PWM控制原理

PWM控制原理
PWM控制原理

电力电子技术教案

PWM 控制技术

主要内容:PWM 控制的基本原理、控制方式与PWM 波形的生成方法,PWM 逆变电路的谐波分析,PWM 整流电路。

重点:PWM 控制的基本原理、控制方式与PWM 波形的生成方法。

难点:PWM 波形的生成方法,PWM 逆变电路的谐波分析。

基本要求:掌握PWM 控制的基本原理、控制方式与PWM 波形的生成方法,了解PWM 逆变电路的谐波分析,了解跟踪型PWM 逆变电路,了解PWM 整流电路。

PWM(Pulse Width Modulation)控制——脉冲宽度调制技术,通过对一系列脉冲的宽

度进行调制,来等效地获得所需要波形(含形状和幅值)。第3、4 章已涉及这方面内容: 第3 章:直流斩波电路采用,第 4 章有两处: 4.1 节斩控式交流调压电路, 4.4 节矩阵式变频电路。

本章内容

PWM 控制技术在逆变电路中应用最广,应用的逆变电路绝大部分是PWM 型,PWM 控制技术正是有赖于在逆变电路中的应用,才确定了它在电力电子技术中的重要地位。

本章主要以逆变电路为控制对象来介绍PWM 控制技术,也介绍PWM 整流电路

1 PWM 控制的基本原理

理论基础:

冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同。冲量指窄

脉冲的面积。效果基本相同,是指环节的输出响应波形基本相同。低频段非常接近,仅在

高频段略有差异。

图6-1 形状不同而冲量相同的各种窄脉冲

面积等效原理:

分别将如图6-1 所示的电压窄脉冲加在一阶惯性环节(R-L 电路)上,如图6-2a所示。其输出电流i(t) 对不同窄脉冲时的响应波形如图6-2b 所示。从波形可以看出,在i(t) 的上升段,i(t)的形状也略有不同,但其下降段则几乎完全相同。脉冲越窄,各i(t)响应波形的差异

第6 章PWM控制技术

也越小。如果周期性地施加上述脉冲,则响应i(t)也是周期性的。用傅里叶级数分解后将可看出,各i(t)在低频段的特性将非常接近,仅在高频段有所不同。

图6-2 冲量相同的各种窄脉冲的响应波形

用一系列等幅不等宽的脉冲来代替一个正弦半波,正弦半波N 等分,看成N 个相连的脉冲序列,宽度相等,但幅值不等;用矩形脉冲代替,等幅,不等宽,中点重合,面积(冲量)相等,宽度按正弦规律变化。

SPWM 波形——脉冲宽度按正弦规律变化而和正弦波等效的PWM 波形。

图6-3 用PWM 波代替正弦半波

要改变等效输出正弦波幅值,按同一比例改变各脉冲宽度即可。

等幅PWM 波和不等幅PWM 波:

电力电子技术教案

由直流电源产生的PWM 波通常是等幅PWM 波,如直流斩波电路及本章主要介绍的PWM 逆变电路,6.4 节的PWM 整流电路。输入电源是交流,得到不等幅PWM 波,如4.1 节讲述的斩控式交流调压电路, 4.4 节的矩阵式变频电路。基于面积等效原理,本质是相同的。

PWM 电流波:

电流型逆变电路进行PWM 控制,得到的就是PWM 电流波。

PWM 波形可等效的各种波形:

直流斩波电路:等效直流波形

SPWM 波:等效正弦波形,还可以等效成其他所需波形,如等效所需非正弦交流波形

等,其基本原理和SPWM 控制相同,也基于等效面积原理。

2 PWM 逆变电路及其控制方法

目前中小功率的逆变电路几乎都采用PWM 技术。逆变电路是PWM 控制技术最为重要的应用场合。本节内容构成了本章的主体

PWM 逆变电路也可分为电压型和电流型两种,目前实用的几乎都是电压型。

(1)计算法和调制法

1、计算法

根据正弦波频率、幅值和半周期脉冲数,准确计算PWM 波各脉冲宽度和间隔,据此控制逆变电路开关器件的通断,就可得到所需PWM 波形。

缺点:繁琐,当输出正弦波的频率、幅值或相位变化时,结果都要变化

2、调制法

输出波形作调制信号,进行调制得到期望的PWM 波;通常采用等腰三角波或锯齿波作为载波;等腰三角波应用最多,其任一点水平宽度和高度成线性关系且左右对称;与任一

平缓变化的调制信号波相交,在交点控制器件通断,就得宽度正比于信号波幅值的脉冲,

符合PWM 的要求。

调制信号波为正弦波时,得到的就是SPWM 波;调制信号不是正弦波,而是其他所需

波形时,也能得到等效的PWM 波。

结合IGBT 单相桥式电压型逆变电路对调制法进行说明:设负载为阻感负载,工作时

V1 和V2 通断互补,V3 和V4 通断也互补。

控制规律:

u o 正半周,V1 通,V2 断,V3 和V4 交替通断,负载电流比电压滞后,在电压正半周,

电流有一段为正,一段为负,负载电流为正区间,V1 和V4 导通时,u o 等于U d,V4 关断时,负载电流通过V1 和V D3 续流,u o=0,负载电流为负区间,i o 为负,实际上从V D1 和V D4 流过,仍有u o=U d,V4 断,V3 通后,i o 从V3 和V D1 续流,u o=0,u o 总可得到U d 和零两种电平。

第6 章PWM控制技术

u o 负半周,让V2 保持通,V1 保持断,V3 和V4 交替通断,u o 可得-U d 和零两种电平。

图6-4 单相桥式PWM 逆变电路

单极性PWM 控制方式(单相桥逆变):

在u r 和u c的交点时刻控制IGBT 的通断。u r 正半周,V1 保持通,V2 保持断,当u r>u c 时使V4 通,V3 断,u o=U d,当u r

保持通,当u ru c 时使V3 断,V4 通,u o=0,虚线u of 表示u o 的基波分量。波形见图6-5。

图6-5 单极性PWM 控制方式波形

双极性PWM 控制方式(单相桥逆变):

在u r 半个周期内,三角波载波有正有负,所得PWM 波也有正有负。在u r 一周期内,

电力电子技术教案

输出PWM 波只有±U d 两种电平,仍在调制信号u r 和载波信号u c 的交点控制器件通断。u r 正负半周,对各开关器件的控制规律相同,当u r >u c 时,给V1 和V4 导通信号,给V2 和

V3 关断信号,如i o>0,V1 和V4 通,如i o<0,V D1 和V D4 通,u o=U d,当u r0,V D2 和V D3 通,u o=-U d。波形见图6-6。

单相桥式电路既可采取单极性调制,也可采用双极性调制。

图6-6 双极性PWM 控制方式波形

双极性PWM 控制方式(三相桥逆变):见图6-7。

三相PWM 控制公用u c,三相的调制信号u rU、u rV 和u rW 依次相差120°。

U 相的控制规律:

当u rU>u c 时,给

V1 导通信号,给V4

关断信号,

u UN′=U d/2,当u rU

时,给V4 导通信号,

给V1 关断信号,

u UN′=-U d/2;当给

V1(V4)加导通信号

时,可能是V1(V4)导

通,也可能是

V D1(V D4)导通。u UN′、图6-7 三相桥式PWM 型逆变电路

第6 章PWM控制技术

u VN′和u WN′的PWM 波形只有±U d/2 两种电平,u UV 波形可由u UN′-u VN′得出,当 1 和6 通时,u UV=U d,当3 和4 通时,u UV =-U d,当1 和3 或4 和6 通时,u UV=0。波形见图6-8。

输出线电压PWM 波由±U d 和0 三种电平构成,负载相电压PWM 波由( ±2/3)U d、( ±1/3)U d 和0 共5 种电平组成。

图6-8 三相桥式PWM 逆变电路波形

防直通死区时间:

同一相上下两臂的驱动信号互补,为防止上下臂直通造成短路,留一小段上下臂都施

加关断信号的死区时间。死区时间的长短主要由器件关断时间决定。死区时间会给输出

PWM 波带来影响,使其稍稍偏离正弦波。

特定谐波消去法(Selected Harmonic Elimination PWM—SHEPWM) :

电力电子技术教

案 计算法中一种较有代表性的方法,图6-9。输出电压半周期内,器件通、断各3 次(不

包括 0 和 π),共 6 个开关时刻可控。为减少谐波并简化控制,要尽量使波形对称。

首先,为消除偶次谐波,使波形正负两半周期镜对称,即:

(6-1)

u ( t ) u ( t )

图6-9 特定谐波消去法的输出 PWM 波形

其次,为消除谐波中余弦项,使波形在半周期内前后 1/4 周期以 π/2为轴线对称。

u ( t ) u ( t ) (6-2) 四分之一周期对称波形,用傅里叶级数表示为:

u

(6-3) ( t)

a n s i n n t n 1, 3,5 , . . . 式中, a n 为 a

4 2 n u ( t ) s i n n

0 td t

图6-9,能独立控制 a 1、a 2 和 a 3 共 3 个时刻。该波形的 a n 为

4

a

[ n a 1 0 U 2

d s i n n td t a 2 a 1 ( U 2 d s i n n t ) d t U a3 d

a

2 2

s i n n td t 2 ( a 3 U 2 d s i n n t ) d t ] (6-4) 2U n d (1 2 c o n s 2 c o n s 2 c o n s )

1 2 3 式中 n=1,3,5, ?

