2356 数字信号处理

2356 数字信号处理
2356 数字信号处理

湖北省高等教育自学考试大纲

课程名称:数字信号处理课程代码:2356

一课程性质和学习目的

(一)课程性质与特点

数字信号处理是高等教育自学考试通信工程、电子信息工程、信息工程、自动控制工程等专业的专业基础课。它不仅是后续专业课的基础,还是从事电子工程类工作的工程技术人员所必须掌握的一门有关信号分析和处理的理论课。

(二)课程目标与基本要求

本课程的目的是使学生学习数字信号处理的基本概念和理论,牢固掌握在数字信号的分析方法和处理技能,为日后解决数字系统和数字信号处理中实际问题奠定基础。

(二)与本专业其他课程的关系

本课程的先修课程有信号与系统、工程数学、数字电子技术。

二考核内容与考核目标

绪论

(一)学习目的与要求

本章的目的是使学生了解一些关于数字信号处理的概念,深刻理解信号、系统和信号处理的概念,理解数字信号处理的基本组成,了解数字信号处理系统的优点及其应用。(二)课程内容

1、信号、系统和信号处理

2、数字信号处理的基本组成

3、数字信号处理的科学概貌

4、数字信号处理的特点

5、数字信号处理的应用

6、数字信号处理的发展方向

(三)考核知识点

1、信号、系统和信号处理的基本概念

2、数字信号处理的基本组成及实现方法

3、数字信号处理系统的优点及其应用

(四)考核要求

1、信号、系统和信号处理的基本概念

识记:(1)信号的基本概念;(2)系统的基本概念;(3)信号处理的基本概念。

2、数字信号处理的基本组成及实现方法

识记:(1)数字信号处理系统的基本组成及各部分作用;(2)数字信号处理系统的实现方法。

3、数字信号处理系统的优点及其应用

领会:(1)数字信号处理系统的优点;(2)数字信号处理的应用领域。

第1章离散时间信号与系统

(一)学习的目的和要求

本章的目的是使学生掌握并应用关于离散时间信号与系统的基本概念与基本方法。深刻理解离散系统的线性移不变性、因果性和稳定性的基本概念以及几种常用序列;深刻理解奈奎斯特抽样定理;理解序列、序列的周期性、序列的能量、常系数线性差分方程等基本概念;熟练掌握序列的基本运算。

(二)课程内容

1.1离散时间信号——序列

1.2 线性移不变系统

1.3 常系数线性差分方程

1.4 连续时间信号的抽样

其中离散时间信号的运算、离散时间系统性质的判断以及奈奎斯特采样定理是本章的重点。

(三)考核知识点

1、离散时间信号——序列

2、离散时间系统的线性、移不变性、因果性和稳定性的判断

3、线性卷积和的计算

3、常系数线性差分方程

4、连续时间信号的采样

(四)考核要求

1、离散时间信号—序列

综合应用:(1)序列的运算;(2)应用单位采样序列表示任意序列。

识记:(1)序列的概念;(2)常用的离散时间序列。

领会:(1)周期序列的概念;(2)序列能量的含义

2、线性移不变系统

简单应用:(1)离散时间系统的线性、移不变性、因果性和稳定性的判断;(2)线性卷积和的计算。

领会:线性移不变系统的性质。

3、常系数线性差分方程

领会:常系数线性差分方程的概念。

4、连续时间信号的抽样

识记:奈奎斯特采样定理。

领会:连续信号理想抽样和实际抽样与恢复。

第2章Z变换与离散时间傅里叶变换(DTFT)

(一)学习的目的和要求

本章的目的是使学生掌握并应用Z变换与离散时间傅里叶变换(DTFT)。深刻理解Z 变换、序列的傅里叶变换、离散系统的系统函数以及离散系统的频率响应的基本概念;理解序列的Z变换与连续信号的拉普拉斯变换和傅里叶变换之间的关系;理解无限长单位冲激响应系统和有限长单位冲激响应系统的基本概念;理解序列傅里叶变换的主要性质及一些对称性质;熟练掌握Z变换的基本性质和定理、Z反变换的计算。

