培优专题-用分组分解法进行因式分解(含标准答案)

培优专题-用分组分解法进行因式分解(含标准答案)
培优专题-用分组分解法进行因式分解(含标准答案)

培优专题-用分组分解法进行因式分解(含答案)

————————————————————————————————作者:————————————————————————————————日期:

3、用分组分解法进行因式分解

【知识精读】

分组分解法的原则是分组后可以直接提公因式,或者可以直接运用公式。使用这种方法的关键在于分组适当,而在分组时,必须有预见性。能预见到下一步能继续分解。而“预见”源于细致的“观察”,分析多项式的特点,恰当的分组是分组分解法的关键。

应用分组分解法因式分解,不仅可以考察提公因式法,公式法,同时它在代数式的化简,求值及一元二次方程,函数等学习中也有重要作用。

下面我们就来学习用分组分解法进行因式分解。

【分类解析】

1. 在数学计算、化简、证明题中的应用

例1. 把多项式211242a a a a a ()+++++分解因式,所得的结果为( )

A a a

B a a

C a a

D a a .().().().()22

2222221111+--+++--

分析:先去括号,合并同类项,然后分组搭配,继续用公式法分解彻底。

解:原式=+++++211242a a a a a (()

=++++=+++++=++++=++a a a a a a a a a a a a a a a 4324322222222321

2221

21

1()()()()()

故选择C

例2. 分解因式x x x x x 54321-+-+-

分析:这是一个六项式,很显然要先进行分组,此题可把x x x x x 54321-+-+-和分别看成一组,此时六项式变成二项式,提取公因式后,再进一步分解;此题也可把x x 54-,x x x 321--和分别看作一组,此时的六项式变成三项式,提取公因式后再进行分解。 解法1:

原式=-+--+=--+=-++-+()()

()()

()()()x x x x x x x x x x x x x 54323222111111

解法2:

原式=-+-+-=-+-+-=-++=-++-=-++-+()()()

()()()

()()

()[()]

()()()x x x x x x x x x x x x x x x x x x x x x x 5432424242222111111121111

2. 在几何学中的应用

例:已知三条线段长分别为a 、b 、c ,且满足a b a c b ac >+<+,2222

证明:以a 、b 、c 为三边能构成三角形

分析:构成三角形的条件,即三边关系定理,是“两边之和大于第三边,两边之差小于第三边”

证明:Θa c b ac 2222+<+

∴+--<∴-+-<--<∴-+--<-+>--∴-+>--<∴+>-<-<<+∴a c b ac a ac c b a c b a c b a c b a c b a c b

a c

b a

c b a b c a b c

a b c a b

a b c 2222222220

200

00

,即又,,即以、、为三边能构成三角形()()()Θ

3. 在方程中的应用

例:求方程x y xy -=的整数解

分析:这是一道求不定方程的整数解问题,直接求解有困难,因等式两边都含有x 与y ,故可考虑借助因式分解求解

解:Θx y xy -=

∴-+=∴-+-=--+-=-∴-+=-∴+=-=-???+=--=???xy x y xy x y x y y y x x y x y x y 0

11

111

111

11111111

即是整数

或()()()(),Θ

∴==???=-=???x y x y 0022或

4、中考点拨

例1.分解因式:1222--+=m n mn _____________。

解:1222--+m n mn

=--+=--=+--+12111222

()

()()()m mn n m n m n m n

说明:观察此题是四项式,应采用分组分解法,中间两项虽符合平方差公式,但搭配在一起不能分解到底,应把后三项结合在一起,再应用完全平方公式和平方差公式。

例2.分解因式:x y x y 22--+=____________

解:x y x y 22--+=()()x y x y 22---

=+---=-+-()()()

()()x y x y x y x y x y 1

说明:前两项符合平方差公式,把后两项结合,看成整体提取公因式。

例3. 分解因式:x x x 323412+--=____________

解:x x x 323412+--=x x x 324312-+-

=-+-=++-x x x x x x ()()

()()()22434322

说明:分组的目的是能够继续分解。

5、题型展示:

例1. 分解因式:m n mn n 222141()-+-+

解:m n mn n 222141()-+-+

=-+-+=++---=+--=-+++-+m n m mn n m n mn m mn n mn m n mn m n mn m n 222222222241

212111()()

()()()()

说明:观察此题,直接分解比较困难,不妨先去括号,再分组,把4mn 分成2mn 和2mn ,配成完全平方和平方差公式。

例2. 已知:a b c d ac bd 2222110+=+=+=,,且,求ab+cd 的值。

解:ab+cd=ab cd ?+?11

=+++=+++=+++=+++=++ab c d cd a b abc abd cda cdb abc cdb abd cda bc ac bd ad bd ac ac bd bc ad ()()

()()()()

()()

222222222222

Θac bd +=∴=0

0原式

说明:首先要充分利用已知条件a b c d 222211+=+=,中的1(任何数乘以1,其值不变),其次利用分解因式将式子变形成含有ac+bd 因式乘积的形式,由ac+bd=0可算出结果。

例3. 分解因式:x x 323+-

分析:此题无法用常规思路分解,需拆添项。观察多项式发现当x=1时,它的值为0,这就意味着x x x -+-1233是的一个因式,因此变形的目的是凑x -1这个因式。 解一(拆项):

x x x x x 333233322+-=--+

=-++--=-++3112113222()()()

()()x x x x x x x x

解二(添项):

x x x x x x x x x x x x x 3322222323

11313+-=-++-=-+-+=-++()()()()()

说明:拆添项法也是分解因式的一种常见方法,请同学们试拆一次项和常数项,看看是否可解?