确定 a 1 的值,再令两个不同的 a n =0,就可建三个方程,求得 a 1、a 2 和 a 3。

消去两种特定频率的谐波:

在三相对称电路的线电压中,相电压所含

的 3 次谐波相互抵消,可考虑消去 5 次和 7

第6 章PWM控制技术

a 5 a 7 2U

5

2U

7

d

d

(1 2 cos5 2 cos5 2

cos5 ) 0

1 2

3

(1 2cos 7 2cos 7 2cos 7

1 2

)

3

(6-5)

给定a1,解方程可得a1、a2 和a3。a1 变,a1、a2 和a3 也相应改变。

一般,在输出电压半周期内器件通、断各k 次,考虑PWM 波四分之一周期对称,k 个开关时刻可控,除用一个控制基波幅值,可消去k-1 个频率的特定谐波,k 越大,开关时刻的计算越复杂。

除计算法和调制法外,还有跟踪控制方法,在 6.3 节介绍

(2)异步调制和同步调制

载波比——载波频率f c 与调制信号频率f r 之比,N= f c / f r。根据载波和信号波是否同步

及载波比的变化情况,PWM 调制方式分为异步调制和同步调制:

1、异步调制

异步调制——载波信号和调制信号不同步的调制方式。

通常保持f c 固定不变,当f r 变化时,载波比N 是变化的。在信号波的半周期内,PWM 波的脉冲个数不固定,相位也不固定,正负半周期的脉冲不对称,半周期内前后1/4 周期的脉冲也不对称。当f r 较低时,N 较大,一周期内脉冲数较多,脉冲不对称的不利影响都

较小,当f r 增高时,N 减小,一周期内的脉冲数减少,PWM 脉冲不对称的影响就变大。因此,在采用异步调制方式时,希望采用较高的载波频率,以使在信号波频率较高时仍能保

持较大的载波比。

2、同步调制

同步调制——N 等于常数,并在变频时使载波和信号波保持同步。

基本同步调制方式,f r 变化时N 不变,信号波一周期内输出脉冲数固定。三相,公用一个三角波载波,且取N 为3 的整数倍,使三相输出对称。为使一相的PWM 波正负半周镜对称,N 应取奇数。当N=9 时的同步调制三相PWM 波形如图6-10 所示。

f r 很低时,fc 也很低,由调制带来的谐波不易滤除,f r 很高时,fc 会过高,使开关器件难以承受。为了克服上述缺点,可以采用分段同步调制的方法。

3、分段同步调制

把f r 范围划分成若干个频段,每个频段内保持N 恒定,不同频段N 不同。在f r 高的频段采用较低的N,使载波频率不致过高,在f r 低的频段采用较高的N,使载波频率不致过低。

图6-11,分段同步调制一例。为防止fc 在切换点附近来回跳动,采用滞后切换的方法。

电力电子技术教案

方式,高频输出时切换到同步调制方式,这样把两者的优点结合起来,和分段同步方式效果接近。

图6-10 同步调制三相PWM 波形

图6-11 分段同步调制方式举例

(3)规则采样法

按SPWM 基本原理,自然采样法中要求解复杂的超越方程,难以在实时控制中在线计算,工程应用不多。

规则采样法特点:

第6 章PWM控制技术

工程实用方法,效果接近自然采样法,计算量小得多

规则采样法原

6-12,三角波两个正峰值之间为一个采样周期T c。自然采样法中,脉冲中点不和三

角波一周期中点(即负峰点)重合。规则采样法使两者重合,每个脉冲中点为相应

三角波

中点,计算大为简

。三角波负峰时刻t D 对信号波采样得 D 点,过D作水平线和三角波交

于A、B 点,在 A 点时刻t A 和B 点时刻t B 控制器件的通断,脉冲宽度δ和用自然采样法得到的脉冲宽度非常接近。

图6-12 规则采样法

规则采样法计算公式推导:

正弦调制信号波公式中,a称为调制度,0≤a<1;ωr 为信号波角频率。从图6-12 因此可得:u a t

r s i n (6-6)

r

三角波一周期内,脉冲两边间隙宽度1 a sin

2

t

r D

2

T

c

2

(6-7)

三相桥逆变电路的情

通常三相的三角波载波公用,三相调制波相位依次差120o,同一三角波周期内三相的脉宽分

为δU、δV 和δW,脉冲两边的间隙宽度分别为δ′、uδv′和δw′,同一时刻三相正弦

调制波电压之和为零

,由式(6-6)得

T

c a t

(1 s i n

r 2 D

) (6-8)

2 4

10

电力电子技术教

故由式(6-8)可得:

U V W 3T c

2

(6-10)

故由式(6-9)可得:

U V W 3T c

4

(6-11)

利用以上两式可简化三相SPWM 波的计算

(4)PWM逆变电路的谐波分析

使用载波对正弦信号波调制,产生了和载波有关的谐波分量。谐波频率

和幅值是

PWM 逆变电路性能的重要指标之一。

分析双极性SPWM 波形:

同步调制可看成异步调制的特殊情况,只分析异步调制方式。

分析方法:

不同信号波周期的PWM 波不同,无法直接以信号波周期为基准分析,以载波周期为基础,再利用贝塞尔函数推

出PWM 波的傅里叶级数表达式,分析过程相当复杂

,结论

简单而直观

1、单相的分析结果:

不同调制度

a时的单相桥式PWM 逆变电路在双极性调制方式下输

出电压

的频谱

图如

6-13 所示。其中所包含的谐波角频率为n c k r

式中,n=1,3,5,?时,k=0,2,4,?;n=2,4,6,?时,k=1,3,5,?。可以看出,PWM 波中不含低次谐波,只含有角频率

为ωc,及其附近的谐波,以及2ωc、3ωc

等及其附近的谐波。在上述谐波中,幅值最高影响最大的是

角频率

为ωc的谐波分量。

图6-13 单相PWM 桥式逆变电路输

出电压频谱

第6 章PWM控制技术

2、三相的分析结果:

a时的三相桥式PWM 逆变三相桥式PWM 逆变电路采用公用载波信号时不同调制度

6-14所示。在输出线电压中,所包含的谐波角频

如图

率为

电路输出线电压的频

谱图

n c k

r

式中,n=1,3,5,?时,k=3(2m-1) ±1,m=1,2,?;

6m +1,m =0,1,?;

n =2,4,6,?时,k = 6m -1,m =1,2,?。

率ωc 整数倍的和单相比较,共同点是都不含低次谐波,一个较显著的区别是载波角频

谐波被消去了,谐波中幅值较高的是ωc±2ωr 和2ωc±ωr。

图6-14 三相桥式PWM 逆变电路输出线电压频

SPWM 波中谐波主要是角频率为ωc、2ωc及其附近的谐波,很容易滤除。当调制信号

的结果,

波不是正弦波时,谐波由两部分组成:一部分是对信号波本身进行谐波分析所得

另一部分是由于信号波对载波的调制而产生的谐波。后者的谐波分布情况和SPWM 波的谐波分析一致。

(5)提高直流电压利用率和减少开关次数

波最

大幅值U1m 和直流电压U d 之比。

直流电压利用率——逆变电路输出交流电压基

低开关损提高直流电压利用率可提高逆变器的输出能力;减少器件的开关次数可以降

波幅值为U d/2,

1时,输出相电压的基

耗;正弦波调制的三相PWM 逆变电路,调制度a为

波幅值为

输出线电压的基

( ,即直流电压利用率仅为0.866。这个值是比较低的,其

3 2)U

电力电子技术教案

通和关断都需要时间,如不采取其他措施,调制度不可能达到1。采用这种调制方法实际能得到的直流电压利用率比0.866 还要低。

1、梯形波调制方法的思路

采用梯形波作为调制信号,可有效提高直流电压利用率。当梯形波幅值和三角波幅值

相等时,梯形波所含的基波分量幅值更大。

梯形波调制方法的原理及波形,见图6-15。梯形波的形状用三角化率s =U t/U to 描述,U t 为以横轴为底时梯形波的高,U to 为以横轴为底边把梯形两腰延长后相交所形成的三角形