(二)课程内容

2.1引言

2.2 Z变换的定义与收敛域

2.3 Z反变换

2.4 Z变换的基本性质和定理

2.5 序列的z变换与连续时间信号的拉普拉斯变换、傅立叶变换的关系

2.6 离散时间傅里叶变换

2.7序列傅里叶变换的主要性质

2.8周期性序列的傅里叶变换

2.9傅里叶变换的一些对称性质

2.10 离散系统的系统函数,系统的频率响应

本章重点是Z变换和Z反换的计算以及离散系统的系统函数和系统的频率响应,难点是线性移不变系统的变换域分析。

(三)考核知识点

1、Z变换的定义与收敛域

2、Z反变换的定义

3、Z变换的基本性质和定理

4、序列的z变换与连续时间信号的拉普拉斯变换、傅立叶变换的关系

5、离散时间傅里叶变换的定义

6、确定简单离散系统的系统函数和系统的频率响应

7、线性移不变系统的因果性及稳定性在Z域的判断方法

(四)考核要求

1、Z变换及Z反变换

识记:(1)Z变换的定义;(2)Z变换的收敛域;(3)Z反换的定义;(4) Z变换的基本性质和定理

综合应用:(1)Z变换的计算;(2)Z反换的计算。

2、序列的z变换与连续时间信号的拉普拉斯变换、傅立叶变换的关系

领会:序列的z变换与连续时间信号的拉普拉斯变换、傅立叶变换的关系

3、离散时间傅里叶变换

识记:离散时间傅里叶变换的定义

领会:周期性序列的傅里叶变换

简单应用:(1)序列傅里叶变换的主要性质;(2)傅里叶变换的一些对称性质。

4、离散系统的系统函数,系统的频率响应

识记:(1)离散系统的系统函数,系统的频率响应的定义。

综合应用:(1)确定简单离散系统的系统函数和系统的频率响应;(2)线性移不变系统的因果性及稳定性在Z域的判断方法。

第3章离散傅里叶变换(DFT)

(一)学习的目的和要求

本章的目的是使学生掌握并应用离散傅里叶变换。深刻理解离散傅里叶变换的定义及性质;了解周期序列的离散傅里叶级数以及傅里叶变换的几种可能形式;理解频域抽样理论;熟练掌握用离散傅里叶变换对信号进行谱分析。