【实战模拟】

1. 填空题:

()分解因式:()分解因式:()分解因式:13322444311222233a a b b x x xy y y mn mn m n --+=

--++=---=

()

2. 已知:a b c a a c abc b c b ++=+-++03223,求的值。

3. 分解因式:15

++a a

4. 已知:x y z A x y z x y z x y x z A 2223330--=--=--,是一个关于的一次多项式,且,,()(),试求A 的表达式。

5. 证明:()()()()()a b ab a b ab a b +-+-+-=--22111222

【试题答案】

1. (1)解:原式=---()()a b a b 223

=+---=-+-()()()

()()a b a b a b a b a b 33

(2)解:原式=-+--()()x xy y x y 224422

=---=---()()

()()x y x y x y x y 2222222

(3)解:原式=-+-12233mn m n m n

=-+-=-+()()

()()11112222mn m n mn mn m n 2. 解:原式=+-++-+()()()a b a ab b c a ab b 2222

))((22c b a b ab a +++-=

Θa b c ++=∴=0

0原式

说明:因式分解是一种重要的恒等变形,在代数式求值中有很大作用。

3. 解:a a 51++

=-+++=-+++=-+++++=++-+a a a a a a a a a a a a a a a a a a 5222322222321

1111111()()

()()()

()()

4. 解:Θx y z 2220--=

∴=-=-∴--=--?=-++--=-++-+=--+-+-=--+++=--++y x z z x y x y z x y z z x y x xy y z x y x y x xy y z x y x y x x z y x z x z x y x z x y x z x y x z x y z 222222

333

332

222222222,()()()()

()[()]

()[()()()]

()()()

()()()

∴=++A x y z 2

5. 证明:()()()a b ab a b ab +-+-+-2212

=+-++---++-+=+----+++=+++++-+-+a ab a ab b b a b ab ab ab a b a b a b a b ab ab a b a ab b a b ab a b a b ab 222222

222222

22222222224122222412212222()()()()

=+++-++=+-+=-+-()()()()[()()]()a b ab a b ab a b ab a ab b 222

212111

=--=--()()()()a b a b 11112222

分组分解法进行因式分解

分组分解法进行因式分解 【知识精读】 分组分解法的原则是分组后可以直接提公因式,或者可以直接运用公式。使用这种方法的关键在于分组适当,而在分组时,必须有预见性。能预见到下一步能继续分解。而“预见”源于细致的“观察”,分析多项式的特点,恰当的分组是分组分解法的关键。 应用分组分解法因式分解,不仅可以考察提公因式法,公式法,同时它在代数式的化简,求值及一元二次方程,函数等学习中也有重要作用。 下面我们就来学习用分组分解法进行因式分解。 【分类解析】 1. 在数学计算、化简、证明题中的应用 例1. 把多项式分解因式,所得的结果为() 分析:先去括号,合并同类项,然后分组搭配,继续用公式法分解彻底。 例2. 分解因式 分析:这是一个六项式,很显然要先进行分组,此题可把分别看成一组,此时六项式变成二项式,提取公因式后,再进一步分解;此题也可把,分别看作一组,此时的六项式变成三项式,提取公因式后再进行分解。 2. 在几何学中的应用 例:已知三条线段长分别为a、b、c,且满足 证明:以a、b、c为三边能构成三角形 分析:构成三角形的条件,即三边关系定理,是“两边之和大于第三边,两边之差小于第三边” 证明: 3. 在方程中的应用 例:求方程的整数解

分析:这是一道求不定方程的整数解问题,直接求解有困难,因等式两边都含有x与y,故可考虑借助因式分解求解 4、中考点拨 例1.分解因式:_____________。 说明:观察此题是四项式,应采用分组分解法,中间两项虽符合平方差公式,但搭配在一起不能分解到底,应把后三项结合在一起,再应用完全平方公式和平方差公式。 例2.分解因式:____________ 说明:前两项符合平方差公式,把后两项结合,看成整体提取公因式。 例3. 分解因式:____________ 说明:分组的目的是能够继续分解。 5、题型展示: 例1. 分解因式: 说明:观察此题,直接分解比较困难,不妨先去括号,再分组,把4mn分成2mn和2mn,配成完全平方和平方差公式。 例2. 已知:,求ab+cd的值。

精讲精练:因式分解方法分类总结-培优(含答案)

因式分解·提公因式法 【知识精读】 如果多项式的各项有公因式,根据乘法分配律的逆运算,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式。 提公因式法是因式分解的最基本也是最常用的方法。它的理论依据就是乘法分配律。多项式的公因式的确定方法是: (1)当多项式有相同字母时,取相同字母的最低次幂。 (2)系数和各项系数的最大公约数,公因式可以是数、单项式,也可以是多项式。 下面我们通过例题进一步学习用提公因式法因式分解 【分类解析】 1. 把下列各式因式分解 (1)-+--+++a x abx acx ax m m m m 2 2 13 (2)a a b a b a ab b a ()()()-+---3 2 2 22 分析:(1)若多项式的第一项系数是负数,一般要提出“-”号,使括号内的第一项系数是正数,在提出“-”号后,多项式的各项都要变号。 解:-+--=--+++++a x abx acx ax ax ax bx c x m m m m m 2 2 1323() (2)有时将因式经过符号变换或将字母重新排列后可化为公因式,如:当n 为自然数时,() ()()()a b b a a b b a n n n n -=--=----222121;,是在因式分解过 程中常用的因式变换。 解:a a b a b a ab b a ()()()-+---322 22 ) 243)((] 2)(2))[(() (2)(2)(222 223b b ab a b a a b b a a b a b a a b a ab b a a b a a ++--=+-+--=-+-+-= 2. 利用提公因式法简化计算过程 例:计算1368 987 521136898745613689872681368987123? +?+?+? 分析:算式中每一项都含有987 1368 ,可以把它看成公因式提取出来,再算出结 果。 解:原式)521456268123(1368987 +++?= =?=987 1368 1368987 3. 在多项式恒等变形中的应用 例:不解方程组23 532 x y x y +=-=-???,求代数式()()()22332x y x y x x y +-++的 值。 分析:不要求解方程组,我们可以把2x y +和53x y -看成整体,它们的值分别是3和-2,观察代数式,发现每一项都含有2x y +,利用提公因式法把代数式恒等变形,化为含有2x y +和53x y -的式子,即可求出结果。 解 :