的高。s =0 时梯形波变为矩形波,s =1时梯形波变为三角波。梯形波含低次谐波,PWM 波含同样的低次谐波,低次谐波(不包括由载波引起的谐波)产生的波形畸变率为δ。

图6-16,δ和U1m /U d 随s 变化的情况。

图6-17,s 变化时各次谐波分量幅值U nm 和基波幅值U1m 之比。

s = 0.4时,谐波含量也较少,δ约为3.6%,直流电压利用率为 1.03,综合效果较好。

图6-15 梯形波为调制信号的PWM 控制

梯形波调制的缺点:输出波形中含 5 次、7 次等低次谐波。

实际使用时,可以考虑当输出电压较低时用正弦波作为调制信号,使输出电压不含低

次谐波;当正弦波调制不能满足输出电压的要求时,改用梯形波调制,以提高直流电压利

用率。

第6 章PWM控制技术

图6-16 s 变化时的 d 和直流电压利用率图6-17 s 变化时的各次谐波含量

2、线电压控制方式(叠加 3 次谐波)

对两个线电压进行控制,适当地利用多余的一个自由度来改善控制性能。

目标——使输出线电压不含低次谐波的同时尽可能提高直流电压利用率,并尽量减少

器件开关次数。

直接控制手段仍是对相电压进行控制,但控制目标却是线电压。

相对线电压控制方式,控制目标为相电压时称为相电压控制方式。

在相电压调制信号中叠加 3 次谐波,使之成为鞍形波,输出相电压中也含 3 次谐波,且三相的三次谐波相位相同。合成线电压时, 3 次谐波相互抵消,线电压为正弦波。如图

6-18 所示。鞍形波的基波分量幅值大。

除叠加3 次谐波外,还可叠加其他 3 倍频的信号,也可叠加直流分量,都不会影响线

电压。

图6-18 叠加3 次谐波的调制信号

3、线电压控制方式(叠加 3 倍次谐波和直流分量):

电力电子技术教案

叠加u p,既包含 3 倍次谐波,也包含直流分量,u p 大小随正弦信号的大小而变化。设三角波载波幅值为1,三相调制信号的正弦分别为u rU1、u rV1 和u rW1,并令:

u p u u u (6-12) m i n (, , ) 1

r U 1r V 1 r W 1

则三相的调制信号分别为

u rU u u

rU1 p

u (6-13)

rV u u

rV 1 p

u rW u u

rW1 p

15

第6 章PWM控制技术

不论u rU1、u rV1 和u rW1 幅值的大小,u rU、u rV、u rW 总有1/3 周期的值和三角波负峰值相等。在这1/3 周期中,不对调制信号值为-1 的相进行控制,只对其他两相进行控制,因此,这种控制方式也称为两相控制方式。

优点:

(1)在1/3 周期内器件不动作,开关损耗减少1/3

(2)最大输出线电压基波幅值为U d,直流电压利用率提高

(3)输出线电压不含低次谐波,优于梯形波调制方式

(6)PWM逆变电路的多重化

和一般逆变电路一样,大容量PWM 逆变电路也可采用多重化技术。采用SPWM 技术理论上可以不产生低次谐波,因此,在构成PWM 多重化逆变电路时,一般不再以减少低次谐波为目的,而是为了提高等效开关频率,减少开关损耗,减少和载波有关的谐波分量。

PWM 逆变电路多重化联结方式有变压器方式和电抗器方式,利用电抗器联接实现二重PWM 逆变电路的例子如图6-20 所示。电路的输出从电抗器中心抽头处引出,图中两个逆

变电路单元的载波信号相互错开180°,所得到的输出电压波形如图6-21所示。图中,输出端相对于直流电源中点N 的电压( ) / 2

u U u u ,已变为单极性PWM 波了。输出

N U1N U2N

线电压共有0、±(1/2)U d、±U d 五个电平,比非多重化时谐波有所减少。

一般多重化逆变电路中电抗器所加电压频率为输出频率,因而需要的电抗器较大。而

在多重PWM 型逆变电路中,电抗器上所加电压的频率为载波频率,比输出频率高得多,

因此只要很小的电抗器就可以了。

二重化后,输出电压中所含谐波的角频率仍可表示为n c k ,但其中当n 奇数时的

r

谐波已全部被除去,谐波的最低频率在2附近,相当于电路的等效载波频率提高了一倍。

c

16

电力电子技术教案

图6-21 二重PWM 型逆变电路输出波形

电抗器上所加电压频率为载波频率,比输出频率高得多,很小。输出电压所含谐波角

频率仍可表示为nw c+kw r,但其中n 为奇数时的谐波已全被除去,谐波最低频率在2w c附近,相当于电路的等效载波频率提高一倍。

3 PWM 跟踪控制技术

PWM 波形生成的第三种方法——跟踪控制方法。

把希望输出的波形作为指令信号,把实际波形作为反馈信号,通过两者的瞬时值比较

来决定逆变电路各器件的通断,使实际的输出跟踪指令信号变化,常用的有滞环比较方式

和三角波比较方式。

(1)滞环比较方式

1、电流跟踪控制

PWM控制电路的基本构成及工作原理

基于DSP的三相SPWM变频电源的设计 变频电源作为电源系统的重要组成部分,其性能的优劣直接关系到整个系统的安全和可靠性指标。现代变频电源以低功耗、高效率、电路简洁等显著优点而备受青睐。变频电源的整个电路由交流-直流-交流-滤波等部分构成,输出电压和电流波形均为纯正的正弦波,且频率和幅度在一定范围内可调。 本文实现了基于TMS320F28335的变频电源数字控制系统的设计,通过有效利用TMS320F28335丰富的片上硬件资源,实现了SPWM的不规则采样,并采用PID算法使系统产生高品质的正弦波,具有运算速度快、精度高、灵活性好、 系统扩展能力强等优点。 系统总体介绍 根据结构不同,变频电源可分为直接变频电源与间接变频电源两大类。本文所研究的变频电源采用间接变频结构即交-直-交变换过程。首先通过单相全桥整流电路完成交-直变换,然后在DSP控制下把直流电源转换成三相SPWM波形供给后级滤波电路,形成标准的正弦波。变频系统控制器采用TI公司推出的业界首款浮点数字信号控制器TMS320F28 335,它具有150MHz高速处理能力,具备32位浮点处理单元,单指令周期32位累加运算,可满足应用对于更快代码开发与集成高级控制器的浮点处理器性能的要求。与上一代领先的数字信号处理器相比,最新的F2833x浮点控制器不仅可将性能平均提升50%,还具有精度更高、简化软件开发、兼容定点C28x TM控制器软件的特点。系统总体框图如 图1所示。 图1 系统总体框图 (1)整流滤波模块:对电网输入的交流电进行整流滤波,为变换器提供波纹较小的直流电压。 (2)三相桥式逆变器模块:把直流电压变换成交流电。其中功率级采用智能型IPM功率模块,具有电路简单、可 靠性高等特点。 (3)LC滤波模块:滤除干扰和无用信号,使输出信号为标准正弦波。 (4)控制电路模块:检测输出电压、电流信号后,按照一定的控制算法和控制策略产生SPWM控制信号,去控制IPM开关管的通断从而保持输出电压稳定,同时通过SPI接口完成对输入电压信号、电流信号的程控调理。捕获单元完 成对输出信号的测频。 (5)电压、电流检测模块:根据要求,需要实时检测线电压及相电流的变化,所以需要三路电压检测和三路电流检测电路。所有的检测信号都经过电压跟随器隔离后由TMS320F28335的A/D通道输入。

