大学物理实验光电效应法测普朗克常量 h讲义

大学物理实验光电效应法测普朗克常量 h讲义
大学物理实验光电效应法测普朗克常量 h讲义

光电效应法测普朗克常量h

(本文内容选自高等教育出版社《大学物理实验》)1905 年,年仅26 岁的爱因斯坦(A.Einstein)提出光量子假说,发表了在物理学发展史上具有里程碑意义的光电效应理论,10 年后被具有非凡才能的物理学家密立根(Robert Millikan)用光辉的实验证实了。两位物理大师之间微妙的默契配合推动了物理学的发展,他们都因光电效应等方面的杰出贡献分别于1921 年和1923 年获得诺贝尔物理学奖金。

光电效应实验及其光量子理论的解释在量子理论的确立与发展上,在揭示光的波粒二象性等方面都具有划时代的深远意义。利用光电效应制成的光电器件在科学技术中得到广泛的应用,并且至今还在不断开辟新的应用领域,具有广阔的应用前景。

本实验的目的是了解光电效应的基本规律。并用光电效应方法测量普朗克常量和测定光电管的光电特性曲线。

实验原理

当光照在物体上时,光的能量仅部分地以热的形式被物体吸收,而另一部分则转换为物体中某

些电子的能量,使电子逸出物体面,这种现象称为光电效应,逸出的电子称为光电子。在光电效

应中,光显示出它的粒子性质,所以这种现象对认识光的本性,具有极其重要的意义。

光电效应实验原理如图8.2.1-1 所示。其中S 为真空光电管,K 为阴极,A 为阳极。当无光照射阴极时,由于阳极与阴极是断路,所以检流计G 中无电流流过,当用一波长比较短的单色光照射到阴极K 上时,形成光电流,光电流随加速电位差U 变化的伏安特性曲线如图8.2.1-2 所示。

1.光电流与入射光强度的关系

光电流随加速电位差U 的增加而增加,加速电位差增加到一定量值后,光电流达到饱和值和值I H,饱和电流与光强成正比,而与入射光的频率无关。当U= U A-U K变成负值时,光电流迅速减小。实验指出,有一个遏止电位差U a存在,当电位差达到这个值时,光电流为零。

2.光电子的初动能与入射频率之间的关系

光电子从阴极逸出时,具有初动能,在减速电压下,光电子逆着电场力方向由K 极向A 极运动。当U=U a时,光电子不再能达到A 极,光电流为零。所以电子的初动能等于它克服电场力作用的

功。即

1

mv 2=eU

2

a

(1)

根据爱因斯坦关于光的本性的假设,光是一粒一粒运动着的粒子流,这些光粒子称为光子。每一光子的能量为ε=hv ,其中h 为普朗克常量,ν为光波的频率。所以不同频率的光波对应光子的能量不同。光电子吸收了光子的能量hν之后,一部分消耗于克服电子的逸出功A,另一部分转换为电子动能。由能量守恒定律可知

hv =1

mv 2+A 2

式(2)称为爱因斯坦光电效应方程。

(2)

由此可见,光电子的初动能与入射光频率ν呈线性关系,而与入射光的强度无关。

3.光电效应有光电存在

实验指出,当光的频率v

时,不论用多强的光照射到物质都不会产生光电效应,根据式(2),

v 0 =

A

,ν0称为红限。

h

爱因斯坦光电效应方程同时提供了测普朗克常量的一种方法:由式(1)和(2)可得:

hv =eU

+A ,当用不同频率(ν1,ν2,ν3,…,νn)的单色光分别做光源时,就有

hv

1 =eU

1

+A

hv

2 =eU

2

+A

…………

hv

n =eU

n

+A

任意联立其中两个方程就可得到

h =e(U

i

-U

j

)

v

i

-v

j

(3)

由此若测定了两个不同频率的单色光所对应的遏止电位差即可算出普朗克常量h,也可由ν-U 直线的斜率求出h。

因此,用光电效应方法测量普朗克常量的关键在于获得单色光、测得光电管的伏安特性曲线和确定遏止电位差值。

实验中,单色光可由水银灯光源经过单色仪选择谱线产生。水银灯是一种气体放电光源,点燃稳定后,在可见光区域内有几条波长相差较远的强谱线,如表8.2.1-1 所示。单色仪的鼓轮读数与出射光的波长存在一对应关系,由单色仪的定标曲线,即可查出出射单色光的波长(有关单色仪的结构和使用方法请参阅有关说明书),也可用水银灯(或白炽灯)与滤光片联合作用产生单色光。

表8.2.1-1 可见光区汞灯强谱线

为了获得准确的遏止电位差值,本实验用的光电管应该具备下列条件:

(1)对所有可见光谱都比较灵敏。

(2)阳极包围阴极,这样当阳极为负电位时,大部分光电子仍能射到阳极。

(3)阳极没有光电效应,不会产生反向电流。

(4)暗电流很小。

但是实际使用的真空型光电管并不完全满足以上条件。由于存在阳极光电效应所引起的反向电流和暗电流(即无光照射时的电流),所以测得的电流值,实际上包括上述两种电流和由阴极光电效应所产生的正向电流三个部分,所以伏安曲线并不与U 轴相切。由于暗电流是由阴极的热电子发射及光电管管壳漏电等原因产生,与阴极正向光电流相比,其值很小,且基本上随电位差U 呈线性变化,因此可忽略其对遏止电位差的影响。阳极反向光电流虽然在实验中较显著,但它服从一定规律。据此,确定遏止电位差值,可采用以下两种方法:

(1)交点法

光电管阳极用逸出功较大的材料制作,制作过程中尽量防止阴极材料蒸发,实验前对光电管阳极通电,减少其上溅射的阴极材料,实验中避免入射光直接照射到阳极上,这样可使它的反向电流大大减少,其伏安特性曲线与图8.2.1-2 十分接近,因此曲线与U 轴交点的电位差值近似等于遏止电位差U a,此即交点法。

(2)拐点法

光电管阳极反向光电流虽然较大,但在结构设计上,若使反向光电流能较快地饱和,则伏安特性曲线在反向电流进入饱和段后有着明显的拐点,如图8.2.1-3 所示,此拐点的电位差即为遏止电位差。