因式分解培优训练

因式分解强化训练 因式分解常用方法: 1、 提公因法 ::ma+mb+mc=m(a+b+c) 如果一个多项式的各项都含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式。 例1、 分解因式x -2x –x 解: x -2x -x=x(x -2x-1) 2、运用公式法. 在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如: (1) (a+b)(a -b) = a 2-b 2 ---------a 2-b 2=(a+b)(a -b); (2) (a ±b)2 = a 2±2ab+b 2 ——— a 2±2ab+b 2=(a ±b)2; 下面再补充两个常用的公式: (3) (a+b)(a 2-ab+b 2) =a 3+b 3------ a 3+b 3=(a+b)(a 2-ab+b 2); (4) (a -b)(a 2+ab+b 2) = a 3-b 3 ------a 3-b 3=(a -b)(a 2+ab+b 2). (5)a 2+b 2+c 2+2ab+2bc+2ca=(a+b+c)2; (6)a 3+b 3+c 3-3abc=(a+b+c)(a 2+b 2+c 2-ab -bc -ca); 例2、已知a b c ,,是ABC ?的三边,且222a b c ab bc ca ++=++,则ABC ?的形状是( ) A.直角三角形 B 等腰三角形 C 等边三角形 D 等腰直角三角形 解:222222 222222a b c ab bc ca a b c ab bc ca ++=++?++=++ 222()()()0a b b c c a a b c ?-+-+-=?== 3、分组分解法 (一)分组后能直接提公因式 例2、分解因式:bx by ay ax -+-5102 解法一:第一、二项为一组; 解法二:第一、四项为一组; 第三、四项为一组。 第二、三项为一组。 解:原式=)5()102(bx by ay ax -+- 原式=)510()2(by ay bx ax +-+- =)5()5(2y x b y x a --- =)2(5)2(b a y b a x --- =)2)(5(b a y x -- =)5)(2(y x b a -- 练习:分解因式1、bc ac ab a -+-2 2、1+--y x xy (二)分组后能直接运用公式 例3、分解因式:ay ax y x ++-22 分析:若将第一、三项分为一组,第二、四项分为一组,虽然可以提公因式,但提完后就能继续分解,所以只能另外分组。 解:原式=)()(22ay ax y x ++- =)())((y x a y x y x ++-+ =))((a y x y x +-+ 练习:分解因式3、y y x x 3922--- 4、yz z y x 2222--- 综合练习:(1)3 223y xy y x x --+ (2)b a ax bx bx ax -+-+-22 (3)181696222-+-++a a y xy x (4)a b b ab a 4912622-++- (5)92234-+-a a a (6)y b x b y a x a 222244+--

分组分解法因式分解(5课时)

(一)复习 把下列多项式因式分解 (1)2x2+10x (2)a(m+n)+b(m+n) (3)2a(x-5y)+4b(5y-x) (4)(x+y)2-2(x+y) (二)新课讲解 1.引入提问:如何将多项式am+an+bm+bn因式分解? 分析:很显然,多项式am+an+bm+bn中既没有公因式,也不好用公式法。怎么办呢?由于am+an=a(m+n),bm+bn=b(m+n),而a(m+n)+b(m+n)=(m+n)(a+b).这样就有: am+an+bm+bn=(am+an)+(bm+bn)=a(m+n)+b(m+n)=(m+n)(a+b) 利用分组来分解因式的方法叫做分组分解法。 说明:如果把一个多项式的项分组并提出公因式后,它们的另一个因式正好相同,那么这个多项式就可以用分组分解法来分解因式。 练习: 把下列各式分解因式 (1)20(x+y)+x+y (2)p-q+k(p-q) (3)5m(a+b)-a-b (4)2m-2n-4x(m-n) 2.应用举例 例1.把a2-ab+ac-bc分解因式 分析:把这个多项式的四个项按前两项与后两项分成两组,分别提出公因式a与c后,另一个因式正好都是a-b,这样就可以继续提公因式。 解:a2-ab+ac-bc=(a2-ab)+(ac-bc)=a(a-b)+c(a-b)=(a-b)(a+c) 例2:把2ax-10ay+5by-bx分解因式 分析:把这个多项式的四个项按前两项与后两项分成两组,并使两组的项按x的降幂排列,然后从两组中分别提出公因式2a与-b,这时另一个因式正好都是x-5y,这样就可继续提公因式。解:2ax-10ay+5by-bx=(2ax-10ay)+(5by-bx) =2a(x-5y)-b(x-5y)=(x-5y)(2a-b) 提问:这两个例题还有没有其他分组解法?请你试一试。如果能,请你看一下结果是否相同?练习:把下列各式分解因式 (1)ax+bc+3a+3b (2)a2+2ab-ac-2bc (3)a-ax-b+bx (4)xy-y2-yz+xz (5)2x3+x2-6x-3 (6)2ax+6bx+5ay+15by (7)mn+m-n-1 (8)mx2+mx-nx-n (9)8m-8n-mx+nx (10)x2-2bx-ax+2ab (11)ma2+na2-mb2-nb2 四、课外作业把下列各式分解因式 1.a(m+n)-b(m+n) ⒉xy(a-b)+x(a-b) 3.n(x+y)+x+y ⒋a-b-q(a-b) 5.p(m-n)-m+n ⒍2a-4b-m(a-2b) 7.a2+ac-ab-bc ⒏3a-6b-ax+2bx 9.2x3-x2+6x-3 ⒑2ax+6bx+7ay+21by ⒒xy+x-y-1 ⒓ax2+bx2 -ay2-by2 ⒔x3-2x2y-4xy2+8y3 ⒕3m-3y-ma+ay ⒖4x3+4x2y-9xy2-9y3⒗x3y-3x2-2x2y2+6xy

因式分解培优练习题及答案

因式分解专题过关 1.将下列各式分解因式 22+8x+8 2x2)((1)3p﹣6pq 2.将下列各式分解因式 3322.﹣6a b+3ab2 ()3a )(1x y﹣xy .分解因式32 22222)﹣4x y)﹣)1()a(x﹣y+16(yx)(2(x+y 4.分解因式:22( 2 2x(1)﹣x )16x﹣1 3 2 2 2 ()yx+9yx4+12﹣﹣6xy3()9xyy4)(﹣)(﹣ 5.因式分解:2 223﹣2am1()8a y+xy+4x4x)2( .将下列各式分解因式:6. 322222 yx﹣+y4x)(2)(1()3x﹣12x 223 22 y﹣2xy)+y﹣2)(x+2y(7.因式分解:(1)xy 8.对下列代数式分解因式: 2(m﹣2)﹣n(2﹣m)(2)(x﹣1)((1)nx﹣3)+1