三相电压型PWM整流器及仿真

三相电压型PWM整流器及仿真

————————————————————————————————作者:————————————————————————————————日期:

电力电子课程设计课程设计报告 题目:三相电压型PWM整流器与仿真 专业、班级: 学生姓名: 学号: 指导教师: 2015年 1 月 6 日 内容得分 1、三相桥式电路的基本原理(10分) 2、整流电路基本原理(10分) 3、pwm控制的基本原理(10分 4、三相电压型pwm整流电路仿真模型(30分) 5、结果分析(30分) 6、程序文件(10分) 总分

摘要:叙述了建立三相电压型PWM整流器的数学模型。在此基础上,使用功能强大的MATLAB软件进行了仿真,仿真结果证明了方法的可行性。 关键词:整流器;PWM;simulink

目录 一任务书 (1) 1.1 题目 (1) 1.2 设计内容及要求 (1) 1.3 报告要求 (1) 二基础资料 (2) 2.1 三相桥式电路的基本原理 (2) 2.2 整流电路基本原理 (4) 2.3 pwm控制的基本原理 (6) 2.4 PWM整流器的发展现状 (6) 三设计内容 (8) 3.1 仿真模型 (8) 3.2 各个元件参数 (11) 3.3 仿真结果 (13) 3.4 结果分析 (15) 四总结 (15) 五参考文献 (15)

一任务书 1.1 题目 三相电压型PWM整流器仿真 1.2 设计内容及要求 设计三相电压型PWM整流器及其控制电路的主要参数,并使用MATLAB软件搭建其仿真模型并验证。 设计要求(pwm整流器仿真模型参数): (1)交流电源电压600V,60HZ (2)短路电容30MVA (3)外接负载500kVar,1MW (4)变压器变比 600/240V (5)0.05s前,直流负载200kw,直流电压500V,0.05s后,通过断路器并联一个相同大小的电阻。 1.3 报告要求 (1)叙述三相桥式电路的基本原理 (2)叙述整流电路基本原理 (3)叙述pwm控制的基本原理 (4)记录参数(截图) (5)记录仿真结果,分析滤波结果 (6)撰写设计报告 (7)提交程序源文件

PWM控制原理要点

PWM控制技术 主要内容:PWM控制的基本原理、控制方式与PWM波形的生成方法,PWM逆变电路的谐波分析,PWM整流电路。 重点:PWM控制的基本原理、控制方式与PWM波形的生成方法。 难点:PWM波形的生成方法,PWM逆变电路的谐波分析。 基本要求:掌握PWM控制的基本原理、控制方式与PWM波形的生成方法,了解PWM 逆变电路的谐波分析,了解跟踪型PWM逆变电路,了解PWM整流电路。 PWM(Pulse Width Modulation)控制——脉冲宽度调制技术,通过对一系列脉冲的宽度进行调制,来等效地获得所需要波形(含形状和幅值)。第3、4章已涉及这方面内容: 第3章:直流斩波电路采用,第4章有两处:4.1节斩控式交流调压电路,4.4节矩阵式变频电路。 本章内容 PWM控制技术在逆变电路中应用最广,应用的逆变电路绝大部分是PWM型,PWM 控制技术正是有赖于在逆变电路中的应用,才确定了它在电力电子技术中的重要地位。 本章主要以逆变电路为控制对象来介绍PWM控制技术,也介绍PWM整流电路 1 PWM控制的基本原理 理论基础: 冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同。冲量指窄脉冲的面积。效果基本相同,是指环节的输出响应波形基本相同。低频段非常接近,仅在高频段略有差异。 图6-1 形状不同而冲量相同的各种窄脉冲 面积等效原理: 分别将如图6-1所示的电压窄脉冲加在一阶惯性环节(R-L电路)上,如图6-2a所示。其输出电流i(t)对不同窄脉冲时的响应波形如图6-2b所示。从波形可以看出,在i(t)的上升段,i(t)的形状也略有不同,但其下降段则几乎完全相同。脉冲越窄,各i(t)响应波形的差异

PWM控制电路设计

PWM控制电路设计 CYBERNET 应用系统事业部 LED照明作为新一代照明受到了广泛的关注。仅仅依靠LED封装并不能制作出好的照明灯具。本文主要从电子电路、热分析、光学方面阐述了如何运用LED特性进行设计。 在上一期的“LED驱动电路设计-基础篇”中,介绍了LED的电子特性和基本的驱动电路。遗憾的是,阻抗型驱动电路和恒电流源型驱动电路,大围输入电压和大电流中性能并不强,有时并不能发挥出LED的性能。相反,用脉冲调制方法驱动LED电路,能够发挥LED的多个优点。这次主要针对运用脉冲调制的驱动电路进行说明。 PWM是什么? 脉冲调制英文表示是Pulse Width Modulation,简称PWM。PWM是调节脉冲波占空比的一种方式。如图1所示,脉冲的占空比可以用脉冲周期、On-time、Off-time表示,如下公式:占空比=On-time(脉冲的High时间)/ 脉冲的一个周期(On-time + Off-time) Tsw(一周期)可以是开关周期,也可以是Fsw=1/Tsw的开关频率。

图1 Pulse Width Modulation (PWM) 在运用PWM的驱动电路中,可以通过增减占空比,控制脉冲一个周期的平均值。运用该原理,如果能控制电路上的开关设计(半导体管、MOSFET、IGBT等)的打开时间(关闭时间),就能够调节LED电流的效率。这就是接下来要介绍的PWM控制。PWM信号的应用 PWM控制电路的一个特征是只要改变脉冲幅度就能控制各种输出。图2的降压电路帮助理解PWM的控制原理。在这个电路中,将24V的输入电压转换成12V,需要增加负载。负载就是单纯的阻抗。电压转换电路的方法有很多,运用PWM信号的效果如何呢?

PWM控制原理教学教材

P W M控制原理

PWM控制技术 主要内容:PWM控制的基本原理、控制方式与PWM波形的生成方法,PWM逆变电路的谐波分析,PWM整流电路。 重点:PWM控制的基本原理、控制方式与PWM波形的生成方法。 难点:PWM波形的生成方法,PWM逆变电路的谐波分析。 基本要求:掌握PWM控制的基本原理、控制方式与PWM波形的生成方法,了解PWM逆变电路的谐波分析,了解跟踪型PWM逆变电路,了解PWM整流电路。 PWM(Pulse Width Modulation)控制——脉冲宽度调制技术,通过对一系列脉冲的宽度进行调制,来等效地获得所需要波形(含形状和幅值)。第3、4章已涉及这方面内容: 第3章:直流斩波电路采用,第4章有两处: 4.1节斩控式交流调压电路,4.4节矩阵式变频电路。 本章内容 PWM控制技术在逆变电路中应用最广,应用的逆变电路绝大部分是PWM型,PWM 控制技术正是有赖于在逆变电路中的应用,才确定了它在电力电子技术中的重要地位。 本章主要以逆变电路为控制对象来介绍PWM控制技术,也介绍PWM整流电路 1 PWM控制的基本原理 理论基础: 冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同。冲量指窄脉冲的面积。效果基本相同,是指环节的输出响应波形基本相同。低频段非常接近,仅在高频段略有差异。 图6-1 形状不同而冲量相同的各种窄脉冲 面积等效原理: 分别将如图6-1所示的电压窄脉冲加在一阶惯性环节(R-L电路)上,如图6-2a所示。其输出电流i(t)对不同窄脉冲时的响应波形如图6-2b所示。从波形可以看出,在i(t)的上升段,i(t)的形状也略有不同,但其下降段则几乎完全相同。脉冲越窄,各i(t)响应波

单相PWM整流电路设计(电力电子课程设计)..

