生产过程调度的数学模型

生产过程调度的数学模型
生产过程调度的数学模型

生产过程调度的数学模型

1 问题的提出

?k A j 图1-1是某企业的生产示意图,A0是出厂产品,A1,A2,…,A6是中间产品,A i?→

表示生产一个单位A j产品需要消费k单位A i,其余类似.

图1-1 生产结构示意图

表1-1给出了生产单位产品所需的资源(工人,设备)和时间,注意表中所给数据是基本的,即既不能通过增加工人和设备来缩短时间,也不能通过加长时间而节省工人和设备.

表1-1 生产单位产品所需的资源和时间

问题 1 无资源浪费、连续均衡生产的最小生产规模是多大?相应的最短周期是多少?其中“无资源浪费”指在整个生产周期中没有闲置的设备和闲散人员.“连续”指整个周期中所有产品的生产过程不会停顿.“均衡”指所有中间产品A1,…,A6的库存与上一周期结束时的库存相同.“生产规模”指完成整个生产过程所需各种资源的总和.

问题2 如果考虑相同的资源可以通用,那么问题1得到的最小生产规模在无资源浪费、均衡生产中能否减少?请写出你得到的生产规模,相应的周期和生产过程的调度方案.问题3 如果该企业的资源限制为:I类工人120名,II类工人80名,技术工人25名,甲种设备8台,乙种设备10台及周期限制(一星期,共24?5.5=132h),请作出生产过程的调度方案,使在均衡生产条件下资源的浪费最小.[1]

2 基本假设

假设生产开始的瞬间,马上有产品出产. 忽略各中间产品的输送时间.

资源(包括工人和设备)的效率是持续而且均衡的,即忽略工人的生理因素、设备的老化损耗以及原材料的利用率对生产效率的影响.

“数据是基本的”意思是一条生产线上安排操作的人员数经已经固定,如果人员减少

了,流水线就无法生产,但如果人员多了,岗位并没有相应增加,因此不能加快生产的进度.[1]

“均衡生产”是指经过一个周期的生产,中间产品供求平衡,其库存增加量完全转化组装成为最终产品A 0 ,其数值表示为零.

“无资源浪费”是指各种设备和各类人员的拥有量与使用量相等,在整个生产周期中没有闲置的设备和闲散的人员.

“连续”是指在整个周期中,不仅资源的总使用量不变,而且用于各种产品的资源使用量也不变,所有产品的生产过程不会停顿.

3 问题的解决

3.1最小生产规模与最短生产周期

在生产各产品的资源均独立运作、不能通用的情况下,设生产单位产品所需的资源量为1组,x i ,i=0,…,6,是生产各产品的组数,T 为一个生产周期.由于生产是均衡的,在T 时间内生产的中间产品将全部组装成最终产品A 0 .也就是说,周期时间内各中间产品的库存增加量均为零,即中间产品的生产量与消耗量相等.现在要求最小的生产规模,也即要求各产品的生产组数之和的最小值.由条件可以得出以下的线性规划模型[2]

∑==6

min i i x z

????

????????

?????=>∈?=??

=??+?=??+?=??

=??=?6

,...,1,0,0,6

122612632665656643..06055042030201i x Z x T

x T x T x T x T x T

x T x T x T x T

x T x T x T x T

x t s i i (3.1) 整理得:

∑==6

min i i x z

?

?

?

???

?????

=>∈======6

,...1,0,0,425552..06050

4030201i x Z x x x x x x x x x x x x x t s i i (3.2) 显然,当x 0=1时,z 可得最小值.这时,x 1=2,x 2=5,x 3=5,x 4=5,x 5=2,x 6=4.记向量N=(1,2,5,5,5,2,4),这就是维持均衡生产的各产品的生产组数,表示生产A 0,A 1,…,A 6的组数分别为1,2,5,5,5,2,4.因以上数字的最大公约数为1,所以N 同时又是维持均衡生产的各产品生产组数的比例.这时各产品的产量比值为M=(1,4,5,6,15,12,12).

由于生产A 0的组数为1,而A 0至少要有一条流水线组装,加之题目所给的数据是基本的,不能通过延长时间而减少工人、设备,所以,由上解可得出最小生产规模: I 类工人数C1=71?1+27?2+34?5+37?5+18?5+33?2+17?4=704 II 类工人数C2=30?1+18?2+17?5+13?5+12?5+28?2+23?4=424 技术工人数C3=7?1+9?2+7?5+6?5+5?2+11?4=144 甲种设备台数B1=4?1+3?2+4?5+2?5+2?4=48 乙种设备台数B2=1?1+3?2+1?5+2?5+5?2+6?4=56

记向量b=(704,424,144,48,56),这就是满足条件的最小生产规模.

因为各产品的生产过程都不允许停顿,并且一个生产周期后,最终产品A 0的产量只能是整数单位台,导致各中间产品的产量都是整数单位台,所以要实现无资源浪费、连续均衡生产条件下的最小生产规模,最短周期应取各产品生产单位量所需时间(6,3,6,5,2,1,2)的最小公倍数30h .工厂连续生产30h ,各组产品都生产完毕,又因为组数之比为1:2:5:5:5:2:4,所以生产出来的中间产品一个也不过剩,全部组装成最终产品A 0,而中间产品的库存量始终保持不变.由于生产单位A 0所需的时间是6h ,而生产周期是30h ,在此期间各产品的生产都是连续的,因此A 0 的产量是5台,这时各产品的产量为(5,20,25,30,75,60,60).

3.2资源可通用情况下的最优调度方案

现在放弃“连续”的限制,允许在一个生产周期中,当某种产品的产量达到一定数量时,该产品的生产可以暂时停顿,其工人、设备被调作它用,去生产其他的产品,但资源仍然不能闲置,而且要求生产保持均衡,经过一个周期之后各中间产品的储存量保持不变.因此,

在整个生产周期内,生产各产品的组时数比等于第一个问题中的组数比(1,2,5,5,5,2,4).所谓组时数,就是在一个生产周期内生产某一产品的组数与生产该产品的总时间的乘积.在第一个问题中,一个生产周期内的生产是连续的,因此一旦周期的长短确定下来,各产品的产量就是其生产组数和时间常量T 的乘积再与生产单位产品所需时间的比,而各产品的组时数就等于其生产组数和时间常量T 的乘积,所以生产各产品的组时数比等于N. 但是在资源可通用的情况下,某一产品的生产过程是允许停顿的,在不同的资源调度方案中,生产A i 的组数和时间都有可能不同,所以各产品的产量就涉及到组时数的问题.在这里一个生产周期的安排是由若干个不同的资源调度方案组成的.设在第j 个方案中,生产时间为t j , k ij 是生产A i 的组数,则k ij 与t j 的乘积就是A i 的一个组时数分量. A i 的所有组时数分量之和就是A i 在一个生产周期内的组时数.当生产各产品的组时数比等于N 时,各产品产量之比是M=(1,4,5,6,15,12,12).

因为生产规模代表的是人员和设备的数量,所以一定是整数.要实现无资源浪费、均衡的生产,第一个问题的最小生产规模一定是第二个问题的最小生产规模的正整数倍.