2222﹣ba2a+1 ﹣a10﹣4a+4﹣b.分解因式:.分解因式:9 11.把下列各式分解因式: 42422 a﹣2)x+2ax+1+x (x﹣7x +1 (1) 22242432+2x+1 x+3x+2x (4(1﹣y+x))(1﹣y)1+y(3)()2x﹣ 12.把下列各式分解因式: 32222224445+x+1;x ) b +2ac(+2bc3﹣a﹣b﹣c ;2a2 ;4x1()﹣31x+15 () 32432.a+2﹣6a﹣a﹣2a)5(;9﹣+3x+5xx)4(. 2﹣6pq=3p(p﹣2q1)3p),解答:解:(222.(x+2x)+4x+4),=2(2)2x+8x+8,=2( 2.将下列各式分解因式 3322.6a (2)3ab+3ab﹣(1)x y﹣xy 分析:(1)首先提取公因式xy,再利用平方差公式进行二次分解即可; (2)首先提取公因式3a,再利用完全平方公式进行二次分解即可. 2﹣1)=xy(x+1)(x﹣解:(1)原式=xy(x1);解答:222.﹣b))=3a((2)原式=3a(aa﹣2ab+b 3.分解因式 222222.)y﹣(2)(x4x+y﹣y)+16(y﹣x);(1)a (x 22﹣16),=(x﹣y)(a+4)(a﹣4()+16y﹣x),=(x﹣y)(a);解答:解:(1)a (x﹣y22222222222.)(x﹣2xy+y),﹣4x=y(,=(xx+y+2xy+y))((2)(xx+yy)﹣ 4.分解因式: 222232.)(x﹣y4+12(x﹣)6xyy﹣9x)y﹣y+9;(4(1)2x16x﹣x;(2))﹣1;(3 2﹣x=x(2x﹣1(1)2x);解答:解:2﹣1=(4x+1)(16x4x﹣1);(2)223222;﹣y),)=﹣yy,=﹣y(9x(﹣6xy+y(3)6xy3x﹣9xy﹣222.﹣3y+2),=(3x﹣y)﹣,=[2+3(xy)]((4)4+12x﹣y)+9(x 5.因式分解: 2322 y+xy+4x (2)4x (1)2am ﹣8a; 22﹣4)=2a(m+2)(8a=2a(mm﹣2);解答:解:(1)2am﹣322222.),=x4x,=x((+4xy+y (2)4x2x+y+4x)y+xy 6.将下列各式分解因式: 322222.y(x﹣+y4x)(2)(1)3x﹣12x 32)=3x(1+2x)(1﹣2x)1()3x﹣12x;=3x(1﹣4x 解答:解:22222222222.)y (x+y﹣﹣2xy)(x)+y)=﹣4x(y(=xx+y+yx+2xy)()(2

(完整版)因式分解培优题(超全面、详细分类)

因式分解专题培优 把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解.因式分解的方法多种多样,现将初中阶段因式分解的常用方法总结如下: 因式分解的一般方法及考虑顺序: 1、基本方法:提公因式法、公式法、十字相乘法、分组分解法. 2、常用方法与技巧:换元法、主元法、拆项法、添项法、配方法、待定系数法. 3、考虑顺序:(1)提公因式法;(2)公式法;(3)十字相乘法;(4)分组分解法. 一、运用公式法 在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如: (1)a2-b2=(a+b)(a-b); (2)a2±2ab+b2=(a±b)2; (3)a3+b3=(a+b)(a2-ab+b2); (4)a3-b3=(a-b)(a2+ab+b2). 下面再补充几个常用的公式: (5)a2+b2+c2+2ab+2bc+2ca=(a+b+c)2; (6)a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca); (7)a n-b n=(a-b)(a n-1+a n-2b+a n-3b2+…+ab n-2+b n-1),其中n为正整数; (8)a n-b n=(a+b)(a n-1-a n-2b+a n-3b2-…+ab n-2-b n-1),其中n为偶数; (9)a n+b n=(a+b)(a n-1-a n-2b+a n-3b2-…-ab n-2+b n-1),其中n为奇数. 运用公式法分解因式时,要根据多项式的特点,根据字母、系数、指数、符号等正确恰当地选择公式. 例题1 分解因式: (1)-2x5n-1y n+4x3n-1y n+2-2x n-1y n+4; (2)x3-8y3-z3-6xyz; (3)a2+b2+c2-2bc+2ca-2ab; (4)a7-a5b2+a2b5-b7.

因式分解培优复习进程

因式分解培优

分解因式 一、分解因式的定义:(关键:看等号右边是否为几个整式的积的形式) 二、分解因式一般步骤:一提、二套、三分、四查 三、分解因式常用方法: Ⅰ、提公因式法:(关键:确定公因式) ma +mb +mc = 。 Ⅱ、运用公式法:(关键:确定a 、b ) ①平方差公式:22a b -= ②完全平方公式: 22 2a ab b ±+= 。 (一)将下列多项式因式分解(填空) 1、 _______________________2、322363x x y xy -+=___________________ 3、=__________________4、 =________________ 5、= ___________________ 6、= (二)分解因式(写出详细过程) 1、)()()(23m n n m n m +--+ 2、 3、 4、2222224)(b a b a c --- (三)已知x 、y 都是正整数,且,求x 、y 。 (四)化简:,且当时,求原式的值。

Ⅲ、十字相乘法: (一)二次项系数为1的二次三项式:))(()(2 q x p x pq x q p x ++=+++ 特点:(1)二次项系数是1;(2)常数项是两个数的乘积;(3)一次项系数是常数项的两因数的和。 1、分解因式:(1)652++x x (2)276m m -+ (3)1522--y y (4)245a a +- 2、分解因式(1)2 223y xy x +- (2)2286n mn m +- (3)226b ab a -- (4)221288b ab a -- (5)10)(3)(2 -+-+y x y x (二)二次项系数不为1的二次三项式:c bx ax ++2=))((2211c x a c x a ++ 条件:(1)21a a a = 1a 1c (2)21c c c = 2a 2c (3)1221c a c a b += 1221c a c a b += 1、分解因式:(1)6752-+x x (2)2732+-x x (3)317102+-x x (4)101162++-y y 2、分解因式(1)17836--x x (2)8622+-ax x a (3)2 2151112y xy x --