重庆大学电气工程学院 电力电子技术课程设计 设计题目:单相桥式可控整流电路设计 年级专业:****级电气工程与自动化学生姓名:***** 学号: **** 成绩评定: 完成日期:2013年6月 23 日

指导教师签名:年月日

重庆大学本科学生电力电子课程设计任务书

单相桥式可控整流电路设计 摘要:本文主要研究单相桥式PWM整流电路的原理,并运用IGBT去实现电路的设计。概括地讲述了单相电压型PWM整流电路的工作原理,用双极性调制方式去控制IGBT的通断。在元器件选型上,较为详细地介绍了IGBT的选型,分析了交流侧电感和直流侧电容的作用,以及它们的选型。最后根据实际充电机的需求,选择元器件具体的参数,并用simulink进行仿真,以验证所设计的单相电压型PWM整流器的性能。实现了单相电压型PWM整流器的高功率因数,低纹波输出等功能。 关键词:PWM整流simulink 双极性调制IGBT

目录 1.引言 ......................................................... - 5 - 1.1 PWM整流器产生的背景.................................... - 5 - 1.2 PWM整流器的发展状况.................................... - 5 - 1.3 本文所研究的主要内容.................................... - 6 - 2.单相电压型PWM整流电路的工作原理 ............................. - 7 - 2.1电路工作状态分析......................................... - 7 - 2.2 PWM控制信号分析......................................... - 8 - 2.3 交流测电压电流的矢量关系............................... - 9 - 3.单相电压型PWM整流电路的设计 ................................ - 10 - 3.1 主电路系统设计......................................... - 10 - 3.2 IGBT和二极管的选型设计................................. - 11 - 3.3 交流侧电感的选型设计................................... - 11 - 3.4 直流侧电容的选型设计................................... - 12 - 3.5 直流侧LC滤波电路的设计................................ - 13 - 4.单相PWM整流电路的仿真及分析 ................................ - 13 - 4.1 整流电路的simulink仿真............................... - 13 - 4.2 对simulink仿真结果的分析............................. - 16 - 5.工作展望 ................................................... - 16 - 参考文献 ...................................................... - 17 -

PWM控制直流电机(重要资料)

PWM调速原理 PWM的原理: PWM(Pulse Width Modulation)控制——脉冲宽度调制技术,通过对一系列脉冲的宽度进行调制,来等效地获得所需要波形(含形状和幅值)。 PWM控制技术在逆变电路中应用最广,应用的逆变电路绝大部分是PWM型,PWM控制技术正是有赖于在逆变电路中的应用,才确定了它在电力电子技术中的重要地位。 1.PWM控制的基本原理 (1)理论基础: 冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同。冲量指窄脉冲的面积。效果基本相同,是指环节的输出响应波形基本相同。低频段非常接近,仅在高频段略有差异。 (2)面积等效原理: 分别将如图1所示 电压窄脉冲加在一阶惯性环节(R-L电路)上,如图a所示。其输出电流I(t)对不同窄脉冲时的响应波形如图b所示。从波形可以看出,在I(t)的上升段,I(t)的形状也略有不同,但其下降段则几乎完全相同。脉冲越窄,各I(t)响应波形的差异也越小。如果周期性地施加上述脉冲,则响应I(t)也是周期性的。用傅里叶级数分解后将可看出,各i(t)在低频段的特性将非常接近,仅在高频段有所不同。

图2 冲量相同的各种窄脉冲的响应波形 用一系列等幅不等宽的脉冲来代替一个正弦半波,正弦半波N等分,看成N个相连的脉冲序列,宽度相等,但幅值不等;用矩形脉冲代替,等幅,不等宽,中点重合,面积(冲量)相等,宽度按正弦规律变化。 SPWM波形——脉冲宽度按正弦规律变化而和正弦波等效的PWM波形。 图3 用PWM波代替正弦半波 要改变等效输出正弦波幅值,按同一比例改变各脉冲宽度即可。 PWM电流波:电流型逆变电路进行PWM控制,得到的就是PWM电流波。 PWM波形可等效的各种波形: 直流斩波电路:等效直流波形 SPWM波:等效正弦波形,还可以等效成其他所需波形,如等效所需非正弦交流波形等,其基本原理和SPWM控制相同,也基于等效面积原理。 2. PWM相关概念 占空比:就是输出的PWM中,高电平保持的时间与该PWM的时钟周期的时间之比 如,一个PWM的频率是1000Hz,那么它的时钟周期就是1ms,就是1000us,如果高电平出现的时间是200us,那么低电平的时间肯定是800us,那么占空比就是200:1000,也就是说PWM的占空比就是1:5。

PWM整流电路概述

PWM整流电路概述 1引言 在电力系统中,电压和电流应是完好的正弦波。但是在实际的电力系统中,由于非线性负载的影响,实际的电网电压和电流波形总是存在不同程度的畸变,给电力输配电系统及附近的其它电气设备带来许多问题,因而就有必要采取措施限制其对电网和其它设备的影响。随着电力电子技术的迅速发展,各种电力电子装置在电力系统、工业、交通、家庭等众多领域中的应用日益广泛,大量的非线性负载被引入电网,导致了日趋严重的谐波污染。电网谐波污染的根本原因在于电力电子装置的开关工作方式,引起网侧电流、电压波形的严重畸变。目前,随着功率半导体器件研制与生产水平的不断提高,各种新型电力电子变流装置不断涌现,特别是用于交流电机调速传动的变频器性能的逐步完善,为工业领域节能和改善生产工艺提供了十分广阔的应用前景。相关资料表明,电力电子装置生产量在未来的十年中将以每年不低于10%的速度递增,同时,由这类装置所产生的高次谐波约占总谐波源的70%以上。 在我国,当前主要的谐波源主要是一些整流设备,如化工、冶金行业的整流设备和各种调速、调压设备以及电力机车。传统的整流方式通常采用二极管整流或相控整流方式,采用二极管整流方式的整流器存在从电网吸取畸变电流,造成电网的谐波污染,而且直流侧能量无法回馈电网等缺点。采用相控方式的整流器也存在深度相控下交流侧功率因数很低,因换流引起电网电压波形畸变等缺点。这些整流器从电网汲取电流的非线性特征,给周围用电设备和公用电网都会带来不利影响。 为了抑制电力电子装置产生的谐波,其中的一种方法就是对整流器本身进行改进,使其尽量不产生谐波,且电流和电压同相位。这种整流器称为高功率因数变流器或高功率因数整流器。高功率因数变流器主要采用PWM整流技术,一般需要使用自关断器件。对电流型整流器,可直接对各个电力半导体器件的通断进行PWM调制,使输入电流成为接近正弦且与电源电压同相的PWM波形,从而得到接近1的功率因数。对电压型整流器,需要将整流器通过电抗器与电源相连。只要对整流器各开关器件施以适当的PWM控制,就可以对整流器网侧交流电流的大小和相位进行控制,不仅可实现交流电流接近正弦波,而且可使交流电流的相位与电源电压同相,即系统的功率因数总是接近于1。本文主要对与PWM整流器相关的功率开关器件、主电路拓扑结构和控制方式等进行详细说明,在此基础上对PWM整流技术的发展方向加以探讨。 2功率开关器件 PWM整流器的基础是电力电子器件,其与普通整流器和相控整流器的不同之处是其中用到了全控型器件,器件性能的好坏决定了PWM整流器的性能。优质的电力电子器件必须具有如下特点:(1)能够控制通断,确保在必要时可靠导通或截止;(2)能够承受一定的电压和电流,阻断状态时能承受一定电压,导通时匀许通过一定的电流;(3)具有较高的开关频率,在开关状态转换时具有足够短的导通时间和关断时间,并能承受高的di/dt 和dv/dt。目前在PWM整流器中得到广泛应用的电力电子器件主要有如下几种:

PWM控制原理(精编文档).doc

【最新整理,下载后即可编辑】 PWM控制技术 主要内容:PWM控制的基本原理、控制方式与PWM波形的生成方法,PWM逆变电路的谐波分析,PWM整流电路。 重点:PWM控制的基本原理、控制方式与PWM波形的生成方法。 难点:PWM波形的生成方法,PWM逆变电路的谐波分析。 基本要求:掌握PWM控制的基本原理、控制方式与PWM波形的生成方法,了解PWM逆变电路的谐波分析,了解跟踪型PWM逆变电路,了解PWM整流电路。 PWM(Pulse Width Modulation)控制——脉冲宽度调制技术,通过对一系列脉冲的宽度进行调制,来等效地获得所需要波形(含形状和幅值)。第3、4章已涉及这方面内容: 第3章:直流斩波电路采用,第4章有两处:4.1节斩控式交流调压电路,4.4节矩阵式变频电路。 本章内容 PWM控制技术在逆变电路中应用最广,应用的逆变电路绝大部分是PWM型,PWM控制技术正是有赖于在逆变电路中的应用,才确定了它在电力电子技术中的重要地位。 本章主要以逆变电路为控制对象来介绍PWM控制技术,也介绍PWM 整流电路 1 PWM控制的基本原理 理论基础: 冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同。冲量指窄脉冲的面积。效果基本相同,是指环节的输出响应波形基本相同。低频段非常接近,仅在高频段略有差异。