第一个问题的最小生产规模是b=(704,424,144,48,56),其各分量的公约数是1,2,4和8.因此第二个问题的最小生产规模只有4种可能:b b b b 8

1

,41,21,

. 下面逐一检验这4种可能.不妨先检验)7,6,18,53,88(8

1=b . 用向量表示生产单位产品所需的资源,记

b 0=(71,30,7,4,1) b 1=(27,18,9,3,3) b 2=(34,17,0,0,1)

b 3=(37,13,7,4,0)

(3.3)

b 4=(18,12,6,2,2) b 5=(33,28,5,0,5) b 6=(17,23,11,2,6)

在相同资源可以通用的情况下,一个周期的生产安排可分解为若干个生产方案,在每一个生产方案中,资源全部投入生产某几种产品而恰好无浪费.设k ij 为第j 种方案中投入生产产品A i 的组数.

用计算机求

b b

k i i

ij 8

1

6

=∑=,得到5组解(程序见附录1):

?????

????=====,1,0)(0,0,0,1,1

x5,0,1)(0,0,1,1,0x4 ,0,0)(0,0,1,0,3

x3,0,0)(0,2,1,0,0x2,0,1)(1,0,0,0,0

x1 (3.4) 这就是说,在第一个方案x 1中,生产A0和A6的组数均为1,其余产品不生产,恰好无资源浪费,其余类推.要令生产均衡,则一周期内投入生产各产品的组时数比为N .设第j 种调度方案执行的时间为t j ,求最小生产周期,即要求如下规划[3]

∑==5

1

min j j t T

??

???∈∈?=++=∑Z t Z

c N c x t t s j j j j ,..51

(3.5) 解得t 1=6,t 2=6,t 3=6,t 4=18,t 5=12,c=6,minT=48.

从(3.4)式可以看到,各产品均能安排到资源生产.以(3.4)式的生产方案,再配合(3.5)式的方案时间安排,即可实现无资源浪费的均衡生产.因为b 8

1

是4个可能值中的最小数,所以其余3个可能值这时就可以不再考虑了.也就是说)7,6,18,53,88(8

1=b 是资源可调度情况下的最小生产规模.相应的最小生产周期为48小时.这时各产品的产量为(1,4,5,6,15,12,12).

3.3生产规模给定情况下的最优调度方案

该企业的资源限制为-

b =(120,80,25,8,10),周期限制为132h .题目的数据是基本的,并要求均衡生产,中间产品数保持不变.在相同资源可以通用的情况下,当生产规模为

)7,6,18,53,88(8

1

=b ,生产周期为48h 时,出厂产品A 0的产量为1台.A 0的产量与生产规模和生产周期都有关.为衡量资源及周期限制条件下A 0的产量数,现取资源的一个分量(I 类工人数)和周期作为指标.因为

475.348

132

88120<=? (3.6)

所以可生产的A 0件数不超过3件.为使资源浪费最小,应取在生产规模限制下,在最短的时间内生产3件A 0.其数学模型为:

∑=m

j j t 1

min

(3.7)

求解得:

???

??

?

??

??

??

?================ 2. t8,0,0),(0,0,1,0,0x82, t7,0,0),(0,0,2,0,0

x72, t6,0,0),(0,0,2,1,0x68, t5,0,0),(0,0,1,2,0x5(3.8) 18, t4,2,0),(0,0,0,1,0

x454, t3,0,1),(0,0,1,1,1x318, t2,0,0),(0,2,1,0,1x218, t1,0,1),(1,0,0,0,1

x1 (3.8)式得出了均衡生产条件下的调度方案,也就是说,一个生产周期的安排是由8组生产调度方案构成的,在第一个生产方案x 1 中,生产640,,A A A 的组数分别都是1,,生产的时间是t 1=18h ,其他的方案类似,实际生产时间为

1228

1

=∑=i i

t

小时.

4 结果分析及问题的推广

从第一个问题中,我们得出了相同资源独立动作情况下的无资源浪费、均衡生产的最小生产规模为b=(704,424,144,48,56),最短周期为30h .这时A 0的产量是5件.第二个问题中,相同的资源可以通用,这时的最小生产规模为)7,6,18,53,88(8

1

=b ,最短生产周期为48h .A 0的产量是1件.因为第二个问题的生产规模是第一个问题的8

1

,生产时间是第一个问题的

583048=,所以A 0的产量当是第一个问题的5

1

5881=?倍,而实际正好是这样.因此,第二个问题的结果是合理的.由解题过程知,第三问题的结果承接第二问题的结果,资源较第二问有所增加,周期也有所延长,故A 0的产量也相应增加.

此类关于生产调度的问题在工厂企业内经常会出现.题目对产品的生产消耗状况已作了适当的抽象简化.在一般情况下,生产结构是比较复杂的,不光是零部件较多,更主要的是生产结构图中有环存在.如投入产出结构图中,生产钢铁要经常更新设备,而生产炼铁也需

???????????

=∈≥∈===≤∑∑=-

=m

j Z t t N m k k k x N x t k b b k t s j j j j j j m

j j j ij i i ij ,...,2,1,,0),...,,(183,2,1,0,..6101

6

要消耗钢铁.再如,电厂在发电的同时,电厂内部照明,电动设备也消耗电力.农民生产粮食,但在中国,农民也是粮食的主要消耗者.这些在结构图上就出现环[1].对于这种情况,计算将更加复杂,但以上的思想方法依然可以运用到其中.

合理的生产调度可为企业节省大量的人力物力,对促进生产,繁荣市场经济有着不可估量的作用.

参考文献:

[1]朱道元.数学建模精品案例[M].南京:东南大学出版社,1999.38-51

[2]黄培清,刘樵良,任建标.运筹学——管理中的定量方法[M].上海:上海交通大学出版社,2000.8-9 [3]叶其孝.大学生数学建模竞赛辅导教材[M].湖南:湖南教育出版社,2000.23-25

数学建模常用模型方法总结精品

【关键字】设计、方法、条件、动力、增长、计划、问题、系统、网络、理想、要素、工程、项目、重点、检验、分析、规划、管理、优化、中心 数学建模常用模型方法总结 无约束优化 线性规划连续优化 非线性规划 整数规划离散优化 组合优化 数学规划模型多目标规划 目标规划 动态规划从其他角度分类 网络规划 多层规划等… 运筹学模型 (优化模型) 图论模型存 储论模型排 队论模型博 弈论模型 可靠性理论模型等… 运筹学应用重点:①市场销售②生产计划③库存管理④运输问题⑤财政和会计⑥人事管理⑦设备维修、更新和可靠度、项目选择和评价⑧工程的最佳化设计⑨计算器和讯息系统⑩城市管理 优化模型四要素:①目标函数②决策变量③约束条件 ④求解方法(MATLAB--通用软件LINGO--专业软件) 聚类分析、 主成分分析 因子分析 多元分析模型判别分析 典型相关性分析 对应分析 多维标度法 概率论与数理统计模型 假设检验模型 相关分析 回归分析 方差分析 贝叶斯统计模型 时间序列分析模型 决策树 逻辑回归