实验内容

通过实验了解光电效应的基本规律,并用光电效应法测量普朗克常量。

1.在577.0nm、546.1nm、435.8nm、404.7nm、365.0nm 五种单色光下分别测出光电管的伏

安特性曲线,并根据此曲线确定遏止电位差值,计算普朗克常量h。

本实验所用仪器有:光电管、单色仪(或滤波片)、水银灯、检流计(或微电流计)、直流电源、直流电压计等,接线电路如图8.2.1-4 所示。

实验中光电流比较微弱,其值与光电管类型,单色光强弱等因素有关,因此应根据实际情况选用合适的测量仪器。例如,选用

GD-4、GD-5 或1977 型光电管,选用的检流计的分度值应在

10-8 ~ 10 -9 A/分度左右。如果要测量更微弱的电流可用微电流计,可测量10 -13 ~ 10 -12 A 的电流。

由于光电管的内阻很高,光电流如此之微弱,因此测量中要注意抗外界电磁干扰。并避免光直接照射阳极和防止杂散光干扰。

2.作v -U

a

的关系曲线,用一元线形回归法计算光电管阴极材料的红限频率、逸出功及h 值,并与公认值比较。

3.其他内容

(1)测量光电管在正压下的伏安特性曲线。

(2)测量光电管的光电特性曲线,即饱和光电流与照射光强度的关系。

自行设计方案测量光电管阴极光电流在加速电压下的伏安特性曲线,改变光源与光电管的距离

d,光强正比于1

d 2

,利用此测量光电管的光电特性曲线。

参考资料

复旦大学电光源实验室。电光源原理。上海:上海科学技术出版社,1979.83~179,439~497

光电效应实验报告

南昌大学物理实验报告 学生姓名:黄晨学号:5502211059 专业班级:应用物理学111班班级编号:S008实验时间:13时00 分第3周星期三座位号:07 教师编号:T003成绩: 光电效应 一、实验目的 1、研究光电管的伏安特性及光电特性;验证光电效应第一定律; 2、了解光电效应的规律,加深对光的量子性的理解; 3、验证爱因斯坦方程,并测定普朗克常量。 二、实验仪器 普朗克常量测定仪 三、实验原理 当一定频率的光照射到某些金属表面上时,有电子从金属表面逸出,这种现象称为光电效应,从金属表面逸出的电子叫光电子。实验示意图如下 图中A,K组成抽成真空的光电管,A为阳极,K为阴极。当一定频率v的光射到金属材料做成的阴极K上,就有光电子逸出金属。若在A、K两端加上电压后光电子将由K定向的运动到A,在回路中形成电流I。 当金属中的电子吸收一个频率为v的光子时,便会获得这个光子的全部能量,如果这些能量大于电子摆脱金属表面的溢出功W,电子就会从金属中溢出。按照能量守恒原理有

南昌大学物理实验报告 学生姓名:黄晨学号:5502211059 专业班级:应用物理111 班级编号:S008实验时间:13 时00分第03周星期三座位号:07 教师编号:T003成绩:此式称为爱因斯坦方程,式中h为普朗克常数,v为入射光频。v存在截止频率,是的 吸收的光子的能量恰好用于抵消电子逸出功而没有多余的动能,只有当入射光的频率大于截止频率时,才能产生光电流。不同金属有不同逸出功,就有不同的截止频率。 1、光电效应的基本实验规律 (1)伏安特性曲线 当光强一定时,光电流随着极间电压的增大而增大,并趋于一个饱和值。 (2)遏制电压及普朗克常数的测量 当极间电压为零时,光电流并不等于零,这是因为电子从阴极溢出时还具有初动能,只有加上适当的反电压时,光电流才等于零。

建筑环境测试技术期末试卷试题(附答案)

习题 一、单项选择题(在每小题的四个备选答案中,选出一个正确答案,并将正确答案的序号填在题干的括号内。每小题1分,共10分) 1. 下列指标中,不能表征测量精度的是() A. 正确度 B. 精密度 C. 准确度 D. 精确度 2. 仪表1:量程范围0~500℃,1.0级;仪表2:量程范围0~100℃,1.0级。两个仪表的绝对误差的大小是()。 A. 1>2 B. 1=2 C. 1<2 D. 无法比较 3. 下列指标中,表征测量仪表对被测量变化的敏感程度的是()。 A. 灵敏度 B. 分辨率 C. 线性度 D.变差 4. 69×102有几位有效数字?() A. 1 B. 2 C. 3 D. 4 5. 在压力测量仪表的量程时,为保证安全性,压力较稳定时,最大工作压力不超过仪表量程的()。 A. 1/3 B. 1/2 C. 2/3 D.3/4 6. 下列测温方法,属于非接触测温的是() A. 热电偶测温 B. 热电阻测温 C. 膨胀式测温 D. 光学温度计 7. 在校正风洞内标定测压管时,待标定测压管设置在风洞的()。 A. 收缩段 B.稳压段 C. 实验段 D. 过渡段 8. 下列不属于用于测温的热电阻材料该具备的条件的是() A. 电阻温度系数α应尽可能小 B. 电阻率大,可以得到小体积元件 C. 价格便宜,工艺性好 D. 电阻温度特性尽可能接近线性 9. 下列哪种流量计属于容积式流量计?() A. 转子流量计 B. 椭圆齿轮流量计 C. 涡轮流量计 D. 涡街流量计 10. 下列哪种流量计属于差压式流量计?() A. 转子流量计 B. 椭圆齿轮流量计 C. 涡轮流量计 D. 涡街流量计 二、填空题(每空1分,共25分) 1.测量方法的分类中,按测量手段分 为:、、。 2.测量仪表的三个基本的功能 是:、、。 3.随机误差特 点:、、、。 4.热电偶电势由和组成。 5.标准节流装置取压方式中,目前应用最广泛的是: 和。 6.测量粘性的、腐蚀性的或易燃性的流体的流量时,应安装。 7.差压式流量计由、、三部 分组成。 8.在选择压力检测仪表的类型时,需要考虑的因素有:、 、、。 9.热阻式热流计的误差与、 和。

大学物理实验(二)讲义

大学物理实验(I I)实验讲义 华中科技大学物理学院实验教学中心

目录 实验1:偏振光实验 (1) 实验2:迈克尔逊和法布里-珀罗干涉仪 (5) 实验3:振动力学综合实验 (13) 实验4:RLC电路和滤波器 (22)

实验1:偏振光实验 【实验目的】 1.观察光的偏振现象,加深对其规律认识。 2.了解产生和检验偏振光的光学元件及光电探测器的工作原理。 3.掌握一些光的偏振态(自然光、线偏振光、部分偏振光、椭圆偏振光、圆偏振光)的鉴别方 法以及相互的转化。 【课前预习】 1.光的波动方程以及麦克斯韦方程组。 2.电磁波的偏振性及波片的性质。 【实验原理】 1、自然光与偏振光 麦克斯韦指出光波是一种电磁波,电磁波是横波。由于光与物质相互作用过程中反应比较明显的是电矢量E,故此,常用E表征光波振动矢量,简称光矢量。一般光源发射的光波,其光矢量在垂直于传播方向上的各向分布几率相等,这种光就称为自然光。光矢量在垂直于传播方向上有规则变化则体现了光波的偏振特性。如果光矢量方向不变,大小随相位变化,这时在垂直于光波传播方向的平面上光矢量端点轨迹是一直线,则称此光为线偏振光(平面偏振光),光矢量与传播方向构成的平面叫振动面如图1(a)。图1(b)是线偏振光的图示法,其中短线表示光矢量平行于纸面,圆点表示光矢量与纸面垂直。如果其光矢量是随时间作有规律的改变,光矢量的末端在垂直于传播方向的平面上的轨迹是圆或者椭圆,这样的光相应的被称为圆偏振光或者椭圆偏振光,如图1(c)。介于偏振光和自然光之间的还有一种叫部分偏振光,其光矢量在某一确定方向上最强,亦即有更多的光矢量趋于该方向,如图1(d)。任一偏振光都可以用两个振动方向互相垂直,相位有关联的线偏振光来表示。 2、双折射现象 当一束光入射到光学各向异性的介质时,折射光往往有两束,这种现象称为双折射。冰洲石(方解石)就是典型的双折射晶体,如通过它观察物体可以看到两个像。当一束激光正入射于冰洲石时,若表面已抛光则将有两束光出射,其中一束光不偏折,即o光,它遵守通常的折射定律,称为寻常光。另一束发生了偏折,即e光,它不遵守通常的折射定律,称为非常光。用偏振片检查可以发现,这两束光都是线偏振光,但其振动方向不同,其两束光的光矢量近于垂直。晶体中可以找到一个特殊方向,在这个方向上无双折射现象,这个方向称为晶体的光轴,也就是说在光轴方向o光和e光的传播速度、折射率是相等的。此处特别强调光轴是一个方向,不是一条直线。只有一个光轴的晶体称为单轴晶体,如冰洲石,石英,红宝石,冰等,其中又分为负晶体(o光折射率大于e光折射率,即n o>n e)和正晶体(n o