图6-1 形状不同而冲量相同的各种窄脉冲 面积等效原理: 分别将如图6-1所示的电压窄脉冲加在一阶惯性环节(R-L电路)上,如图6-2a所示。其输出电流i(t)对不同窄脉冲时的响应波形如图6-2b所示。从波形可以看出,在i(t)的上升段,i(t)的形状也略有不同,但其下降段则几乎完全相同。脉冲越窄,各i(t)响应波形的差异也越小。如果周期性地施加上述脉冲,则响应i(t)也是周期性的。用傅里叶级数分解后将可看出,各i(t)在低频段的特性将非常接近,仅在高频段有所不同。 图6-2 冲量相同的各种窄脉冲的响应波形 用一系列等幅不等宽的脉冲来代替一个正弦半波,正弦半波N等分,看成N个相连的脉冲序列,宽度相等,但幅值不等;用矩形脉冲代替,等幅,不等宽,中点重合,面积(冲量)相等,宽度按正弦规律变化。 SPWM波形——脉冲宽度按正弦规律变化而和正弦波等效的PWM波形。

PWM整流工作原理

PWM整流工作原理

图6-28 单相PWM 整流电路 整流电路也可分为电压型和电流型两大类,目前半桥电路直流侧电容必须由两个电容串联,其中点和交流电源单相半桥电路 交流侧电感电感和交流电源内部电感,是电全桥电路直流侧电容只要一个就可以。 单相全桥电路 6-8 电力电子技术 (1)单相全桥PWM 整流电路的工作原理 正弦信号波和三角波相比较的方法对图6-28b 中的V 1~V 4进行SPWM 控制,就可以在桥的交流输入端AB 产生一个SPWM 波u AB 。 u AB 中含有和正弦信号波同频率且幅值成比例的基波分量,以及和三角波载波有关的频率很高的谐波,不含有低次谐波。 由于L s 的滤波作用,谐波电压只使i s 产生很小的脉动。 当正弦信号波频率和电源频率相同时,i s 也为与电源频率相同的正弦波。 u s 一定时,i s 幅值和相位仅由u AB 中基波u ABf 的幅值及其与u s 的相位差决定。 改变u ABf 的幅值和相位,可使i s 和u s 同相或反相,i s 比u s 超前90°,或使i s 与u s 相位差为所需角度。 6.4.1 PWM 整流电路的工作原理

6-12 电力电子技术 (2)对单相全桥PWM 整流电路工作原理的进一步说明 整流状态下: u s > 0时,(V 2、VD 4、VD 1、L s )和(V 3、VD 1、VD 4、L s )分别组成两个升压斩波电路,以(V 2、VD 4、VD 1、L s )为例。V 2通时,u s 通过V 2、VD 4向L s 储能。V 2关断时,L s 中的储能通过VD 1、VD 4向C 充电。u s < 0时,(V 1、VD 3、VD 2、L s )和(V 4、VD 2、VD 3、L s )分别组成两个升压斩波电路。 6.4.1 PWM 整流电路的工作原理

PWM的工作原理

PWM得工作原理 脉宽调制PWM就是开关型稳压电源中得术语。这就是按稳压得控制方式分类得,除了PWM型,还有PFM型与PWM、PFM混合型。脉宽宽度调制式(PWM)开关型稳压电路就是在控制电路输出频率不变得情况下,通过电压反馈调整其占空比,从而达到稳定输出电压得目得。 随着电子技术得发展,出现了多种PWM技术,其中包括:相电压控制PWM、脉宽PWM法、随机PWM、SPWM法、线电压控制PWM等,而在镍氢电池智能充电器中采用得脉宽PWM法,它就是把每一脉冲宽度均相等得脉冲列作为PWM波形,通过改变脉冲列得周期可以调频,改变脉冲得宽度或占空比可以调压,采用适当控制方法即可使电压与频率协调变化。可以通过调整PWM得周期、PWM 得占空比而达到控制充电电流得目得。 pwm得定义 脉宽调制(PWM)就是利用微处理器得数字输出来对模拟电路进行控制得一种非常有效得技术,广泛应用在从测量、通信到功率控制与变换得许多领域中. 模拟信号得值可以连续变化,其时间与幅度得分辨率都没有限制.9V电池就就是一种模拟器件,因为它得输出电压并不精确地等于9V,而就是随时间发生变化,并可取任何实数值。与此类似,从电池吸

收得电流也不限定在一组可能得取值范围之内。模拟信号与数字信号得区别在于后者得取值通常只能属于预先确定得可能取值集合之内,例如在{0V,5V}这一集合中取值. 模拟电压与电流可直接用来进行控制,如对汽车收音机得音量进行控制。在简单得模拟收音机中,音量旋钮被连接到一个可变电阻。拧动旋钮时,电阻值变大或变小;流经这个电阻得电流也随之增加或减少,从而改变了驱动扬声器得电流值,使音量相应变大或变小。与收音机一样,模拟电路得输出与输入成线性比例. 尽管模拟控制瞧起来可能直观而简单,但它并不总就是非常经济或可行得。其中一点就就是,模拟电路容易随时间漂移,因而难以调节。能够解决这个问题得精密模拟电路可能非常庞大、笨重(如老式得家庭立体声设备)与昂贵。模拟电路还有可能严重发热,其功耗相对于工作元件两端电压与电流得乘积成正比。模拟电路还可能对噪声很敏感,任何扰动或噪声都肯定会改变电流值得大小。 通过以数字方式控制模拟电路,可以大幅度降低系统得成本与功耗.此外,许多微控制器与DSP已经在芯片上包含了PWM控制器,这使数字控制得实现变得更加容易了。 pwm得工作原理 脉冲宽度调制波通常由一列占空比不同得矩形脉冲构成,其占空比与信号得瞬时采样值成比例.图1所示为脉冲宽度调制系统得原理

说明PWM调速系统的工作原理

说明PWM调速系统的工作原理

说明PWM调速系统的工作原理 脉冲宽度调制脉冲宽度调制(PWM)是英文“Pulse Width Modulation”的缩写,简称脉宽调制。它是利用微处理器的数字输出来对模拟电路进行控制的一种非常有效的技术,广泛应用于测量,通信,功率控制与变换等许多领域。一种模拟控制方式,根据相应载荷的变化来调制晶体管栅极或基极的偏置,来实现开关稳压电源输出晶体管或晶体管导通时间的改变,这种方式能使电源的输出电压在工作条件变化时保持恒定。 脉冲宽度调制(PWM)是一种对模拟信号电平进行数字编码的方法。通过高分辨率计数器的使用,方波的占空比被调制用来对一个具体模拟信号的电平进行编码。PWM信号仍然是数字的,因为在给定的任何时刻,满幅值的直流供电要么完全有(ON),要么完全无(OFF)。电压或电流源是以一种通(ON)或断(OFF)的重复脉冲序列被加到模拟负载上去的。通的时候即是直流供电被加到负载上的时候,断的时候即是供电被断开的时候。只要带宽足够,任何模拟值都可以使用PWM进行编码。 多数负载(无论是电感性负载还是电容性负载)

需要的调制频率高于10Hz,通常调制频率为1kHz到200kHz之间。 许多微控制器内部都包含有PWM控制器。例如,Microchip公司的PIC16C67内含两个PWM 控制器,每一个都可以选择接通时间和周期。占空比是接通时间与周期之比;调制频率为周期的倒数。执行PWM操作之前,这种微处理器要求在软件中完成以下工作: * 设置提供调制方波的片上定时器/计数器的周期 * 在PWM控制寄存器中设置接通时间 * 设置PWM输出的方向,这个输出是一个通用I/O管脚 * 启动定时器 * 使能PWM控制器 PWM的一个优点是从处理器到被控系统信号都是数字形式的,无需进行数模转换。让信号保持为数字形式可将噪声影响降到最小。噪声只有在强到足以将逻辑1改变为逻辑0或将逻辑0改变为逻辑1时,也才能对数字信号产生影响。对噪声抵抗能力的增强是PWM相对于模拟控制的另外一个优点,而且这也是在某些时候将