传染病模型马尔萨斯人口预测模型微分方程模型人口预 测控制模型 经济增长模型Logistic 人口预测模型 战争模型等等。。 灰色预测模型 回归分析预测模型 预测分析模型差分方程模型 马尔可夫预测模型 时间序列模型 插值拟合模型 神经网络模型 系统动力学模型(SD) 模糊综合评判法模型 数据包络分析 综合评价与决策方法灰色关联度 主成分分析 秩和比综合评价法 理想解读法等 旅行商(TSP)问题模型 背包问题模型车辆路 径问题模型 物流中心选址问题模型 经典NP问题模型路径规划问题模型 着色图问题模型多目 标优化问题模型 车间生产调度问题模型 最优树问题模型二次分 配问题模型 模拟退火算法(SA) 遗传算法(GA) 智能算法 蚁群算法(ACA) (启发式) 常用算法模型神经网络算法 蒙特卡罗算法元 胞自动机算法穷 举搜索算法小波 分析算法 确定性数学模型 三类数学模型随机性数学模型 模糊性数学模型

第三届“ScienceWord杯”数学中国数学建模网络挑战赛第二阶段B题一等奖论文

目录(CONTENTS) 一、问题重述 (2) 二、问题分析 (2) 2.1方案理论可行性 (2) 2.2波士顿路网实例 (2) 三、条件假设 (2) 四、符号约定 (2) 五、模型的建立与求解 (3) 5.1模型建立 (3) 5.1.1波士顿城市路网抽象图 (3) 5.1.2交通网连通性 (4) 5.1.3非线性规划模型 (4) 5.1.4拥堵评价指标体系 (4) 5.2路网属性参数估计 (5) 5.2.1路网属性参数约束方程 (5) 5.2.2参数曲线拟合求解 (5) 5.3交通流量之NASH均衡求解 (8) 5.3.1非线性规划求解NASH均衡解的可行性分析 (8) 5.3.2 LINGO求解NASH均衡解 (9) 5.4方案优劣性的量化分析 (10) 5.4.1路网流量均衡下的道路拥堵状况 (10) 5.4.2关闭已拥堵路段后的道路拥堵状况 (13) 5.4.3关闭未拥堵路段后的道路拥堵状况 (13) 5.5方案适用范围的数据分析 (14) 5.5.1路网总流量变化对道路拥堵状况的影响 (14) 5.5.2波士顿路网规划方案适用范围 (15) 六、模型的评价 (15) 七、参考文献 (16) 八、附录 (17) 8.1 LINGO求解均衡解程序 (17) 8.2插值多项式曲线的MATLAB程序 (17)

一 问题重述 Braess悖论宣称:提高某一路段的通行能力,反倒可能使整体路网的通行能力下降。那么,在发生交通拥堵的时候,如果暂时关闭其中的某条道路,是否可以缓解交通堵塞的现象? 请建立合理的模型,研究临时关闭道路以缓解交通堵塞的可行性。如果可行,请给出具体的关闭方案。城区道路网可以使用北京市二环路的地图,也可以使用美国波士顿的部分城区图。 二 问题分析 2.1方案理论可行性 从规划的角度看,理想情况下,司机可以牺牲个人利益成全大局,使得城市路网无时无刻都能达到最优效益,此时关闭其中任何一条道路都有可能使全局最优解降为局部最优解,即在这种情况下关闭道路的方案是不可行的。从实际情况看,具有个性化需求的司机为了追求个人利益最大化往往使得城市路网的整体效益下降,此时有选择有目的的关闭道路会使得个体最优选择服从于或接近于整体最优决策,有利于提升城市路网的整体效益,即政府的调控是可行的。 2.2波士顿路网实例 道路堵塞的评价指标确定为每个车辆通过该段路网的平均时间,选取美国马萨诸塞州的首府--波士顿作为实证对象,用非线性规划的数学思想求得在总流量一定的情况下交通流量的均衡解,比较关闭某条道路前后指标的变化即可判断方案优劣。如果可行,再令总流量在一定范围内变化,求出此方案的适用范围。 三 条件假设 Ⅰ.所有司机的选择是独立的,非合作的。 Ⅱ.城市路网信息完全公开,司机对路网熟悉程度高。 Ⅲ.车辆在转弯或过十字路口时无时间延误。 Ⅳ.道路布局方案的评价指标是车辆通过该路段的平均时间或路网的使用效益。 Ⅴ.假设波士顿城市路网属于对称双通道系统。 Ⅵ.假设波士顿路网均是双向的,但只有单向的增加车流量能使堵塞加剧。 四 符号约定 i 拥堵系数 α 车辆单独通过路段的时间 β 每增加单位流量所增加的通行时间 t车辆实际通行时间 f 路段当前流量 s 路网内某路段车速

优化调度的数学模型

1)目标函数 假设系统可运行的机组数为n,总负荷为d P,以电厂内所有机组的总煤耗量最小为目标,建立如下的数学模型: 其中:——机组序号; ——第i台机组的煤耗量; ——n 台机组的总煤耗; ——第i台机组的负荷; ——第i台机组的煤耗量与负荷的函数关系。 2)约束条件 约束条件包括功率平衡约束和机组出力约束。 (1)功率平衡约束: (2)机组出力约束: 其中:——n台机组的总负荷; ——第i台机组的负荷下限和负荷上限。

假设系统可运行的机组数为,总负荷为,以调度周期为一昼夜来考虑,分为h个时段。 1)目标函数 机组优化组合的目标函数如下: 式中——机组序号; ——n 台机组的总煤耗; ——机组i运行状态的变量,仅取0、1 两个值,表示停机,表示运行。 ——第i台机组在t时刻的负荷; ——第i台机组在t时刻的煤耗量与负荷的函数关系; ——机组的启动耗量。 2)约束条件 考虑机组运行的实际情况,本文确定的机组约束条件包括功率平衡约束、机组出力约束、最小停机时间约束、最小运行时间约束以及功率响应速度约束。 (1)功率平衡约束: 式中——机组序号; ——第i台机组在t时刻的负荷;

——n台机组的总负荷。 (2)机组出力约束: 式中——机组的启停状态,0 表示停机,1 表示运行。 ——第i台机组的负荷下限和负荷上限。 (3)最小停机时间约束: 式中——机组i的最小停机时间。 (4)最小运行时间约束: 式中——机组i的最小运行时间。 (5)功率响应速度约束: 式中——机组i每分钟输出功率的允许最大下降速率和最大上升速率。 由于是在火电厂内部进行优化组合,可不考虑网损和系统的旋转热备用约束(这两项通常是电网调度中需要考虑的)。因此,机组优化组合从数学角度上讲就是在(5)~(9)的约束条件下求式(4)的最小值。 3)机组启停耗量能耗Si 的确定 通常情况下,对Si的处理采用如下的方法:机组的启动耗量包括汽机和锅炉两部分,由于汽机的热容量很小,其启动耗量一般可近似当

2013数学建模优秀作品

承诺书 我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模竞赛参赛规则》(以下简称为“竞赛章程和参赛规则”,可从全国大学生数学建模竞赛网站下载)。 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。 我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。 我们郑重承诺,严格遵守竞赛章程和参赛规则,以保证竞赛的公正、公平性。如有违反竞赛章程和参赛规则的行为,我们将受到严肃处理。 我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。 我们参赛选择的题号是(从A/B/C/D中选择一项填写): A 我们的参赛报名号为(如果赛区设置报名号的话):01034 所属学校(请填写完整的全名): 参赛队员(打印并签名) :1. 2. 3. 指导教师或指导教师组负责人(打印并签名): (论文纸质版与电子版中的以上信息必须一致,只是电子版中无需签名。以上内容请仔细核对,提交后将不再允许做任何修改。如填写错误,论文可能被取消评奖资格。) 日期:2013 年 9 月16 日赛区评阅编号(由赛区组委会评阅前进行编号):