新浙教版数学七年级(下册)第四章《因式分解》培优题

新浙教版数学七年级下册第四章《因式分解》培优题 一.选择题(共6小题) 1.下列各式,能直接运用完全平方公式进行因式分解的是() A.4x2+8x+1 B.x2y2﹣xy+1 C.x2﹣4x+16 D.x2﹣6xy﹣9y2 2.已知x2+ax﹣12能分解成两个整数系数的一次因式的积,则整数a的个数有() A.0 B.2 C.4 D.6 3.任何一个正整数n都可以写成两个正整数相乘的形式,我们把两个乘数的差的绝对值最小的一种分解n=p×q(p≤q)称为正整数n的最佳分解,并定义一个新运算.例如:12=1×12=2×6=3×4,则. 那么以下结论中:①;②;③若n是一个完全平方数,则F(n)=1;④若n是一个完全立方数(即n=a3,a是正整数),则.正确的个数为() A.1个B.2个C.3个D.4个 4.已知二次三项式x2﹣4x+m有一个因式是x+3,求另一个因式以及m的值时,可以设另一个因式为x+n,则x2﹣4x+m=(x+3)(x+n). 即x2﹣4x+m=x2+(n+3)x+3n. ∴解得,n=﹣7,m=﹣21, ∴另一个因式为x﹣7,m的值为﹣21. 类似地,二次三项式2x2+3x﹣k有一个因式是2x﹣5,则它的另一个因式以及k 的值为() A.x﹣1,5 B.x+4,20 C.x,D.x+4,﹣4 5.现有一列式子:①552﹣452;②5552﹣4452;③55552﹣44452…则第⑧个式子的计算结果用科学记数法可表示为() A.1.1111111×1016B.1.1111111×1027 C.1.111111×1056D.1.1111111×1017

6.设a、b、c是三角形的三边长,且a2+b2+c2=ab+bc+ca,关于此三角形的形状有以下判断:①是等腰三角形;②是等边三角形;③是锐角三角形;④是斜三角形.其中正确的说法的个数是() A.4个B.3个C.2个D.1个 二.填空题(共7小题) 7.已知x+y=10,xy=16,则x2y+xy2的值为. 8.两位同学将一个二次三项式分解因式,一位同学因看错了一次项系数而分解成2(x﹣1)(x﹣9);另一位同学因看错了常数项分解成2(x﹣2)(x﹣4),请你将原多项式因式分解正确的结果写出来:. 9.2m+2007+2m+1(m是正整数)的个位数字是. 10.若多项式x2+mx+4能用完全平方公式分解因式,则m的值是. 11.若a+b=5,ab=,则a2﹣b2= . 12.定义运算a★b=(1﹣a)b,下面给出了关于这种运算的四个结论: ①2★(﹣2)=3 ②a★b=b★a ③若a+b=0,则(a★a)+(b★b)=2ab ④若a★b=0,则a=1或b=0. 其中正确结论的序号是(填上你认为正确的所有结论的序号). 13.若m2=n+2,n2=m+2(m≠n),则m3﹣2mn+n3的值为.

初中因式分解中的“分组分解法”

初二因式分解解读之六:编制人:平生曜曜 因式分解中的“分组分解法” 分组分解法的运用最能体现同学们对基础知识掌握程度,如何分组并非漫无目标地轮换重组,这需要讲究一些“可以掌控的”技巧,而技巧从懵懂到明晰都有待于通过解题训练与归纳总结去养成。 不废话!开始上菜,入席就吃。只要肯用心吃,终有一天会吃胖的! (1)、分解因式:a2 x -b2 x -a2 y + b2 y …………先………写………出………你………的………答………案………… 你的答案:______________________________________。 〈分析〉:原式由“①、a2 x,②、-b2 x,③、+ a2 y,④、+ b2 y”这四部分组成,其中没有任何公因式可提取,但我们发现,其中个别“成员”间有公因式,所以可考虑: 第一种分组方式:①和②分为一组,③和④分为另一组。 解:原式=(a2 x -b2 x)+(-a2 y + b2 y) = x(a2 -b2)- y(a2 -b2) = (a2 -b2)(x -y) =(a + b)(a-b)(x -y) 第二种分组方式:①和③分为一组,②和④分为另一组。 解:原式=(a2 x -a2 y)+(-b2 x + b2 y) = a2(x - y )-b2(x -y) =(x -y)(a2 -b2) = (x -y)(a-b)(a + b) (2)、分解因式:x2 -4 + y2-2xy …………先………写………出………你………的………答………案………… 你的答案:______________________________________。

〈分析〉:原式由“①:x2”、“②:-4”、“③: +y2”和“④:-2xy”这四部分组成,其中没有任何公因式可提取,但我们发现,其中个别“成员”若组合在一起,就可以暂时先用提取公因式法,或者运用公式法,来作第一步分解,所以值得尝试: 第一种分组方式:①和②分为一组,③和④分为另一组。 解:原式=(x2 -4)+(y2 -2x y) = (x - 2 )(x + 2)-y(y -2x) 此法不能完成最终的分解任务,所以要另行分组,进行微调、重组! 第二种分组方式:①、③、④合为一组,②单独为另一组。 解:原式=(x2 + y2 -2x y )+(-4) =(x - y)2 -(2)2 =(x - y + 2)(x - y - 2) (3)、分解因式:x2 + 3x -y2 -3y …………先………写………出………你………的………答………案………… 你的答案:______________________________________。 〈分析〉: 第一种情况:尝试①、②合为一组,③、④合为另一组: 解:原式=(x2 + 3x )+(-y2 -3y) = x(x + 3)- y(y + 3) 此法不能完成最终的分解任务,所以要另行分组,进行微调、重组! 第二种情况:尝试①、③合为一组,②、④合为另一组: 解:原式=(x2 -y2)+(3x-3y) =(x + y)(x - y)+ 3(x - y) =(x - y)(x + y + 3) 〈总结技巧之一〉:形如“平方和”的项,宜与“相应的交叉项”暂时凑成一组,然