(整理)5光电效应实验.

光电效应实验 一定频率的光照射在金属表面时, 会有电子从金属表面逸出,这种现象称为光电效应。1887年赫兹发现了光电效应现象,以后又经过许多人的研究,总结出一系列实验规律。1905年,爱因斯坦在普朗克能量子假设的基础上,提出了光量子理论,成功地解释了光电效应的全部规律。 实验原理 光电效应的实验原理如图1所示。用强度为P 的单色光照射到光电管阴极K 时,阴极释放出的光电子在电场的加速作用下向阳极板A 迁移,在回路中形成光电流。 图1 实验原理图 图2 光电管同一频率不同光强的 伏安特性曲线 用实验得到的光电效应的基本规律如下: 1、 光强P 一定时,改变光电管两端的电压AK U ,测量出光电流I 的大小,即可得 出光电管的伏安特性曲线。随AK U 的增大,I 迅速增加,然后趋于饱和,饱和 光电流m I 的大小与入射光的强度P 成正比。 2、 当光电管两端加反向电压时,光电流将逐步减小。当光电流减小到零时,所对 应的反向电压值,被称为截止电压U 0(图2)。这表明此时具有最大动能的光 电子刚好被反向电场所阻挡,于是有 0202 1eU mV =(式中m 、V 0、e 分别为电子的质量、速度和电荷量)。(1) 不同频率的光,其截止电压的值不同(图3)。 3、 改变入射光频率ν时,截止电压U 0随之改变,0U 与ν成线性关系(图4)。实 验表明,当入射光频率低于0ν(0ν随不同金属而异,称为截止频率)时,不论光 的强度如何,照射时间多长,都没有光电流产生。

图3光电管不同频率的伏安特性曲线 图4截止电压U 0与频率ν的关系 4、光电效应是瞬时效应。即使入射光的强度非常微弱,只要频率大于0ν,在开始照射后立即有光电子产生,延迟时间最多不超过910-秒。 经典电磁理论认为,电子从波阵面上获得能量,能量的大小应与光的强度有关。因此对于任何频率,只要有足够的光强度和足够的照射时间,就会发生光电效应,而上述实验事实与此直接矛盾。显然经典电磁理论无法解释在光电效应中所显示出的光的量子性质。 按照爱因斯坦的光量子理论,光能是集中在被称之为光子的微粒上,但这种微粒仍然保持着频率(或波长)的概念,频率为ν的光子具有能量ν=h E ,h 为普朗克常数。当光束照射金属时,是以光粒子的形式打在它的表面上。金属中的电子要么不吸收能量,要么就吸收一个光子的全部能量νh ,而无需积累能量的时间。只有当这能量大于电子摆脱金属表面约束所需的逸出功A 时,电子才会以一定的初动能逸出金属表面。按照能量守恒原理,爱因斯坦提出了著名的光电效应方程: A mV hv +=2021 (2) 式中,A 为金属的逸出功,202 1mV 为光电子获得的初始动能。 由该式可见,入射到金属表面的光频率越高,逸出的电子动能越大。光子的能量A h 0<ν时,电子不能脱离金属,因而没有光电流产生。产生光电效应的最低频率(截止频率)是h A 0=ν。 将(2)式代入(1)式中可得: A h eU 0-ν= (3) )(00v v e h U -= 此式表明截止电压0U 是频率ν的线性函数。只要用实验方法得出不同的频率的截止电压,由直线斜率和截距,就可分别算出普朗克常数h 和截止频率0ν。基于此,在爱因斯坦光量子理论提出约十年后,密立根用实验证实了爱因斯坦的光电效应方程,并精确地测定了普朗克常数。两位物理大师在光电效应等方面的杰出贡献,分别于1921

建筑环境测试技术期末考试资料一

习题 一、单项选择题 1. 下列指标中,不能表征测量精度的是( A ) A. 正确度 B. 精密度 C. 准确度 D. 精确度 2. 仪表1:量程范围0~500℃,1.0级;仪表2:量程范围0~100℃,1.0级。两个仪表的绝对误差的大小是( A )。 A. 1>2 B. 1=2 C. 1<2 D. 无法比较 3. 下列指标中,表征测量仪表对被测量变化的敏感程度的是(A )。 A. 灵敏度 B. 分辨率 C. 线性度 D.变差 4. 69×102有几位有效数字?(B ) A. 1 B. 2 C. 3 D. 4 5. 在压力测量仪表的量程时,为保证安全性,压力较稳定时,最大工作压力不超过仪表量程的( D )。 A. 1/3 B. 1/2 C. 2/3 D.3/4 6. 热电偶测温的基本原理(A) A. 热电效应 B. 2 热压效应 C. 热胀效应 D. 4 冷缩效应 7.测量仪表的主要性能指标有(ABD) A.精度 B. 稳定度 C. 输入电阻 D.灵敏度 8.可以表达精度的指标是(ABD) A.精密度 B.线性度 C.正确度 D.准确度 9. 下列测温方法,属于非接触测温的是( D ) A. 热电偶测温 B. 热电阻测温 C. 膨胀式测温 D. 光学温度计 10. 下列不属于用于测温的热电阻材料该具备的条件的是(A ) A. 电阻温度系数α应尽可能小 B. 电阻率大,可以得到小体积元件 C. 价格便宜,工艺性好 D. 电阻温度特性尽可能接近线性 11. 下列哪种流量计属于容积式流量计?(B ) A. 转子流量计 B. 椭圆齿轮流量计 C. 涡轮流量计 D. 涡街流量计 12. 下列哪种流量计属于差压式流量计?( A ) A. 转子流量计 B. 椭圆齿轮流量计 C. 涡轮流量计 D. 涡街流量计 二、填空题 1.测量方法的分类中,按测量手段分为:直接、间接、组合。 2.测量仪表的三个基本的功能是:物理量变换、信号传输、测量结果显示。 测量的目的是:准确及时地收集被测对象状态信息,以便对其过程进行正确的控制。 3.随机误差特点:有界性、对称性、抵偿性。 4.热电偶电势由接触电动势和温差电势组成。 5.标准节流装置取压方式中,目前应用最广泛的是:孔板式和文丘里。 6.差压式流量计由节流装置,导压管和差压计三部分组成。 7.在选择压力检测仪表的类型时,需要考虑的因素有:被测介质压力大小、被测介质性质、对输出信号的要求、 使用的环境。 8.按测量手段分,测量方法有直接测量、间接测量和组合测量。 9.按测量方式划分,测量方法有偏差式测量法、零位式测量法和微差式测量法。 10.气体湿度测量方法有干湿球法、露点法、电阻法和吸湿法