编号专用页 赛区评阅编号(由赛区组委会评阅前进行编号): 赛区评阅记录(可供赛区评阅时使用): 评 阅 人 评 分 备 注 全国统一编号(由赛区组委会送交全国前编号): 全国评阅编号(由全国组委会评阅前进行编号):

城市供水系统优化调度 数学模型的建立

城市供水系统优化调度 数学模型的建立 摘要:介绍了城市供水系统优化调度的主要内容以及原则。同时介绍城市供水系统优化调度的研究状况。用水量预测研究是优化调度的基础和前提。用水量预测模型是在分析城市用水量序列数据模式的基础上, 综合利用多种方法建立的数学表达式。给水管网数学模型是建立水厂出厂压力和流量与管网测压点之间的经验数学表达式, 它反映了给水系统的运行工况。优化调度模型的建立和求解是优化调度的核心。 关键词:城市供水系统;优化调度模型;用水量预测 Optimal Operation of Urban Water Distribution System Wei Sheng (Beijing University of Civil Engineering and Architecture,School of Environment and Energy Engineering,Beijing,100044) Abstract:Primary coverage of urban water distribution system and its principles are introduced. At the same time introduce the situation of the urban water distribution system. Water consumption forecasting is the bases of optimal dispatching. Water consumption forecasting model is a mathematical representation which is based on the data pattern of urban water consumption series. Water distribution network model reflecting the operating mode of water distribution system, is an empirical equation based on the relation of pressure, water flow and pressure tap's data. Derivation of optimal dispatching model is primary. Key words:urban water supply system; optimal dispatching model; water consumption forecast 1.优化调度原因及概念

拥挤问题 数学建模论文

安徽工程大学数学建模(选修课)课程论文 题目:拥挤问题 摘要 本文研究安徽工程大学学生餐厅用餐拥挤问题,通过10月28.29日两天用餐时间内对我校食堂进行调查。通过对数据的分析建立了以分析队列长度的变化的概率统计分布模型,并且得到了初步的结果。 (1)、对于问题一,通过连续两天同一时间同一地点得到了与实际情况大致相符的所需数据。 (2)、对于问题二,根据自己亲身经历与观察,调查数据得出课程表的安排等诸多原因造成了就餐高峰期拥挤排长队现象,最后建立简化模型分析了拥挤程度问题,并提出解决方法。 还分析了学生的用餐心态,根据数据变化分析估计队伍长度与服务时间和单位时间内服务人数的关系,以及各餐厅大门不同进餐人数和窗口等待人数关系,得出最适合进餐时间及窗口分配问题解决方案。 关键词:学生食堂;就餐过程;排队;拥挤度

队员1:王辉土木工程102 3100105204 队员2:张艳土木工程102 3100105214 指导老师:周老师 成绩: . 完成日期:2012.11.7

一、问题重述 食堂用餐时常常会有拥挤不堪的现象发生。卖饭菜窗口因拥挤会时有碰撞并打翻饭菜的事情发生,严重时还会引起吵嘴打架,导致用餐者用餐时间过长。这种现象在某些地方特别是学校、工厂等人员众多的单位食堂较为普遍。为了解决这个问题,有关管理部门也想过许多办法,主要是增加窗口和工作人员,这又会导致成本的增加,从而引起饭菜价格的增加,这对用餐者是不利的。为此,我们希望在不增加服务工作人员的情况下制定出缩短用餐时间、減少排长队现象的办法。重点解决以下几个问题: (1)了解本校食堂买饭菜的问题的情况,并对实际情况进行调查、收集有关的数据(要注明调查的时间和地点); (2)分析造成拥挤、用餐时间过长、排长队等现象的原因; (3)根据你所了解的情况,建立适当的数学模型,并据此提出解决(2)中问题的办法。 二、模型假设 1、由于在周六周日的餐厅就餐人数比较少,对于拥挤情况只考虑周一至周五的情况。通过对课表的研究,可以假设每天的人数是固定的,又由于长期习惯作用的结果可认为到某个餐厅就餐的人数是稳定的。 2、餐厅服务遵守先到先服务的原则。 3、对于我校餐厅座位已足够多时,可认为某个同学买完饭都有座位不在等待。 4、对于拥挤时,可认为人数是不断增加的,有同学进入时有空窗口则立即买饭,否则排队等待。 5、每个人的到来时刻,他们的服务时间相等且相互独立的。 6、对于每个人的服务时间基本上固定,为了方便计算我们假设服务时间为固定数。

交通拥堵数学模型

承诺书 我们仔细阅读了2010年湖南大学冬季数学建模竞赛。我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括教师)研究、讨论与赛题有关的问题。 我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。 我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。如有违反竞赛规则的行为,我们将受到严肃处理。 参赛队员(签名) : 队员1:姓名罗明强学院数学与计量经济学院专业年级09级信息与计算科学 队员2:姓名王一学院数学与计量经济学院专业年级09级信息与计算科学 队员3:姓名林莉智学院数学与计量经济学院专业年级09级信息与计算科学 湖南大学数模指导组 湖南大学数学建模协会

题目:城市交通拥阻的分析与治理 【摘要】 本文联系长沙交通的实际情况,对交通阻塞情况很严重的枫林路丁字路口进行分析,建立仿真模型结合理论给出一个合理的调度方案。并由这个调度理论,进一步分析优化十字路口和多交叉口. 本文首先对现行情况的调查结果进行处理分析,将各方面的数据进行量化,从而得到部分交通参数的具体数值与表达式,再针对现行方案的不足之处进行建模优化,即通过设置缓冲区(模型A),对信号灯进行配时与优化(模型B),以及硬件设施改善(模型C)等方面的进行数学研究讨论,从而得到更加可行的方案。然后对三种方案进行综合考虑和分析,得到最佳的缓解方案。通过计算机模拟验证,从而使得模型理论上成立。本文的较后部分对问题进行加深分析探索,类比三叉路口的优化方案,对十字路口以及更局般意义上的多叉路口进行简单的讨论和分析,从而得到更一般的结论,对缓解交通拥堵起到参考作用。 【关键词】丁字路口交通拥阻缓冲区信号灯的配时与优化 硬件改善计算机模拟类比