培优专题3_用分组分解法进行因式分解(含答案)

3、用分组分解法进行因式分解 【知识精读】 分组分解法的原则是分组后可以直接提公因式,或者可以直接运用公式。使用这种方法的关键在于分组适当,而在分组时,必须有预见性。能预见到下一步能继续分解。而“预见”源于细致的“观察”,分析多项式的特点,恰当的分组是分组分解法的关键。 应用分组分解法因式分解,不仅可以考察提公因式法,公式法,同时它在代数式的化简,求值及一元二次方程,函数等学习中也有重要作用。 下面我们就来学习用分组分解法进行因式分解。 【分类解析】 1. 在数学计算、化简、证明题中的应用 例1. 把多项式211242a a a a a ()+++++分解因式,所得的结果为( ) A a a B a a C a a D a a .().().().()22 2222221111+--+++-- 分析:先去括号,合并同类项,然后分组搭配,继续用公式法分解彻底。 解:原式=+++++211242a a a a a (() =++++=+++++=++++=++a a a a a a a a a a a a a a a 4324322222222321 2221 21 1()()()()() 故选择C 例2. 分解因式x x x x x 54321-+-+- 分析:这是一个六项式,很显然要先进行分组,此题可把x x x x x 54321-+-+-和分别看成一组,此时六项式变成二项式,提取公因式后,再进一步分解;此题也可把x x 54-,x x x 321--和分别看作一组,此时的六项式变成三项式,提取公因式后再进行分解。 解法1: 原式=-+--+=--+=-++-+()() ()() ()()()x x x x x x x x x x x x x 54323222111111 解法2:

因式分解培优专题

把下列各式因式分解 2 m2 m 1 a x abx a(a b)3 2a 2(b m m3 acx ax a)2 2ab(b a) (1)若多项式的第一项系数是负数,一般要提出“一”号,使括号内的第 2.利用提公因式法简化计算过程 例? 计算 987 987 例:计算123 268 - 1368 1368 分析:算式中每一项都含有 竺 1368 987 521 1368 ,可以把它看成公因式提取出来,再算出结果。 456 987 1368 解: 说明:在用提公因式法分解因式前,必须对原式进行变形得到公因式,同时一定要 注意符号,提取公因式后,剩下的因式应注意化简。 举一反三: 1、分解因式: (1) 4m 2n 3 12m 3n 22mn 3. 在多项式恒等变形中的应用 例:不解方程组 2x y 3 , 5x 3y 2 求代数式(2x y)(2x 3y) 3x(2x y)的值。 (2) a 2x n 2 abx n 1 acx n adx n 1(n 为正整数) 初三数学因式分解培优专题(一) 一、用提公因式法把多项式进行因式分解 【知识精读】 如果多项式的各项有公因式,根据乘法分配律的逆运算,可以把这个公因式提到括 号外面,将多项式写成因式乘积的形式。 提公因式法是因式分解的最基本也是最常用的方法。它的理论依据就是乘法分配 律。多项式的公因式的确定方法是: (1) 当多项式有相同字母时,取相同字母的最低次幕。 (2) 系数和各项系数的最大公约数,公因式可以是数、单项式,也可以是多项式。 下面我们通过例题进一步学习用提公因式法因式分解 【分类解 析】 1. (1) (2) 分析: 分析:不要求解方程组,我们可以把 2x y 和5x 3y 看成整体,它们的值分别是 3 和2,观察代数式,发现每一项都含有2x y ,利用提公因式法把代数式恒等变形, 化为含有2x y 和5x 3y 的式子,即可求出结果。 解: 4. 在代数证明题中的应用 例:证明:对于任意自然数 n , 3n 22n 23n 2n 一定是10的倍数。 分析:首先利用因式分解把代数式恒等变形,接着只需证明每一项都是 10的倍数 即可。 解: 一项系数是正数,在提出“―”号后,多项式的各项都要变号。 解: (2)有时将因式经过符号变换或将字母重新排列后可化为公因式,如:当 n 为自 然数时,(a b)2n (b a)2n ; (a b)2n 1 (b a)2n 1,是在因式分解过程中 常用的因式变换。 解: 5、中考点拨: 例1。因式分解3x(x 2) (2 x) 解: 说明:因式分解时,应先观察有没有公因式,若没有,看是否能通过变形转换得 到。 例 2 .分解因式:4q(1 p)3 2( p 1)2 解:

初中数学因式分解培优训练

第一讲:因式分解(一) 多项式的因式分解是代数式恒等变形的基本形式之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具.因式分解方法灵活,技巧性强, 学习这些方法与技巧,不仅是掌握因式分解内容所必 需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用.初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法.本讲及下一讲在中学数学教材基础上,对因式分解的方法、技巧和应用作进一步的介绍. 1.运用公式法 在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如: (1)a2-b2=(a+b)(a-b); (2)a2±2ab+b2=(a±b)2; (3)a3+b3=(a+b)(a2-ab+b2); (4)a3-b3=(a-b)(a2+ab+b2). 下面再补充几个常用的公式: (5)a2+b2+c2+2ab+2bc+2ca=(a+b+c)2; (6)a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-c a); (7)a n-b n=(a-b)(an-1+a n-2b+a n-3b2+…+ab n-2+b n-1)其中n为正整数; (8)an-bn=(a+b)(an-1-a n-2b+a n-3b2-…+abn-2-bn-1),其中n为偶数; (9)an+b n=(a+b)(an-1-a n-2b+a n-3b2-…-abn-2+bn-1),其中n为奇数. 运用公式法分解因式时,要根据多项式的特点,根据字母、系数、指数、符号等正确恰当地选择公式. 例1 分解因式: (1)-2x5n-1y n+4x3n-1yn+2-2x n-1yn+4; (2)x3-8y3-z3-6xyz; (3)a2+b2+c2-2bc+2ca-2ab; 752257 =-2xn-1yn[(x2n)2-2x2ny2+(y2)2] =-2xn-1yn(x2n-y2)2 =-2x n-1yn(xn-y)2(x n+y)2. (2)原式=x3+(-2y)3+(-z)3-3x(-2y)(-Z) =(x-2y-z)(x2+4y2+z2+2xy+xz-2yz). (3)原式=(a2-2ab+b2)+(-2bc+2ca)+c2 =(a-b)2+2c(a-b)+c2 =(a-b+c)2. 本小题可以稍加变形,直接使用公式(5),解法如下: 原式=a2+(-b)2+c2+2(-b)c+2ca+2a(-b) =(a-b+c)2 (4)原式=(a7-a5b2)+(a2b5-b7) =a5(a2-b2)+b5(a2-b2) =(a2-b2)(a5+b5) =(a+b)(a-b)(a+b)(a4-a3b+a2b2-ab3+b4)=(a+b)2(a-b)(a4-a3b+a2b2-ab3+b4) 例2 分解因式:a3+b3+c3-3abc. 本题实际上就是用因式分解的方法证明前面给出的公式(6). 分析我们已经知道公式 (a+b)3=a3+3a2b+3ab2+b3 的正确性,现将此公式变形为 a3+b3=(a+b)3-3ab(a+b). 这个式也是一个常用的公式,本题就借助于它来推导. 解原式=(a+b)3-3ab(a+b)+c3-3abc =[(a+b)3+c3]-3ab(a+b+c) =(a+b+c)[(a+b)2-c(a+b)+c2]-3ab(a+b+c) =(a+b+c)(a2+b2+c2-ab-bc-ca). 说明公式(6)是一个应用极广的公式,用它可以推