大学物理实验讲义(密度测定)

大学物理实验讲义(密度测定)

不规则物体密度的测定 【实验目的】 1、学习物理天平的使用方法; 2、掌握用流体静力称衡法测定不规则固体 密度的原理和方法; 3、掌握用助沉法测定不规则固体密度(比 水的密度小)的原理和方法; 4、掌握用密度瓶测定碎小固体密度的原理 和方法 。 【实验仪器和用品】 物理天平(500g 、50mg )、密度瓶(50ml )、烧杯(500ml )、不规则金属块(被测物)、石蜡块(被测物)、碎小石子(被测物)、清水、细线。 密 游码 平衡螺母 边刀托 杯托盘 底座 度盘 指针 中刀托 手轮 调平螺母 挂钩 吊耳 水准泡 托盘 托盘 横梁 物理天

1 m 图3 静力 【实验原理】 某种物质单位体积的质量叫做这种物质的密度。对一密度均匀的物体,若其质量为m,体积为V ,则该物体的密度: V m =ρ ( 1 ) 实验中,测出物体的质量m 和体积V ,由上式可求出样品的密度。 1、用流体静力称衡法测定不规则固体的密度(比水的密度大) 设被测物在空气中的质量为m 物

(空气浮力忽略不计),全部 浸没在水中(悬吊,不接触 烧杯壁和底)的表观质量为 m 1(如图3示),体积为V , 水的密度为ρ水 。根据阿基米德定律,有: 1()Vg m m g ρ=-水 1m m V ρ-=水 被测物密度: 1m m V m m ρρ==-水 (2) 2、流体静力称衡法和助沉法相结合测定密度小于水的不规则固体的密度 设被测物在空气中的质量为m ,用细线将被测物与另一助沉物串系起来:被测物在上,助沉物在下。设仅将助沉物没入水中而被测物在水面上时系统的表观质量为1 m ,二者均没入水中(注意悬吊,不接触烧杯壁和底)时的表观质量为2m ,如图4所示: 根据阿基米德定律,被测物受到的浮力为:1m 图4 静力称衡法和助待 测物块m

(整理)光电效应实验86125

第1章仪器介绍 LB-PH3A光电效应(普朗克常数)实验仪由汞灯及电源、光阑与滤色片、光电管、测试仪(含光电管电源和微电流放大器)构成,实验仪结构如图1所示,测试仪的调节面板如图2所示。 汞灯刻度尺光阑与滤色片光电管 图1 实验仪结构图 图2 测试仪前面板图 LB-PH3A光电效应(普朗克常数)实验仪有以下特点: 1.在微电流测量中采用高精度集成电路构成电流放大器。对测量回路而言,放大器近似于理想电流表,对测量回路无影响。精心设计、精心选择元器件、精心制作,使电流放大器达到高灵敏度、高稳定性,使测量准确度大大提高。 2.采用了新型结构的光电管。由于其特殊结构使光不能直接照射到阳极,由阴极反射到阳极的光也很少,加上采用新型的阴、阳极材料及制造工艺,使得阳极反向电流大大降低,暗电流水平也很低。 3.设计制作了一组高性能的滤色片。保证了在测量一组谱线时无其余谱线的干扰,避免了谱线相互干扰带来的测量误差。 4.由于仪器的稳定性好且无谱线间的相互干扰,测出的I - U特性曲线平滑、重复性好。

5.通过改变实验仪的电压档位的方式,利用光电效应测量普朗克常数、光电管伏—安特性以及验证饱和光电流与入射光强成正比等实验。 6.本仪器可用三种不同方法测量普朗克常数(拐点法、零电流法、补偿法),因此有较好的可比性。 7.采用上述测量方法,不但使得U0测量快速、重复性好,而且据此计算出的h误差不大于3 %。 其技术参数如下: 1.微电流放大器: 电流测量范围:10-7 ~ 10-13 A,分6档,三位半数字显示 零漂:开机20分钟后,30分钟内不大于满读数的± 0. 2 %(10-13 A档) 2.光电管工作电源: 电压调节范围:-2 ~ +2 V,-2 ~ +20 V,分两档,三位半数字显示 不稳定度≤0. 1 % 3.光电管: 光谱响应范围:340 ~ 700 nm 最小阴极灵敏度≥1 μA(-2 V≤U AK≤0 V) 阳极:镍圈 暗电流I ≤5 × 10-12 A(-2 V≤U AK≤0 V) 4.滤光片组: 5组,中心波长为:365. 0 nm,404. 7 nm,435. 8 nm,546. 1 nm,578. 0 nm 5.汞灯: 可用谱线:365. 0 nm,404. 7 nm,435. 8 nm,546. 1 nm,578. 0 nm 6.测量误差≤3 % 第2章实验目的与原理 光电效应是,一定频率的光照射在金属表面时,会有电子从金属表面逸出的现象。在光电效应中,光显示出它的粒子性,这种现象对于认识光的本质,具有极其重要的意义。 1887年赫兹发现了光电效应现象,以后又经过许多人的研究,总结出一系列实验规律。由于这些规律用经典的电磁理论无法圆满地进行解释,爱因斯坦于1905年应用并发展了普朗克的量子理论,首次提出了“光量子”的概念,并成功地解释了光电效应的全部规律。十年后,密立根用实验证实了爱因斯坦的光量子理论,精确地测定了普朗克常数。两位物理大师因在光电效应等方面的杰出贡献,分别于1921年和1923年获得诺贝尔物理学奖。光电效应实验和光量子理论在物理学的发展史中具有重大而深远的意义。利用光电效应制成了许多光电器件,在科学和技术上得到了极其广泛的应用。

