洪峰总量的计算采用公式

W p=0.1CH24F 式中:W p—洪水总量(万m3) C—径流系数(设计时0.86,校核时为0.88) H24—最在24小时降雨量(设计时254mm,校核时为390mm) F—集雨面积即设计洪水总量为14.85万m3,校核洪水总量为23.34万m3 ㈢、水库调洪计算 水库流域面积小,库容也很小,暴雨汇流时间短,无合适的流量过程线可套用,因此,采用三角形概化法进行水库的调洪计算。水库的泄洪流量按下式计算: q=MEBH3/2 式中:m—流量系数,取m=0.36 E—侧收缩系数,E=0.95 B—溢流堰宽,B=7.6m H—堰上水头(m) 水库水量平衡用下式计算: (Q1+Q2)/2▽t-(q1+q2)/2▽t=V2-V1=▽V 式中:Q1、Q2—进段▽t始、未的入库流量(m3/S)

(完整版)习题设计洪水计算

一、任务: 求绵竹市官宋硼埝取水枢纽工程的百年一遇设计洪水过程。 二、说明计算 洪峰流量频率计算需要考虑特大洪水,超过三倍均值的作为特大洪水。 三、相关资料 1 流域概况 绵竹市官宋硼埝取水枢纽工程位于沱江上游绵远河山区与成都平原交界的汉旺镇,上距汉旺水文站0.5公里,下距汉旺镇仅1公里。 绵远河发源于绵竹市与阿坝州茂县交界的九顶山南麓大盐井沟,绵远河是沱江干流主源,河道全长117公里,流域面积1212平方公里。在汉旺镇以上为山区,山区河道长44.4公里,集水面积400平方公里,占流域面积的33%,河流主干平均坡降63.1‰,山区河段山高谷深,河床狭窄,水流湍急,森林茂密。汉旺以下为平原,河道长72.6公里。集水面积812平方公里,平均坡降3.6‰。官宋硼埝取水枢纽工程控制集水面积403平方公里,开发河段(上游800米,下游200米)1公里范围河道平均坡降8‰~10‰,上游700米河段基本顺直,河床宽80~100米,下游逐渐开阔,河床宽约500米。 绵远河流域形状狭长,水系发育呈不对称树枝状分布,地理位置为东经103°56’~104°27’、北纬30°55’~31°42’之间。源头分水岭海拔高程达4000米,域内最高峰火焰山海拔高程为4285米,地势西北高、东南低,由西北向东南逐渐倾斜。流向大致由西北向东南流,主干西河经大火地在松光岭处接纳东河后称清水河,在伐木厂与黄水河汇流后始称绵远河。以下有湔沟及天池沟从右岸汇入,流经汉旺场进入成都平原,经黄许镇、德阳市、八角井镇,在广汉市三水乡与石亭江汇合后称北河,再流经金堂县赵镇与毗河汇合后称沱江。 绵远河流域在汉旺以上的山区,属龙门山断裂带,主要有板厂沟冲断裂、清

污水设计流量的确定

污水设计流量的确定 污水管道系统的设计流量:最大日最大时流量(L/S)。 生活污水设计流量和工业废水设计流量 生活污水设计流量 ⑴居住区生活污水设计流量 计算公式: 式中: Q1 ——居住区生活污水设计流量(L/s) n ——居住区生活污水量标准(L/(人·d) N ——设计人口数 KZ ——生活污水量总变化系数 ①生活污水量标准 生活污水排水定额:在居住区污水排水系统设计中所用的每人每日所排出的平均污水量。 相关因素:用水量标准、室内卫生设备情况、气候、居住条件、生活水平及其它地方条件等。 生活污水量标准确定方法: 方法一:《室外排水设计规范》规定的居住区生活污水定额。 方法二:《室外给水设计规范》中生活用水定额按一定比例取用。 ②设计人口 设计期限终期的规划人口数。设计人口=人口密度×面积 选用:按照城市总体规划采用。 总人口密度:所采用地区面积包括街道、公园、运动场、水体等在内; 规划阶段或初步设计阶段污水量计算采用。 街区人口密度:所采用地区面积只是街区内的建筑面积; 技术设计或施工图设计阶段污水量计算采用。 ③生活污水量总变化系数 I. 概念 变化系数:表征污水量的变化程度。 日变化系数:(Kd)一年中最大日污水量与平均日污水量的比值。 时变化系数:(Kh)最大日中最大时污水量与该日平均时污水量的比值。 总变化系数:(KZ)最大日最大时污水量与平均日平均时污水量的比值。 总变化系数随人口的多少和污水量标准的高低而变化。人口多(日平均流量大),污水量标准高时,总变化系数就小;人口少(日平均流量小),污水量标准低时,总变化系数就大。 II. 总变化系数的确定方法 理论上: KZ= Kd × Kh 实际上有两种做法:

洪水计算方法

2.7设计洪水 设计洪水分析计算研究目的主要为确定流域内各分区设计洪水,为流域防洪规划提供基础数据。研究内容主要是分析流域内各分区不同频率设计洪量和设计洪水过程线,计算方法如下。 2.7.1基本资料分析 2.7.1选站原则 选择洪水资料质量好、观测系列长、控制条件较好的水文站作为分析计算设计洪水的主要依据站。 2.7.2资料的审查及插补延长 为保证成果质量,对测站已整编的洪水资料进行必要的合理性检查和审核。对缺测的洪水资料进行适当的插补延长,插补延长采用水文比拟法和相关法。 (1)水文比拟法 水文比拟法就是将参证流域的洪水资料,按要求有选择地移置到设计流域上来的一种方法。这种移置是以设计流域影响洪水的各项因素,与参证流域影响径流的各项因素相似为前提。将参证站的洪水资料按集水面积比缩放到设计站。 (2)相关法 利用洪水资料:利用参证站的流量与设计依据站的相关关系来插补延长设计依据站的流量系列,选用的参证站径流要与设计依据站的径流在成因上有密切联系,这样才能保证相关关系有足够的精度。 利用降雨资料:建立本站降雨径流相关关系来插补延长设计依据站的流量系列。 2.7.3洪水系列一致性处理

为了使水文站历年的流量能基本上代表当年天然产流量,需要将测站以上受人类活动影响而增减的洪量进行还原计算。还原计算是处理实测洪水系列不一致的有效办法。 2.7.3设计洪水的计算方法 (1)流量频率曲线法 频率计算中的洪峰流量和不同时段的洪量系列,应由每年最大值 组成。在n 项连序洪水系列中,按大小顺序排位的第m 项洪水的经验频率P M 采用以下计算公式: 1+=N M P M 频率曲线的线型选择皮尔逊III 型,频率曲线的统计参数为均值 、变差系数和偏态系数。参数采用矩法初估,计算公式如下: 均值 均方差 变差系数 偏态系数 = 式中:系列变量(i=1,,n); n 系列项数。 根据初估参数,采用适线法调整参数。适线时尽可能拟合全部点据,拟合不好时,侧重考虑较可靠的大洪水点据。

相关文档
最新文档