《因式分解-分组分解与十字相乘法》知识点归纳

《因式分解-分组分解与十字相乘法》知 识点归纳 ★★ 知识体系梳理 ◆ 分组分解法: 用分组分解法来分解的多项式一般至少有四项,分组不是盲目的,要有预见性.也就是说,分组后每组之间必须要有公因式可提取,或者分组后可直接运用公式。 、分组后能提公因式; 2、分组后能运用公式 ◆ 十字相乘法: 、型的二次三项式因式分解: (其中,) 、二次三项式的分解: 如果二次项系数分解成、,常数项分解成、;并且等于一次项系数,那么二次三项式: 借助于画十字交叉线排列如下:

◆ 因式分解的一般步骤:一提二代三分组 ①、如果多项式的各项有公因式,那么先提取公因式; ②、提取公因式以后或没有公因式,再考虑公式法或十字相乘法; ③、对二次三项式先考虑能否用完全平方公式,再考虑能否用十字相乘法; ④、用以上方法不能分解的三项以上的多项式,考虑用分组分解法。 ◆ 因式分解几点注意与说明: ①、因式分解要进行到不能再分解为止; ②、结果中相同因式应写成幂的形式; ③、根据不同多项式的特点,灵活的综合应用各种方法分解因式是本章的重点和难点,因此掌握好因式分解的概念、方法、步骤是学好本章的关键。 ★★ 典型例题、解法导航 ◆ 考点一:十字相乘法 、型三项式的分解 【例1】计算:

(1) (2) (3) (4) 运用上面的结果分解因式: ①、 ②、 ③、 ④、 方法点金:型三项式关键是把常数分解为两个数之积(),而这两个数的和正好等于一次项的系数()。 ◎变式议练一: 、 2、已知能分解成两个整系数的一次因式的乘积,则符合条件的整数的个数为( ) 、个 、个 、个 、个 3、把下列各式分解因式: ①、

最新整式乘除与因式分解培优精练专题答案

整式乘除与因式分解培优精练专题答案 一.选择题(共9小题) 222 2.(2014?盘锦)计算(2a2)3?a正确的结果是() 7776 可. 解:原式= =4a7, 故选:B. 22 .3D.2 故选:B. 4.(2014?拱墅区二模)如果ax2+2x+=(2x+)2+m,则a,m的值分别是() A.2,0 B.4,0 C. 2,D. 4, 运用完全平方公式把等号右边展开,然后根据对应项的系数相等列式求解即可.解:∵ax2+2x+=4x2+2x++m, ∴, 解得.

5.(2014?江阴市模拟)如图,设(a>b>0),则有() A.B.C.1<k<2 D.k>2 解:甲图中阴影部分的面积=a2﹣b2,乙图中阴影部分的面积=a(a﹣b), =, ∵a>b>0, ∴, ∴1<k<2. 故选:C. 6.(2012?鄂州三月调考)已知,则的值为()A.B.C.D.无法确定 解:∵a+=, ∴两边平方得:(a+)2=10, 展开得:a2+2a?+=10, ∴a2+=10﹣2=8, ∴(a﹣)2=a2﹣2a?+=a2+﹣2=8﹣2=6, ∴a﹣=±,

7.已知,则代数式的值等于() A.B.C.D. 分析: 先判断a是正数,然后利用完全平方公式把两边平方并整理成的平方的形式,开方即可求解. 解:∵, ∴a>0,且﹣2+a2=1, ∴+2+a2=5, 即(+|a|)2=5, 开平方得,+|a|=. 故选C. 8.(2012?滨州)求1+2+2+2+…+2的值,可令S=1+2+2+2+…+2,则 2S=2+22+23+24+…+22013,因此2S﹣S=22013﹣1.仿照以上推理,计算出1+5+52+53+…+52012 .D. 根据题目提供的信息,设S=1+5+5+5+…+5,用5S﹣S整理即可得解. 解:设S=1+5+52+53+...+52012,则5S=5+52+53+54+ (52013) 因此,5S﹣S=52013﹣1, S=. 故选C. 9.(2004?郑州)已知a=x+20,b=x+19,c=x+21,那么代数式a2+b2+c2﹣ab﹣bc A.4B.3C.2D.1