大学物理实验讲义实验牛顿环.docx

实验09用牛顿环测曲率半径 光的干涉现象证实了光在传播过程中具有波动性。光的干涉现象在工程技术和科学研究方面有着广 泛的应用。获得相干光的方法有两种:分波阵面法(例如杨氏双缝干涉、菲涅尔双棱镜干涉等)和 分振幅法(例如牛顿环等厚干涉、迈克尔逊干涉仪干涉等)。本实验主要研究光的等厚干涉中的两个典型 干涉现象,即牛顿环和劈尖干涉,它们都是用分振幅方法产生的干涉,其特点是同一条干涉条纹 处两反射面间的厚度相等,故牛顿环和劈尖都属于等厚干涉。在实际工作中,通常利用牛顿环来测量 光波波长,检查光学元件表面的光洁度、平整度和加工精度,利用劈尖来测量微小长度、薄膜的厚度 和固体的热膨胀系数等。 【实验目的】 1.观察光的干涉现象及其特点。 2.学习使用读数显微镜。 3.利用牛顿环干涉测量平凸透镜的曲率半径R 。入射光 4.利用劈尖干涉测量微小厚度。 【仪器用具】 R 读数显微镜、钠光灯、牛顿环装置、劈尖 r K d K 【实验原理】O (a) 1.牛顿环 牛顿环干涉现象是 1675 年牛顿在制作天文望远镜时,偶 然地将一个望远镜的物镜放在平面玻璃上而发现的。 如图 8-1 所示,将一个曲率半径为R(R很大)的平凸 透镜的凸面放在一块平面玻璃板上,即组成了一个牛 顿环装置。在透镜的凸面与平面玻璃板上表面间,构成了 一个空气薄层,其厚度从中心触点O (该处厚度为零) 向外逐渐增加,在以中心触点O 为圆心的任一圆周上的各点,薄空气层的厚度都相等。因此,当波长为的单色 光垂直入射时,经空气薄层上、下表面反射的两束相干光 形成的干涉图象应是中心为暗斑的宽窄不等的明暗相间 的同心圆环。此圆环即被称之为牛顿环。由于这种干涉条 纹的特点是在空气薄层同一厚度处形成同一级干涉条纹,因 此牛顿环干涉属于等厚干涉。 D 1 X (左)X(右 ) 11 D 4 X 4(左)X 4(右 ) (b) 图8-1 牛顿环的产生 设距离中心触点O 半径为 r K的圆周上某处,对应的空气薄层厚度为 d K,则由空气薄层上、下表面反射的两束相干光的光程差为 K 2d K 2 ( 8-1)

建筑环境测试技术答案(方修睦版)

1.测量和计量的相同点和不同点是什么? 答:测量是通过实验手段对客观事物取得定量信息的过程,也就是利用实验手段把测量直接或间接地对另一个同类已知量进行比较,从而得到待测量值的过程,而计量是利用技术和法制手段实验单位统一和量值准确可靠的测量。计量可以看作测量的特殊形式,在计量过程中,认为所使用的量具和仪器是标准的,用它们来校准、检定受检量具和仪器设备,以衡量和保证使用受量具仪器进行测量时所获得测量结果的可靠性。 2.测量的重要意义主要体现在哪些方面? 答:定性和定量精确计算来认识事物,建立公式、定理和定律。 3.计量的重要意义主要体现在哪些方面? 答:确保各类量具、仪器仪表测量结果的准确性、可靠性和统一性,所以必须定期进行检验和校准。 4.研究误差的目的是什么? 答:就是要根据误差产生的原因、性质及规律,在一定测量条件下尽量减小误差,保证测量值有一定的可信度,将误差控制在允许的范围之内。 5.测试和测量是什么样的关系? 答:测试是测量和试验的全称,有时把较复杂的测量成为测试。 6.结合自己的专业,举例说明测试技术的作用主要体现在哪些方面? 答:测试技术涉及传感器、试验设计、模型理论、信号加工与处理、误差理论、控制工程和参数估计等内容。例如:温度的变化可以引起温度敏感元件(如:热敏电阻)阻值的变化,其阻值的变化量是可以直接测量的。 7.举例说明各种不同测量方法的实际应用。 答:直接测量:用电压表测量管道水压,用欧姆表测量电阻阻值等。 间接测量:需要测量电阻R上消耗的直流功率P,可以通过直接测量电压U,电流I,而后根据函数关系P=UI,经过计算间接获得功率P。 组合测量:测量电阻器温度系数的测量。 8.深入理解测量仪表的精度和灵敏度的定义?二者的区别? 答:精度是指测量仪表的读数或者测量结果与被测真值相一致的程度。灵敏度表示测量仪表对被测量变化的敏感程度。 区别:精度是用精密度、正确度和准确度三个指标加以表征,而灵敏度是测量仪表指示值增量与被测量增量之比。 9.精密度、正确度、准确度三者的不同含义是什么? 答:精密度说明仪表指示值的分散性,表示在同一测量条件下对同一测量进行多次测量得到的测量结果的分散程度。 正确度说明仪表指示值与真值的接近程度。 准确度是精密度和正确度的综合反应。准确度高,说明精密度和正确度都高。 10.结合例1.2.3(图1.2.3)深入理解在实际测量过程中,仪表输入电阻(输入阻抗)选择的重要性。 答:在此题中应选用输入阻抗尽可能大的电压表,输入阻抗大测量就小,否则造成的仪器误差会很大,所以在实际测量中,应选择合适的仪表输入电阻,否则会造成误差很大甚至使测量结果失去实际意义。 11.说明计量系统中单位制的概念。 答:由基本单位辅助单位和导出单位构成的完整体系称为单位制。 12.深入理解基本单位、辅助单位和导出单位构成的完整计量体系。 答:基本单位是那些可以彼此独立加以规定的物理量单位,共7个,分别为:秒、千克、开尔文、坎德拉、摩尔、米、安培。由基本单位通过定义定律及其他系数关系派生出来的单位称为导出单位。如:频率的单位赫兹定义为”周期为1秒的周期现象的频率”. 13.说明主基准、副基准、工作基准的各自用途。

普朗克常数测量的实验

普朗克常数测量的实验 一、实验仪器 GD-4型智能光电效应(普朗克常数)实验仪(由光电检测装置和实验仪主机两部分组成) 光电检测装置包括:光电管暗箱GDX-1,高压汞灯箱GDX-2;高压汞灯电源GDX-3和实验基准平台GDX-4。 二、实验目的 1、通过实验深刻理解爱因斯坦的光电效应理论,了解光电效应的基本规律; 2、掌握用光电管进行光电效应研究的方法; 3、学习对光电管伏安特性曲线的处理方法,并用以测定普朗克常数。 三、实验原理 1、普朗克常数的测定 根据爱因斯坦的光电效应方程: P s E hv W =- (1) (其中:P E 是电子的动能,hv 是光子的能量,v 是光的频率,s W 是逸出功, h 是普朗克常量。) s W 是材料本身的属性,所以对于同一种材料s W 是一样的。当光子的能量s hv W <时不能产 生光电子,即存在一个产生光电效应的截止频率0v (0/s v W h =) 实验中:将A 和K 间加上反向电压KA U (A 接负极),它对光电子运动起减速作用.随着反向电压KA U 的增加,到达阳极的光电子的数目相应减少,光电流减小。当KA s U U =时,光电流降为零,此时光电子的初动能全部用于克服反向电场的作用。即 s P eU E = (2) 这时的反向电压叫截止电压。入射光频率不同时,截止电压也不同。将(2)式代入(1)式, 得 0s h U v v e =-() (3) (其中0/s v W h =)式中h e 、都是常量,对同一光电管0v 也是常量,实验中测量不同频率下的s U ,做出s U v -曲线。在(3)式得到满足的条件下,这是一条直线。 若电子电荷e ,由斜率h k e = 可以求出普朗克常数h 。由直线上的截距可以求出溢出功s W ,由直线在v 轴上的截距可以求出截止频率0v 。如图(2)所示。