PWM控制的基本原理

PWM控制的基本原理 PWM(Pulse Width Modulation)控制——脉冲宽度调制技术,通过对一系列脉冲的宽度进行调制,来等效地获得所需要波形(含形状和幅值)。 PWM控制技术在逆变电路中应用最广,应用的逆变电路绝大部分是PWM型,PWM 控制技术正是有赖于在逆变电路中的应用,才确定了它在电力电子技术中的重要地位。理论基础: 冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同。冲量指窄脉冲的面积。效果基本相同,是指环节的输出响应波形基本相同。低频段非常接近,仅在高频段略有差异。 图1形状不同而冲量相同的各种窄脉冲 面积等效原理: 分别将如图1所示的电压窄脉冲加在一阶惯性环节(R-L电路)上,如图2a所示。其输出电流i(t)对不同窄脉冲时的响应波形如图2b所示。从波形可以看出,在i(t)的上升段,i(t)的形状也略有不同,但其下降段则几乎完全相同。脉冲越窄,各i(t)响应波形的差异也越小。如果周期性地施加上述脉冲,则响应i(t)也是周期性的。用傅里叶级数分解后将可看出,各i(t)在低频段的特性将非常接近,仅在高频段有所不同。 图2 冲量相同的各种窄脉冲的响应波形 用一系列等幅不等宽的脉冲来代替一个正弦半波,正弦半波N等分,看成N个相连的脉冲序列,宽度相等,但幅值不等;用矩形脉冲代替,等幅,不等宽,中点重合,面积(冲量)相等,宽度按正弦规律变化。 SPWM波形——脉冲宽度按正弦规律变化而和正弦波等效的PWM波形。 图3 用PWM波代替正弦半波 要改变等效输出正弦波幅值,按同一比例改变各脉冲宽度即可。 PWM电流波:电流型逆变电路进行PWM控制,得到的就是PWM电流波。 PWM波形可等效的各种波形: 直流斩波电路:等效直流波形 SPWM波:等效正弦波形,还可以等效成其他所需波形,如等效所需非正弦交流波形等,其基本原理和SPWM控制相同,也基于等效面积原理。 随着电子技术的发展,出现了多种PWM技术,其中包括:相电压控制PWM、脉宽PWM 法、随机PWM、SPWM法、线电压控制PWM等,而本文介绍的是在镍氢电池智能充电器中采用的脉宽PWM法。它是把每一脉冲宽度均相等的脉冲列作为PWM波形,通过改变脉冲列的周期可以调频,改变脉冲的宽度或占空比可以调压,采用适当控制方法即可使电压与频率协调变化。可以通过调整PWM的周期、PWM的占空比而达到控制充电电流的目的。 PWM技术的具体应用

各种PWM控制方法的原理及优缺点

引言 采样控制理论中有一个重要结论:冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同。PWM控制技术就是以该结论为理论基础,对半导体开关器件的导通和关断进行控制,使输出端得到一系列幅值相等而宽度不相等的脉冲,用这些脉冲来代替正弦波或其他所需要的波形。按一定的规则对各脉冲的宽度进行调制,既可改变逆变电路输出电压的大小,也可改变输出频率。 PWM控制的基本原理很早就已经提出,但是受电力电子器件发展水平的制约,在上世纪80年代以前一直未能实现。直到进入上世纪80年代,随着全控型电力电子器件的出现和迅速发展,PWM控制技术才真正得到应用。随着电力电子技术、微电子技术和自动控制技术的发展以及各种新的理论方法,如现代控制理论、非线性系统控制思想的应用,PWM控制技术获得了空前的发展。到目前为止,已出现了多种PWM控制技术,根据PWM控制技术的特点,到目前为止主要有以下8类方法。 1相电压控制PWM 1.1等脉宽PWM法[1] VVVF(Variable Voltage Variable Frequency)装置在早期是采用PAM(Pulse Amplitude Modulation)控制技术来实现的,其逆变器部分只能输出频率可调的方波电压而不能调压。等脉宽PWM法正是为了克服PAM法的这个缺点发展而来的,是PWM法中最为简单的一种。它是把每一脉冲的宽度均相等的脉冲列作为PWM波,通过改变脉冲列的周期可以调频,改变脉冲的宽度或占空比可以调压,采用适当控制方法即可使电压与频率协调变化。相对于PAM法,该方法的优点是简化了电路结构,提高了输入端的功率因数,但同时也存在输出电压中除基波外,还包含较大的谐波分量。 1.2随机PWM 在上世纪70年代开始至上世纪80年代初,由于当时大功率晶体管主要为双极性达林顿三极管,载波频率一般不超过5kHz,电机绕组的电磁噪音及谐波造成的振动引起了人们的关注。为求得改善,随机PWM方法应运而生。其原理是随机改变开关频率使电机电磁噪音近似为限带白噪声(在线性频率坐标系中,各频率能量分布是均匀的),尽管噪音的总分贝数未变,但以固定开关频率为特征的有色噪音强度大大削弱。正因为如此,即使在IGBT已被广泛应用的今天,对于载波频率必须限制在较低频率的场合,随机PWM仍然有其特殊的价值;另一方面则说明了消除机械和电磁噪音的最佳方法不是盲目地提高工作频率,随机PWM技术正是提供了一个分析、解决这种问题的全新思路。 1.3SPWM法

PWM控制原理

1.1、PWM 原理与DSC 实现算法 1.1.1、PWM 原理 脉冲宽度调制(PWM ,Pulse Width Modulation )控制就是对脉冲的宽度进行调制的技术。即通过对一系列脉冲的宽度进行调制,来等效地获得所需要的波形(含形状和幅值)。PWM 技术在逆变电路中应用最为广泛,对逆变电路的影响最为深刻,PWM 控制技术有赖于在逆变电路中的应用,才发展成熟,才确定了在电力电子技术中的重要地位。 在采样控制理论中有一个重要结论:冲量相等而形状不同的窄脉冲加在具有惯性的环节上,其效果基本相同。冲量是指窄脉冲的面积,效果基本相同是说环节的输出响应波形基本相同。如果把各输出波形用傅里叶变换分析,其低频段非常接近,仅在高频段略有差异。这种原理称之为面积等效原理,是PWM 控制技术的重要理论基础。 下面分析如何用一系列等幅不等宽的脉冲来代替一个正弦波。 图1、SPWM 原理 把图1中的正弦波分成2N 等份,就可以把正弦波看成是由2N 个彼此相连的脉冲序列所组成的波形。这些脉冲宽度相等,都等于N ,但幅值不相等,且脉冲顶部不是水平直线,而是曲线,各脉冲的幅值按正弦规律变化。如果把上述脉冲序列利用相同数量的等幅不等宽的矩形脉冲代替,使矩形脉冲和相应的正弦波部分的中心重合,且使矩形脉冲和相应的正弦波部分面积(冲量)相等,就可以得到如图1所示的脉冲序列,这就是PWM 波形。根据面积等效原理,PWM 波形与正弦波是等效的。像这种脉冲的宽度按正弦规律变化而和正弦波等效的PWM 波形,也称SPWM (Sinusoidal PSM )波形。要改变等效输出正弦波的幅值

时,只要按照同一比例系数改变上述脉冲的宽度即可。 根据PWM控制的基本原理,如果给出逆变电路的正弦波输出频率、幅值和一个周期内的脉冲数,PWM波形中各脉冲的宽度和间隔就可以准确计算出来。按照计算结果控制开关器件的通断,就可以得到需要的PWM波形。这种方法称之为计算法。与计算法对应的是调试法,即把希望输出的波形作为调制信号,把接受调试的信号作为载波,通过信号波的调制得到所希望的PWM波形。通常采用等腰三角形或锯齿波作为载波,其中等腰三角形应用最多。因为等腰三角形上任一点的水平宽度和高度成线性关系且左右对称,当它与任何一个平缓变化的调制信号相交时,如果在交点时刻对电力电子器件通断控制,就可以得到宽度正不语信号波幅值的脉冲,这正好符合PWM控制的要求。 1.1.2、数字化PWM实现方法 按照SPWM控制的基本原理,在正弦波与三角波的自然交点时刻控制开关器件的通断,如图2(a)所示。这种生成SPWM波形的方法称为自然采样法。自然采样法是最基本的方法,所得到的SPWM波形很接近正弦波,但这种方法要求解复杂的超越方程,用微机控制技术是很难实现的,工程上很少采用。 a)自然采样法与规则采样法1 b)规则采样法2 c)TI公司DSC事件管理器PWM 图2、数字化PWM实现方法 规则采样法是一种应用广泛的工程实用方法,其效果接近自然采样法,但计算量要比自然采样法小很多。如图2(a)所示,在载波负峰值点(A点)计算需要的调制波幅值,计算确认与三角载波左右对称的交点(B点和C点),进而控制下一个开关周期的开关通断,定义为规则采样法1。 规则采样法也可以在三角载波的正峰值点计算调制波幅值,如图2(b)所示。在三角波正峰值处计算需要调制的调制波,进而根据载波幅值计算出控制开关导通的时间长度,其它时间为控制开关关断的时间长度,定义为规则采样法2。 TI公司24xx或28xx系列DSC内部集成了事件管理器,可以产生PWM波形。