初中数学因式分解培优训练

实用标准文档 第一讲:因式分解(一)n-1n222 )2xny-(x 多项式的因式分解是代数式恒等变形的基本形式之y =- (x(x -y) 一,它被广泛地应用于初等数学之中,是我们解决许 n-1nn2n2. =-2x+y)y333-3x(-2y)(2y)-+(-多数学问题的有力工具.因式分解方法灵活,技巧性z) (2)原式=xZ) +(-222+2xy+xz-2yz)z)(x.+4y +z 强,学习这些方法与技巧,不仅是掌握因式分解内容 =(x-2y-222 2bc+2ca)+c)+(所必需的,而且对于培养学生的解题技能,发展学生原式=(a-2ab+b- (3)22 b)+c+2c(a=(a-b)-的思维能力,都有着十分独特的作用.初中数学教材2.-b+c) =(a中主要介绍了提取公因式法、运用公式法、分组分解 本小题可以稍加变形,直接使用公式(5)法和十字相乘法.本讲及下一讲在中学数学教材基础, 解法如下: b)c+2ca+2a(+c-原式=a+2(技巧和应用作进一步的介绍.上,对因式分解的方法、+(-b)-2 222b) b+c) =(a-.运用公式法 1 -在整式的乘、除中,我们学过若干个乘法公式,现 a-bb)+(ab (4)原式=(a 757522) --)+b将其反向使用,即为因式分解中常用的公式,例如: b =a(a522522) 225225) (ab =(a)(a-bb-b)=(a+b)(a-; +b (1)a422222343) b+-b)(a+b)(a =(a+b)(a-ab-abb+a2ab+b (2)a±b)=(a±;42223323243) - =(a+b)b(a-b)(aab-a (3)a+b=(a+b)(a-ab+b;) +bb+a .-.(4)a --b=(ab)(a+ab+b) 例2 分解因式:ab+本题实际上就是用因式分解的3332332 3abc+c 方法证明前面给出的下面再补充几个常用的公式: .(5)a +b+c+2ab+2bc+2ca=(a+b+c);公式233322我们已经知道公式 ca)-;分析 bc(6)a 2222(6) ab+b+c-3abc=(a+b+c)(a+b+c--3n-1n-222n-3n-2n-13nn32 (a+b)+b=an+abb)(ab (7)a-=(a-+ab+ab+…+b)其中 b+3ab+3a 为正整数;的正确性,现将此公式变形为 a其中b-…-+ab),n-+b3ab(a+b)=(a+b)b- (8)a=(a+b)(a-ab+ab式也是一个常 3n-232n-3n-23n-1nnn-1. 用的公式,本题就借助于它来为偶数;这个n-1n-2n-12nnn-3n-2其中,ab…-(9)a +b=(a+b)(aab+ab--+b)n推导.333abc 3ab(a+b)+c解为奇数.原式=(a+b)-- 33ab(a+b+c) ] =[(a+b)3+c-运用公式法分解因式时,要根据多项式的特点,根 据字母、系数、指数、符号等正确恰当地选择公式.-c(a+b)+c- =(a+b+c) 223ab(a+b+c) [(a+b)]222例ca).ab--bc =(a+b+c)(a-+b 1 分解因式:+c n+4n5n-1n-1n+23n-1是一个应用极广的 公式,用它可以推(6);2x-+4x2x- (1)yyy 说明公式333-z8y(2)x --6xyz结论,例如:我们 将公式有用的;(6)变形为出很多3323223abc +c;2ab--+c2bc+2ca +b-a +b(3)a757252b+abb-.a-(4)a 原式 (1)解 =ny2x-(xy2x-n+y 42n2n-14) 2n-122222n] 2x-= +(yny2x-n)[(xy) 文案大全. 实用标准文档 ;当a+b+c 解法2 将一次项-+b9x+c拆成-x-8x.显然,当a+b+c=0时,则 333=3abc

七年级数学因式分解培优试题

1.若442-+x x 的值为0,则51232-+x x 的值是________。 2.若6,422=+=+y x y x 则=xy ____________ . 设z x y 23+=,求xz z y x 449222++-的值是________. 3.已知2=+b a ,求)(8)(22222b a b a +--的值.______________ 4.若)15)(1(152-+=--x x ax x 则a =_____, 若 051294422=+-+-y y x x , 求 的值_________. 5.若7,9x y xy +=-=-,求 x y -的值。______ 6.因式分解: (1).提公因式法: a a b a b a ab b a ()()()-+---32222 2883223x y x y xy ++= -2x 5n-1y n +4x 3n-1y n+2-2x n-1y n+4 (2).公式法: 22414y xy x +-- yz z y x z y x 4))((-+--+ a 2-4b 2-4c 2 -8bc (3).分组分解法: = --+124323x x x a 2-c 2+2ab+b 2-d 2-2cd (4).添项拆项法 x 3-3x+2 x 4+4 2x 2 +x-1 x 4+x 2+1 x 4-7x 2+1 x 3+2x 2+2x+1 ---=++--=+--332222)1(1344422331n m m n m n y y xy x x b b a a )分解因式:()分解因式:()分解因式:(---= ++--= +--3 32222)1(1344422331n m m n m n y y xy x x b b a a )分解因式:()分解因式:()分解因式:(1 4)1(222+-+-n mn n m y x 3 26+

因式分解专题 用分组分解法 含答案

4、用分组分解法进行因式分解 【知识精读】 分组分解法的原则是分组后可以直接提公因式,或者可以直接运用公式。使用这种方法的关键在于分组适当,而在分组时,必须有预见性。能预见到下一步能继续分解。而“预见”源于细致的“观察”,分析多项式的特点,恰当的分组是分组分解法的关键。 应用分组分解法因式分解,不仅可以考察提公因式法,公式法,同时它在代数式的化简,求值及一元二次方程,函数等学习中也有重要作用。 下面我们就来学习用分组分解法进行因式分解。 【分类解析】 1. 在数学计算、化简、证明题中的应用 例1. 把多项式211242a a a a a ()+++++分解因式,所得的结果为( ) A a a B a a C a a D a a .().().().()22 2222221111+--+++-- 分析:先去括号,合并同类项,然后分组搭配,继续用公式法分解彻底。 解:原式=+++++211242a a a a a (() =++++=+++++=++++=++a a a a a a a a a a a a a a a 4324322222222321 2221 21 1()()()()() 故选择C 例2. 分解因式x x x x x 54321-+-+- 分析:这是一个六项式,很显然要先进行分组,此题可把x x x x x 54321-+-+-和分别看成一组,此时六项式变成二项式,提取公因式后,再进一步分解;此题也可把x x 54-,x x x 321--和分别看作一组,此时的六项式变成三项式,提取公因式后再进行分解。 解法1: 原式=-+--+=--+=-++-+()() ()() ()()()x x x x x x x x x x x x x 54323222111111 解法2:

相关文档
最新文档