建筑环境测试技术复习要点

1、测量的目的是什么答:准确及时地收集被测对象状态信息,以便对其过程进行正确的控制。 2、按测量手段分,测量方法有哪几种答:直接测量、间接测量和组合测量。 3、按测量方式划分,测量方法有哪几种答:偏差式测量法、零位式测量法和微差式测量法。 4、什么是偏差式测量方法答:在测量过程中,用仪器仪表指针的位移表示被测量大小的测量方法。 5、什么是零位式测量方法答:又称为零示法或平衡式测量法。测量时用被测量与标准量相比较,用指零仪表指示被测量与标准量相等,从而获得被测量。 6、什么是微差式测量方法答:偏差式测量法和零位式测量法相结合,通过测量待测量与标准量之差来得到待测量量值。 7、测量方法选择需要考虑的因素有哪些答:①被测量本身的特性;②所要求的测量准确度; ③测量环境;④现有测量设备等。在此基础上选择合适的测量仪器和正确的测量方法. 8、是否可以认为,只有精密的测量仪器,才可以获得准确的测量结果答:不是。正确可靠的测量结果的获得,要依据测量方法和测量仪器的正确选择、正确操作和测量数据的正确处理。 9、测量仪表有什么作用答:测量仪表是将被测量转换成可供直接观察的指示值或等效信息的器具。 10、测量仪表有哪些类型答:模拟式测量仪表,数字式测量仪表。 的测量结果的获得,要依据测量方法和测量仪器的正确选择、正确操作和测量数据的正确处理。 11、测量仪表有哪些功能答:①变换功能;②传输功能;③显示功能。 12、测量仪表的主要性能指标有哪些答:①精度;[⑴精密度(δ);⑵正确度(ε);⑶准确度(τ)。]②稳定度;③输入电阻;④灵敏度;⑤线性度;⑥动态特性。 13、什么是测量精度答:精度是指测量仪表的读数或测量结果与被测量真值相一致的程度。 14、可以表达精度的三个指标是什么答:⑴精密度(δ);⑵正确度(ε);⑶准确度(τ)。 15、精密度说明了仪表的什么特性反映出哪项误差的影响答:精密度说明仪表指示值的分散性,表示在同一测量条件下对同一被测量进行多次测量时,得到的测量结果的分散程度。它反映了随机误差的影响。 16、正确度说明了仪表的什么特性反映出哪项误差的影响答:正确度说明仪表指示值与真值的接近程度。所谓真值是指待测量在特定状态下所具有的真实值的大小。正确度反映了系统误差。 17、准确度说明了仪表的什么特性反映出哪项误差的影响答:准确度是精密度和正确度的综合反映。准确度高,说明精密度和正确度都高,也就意味着系统误差和随机误差都小,因而最终测量结果的可信赖度也高。 18、什么是仪器的稳定度影响因素是什么答:稳定度也称稳定误差,是指在规定的时间区间,其他外界条件恒定不变的情况下,仪表示值变化的大小。影响因素有仪器内部各元器件的特性、参数不稳定和老化等因素。 19、灵敏度反映测量仪表的什么特性答:灵敏度表示测量仪表对被测量变化的敏感程度。另一种表述方式叫作分辨力或分辨率,定义为测量仪表所能区分的被测量的最小变化量,在数字式仪表中经常使用 20、什么是计量答:计量是利用技术和法制手段实现单位统一和量值可靠的测量。 21、国际单位制单位分为哪三种答:基本单位、导出单位和辅助单位。 22、计量基准有哪些分类答:主机准、副基准和工作基准。 23、什么是量值的传递与跟踪答:量值的传递与跟踪是把一个物理量单位通过各级基准、

大学物理实验讲义实验用霍尔效应法测量磁场

实验16用霍尔效应法测量磁场 在工业生产和科学研究中,经常需要对一些磁性系统或磁性材料进行测量,被测磁场的范 围可从~10 15-3 10T (特斯拉),测量所用的原理涉及到电磁感应、磁光效应、热磁效应等。常用的磁场测量方法有核磁共振法、电磁感应法、霍尔效应法、磁光效应法、超导量子干涉器件法等近十种。 一般地,霍尔效应法用于测量10~104 -T 的磁场。此法结构较简单,灵敏度高,探头体积小、测量方便、在霍尔器件的温度范围内有较好的稳定性。但霍尔电压和内阻存在一定的温度系数,并受输入电流的影响,所以测量精度较低。 用半导体材料制成的霍尔器件,在磁场作用下会出现显着的霍尔效应,可用来测量磁场、霍尔系数、判断半导体材料的导电类型(N 型或P 型)、确定载流子(作定向运动的带电粒子)浓度和迁移率等参数。如今,霍尔效应不但是测定半导体材料电学参数的主要手段,而且利用该效应制成的霍尔器件已广泛用于非电量电测、自动控制和信息处理等方面,如测量强电流、压力、转速等,在工业生产要求自动检测和控制的今天,作为敏感元件之一的霍尔器件,将有更为广阔的应用前景。了解这一富有实用性的实验,对于日后的工作将有益处。 【实验目的】 1. 了解霍尔效应产生的机理。 2. 掌握用霍尔器件测量磁场的原理和基本方法。 3. 学习消除伴随霍尔效应的几种副效应对测量结果影响的方法。 4. 研究通电长直螺线管内轴向磁场的分布。 【仪器用具】 TH-H/S 型霍尔效应/螺线管磁场测试仪、TH-S 型螺线管磁场实验仪。 【实验原理】 1. 霍尔效应产生的机理 置于磁场中的载流体,如果电流方向与磁场方向垂直,则在垂直于电流和磁场的方向会产生一附加的横向电场,载流体的两侧会产生一电位差,这个现象是美国霍普斯金大学二年级研究生霍尔于1879年发现的,后被称为霍尔效应,所产生的电位差称为霍尔电压。特别是在半导体样品中,霍尔效应更加明显。 霍尔电压从本质上讲是运动的带电粒子在磁场中受洛仑兹力作用而引起的偏转。当带电粒子(电子和空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场方向上产生正负电荷的积累,从而形成附加的横向电场,即霍尔电场。对于图1-1(a )所示的N 型半导体试样,若在X 方向通以电流S I ,在Z 方向加磁场B ,试样中载流子(电子)将受到洛仑兹力大小为: evB F g =(1-1) 则在Y 方向,在试样A 、A '电极两侧就开始聚积异号电荷而产生相应的附加电场——霍尔电场。电场的指向取决于试样的导电类型,对N 型半导体试样,霍尔电场逆Y 方向,P 型半导体试样,霍尔电场则沿Y 方向,即有: 当S I 沿X 轴正向、B 沿Z 轴正向、H E 逆Y 正方向的试样是N 型半导体。