数学建模 的公交车调度问题

第三篇公交车调度方案的优化模型 2001年 B题公交车调度 公共交通是城市交通的重要组成部分,作好公交车的调度对 于完善城市交通环境、改进市民出行状况、提高公交公司的经济 和社会效益,都具有重要意义。下面考虑一条公交线路上公交车 的调度问题,其数据来自我国一座特大城市某条公交线路的客流 调查和运营资料。 该条公交线路上行方向共14站,下行方向共13站,表3-1 给出的是典型的一个工作日两个运行方向各站上下车的乘客数量统计。公交公司配给该线路同一型号的大客车,每辆标准载客100人,据统计客车在该线路上运行的平均速度为20公里/小时。运营调度要求,乘客候车时间一般不要超过10分钟,早高峰时一般不要超过5分钟,车辆满载率不应超过120%,一般也不要低于50%。 试根据这些资料和要求,为该线路设计一个便于操作的全天(工作日)的公交车调度方案,包括两个起点站的发车时刻表;一共需要多少辆车;这个方案以怎样的程度照顾到了乘客和公交公司双方的利益;等等。 如何将这个调度问题抽象成一个明确、完整的数学模型,指出求解模型的方法;根据实际问题的要求,如果要设计更好的调度方案,应如何采集运营数据。

公交车调度方案的优化模型* 摘要:本文建立了公交车调度方案的优化模型,使公交公司在满足一定的社会效益和获得最大经济效益的前提下,给出了理想发车时刻表和最少车辆数。并提供了关于采集运营数据的较好建议。 在模型Ⅰ中,对问题1建立了求最大客容量、车次数、发车时间间隔等模型,运用决策方法给出了各时段最大客容量数,再与车辆最大载客量比较,得出载完该时组乘客的最少车次数462次,从便于操作和发车密度考虑,给出了整分发车时刻表和需要的最少车辆数61辆。模型Ⅱ建立模糊分析模型,结合层次分析求得模型Ⅰ带给公司和乘客双方日满意度为(,)根据双方满意度范围和程度,找出同时达到双方最优日满意度,,且此时结果为474次50辆;从日共需车辆最少考虑,结果为484次45辆。对问题2,建立了综合效益目标模型及线性规划法求解。对问题3,数据采集方法是遵照前门进中门出的规律,运用两个自动记录机对上下车乘客数记录和自动报站机(加报时间信息)作录音结合,给出准确的各项数据,返站后结合日期储存到公司总调度室。 关键词:公交调度;模糊优化法;层次分析;满意度 §1 问题的重述 一、问题的基本背景 公交公司制定公交车调度方案,要考虑公交车、车站和乘客三方面因素。我国某特大城市某条公交线路情况,一个工作日两个运营方向各个站上下车的乘客数量统计见表3-1。 二、运营及调度要求 1.公交线路上行方向共14站,下行方向共13站; 2.公交公司配给该线路同一型号的大客车,每辆标准载客100人,据统计客车在该线路上运营的平均速度为20公里/小时。车辆满载率不应超过120%,一般也不低于50%; 3.乘客候车时间一般不要超过10分钟,早高峰时一般不要超过5分钟。

深圳交通拥堵数学建模讲解

2013深圳夏令营数学建模 承诺书 我们仔细阅读了中国大学生数学建模竞赛的竞赛规则. 我们完明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。 我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。 我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。如有违反竞赛规则的行为,我们将受到严肃处理。 我们参赛选择的题号是(从A/B中选择一项填写): B 题 所属学校:运城学院 参赛队员: 1.姓名:王亮系别:物理与电子工程系签名: 2.姓名:孟福荣系别:计算机科学系签名: 3.姓名:孙静系别:数学与应用数学系签名: 指导教师或指导教师组负责人(打印并签名):

2013深圳夏令营数学建模 编号专用页 赛区评阅编号(由赛区组委会评阅前进行编号): 赛区评阅记录(可供赛区评阅时使用): 评 阅 人 评 分 备 注 全国统一编号(由赛区组委会送交全国前编号): 全国评阅编号(由全国组委会评阅前进行编号):

题目:深圳交通拥堵问题的研究 摘要 随着国民经济的高速发展和城市化进程的加快,我国机动车保有量及道路交通流量急剧增加,日益增长的交通需求与城市道路基础建设之间的矛盾已成为目前城市交通的主要矛盾,深圳交通拥堵已严重影响正常的生产生活。本篇论文通过研究道路交通拥挤的状况,来反映交通环境。即针对道路拥挤的问题进行数学建模分析,讨论拥堵的深层次问题及解决方案。 道路拥堵状况评价的指标有多种,为保证评价尽可能的客观、全面和科学,我们分析采用路段平均行程速度、交通流量、路段饱和度、三个评价指标来综合放映道路拥堵情况选取梅林关为例,由于数据的不完整性以及对应事件的不确定性,如:交通指示灯作用,驾驶车辆的速度不均等情况所造成的数据和对应结果的不完全对应,综合考虑我们采取模糊数学模型来对问题一进行分析和求解,列出非常顺畅、顺畅、缓慢、拥堵和严重拥堵五个评判标准来综合评价。确定出其隶属度函数() r x,通过已确定的模糊评价矩阵R得出拥挤度系数B,最终得出其实施后的各项指标。要综合考虑整体城市的交通网络情况,此时的交通状态是一种不断变化的动态过程,具有很强的随机性和偶然性。而交通拥堵的潜伏、发展和产生与具有连贯性和相关性的特点,交通阻塞的发生与它的过去和现状紧密相关,因此,有可能通过对交通状态的现状和历史进行综合分析。不确定或不精确的知识或信息中做出推理。

优化问题的数学模型及基本要素

第1章 优化设计 Chapter 1 Optimization Design 1-1 优化设计 1-1-1 最优化 (optimize, optimization ) 所谓最优化,通俗地说就是在一定条件下,在所有可能的计划、设计、安排中找出最好的一个来。换句话说,也就是在一定的条件下,人们如何以最好的方式来做一件事情。(Optimization deals with how to do things in the best possible manner) 结论的唯一性是最优化的特点,即公认最好。(It is the best of all possibilities) 最优化的思想体现在自然科学、工程技术及社会活动的各个领域,最优化的方法在这些领域也得到了广泛地应用。(P1) 1-1-2 最优化方法 (Arithmetic ) 要从所有可能的方案中找出最优的一个,用“试”(try )的办法是不可行的,需要采用一定的数学手段。二十世纪五十年代以前,用于解决最优化问题的数学方法仅限于古典的微分和变分(differential and variation)。数学规划法在五十年代末被首次用于解决最优化问题,并成为现代优化方法的理论基础。线性规划和非线性规划是数学规划的主要内容,它还包括整数规划、动态规划、二次规划等等。(Linear programming or Nonlinear programming, Integer, Dynamic, Quadratic ) 数学规划法与电子计算机的密切结合,改变了最优化方法多有理论研究价值,而少有实际应用的局面,使得解决工程中的优化问题成为可能。因此,我们现在所说的最优化方法,实际上包括了最优化理论和计算机程序二方面的内容。(Optimization theory plus computer program) 1-1-3 优化设计 下面以一个简单的问题为例来说明传统设计与优化设计这二个不同的设计过程。 例1-1 设计一个体积为5cm 3的薄板包装箱,其中一边的长度不小于4m 。要求使薄板耗 材最少,试确定包装箱的尺寸参数,即长a ,宽b 和高h 。 分析 包装箱的表面积s 与它的长a ,宽b 和高h 尺寸有关。因此,耗板最少的问题可以转化为表面积最小问题,故取表面积s 为设计目标。 传统设计方法: 首先固定包装箱一边的长度如)(4m a =。要满足包装箱体积为3 5m 的设计要求,则有以下多种设计方案: 如果包装箱的长度a 再取)(4m a >的其他值,则包装箱的宽度和高度还会有很多其他结果… 。 最后,从上面众多的可行方案中选择出包装箱表面积最小的方案来,这就是相对最好的设计方案。但由于不可能列出所有可能的设计方案,最终方案就不一定是最优的。 机械产品的传统设计通常需要经过:提出课题、调查分析、技术设计、结构设计、绘图