PWM整流电路控制原理及技术研究_杨红举

317 华章 二 ○一一年第十八期 Magnificent Writing 杨红举,张玉珍,淅川县电业局。 作者简介:PWM 整流电路控制原理及技术研究 杨红举,张玉珍 (淅川县电业局,河南淅川474450) [摘要]PWM控制技术是在电力电子领域有着广泛的应用,使电力电子技术的性能大大的提高,并对电力电子技 术产生了十分深远影响的一项技术。笔者就PWM整流电路的工作原理和PWM整流电路的控制方法进行了详细的阐述,以供读者参考。 [关键词]PWM整流电路;原理;控制方法PWM (Pulse Width Modulation )控制就是脉宽调制技术:即通过对一系列脉冲的宽度进行调制,来等效的获得所需要的波形(含形状和幅值)。如图1所示。PWM 的一个优点是从处理器到被控系统信号都是数字形式的,无需进行数模转换。让信号保持为数字形式可将噪声影响降到最小。噪声只有在强到足以将逻辑1改变为逻辑0或将逻辑0改变为逻辑1时,也才能对数字信号产生影响。对噪声抵抗能力的增强是PWM 相对于模拟控制的另外一个优点,而且这也是在某些时候将PWM 用于通信的主要原因。从模拟信号转向PWM 可以极大地延长通信距离。在接收端,通过适当的RC 或LC 网络可以滤除调制高频方波并将信号还原为模拟形式。PWM 控制技术一直是变频技术的核心技术之一。1964年A.Schonung 和H.stemmler 首先提出把这项通讯技术应用到交流传动中,从此为交流传动的推广应用开辟了新的局面。 目前,实用的整流电路几乎都是晶闸管整流或二极管整流。晶闸管相控整流电路输入电流滞后于电压,且其中谐波分量大,因此功率因数很低。而二极管整流电路虽位移因数接近1,但输入电流中谐波分量很大,所以功率因数也很低。把逆变电路中的SPWM 控制技术用于整流电路,就形成了PWM 整流电路。控制PWM 整流电路,使其输入电流非常接近正弦波,且和输入电压同相位,功率因数近似为1,也称单位功率因数变流器,或高功率因数整流器。下面就PWM 整流电路及其控制方法进行详细的阐述。 1、PWM 整流电路的工作原理 PWM 整流电路也可分为电压型和电流型两大类,目前电压型的较多。 1.1单相PWM 整流电路。半桥电路直流侧电容必须由两个电容串联,其中点和交流电源连接。交流侧电感包括外接电抗器的电感和交流电源内部电感,是电路正常工作所必须的。 全桥电路直流侧电容只要一个就可以。 1.1.1单相全桥PWM 整流电路的工作原理。正弦信号波和三角波相比较的方法对图2中的V 1~V 4进行SPWM 控制,就可以在桥的交流输入端AB 产生一个SPWM 波u AB 。u s 一定时,i s 幅值和相位仅由u AB 中基波u ABf 的幅值及其与u s 的相位差决定。改变u ABf 的幅值和相位,可使i s 和u s 同相或反相,i s 比u s 超前90°,或使i s 与u s 相位差为所需角度。 1.1.2对单相全桥PWM 整流电路工作原理的进一步说明整流状态下: u s >0时,如图2所示。(V 2、VD 4、VD 1、L s )和(V 3、VD 1、VD 4、L s )分别组成两个升压斩波电路,以(V 2、VD 4、VD 1、L s )为例。V 2通时,u s 通过V 2、VD 4向L s 储能。 V 2关断时,L s 中的储能通过VD 1、VD 4向C 充电。u s <0时,(V 1、VD 3、VD 2、L s )和(V 4、VD 2、VD 3、L s )分别组成两个升压斩波电路。 1.2三相PWM 整流电路。三相桥式PWM 整流电路,是最基本的PWM 整流电路之一,应用最广。工作原理和前述的单相全桥电路相似,只是从单相扩展到三相。如图3所示。进行SPWM 控制,在交流输入端A 、B 和C 可得SPWM 电压,按图4a 的相量图控制,可使i a 、i b 、i c 为正弦波且和电压同相且功率因数近似为1 。 2、PWM 整流电路的控制方法 2.1间接电流控制。间接电流控制也称为相位和幅值控制。图5 为间接电流控制的系统结构图。 图中的PWM 整流电路为图4的三相桥式电路,控制系统的闭环是整流器直流侧电压控制环。 2.2直接电流控制。通过运算求出交流输入电流指令值,再引入交流电流反馈,通过对交流电流的直接控制而使其跟踪指令电流值。有不同的电流跟踪控制方法,图6给出一种最常用 的采用电流滞环比较方式的控制系统结构图。 3、结语 综上所述,PWM 控制技术用于整流电路即构成PWM 整流电路,也可看成逆变电路中的PWM 技术向整流电路的延伸,其控制系统结构简单,电流响应速度快,系统鲁棒性好,目前在电力电子行业已获得了一些应用,并有良好的应用前景。 【参考文献】 [1]刘海云,韩继征,李玉仓,张浩,胡雪生.交直交变频三电平矢量脉宽调制模式的原理及调制算法探讨[A ].第十一届全国自动化应用技术学 术交流会论文集[C ].2006. [2]姚旺,王京.基于VxWorks 下的三电平PWM 整流器的控制研究[A ].自动化技术与冶金流程节能减排——全国冶金自动化信息网2008 年会论文集[C ].2008.

pwm控制原理

1.PWM的技术背景 随着CPU技术的发展,更多的晶体管和更高的主频,以及纳米级的工艺,都造成了CPU功率的飙升。尤其是第一个走进90纳米的Intel。更高的功率,就需要更好的散热设备。Intel为了对付prescott核心,开始从多方面加强散热,比如38度机箱比如BTX,比如 9CM风扇的主流应用,其中PWM技术,是最重要的技术之一。 Intel对散热器的评定标准非常严格,其最恶劣的环境条件在普通应用中很难出现。如果采用定转速风扇,在用户普通应用中,风扇的噪音根本让人无法忍受。传统的温控风扇是利用风扇轴承附近的测温探头侦测风扇的进风口温度,从而对风扇的转速进行调节。这种温控虽然解决了一定的问题,但是存在着精度粗糙,而且温控的转速只能做到高速低速两极变速。 PWM是脉宽调制电路的简称,它本身并不是一个新技术,在工业控制,单片机上早已经广泛的应用。而Intel将他和主板的CPU温度侦测相结合,将其应用于散热器风扇的转速精确控制上,取得了良好的效果。 2.PWM智能温控风扇的功能特点 首先,PWM风扇调节风扇转速是直接从CPU获取温度信息,在风扇上无任何测温装置。根据不同的CPU温度,温控风扇会有不同的转速调节与之对应,并且风扇的转速变化可以做到四级五级,甚至更多,基本上是无极变速的感觉。由于是脉宽信号的实时调节,风扇转速的变化非常灵敏,转速和CPU温度的变化几乎是同步的。 第二,PWM风扇在计算机待机的时候,可以保持在一个非常低的转速上。例如原包的Intel风扇,在待机时候,CPU温度在四五十度以下,其转速仅为一千多转,大大降低了运转的噪音。而设计的最高转速,四千多转,只有在CPU温度接近极限温度即65-67度时候,才会出现。相比传统的温控风扇有着更大的转速控制范围,更好的解决了噪音和性能的问题。