光电效应和普朗克常量的测定-实验报告

光电效应和普朗克常量的测定 创建人:系统管理员总分:100 实验目的 了解光电效应的基本规律,学会用光电效应法测普朗克常量;测定并画出光电管的光电特性曲线。 实验仪器 水银灯、滤光片、遮光片、光电管、光电效应参数测试仪。 实验原理 光电效应: 当光照射在物体上时,光子的能量一部分以热的形式被物体吸收,另一部分则转换为物体中一些电子的能量,是部分电子逃逸出物体表面。这种现象称为光电效应。爱因斯坦曾凭借其对光电效应的研究获得诺贝尔奖。在光电效应现象中,光展示其粒子性。 光电效应装置: S为真空光电管。内有电极板,A、K极板分别为阳极和阴极。G为检流计(或灵敏电流表)。无光照时,光电管内部断路,G中没有电流通过。U为电压表,测量光电管端电压。 由于光电管相当于阻值很大的“电阻”,与其相比之下检流计的内阻基本忽略。故检流计采用“内接法”。 用一波长较短(光子能量较大)的单色光束照射阴极板,会逸出光电子。在电源产生的加速电场作用下向A级定向移动,形成光电流。显然,如按照图中连接方式,U越大时,光电流

I 势必越大。于是,我们可以作出光电管的伏安特性曲线,U=I 曲线关系大致如下图: 随着U 的增大,I 逐渐增加到饱和电流值IH 。 另一方面,随着U 的反向增大,当增大到一个遏制电位差Ua 时,I 恰好为零。此时电子的动能在到达A 板时恰好耗尽。 光电子在从阴极逸出时具有初动能2 2 1mv ,当U=Ua 时,此初动能恰好等于其克服电场力所做的功。即: ||2 12 a U e mv = 根据爱因斯坦的假设,每粒光子有能量hv =ε。式中h 为普朗克常量,v 为入射光波频率。 物体表面的电子吸收了这个能量后,一部分消耗在克服物体固有的逸出功A 上,另一部分则转化为电子的动能,让其能够离开物体表面,成为光电子。 于是我们得到爱因斯坦的光电效应方程:A m hv += 2 v 2 1 由此可知,光电子的初动能与入射光频率成线性关系,而与光强度无关。(光强度只对单位时间内逸出物体表面的光电子的个数产生影响) 光电效应的光电阈值: 红限:当入射光频率v 低于某一值0v 时,无论用多强的光照都不会发生光电效应。由光电效应方程易得这个频率h A v /0=,称为红限。 测量普朗克常量的方法: 用光波频率为的单色光照射阴极板,测量其遏制电位差Ua 。 于是有: A U e hv a +=|| 所以: e A v -= e h |U |a 这表明了截止电压|U |a 和光波频率v 成正比。 实验中获得单色光的方法: 使用水银灯发出稳定白光作为光源,再使用不同颜色的滤光片罩在光电管的入光口以得到相应颜色的单色光,还可以使用不同透光度的遮光片罩在水银灯的出光口以得到不同强度的

光电效应实验报告

佛山科学技术学院 实 验 报 告 课程名称 实验项目 专业班级 姓名 学 号 指导教师 成绩 日 期 年 月 日 一、实验目的 1.了解光电效应的规律,加深对光的量子性的理解; 2.测量光电管的伏安特性曲线; 3.学习验证爱因斯坦光电效应方程的实验方法,测量普朗克常数。 二、实验仪器 光电效应(普朗克常数)实验仪(详见本实验附录A ),数据记录仪。 三、实验原理 1.光电效应及其基本实验规律 当一定频率的光照射到某些金属表面时,会有电子从金属表面即刻逸出,这种现象称为光电效应。从金属表面逸出的电子叫光电子,由光子形成的电流叫光电流,使电子逸出某种金属表面所需的功称为该金属的逸出功。 研究光电效应的实验装置示意图如图1所示。GD 为光电管,它是一个抽成真空的玻璃管,管内有两个金属电极,K 为光电管阴极,A 为光电管阳极;G 为微电流计;V 为电压表;R 为滑线变阻器。单色光通过石英窗口照射到阴极上时,有光电子从阴极K 逸出,阴极释放出的光电子在电场的加速作用下向阳极A 迁移形成光电流,由微电流计G 可以检测光电流的大小。调节R 可使A 、K 之间获得连续变化的电压AK U ,改变AK U ,测量出光电流I 的大小,即可测出光电管的伏安特性曲线,如图2(a)、(b)所示。

图2 光电效应的基本实验规律 光电效应的基本实验规律如下: (1)对应于某一频率,光电效应的AK -I U 关系如图2(a)所示。从图中可见,对一定的频率,有一电压0U ,当AK 0U U ≤时,光电流为零,这个相对于阴极的负值的阳极电压0U ,称为截止电压。 (2)当AK 0U U ≥后,I 迅速增加,然后趋于饱和,饱和光电流M I 的大小与入射光的强度P 成正比,如图2(b)所示。 (3)对于不同频率的光,其截止电压的值不同,如图2(a)所示。 (4)截止电压0U 与频率v 的关系如图2(c)所示。0U 与ν成正比。当入射光频率低于某极限值0v (随不同金属而异)时,无论光的强度如何,照射时间多长,都没有光电流产生。 (5)光电效应是瞬时效应。即使入射光的强度非常微弱,只要频率大于0v ,在开始照射后立即有光电子产生,所经过的时间至多为910-秒的数量级。 2.爱因斯坦光电效应方程 上述光电效应的实验规律无法用电磁波的经典理论解释。为了解释光电效应现象,爱因斯坦根据普朗克的量子假设,提出了光子假说。他认为对于频率为ν的光波,每个光子的能量为E h ν=,h 为普朗克常数。当光子照射到金属表面上时,一次性为金属中的电子全部吸收,而无须积累能量的时间。电子把该能量的一部分用来克服金属表面对它的吸引力,另一部分就变为电子离开金属表面后的动能,按照能量守恒原理,爱因斯坦提出了著名的光电效应方程 201 2 h m W νυ=+ (1) 式中,W 为被光线照射的金属材料的逸出功,2 012m υ为从金属逸出的光电子的最大初动能。 由式(1)可知,入射到金属表面的光频率越高,逸出的电子动能越大,所以即使阳极电位比阴极电位低(即加反向电压)时,也会有电子落入阳极形成光电流,直至阳极电位低于截止电压,光电

建筑环境测试技术答案(方修睦版)