17年数模B题论文

“拍照赚钱”的任务定价分析 摘要 本文得出了“拍照赚钱”任务的定价规律并做出了详细的证明,对原定价方案做了改进。并对实际情况和新项目的定价问题做出了改进、优化、评价。 对于问题一,本文从几何图形角度对任务点的位置、任务标价以及完成情况进行了分析,建立散点图和三维坐标图划分为A 、B 、C 、D 区域,并运用SPSS 软件对任务点位置做k-均值聚类处理,最终得到三个聚类中心,用MATLAB 中多元二相式拟合得出了任务点位置与任务标价的函数关系为: 222211210z y x y x βββββ++++=,同时对任务完成率进行了计算分析得解果为:61.0123%。未完成的原因是由于价格不合理、任务过多会员太少。 对于问题二,根据原方案仅考虑地理位置缺点和附件二的数据,建立层次分析模型,以竞争强度、工作密度、任务难度、工作环境做为指标设定权值,构造对比矩阵用MATLAB 软件求解特征向量为:4.021,并做一致性检验得到结果为:RI=0.90,即通过检验。在四个区域内发现B 区域价格制定较合理,再对B 区域的价格做优化处理:价格低于70元的进行降价10%的处理,价格高于75的提价10%处理,70-75之间的不作处理,此方案的任务完成率为:63.76%。 对于问题三,由于部分任务的位置集中考虑打包处理,对问题一中新制定的价格分价格区间打包和不打包两种任务类型,对于低于70元的任务用SPSS 做k-聚类打包,五个任务为一包。通过MATLAB 做拟合得到的标价规则为:原方案中75-85元提高为82.5-93.5元,70-75元的价格不变,65-70的降低为58.5-63元。比较新的任务完成率为:,使得方案的效率更高。 对于问题四,对新的项目数据的经纬度做散点图处理发现呈区域集中分布非常明显。通过MATLAB 做散点图划为E 、F 、G 三个区域。E 区59-63(±1.886)F 区63(±2.886)G 区73(±2.360)集中地区域进行打包处理,区域边界按单个任务处理。对于三个区域用SPSS 软件聚类得出得出聚类点,以此点为圆心,半径r 分别为7km 、3km 、4.2km 。价格的制定按照任务点距离数据中心为标准。最终求得的任务完成率为:,由此可知,此方案的任务未完成率最高,完成效果最好。 关键词:区域划分;聚类分析;函数拟合;层次分析法

优化问题的数学模型

一. 管理科学的定义 管理科学是对与定量因素有关的管理问题通过应用科学的方法进行辅助管理决策制定的一门学科. (1) 定量因素(2) 科学的方法(3) 辅助决策制定 二.用管理科学的方法解决问题的基本步骤. (1) 提出问题,并根据需要收录有关数据信息。管理科学工作者向管理者咨询、鉴别所 要考虑的问题以确定合理的目标,然后根据要求收集一些关键数据,并对数据作相应的分析。 (2) 建立模型,引入决策变量,确定目标函数(约束条件)。建模过程是一项创造性的 工作,在处理实际问题时,一般没有一个唯一正确的模型,而是有多种不同的方案。建模是一个演进过程,从一个初始模型往往需要不断的完善渐渐演化成一个完整的数学模型。 (3) 从模型中形成一个对问题求解的算法。要在计算机上运行数学程序对模型进行求 解,一般情况下能找到对模型求解的标准软件。例如,对线性规划问题已有Excel 、Cplex 、Lingo 等标准软件求解。有时要自己编写程序。 (4) 测试模型并在必要时修正。在模型求解后,需要对模型进行检验,以保证该模型能 准确反映实际问题,需要检验模型提供的解是否合理,所有主要相关因素是否已考虑,当有些条件变化时,解如何变化等。 (5) 应用模型分析问题以及提出管理建议。对模型求解并分析后,将相应的最优方案提 交给管理者,由管理者做出决策。管理科学工作者并不作管理决策,其研究只是对涉及的问题进行分析并向管理者提出建议。管理者还要考虑管理科学以外的众多因素才能做出决策。 (6) 帮助实施管理决策。建议被管理者采纳以后,一旦做出管理决策一般要求帮助监督 决策方案的实施。 新问题, 新模型, 新算法, 新应用. 三.优化问题的数学模型 1212max(min)(,, ,) (,,)0..1,2,n j n Z f x x x g x x x s t j m =≤?? =? 由于,j f g 是非线性函数时,此问题是非线性优化问题, 求解较复杂。我们主要讨论线性优化问题,常见的形式:混合整数规划 (1) max 0 0 Z CX hY AX GY b X Y =++≤≥≥取整数 其中111,,,,m n m p m n p A G b C h ?????,不失一般性,我们假定,,,,C h A G b 都是整数矩阵。 当0p =时,(1)为纯整数规划,当0n =时,(1)为线性规划。

概率论与数学建模

第六章 概率论与数学建模 一、随机事件及其概率 1.随机事件:可重复;可预测结果且结果明确;试验前出现那个结果 不能确定 例如:抛骰子一次,抛一枚硬币三次等。 2.事件的运算及其含义: B A ?:A 为B 的子事件。其含义是:A 发生则B 必发生 B A =:事件A ,B 相等。其含义是:A 发生则B 必发生,反之亦然 C B A =?:事件A 与B 的交。其含义是:C 发生当且仅当A ,B 同 时发生 C B A =?:事件A 与B 的并(和) 。其含义是:C 发生当且仅当A ,B 中至少有一个发生。 C B A =-:事件A 与B 的差。其含义是:C 发生当且仅当A 发生并 且B 不发生。 φ=AB :事件A 与B 互不相容。其含义是:A 与B 不可能同时发生。 A :事件A 的对立事件。 3.概率:刻化某一事件在一次试验中发生的可能性大小的数量指标。 (当∞→n 时,)()(A P A f P ?→? ) 4.古典概论:某个试验共有n 个等可能的结果(样本点),事件A 包含其中m 个结果(样本点),则认为 n m 就是事件A 的概率。这种基于等可能性确定概率的模型称为古典概率模型。 例6.1.1(Monte Hall Problem )20世纪60,70年代,美国“电视游戏

秀”曾经非常流行一个名叫“Let ’s Make a Deal ”的节目,由Monte Hall 主持。游戏过程如下:有三扇关着的门,其中一扇门后面有奖品(一辆汽车),其余两扇门后面则没有奖品,若猜中了有奖品的门就能赢取这辆汽车。你从中挑选一扇门,但暂不打开。这时,主持人在另外两扇门中挑一个没有奖品的门打开,并展示给你和观众。然后,主持人问你:是坚持原来的选择,还是换成最后那扇门? 解:从能不能得奖的角度看,这个游戏只有两个结果:不换门得奖(A )、换门能得奖(B )。第一个门是你“三选一”随机(等可能地)挑选的,故P(A)=1/3,自然,另一个结果的概率就是P(B)=2/3。因此,正确的决定是换成那扇门。 例6.1.2(抽签原理)袋中有2只红球8只黑球(除颜色外无法再分辨)。10个人依次摸球,得红球者中奖。求:k A ={第k 个摸球者中奖}的概率,k=1,2,…,10 解法一:假定对解题者来说这些球可辨别。样本点为一轮抽签结束后这10个球的排列,共有10!个等可能的样本点。事件k A 所含样本点 的特征是:两个红球中任选一个排在第k 位(有12C 种可能),而其余 9个球在其余9个位置上可任意排列(有9!种可能)。因此k A 包含了 9!12 C 个样本点,故5 1 !10!9)(1 2== C A P K . 解法二:假定球不可辨,只需关注红球落入哪两个人之手,样本空间 共有452 10 =C 个等可能的样本点。事件k A 发生意味着第k 个人得一红球,另一红球落入其余9人中某一人之手,这有1 9C 种可能,所以

交通状态数学建模

成都机动车尾号限行的影响分析 摘要 随着国民经济的高速发展和城市化进程的加快,我国机动车保有量及道路交通流量急剧增加,日益增长的交通需求与城市道路基础建设之间的矛盾已成为目前城市交通的主要矛盾,交通拥堵已经成为中国各大城市首要求解的顽疾。 继北京、广州等特大城市之后,西部省会城市成都于今年4月26日开始实施车牌号码尾号限行。为保障成都二环路改造工程的顺利施工,成都二环路全线及7条城区放射性主干道,对本地及外地社会车辆实施工作日分时段按车牌尾号进行限行,以缓解交通拥堵。 本篇论文通过研究道路交通拥挤的状况,来反映交通环境。即针对道路拥挤的问题进行数学建模分析,讨论“尾号限行”是否对交通状况起到积极的影响。 道路拥堵状况评价的指标有多种,为保证评价尽可能的客观、全面和科学,我们分析采用路段平均行程速度、单位里程平均延误和路段饱和度三个评价指标来综合放映道路拥堵情况。选取的片区为成都市塔子公园片区,包括蜀都大道东段和二环路东四段这两条限行道路,由于数据的不完整性以及对应事件的不确定性,如:交通指示灯作用,驾驶车辆的速度不均等情况所造成的数据和对应结果的不完全对应,综合考虑我们采取模糊数学模型来对问题一进行分析和求解,列出非常顺畅、顺畅、缓慢、拥堵和严重拥 r x,通过已确定的模糊评价矩阵R 堵五个评判标准来综合评价。确定出其隶属度函数() 得出拥挤度系数B,最终得出其实施后的各项指标。 对于问题二,要综合考虑整体城市的交通网络情况,此时的交通状态是一种不断变化的动态过程,具有很强的随机性和偶然性。而交通拥堵的潜伏、发展和产生与具有连贯性和相关性的特点,交通阻塞的发生与它的过去和现状紧密相关,因此,有可能通过对交通状态的现状和历史进行综合分析。据此,我们采取贝叶斯网络来建立数学模型,贝叶斯网络是一种对概率关系的有向图解描述,可以从不完全、不确定或不精确的知识或信息中做出推理。我们确定变量集元素有车流量、占有率、车流速度、车流密度等四个,由于数据的限制我们的变量域将设置为一百天,从而得出贝叶斯网络结构。 对于问题三,问题提出了道路负载能力分析,由有关的技术资料可知,通行能力反映了道路所能承受的交通负荷能力。通行能力是指在一定的道路、交通、控制和环境条件下,对应于一定的行驶质量即服务水平,在某一道路断面上单位时间所能通过的最大车辆数。道路通行能力受到道路、交通等多种条件影响,而交通系统中驾驶员的驾驶行为以及整个交通流又都具有显著的随机特征。所以本文通过建立仿真数学模型,构造出基本路段的道路、交通特性等因素,模拟其中车流的运行状态及其随时空变化的过程。通过对仿真运行过程的观察、仿真结果的统计以及与采集的有关数据的对比分析,研究基本路段的通行能力。 关键字:交通拥堵尾号限行模糊模型评价贝叶斯网络预测仿真模型

数学建模_电梯控制优化调度模型

太原工业学院数学建模竞赛 承诺书 我们仔细阅读了太原工业学院数学建模竞赛的竞赛规则与赛场纪律。 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人研究、讨论与赛题有关的问题。 我们知道,抄袭别人的成果是违反竞赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。 我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。如有违反竞赛规则的行为,我们将受到严肃处理。 我们参赛的题目是(从A/B/C中选择一项填写):A [注]答卷评阅前由主办单位将论文第一页取下保存,同时在第一页和第二页建立“评阅 编号。 日期:2011 年5_月22 日

电梯调度方案问题 摘要 本文的目的是设计电梯控制的优化调度模型以解决师生等待时间长的问题。 前期准备阶段通过对教学主楼电梯的运行情况和学生使用电梯的情况进测量、调 查研究,得到建立模型的相关数据。通过对实际情况作合理假设,将问题归结为:(一)减少师生等待电梯、乘坐电梯以及爬行楼梯所需的时间; (二)使电梯的能量损耗尽可能小。综合以上两种因素建立出合理模型,制定出优化调度方案。 模型I对以上三项指标进行综合考虑,将等待电梯时间Ti 1,乘坐电梯时间Ti2,爬行楼梯时间T i 3按照一定比例量化,对目标函数T(C1, c 2,... c k)利用Visual C++面向对象程序设计语言进行枚举求解,穷尽各种情况,取得最优解。而模型U是对模型I的改进与完善,并将电梯能量损耗E k作为目标函数 s G,C2,llb k的一部分,求解出1号电梯在第8,10层停靠,2号电梯在第7, 9层停靠的结果。此结果基本上能够使师生的不满意度达到最小,同时保证电梯的能 耗相对较小。 我们认为,本文的模型假设简单但合乎情理,利用Visual C++面向对象程 序设计语言,对各种情况进行枚举,所得到的结果具有科学性。在模型讨论与分析阶段中,本文根据实际情况对电梯的优化调度方案进行理论剖析,并对极端情 况进行分解。从数据处理方面,本文给出了模型参数灵敏度分析,提高结果的可信度。如果要考虑更复杂的情况,该模型也可以对假设和其他各方面进行改进, 容易进行推广。因此这是一个比较理想的优化模型