1. 测量和计量的相同点和不同点是什么? 答:测量是通过实验手段对客观事物取得定量信息的过程,也就是利用实验手段把测量直接或间接地对另一个同类已知量进行比较,从而得到待测量值的过程,而计量是利用技术和法制手段实验单位统一和量值准确可靠的测量。计量可以看作测量的特 殊形式,在计量过程中,认为所使用的量具和仪器是标准的,用它们来校准、检定受检量具和仪器设备,以衡量和保证使用受量具仪器进行测量时所获得测量结果的可靠性。 2. 测量的重要意义主要体现在哪些方面? 答:定性和定量精确计算来认识事物,建立公式、定理和定律。 3. 计量的重要意义主要体现在哪些方面? 答:确保各类量具、仪器仪表测量结果的准确性、可靠性和统 一性,所以必须定期进行检验和校准。 4. 研究误差的目的是什么? 答:就是要根据误差产生的原因、性质及规律,在一定测量条件下尽量减小误差,保证测量值有一定的可信度,将误差控制在允许的范围之内。 5. 测试和测量是什么样的关系? 答:测试是测量和试验的全称,有时把较复杂的测量成为测试。 6. 结合自己的专业,举例说明测试技术的作用主要体现在哪些方面? 答:测试技术涉及传感器、试验设计、模型理论、信号加工与处理、误差理论、控制工程和参数估计等内容。例如:温度的变化可以引起温度敏感元件(如:热敏电阻)阻值的变化,其阻值的变化量是可

以直接测量的。 7. 举例说明各种不同测量方法的实际应用。 答: 直接测量:用电压表测量管道水压,用欧姆表测量电阻阻值等。 间接测量:需要测量电阻R上消耗的直流功率P,可以通过直接测量电压U,电流I,而后根据函数关系P=UI,经过计算间接获得功率P。 组合测量:测量电阻器温度系数的测量。 8. 深入理解测量仪表的精度和灵敏度的定义?二者的区别?答:精度是 指测量仪表的读数或者测量结果与被测真值相一致 的程度。灵敏度表示测量仪表对被测量变化的敏感程度。 区别:精度是用精密度、正确度和准确度三个指标加以表征,而灵敏度是测量仪表指示值增量与被测量增量之比。 9. 精密度、正确度、准确度三者的不同含义是什么?答:精密度说明仪 表指示值的分散性,表示在同一测量条件下 对同一测量进行多次测量得到的测量结果的分散程度。 正确度说明仪表指示值与真值的接近程度。 准确度是精密度和正确度的综合反应。准确度高,说明精密度和正确度都高。 10. 结合例1.2.3 (图1.2.3 )深入理解在实际测量过程中,仪表输入电阻(输入阻抗)选择的重要性。 答:在此题中应选用输入阻抗尽可能大的电压表,输入阻抗大测量就小,否则造成的仪器误差会很大,所以在实际测量中,应选择合适的仪表输入电阻,否则会造成误差很大甚至使测量结果失去实际意义。

大学物理实验讲义Word版

大学物理实验讲义 普通物理教研室编 班级: 学号: 姓名:

学生实验守则 1、进实验室前,必须根据每个实验的预习要求,阅读有关资料。 2、按时进入实验室,保持安静和整洁,独立完成实验。 3、实验开始前,应仔细检查仪器、设备是否齐备和完好。若有不全或损坏情况,应及时报告指导教师。 4、爱护公物,正确使用实验仪器和设备,不得随意动用与本实验无关的仪器和设备。 5、接线完毕,先自行检查,再请指导教师检查,确认无误后,方可接通电源。 6、在实验过程中必须服从教师指导,严格遵守操作规程,精力高度集中,操作认真,要有严格的科学态度。 7、实验进行中,严禁用手触摸线路中带电部分,严禁在未切断电源的情况下改接线路;若有分工合作的情况,必须要分工明确,责任分明,操作要有序,以确保人身安全和设备安全。 8、实验中若出现事故或发现异常情况,应立即关断电源,报告指导教师,共同分析事故原因。 9、实验完毕,应报请指导教师检查实验报告,认为达到要求后,方可切断电源。并整理好实验装置,经指导教师检查后才能离开实验室。

目录 序言 (1) 绪论 (2) 测量误差与实验数据处理基础知识 (4) 实验一长度的测量 (15) 实验二牛顿第二定律的验证 (20) 实验三固体和液体密度的测量 (23) 实验四测量比热容 (25) 4-1 混合法测固体比热容 (25) 4-2 冷却法测液体比热容 (26) 实验五测量冰的熔解热 (28) 实验六测量线胀系数 (30) 实验七万用电表的使用 (32) 实验八磁场的描绘 (36) 实验九惠斯登电桥测中值电阻 (40) 实验十伏安法测电阻 (43) 实验十一电位差计测电池的电动势和内阻 (45) 实验十二示波器的使用 (48) 实验十三静电场的描绘 (52) 实验十四测量薄透镜焦距 (55) 实验十五等厚干涉现象的研究 (58) 【参考文献】 (60)

普朗克常量的测定

利用光电效应测定普朗克常量 一:实验目的 1. 通过实验加深对光的量子性的了解。 2. 通过光电效应实验,验证爱因斯坦方程,并测定普朗克常量。 二:实验仪器 智能光电效应仪由汞灯及电源,滤色片,光阑,光电管、智能实验仪构成。实验仪有手动和自动两种工作模式,具有数据自动采集,存储,实时显示采集数据,动态显示采集曲线(连接计算机),及采集完成后查询数据的功能。 三:实验原理 当一定频率的光照射到某些金属表面上时,可以使电子从金属表面逸出,这种现象称为光电效应。所产生的电子,称为光电子。光电效应是光的经典电磁理论所不能解释的。1905年爱因斯坦依照普朗克的量子假设,提出了光子的概念。他认为光是一种微粒—光子;频率为v 的光子具有能量ε=hv ,h 为普朗克常量。根据这一理论,当金属中的电子吸收一个频率为v 的光子时,便获得这光子的全部能量hv ,如果这能量大于电子摆脱金属表面的约束所需要的脱出功W ,电子就会从金属中逸出。按照能量守恒原理有: + = 2 21m m hv υW (1) 上式称为爱因斯坦方程,其中m 和m υ是光电子的质量和最大速度,1/2m 2 m υ是光电子 逸出表面后所具有的最大动能。它说明光子能量hv 小于W 时,电子不能逸出金属表面,因而没有光电效应产生;产生光电效应的入射光最低频率v 0=W/h ,称为光电效应的极限频率(又称红限)。不同的金属材料有不同的脱出功,因而υ0也是不同的。 我们在实验中将采用“减速电势法”进行测量并求出普朗克常量h 。实验原理如图 图1 图2 1所示。当单色光入射到光电管的阴极K 上时,如有光电子逸出,则当阳极A 加正电势,K 加负电势时,光电子就被加速;而当 K 加正电势,A 加负电势时,光电子就被减速。当A 、K 之间所加电压(U )足够大时,光电流达到饱和值I m ,当U ≤-U 0,并满足方程 eU 0=22 1m mv (2) 时,光电流将为零,此时的U 0称为截止电压。光电流与所加电压的关系如图2所示。 将式(2)代入式(1)可得 eU 0=hv -W 即 U 0=e W v e h - (3) 它表示U 0与v 间存在线性关系,其斜率等于h /e ,因而可以从对U 0与v 的数据分析中求出普朗克常量h 。 实际实验时测不出U 0,测得的是U 0与导线和阴极间的正向接触电势差U c 之差U 0ˊ,即测得的U 0ˊ是 U 0ˊ=U 0-U c 图1 图2

相关文档
最新文档