数学模型下的共享单车问题

数学模型下的共享单车问题 摘要 本文主要研究共享单车中的数学问题。首先通过搜索各种数据使用迭代回归的数学模型估算了沈阳市内五区的适宜共享单车量,然后建立多目标优化模型选择出了最为合适的集中停放地址,最后给政府管理部门总结出了一份引导单车有序使用和管理的报告。 对于问题一,首先介绍了回归分析法的具体内容,然后详细具体说明了一下迭代回归模型在求解各个区适宜共享单车数量上该具体如何使用。经过查找的沈阳五大区的详细资料,带入了迭代回归模型中,并且根据各个区内交通状况与大学数目合理的综合了一下共享单车数量,最终估算出了和平区大约需要共享单车10000辆。沈河区大约需要共享单车9000辆。皇姑区大约需要共享单车12000辆。铁西区大约需要共享单车10000辆。大东区大约需要共享单车8000辆。最后结合沈阳2017年3月至5月来共享单车的使用状况对比验证了一下结果的准确性。 对于问题二,首先介绍了一下建模思路,从设立停放点的总原则到集中停放点布局的影响因素,因为需要考虑很多因素,所以经过分析后建立了多目标优化模型,该模型很好的解决了这一问题。紧接着对模糊集理论做了简要介绍,通过模糊集隶属函数的多目标优化算法的详细步骤对沈阳市和平区做了具体的规划,最后根据地图比例缩放很好的将需要设立单车集中停放地址名称呈现在了地图上。尤其对于大学附近需要多设立停车位点。 对于问题三,结合问题二得出的结论,给出了政府管理部门三点最重要的建议:1.加强宣传提升大众的共享意识。2.完善相关法律法规政策。3.积极引导企业参与合作。若是广大群众配合政府管理做到以上三点,共享单车将会在沈阳有很好的发展。 关键词:迭代回归法、多目标优化、模糊及隶属函数、共享单车 一、问题重述 共享单车发展迅速,在很大程度上方便了人们的出行。2017年3月,沈阳也出现了共享单车,目前已经基本覆盖了沈阳二环内的区域。然而,共享单车不能盲目发展,如果单车

2007年大学生数学建模B题优秀论文 公共交通网络模型

摘要: 明年8月第29届奥运会将在北京举行,届时有大量观众到现场观看奥运比赛,这将对北京的交通带来巨大的影响。本文以给出的北京地区公交路线为参考资料,根据公交网络换乘问题构建了公共交通网络模型。对三个问题的解决方案如下: (1)针对问题1,本文首先利用MATLAB编程将公交线路读出,求出各站点间的邻接矩阵。再根据所求的邻接矩阵。对求得的邻接矩阵进行处理;判断起点和终点之间有没有直达的线路,如有就确定为最优线路,没有就在通过程序寻找一个合适的数值(记为M)作为限制(即找出邻接点最多的那部分站点),找出通过次数超过这个数值的站点。 下一步则寻找换乘站点。通过把求得的站点与要求的起点和终点,建立循环逐个修改开始站点与最终站点的值可求出通过各站点的路线,再将经过所求得的站点的路线与经过起点和终点的路线进行比较,寻找相同的路线,若存在,则这个站点可以作为所给的这对起点与终点的中转站(但根据人们乘车的习惯,假设中转的次数不超过2次)。如果的站点中无法找到中转站,则调整M的值,直到可以找到可行的乘车路线为止。 根据得到的可行乘车线路,利用路过分别与费用和时间的函数关系,计算出按照吸收较小转车次数的原则,比较用钱少、费时少的线路,最终得到最优的乘车方案。 (2)针对问题2,将换乘地铁站和公汽站视为对等的,与问题1相似,利用相同的方法求出最优线路,但是情况比问题1更复杂,特别是地铁与地铁之间还可以换乘,这需要单独进行考虑。此时,站点数、费用和时间的函数发生了变化,因此,利用新的函数表达式求解再比较得到最优线路。 (3)针对问题3,考虑步行时,可先利用图论中的Floyd算法求出任意两站点间的最短道路,并在此基础上求出这段路步行所需要的时间。再在第二问的基础上,对时间加一个阈值T。当计算出的两点间最短路的步行时间<阈值T时,就选择步行,否则,选择问题2中求得的最优线路。 本文所考虑的算法,可以查询任意两个站点间的乘车最优路径。 关键词:MATLAB程序、公交换乘、限制求解、Floyd算法、最优线路 一、问题重述 北京申奥的成功,对北京市的交通系统提出了更高的要求。依据国外举办奥运会的经验教训来看,奥运期间交通状况是否良好,交通管理是否高效,是关系奥运盛会能否圆满成功举办的举足轻重的条件之一。 因此,必须在全面调研基础上,制定切实可行的交通规划及管理策略,为奥运会的成功保驾护航。 在观众的交通行为中,轨道站点、外围停车场和专用巴士的换乘,是整个交通链的重要环节,一旦出现交通瓶颈,其向上游反馈形成的阻塞波(或者称为交通扰动)会溯源而上并且影响加剧,最终造成主会场人员疏散的延误和交通设施服务水平的降低以及一定程度上的混乱和连带的不可估量的经济损失、负面的社会影响。因此应从系统全局考虑进行换乘系统规划,保证观众出行全过程的流畅。 二、模型假设 1、乘客到起始站可以直接选择公汽或地铁班次上车,即不记在起始站的等待时间。 2、在实际过程中,对于公交(包括公汽与地铁)可能要换车2次以上,用户已无法容忍,视为无法到达。 (因为如果他们之间换乘就使得费用增大了很多,这是人们不愿意看到的,且一般只坐地铁是无法到达终点站的,所以还要再换乘其他的工具,换乘次数太大我们也不再将其纳入考虑的范围)。 3、相邻地铁站平均行驶时间(包括停站时间):2.5分钟。 4、相邻公汽站平均行驶时间(包括停站时间):3分钟。

2013年全国大学生数学建模竞赛A题优秀论文要点

车道被占用对城市道路通行能力的影响 摘 要 本文通过建立格林伯模型,探讨了车道被占用对城市道路实际通行能力影响的问题。 对于问题一,为描述事故所处横截面实际通行能力的变化过程,我们先将车型分为四类,观察视频一中事故发生道路横截面,对通过截面的各类车型的数量每两分钟统计一次,根据折算标准车方案:总车数=小汽车+中型车*1.5+大型车*2+特大型车*3的计算公式折算成标准车,运用excel 软件得到反映变化趋势的折线图,并对折线图进行了分析,给出了事故所处横截面实际通行能力的变化过程描述。 对于问题二,我们依旧将车型分为四类,每两分钟统计一次通过事故截面的流量。运用matlab 软件拟合得到各时间段内流量的状态趋势线。运用以上结果利用matlab 软件得到反映实际通行能力的图像描述并得到:车道三的疏通能力及实际通行量均强于车道一,并对差异产生的原因进行了详细分析。 对于问题三,为得到路段车辆排队长度与事故横断面实际通行能力、事故持续时间、路段上游车流量间的关系,先建立了MAEQL 模型 ) (**),(),()(L 1 1_ - - ==- ---+= ∑∑m j M i M i m D U o D k k M M L k t i N t i N N t 由此求得排队长度)(L _ t D 的数值,然后运用excel 对数据进行回归分析,得到:事故持续时间与排队长度呈负相关、路段上游车流量与排队长度呈正相关、实际通行能力与排队长度呈负相关。我们用回归分析方法通过matlab 编程验证了模型的正确性。 对于问题四,我们根据堵塞情况建立了停车波与启动波模型,即格林希尔治模型,经过数据分析与验证,该模型在通常的交通流密度下与实际交通流状况相符,而在交通流密度很大时该模型与实际情况有一定偏差。我们对模型进行修正,并对数据进行分析和处理得到事故持续时间与排队长度的关系表,从表中可读出在11分钟时,车辆排队长度将到达上游路口。 关键词:MAEQL 模型 回归分析 格林希尔治模型

相关文档
最新文档