(二)课程内容

3.1引言

3.2 傅里叶变换的几种可能形式

3.3 周期序列的傅立叶级数

3.4离散傅里叶级数的性质

3.5离散傅里叶变换-有限长序列的离散频域表示

3.6 离散傅里叶变换的性质

3.7抽样z变换-频域抽样理论

3.8 利用DFT计算模拟信号的傅里叶变换(级数)对

本章重点是DFT的概念及其运算和应用,难点是用DFT对信号进行谱分析。

(三)考核知识点

1、周期序列的离散傅里叶级数

2、离散傅里叶变换的定义及性质

3、用离散傅里叶变换计算线性卷积和

4、频域抽样理论

5、用离散傅里叶变换对信号进行谱分析

(四)考核要求

1、傅里叶变换的几种可能形式

领会:傅里叶变换的几种可能形式(傅里叶变换、傅里叶级数、序列的傅里叶变换和离散傅里叶变换)。

2、周期序列的傅里叶级数

识记:(1)周期序列的傅里叶级数与Z变换的关系。

领会:(1)周期序列的傅里叶级数的性质;(2)主值序列的含义。

简单应用:周期序列的傅里叶级数的定义。

3、离散傅里叶变换

识记:(1)离散傅里叶变换及反变换的定义;(2)离散傅里叶变换与Z变换的关系。

领会:(1)离散傅里叶变换的隐含周期性;(2)取模值运算(又称取余运算)。

综合应用:(1)用离散傅里叶变换计算线性卷积和;(2)离散傅里叶变换的主要性质。

简单应用:计算圆周卷积和。

4、频域抽样理论

领会:(1)频域采样含义;(2)频域采样的条件。

5、利用DFT计算模拟信号的傅里叶变换(级数)对

综合应用:用离散傅里叶变换对信号进行谱分析。

第4章快速傅里叶变换

(一)学习的目的和要求

本章的目的是使学生掌握并应用快速傅里叶变换。理解DFT计算效率的途径、按时间抽取的基2-FFT算法;了解按频率抽取的基2-FFT算法、IDFT的快速算法;熟练掌握线性卷积的FFT实现。

(二)课程内容

4.1引言

4.2直接计算DFT的问题及改进的途径

4.3按时间抽选的基-2FFT算法

4.4按频率抽选的基-2FFT算法

4.5离散傅里叶反变换的快速算法

4.10线性卷积与线性相关的FFT算法

本章重点和难点都是基2FFT算法和线性卷积的FFT实现。

(三)考核知识点

1、直接计算N点DFT的运算量

2、减少运算量的基本途径

3、按时间抽选的基-2FFT算法

4、线性卷积的FFT实现

(四)考核要求

1、直接计算DFT的问题及改进的途径

识记:直接计算N点DFT的运算量;(2)减少运算量的基本途径。

2、基-2FFT算法

识记:(1)FFT的意义;(2)基-2的含义;(3)蝶形运算的含义;(4)信号流图的概念;(5)同址运算的概念;(6)倒位序的含义;(7)基-2FFT的复数运算量的计算。

领会:(1)按时间抽取的基-2 FFT运算原理和运算特点;(2)按时间抽取的基-2 FFT 蝶形运算流图;(3)离散傅里叶反变换的快速算法;(4)按频率抽选的基-2FFT算法。

3、线性卷积的FFT实现

简单应用:线性卷积的FFT实现。

第5章数字滤波器的基本结构

(一)学习的目的和要求

本章的目的是使学生掌握并应用IIR和FIR数字滤波器的基本结构。深刻理解数字滤波器的基本概念、IIR和FIR数字滤波器的特点及其基本结构,熟练掌握它们的应用。

(二)课程内容

5.1 数字滤波器结构的表示方法

5.2 IIR数字滤波器的基本结构

5.3 FIR数字滤波器的基本结构

(三)考核知识点

1、数字滤波器结构的表示方法

2、IIR数字滤波器的基本结构

3、FIR数字滤波器的基本结构

(四)考核要求

1、数字滤波器的基本概念

领会:(1)数字滤波器的基本概念;(2)数字滤波器的基本运算单元;(3)数字滤波器的运算结构(又可用信号流图表示)。

2、IIR数字滤波器结构

识记:(1)IIR数字滤波器的特点;(2)递归结构、反馈支路、节点的概念;(3)直接型(Ⅱ型)结构;(4)级联型结构;(5)并联型结构。

综合应用:(1)根据描述系统的差分方程、系统函数或单位冲激响应画出不同形式的IIR系统信号流图;(2)根据IIR系统信号流图写出描述系统的差分方程、系统函数或单位脉冲响应。

3、FIR数字滤波器结构

识记:(1)FIR数字滤波器的它的;(2)非递归结构的概念;(3)直接型结构;(4)级联型结构:(5)快速卷积型结构。

领会:(1)横截型结构的意义;(2)频率采样型结构;(3)线性相位FIR滤波器的结构。

综合应用:(1)根据描述系统的差分方程、系统函数或单位冲激响应画出不同形式的FIR系统信号流图;(2)根据FIR系统信号流图写出描述系统的差分方程、系统函数或单位脉冲响应。

第6章无限长单位冲激响应(IIR)数字滤波器的设计方法

(一)学习的目的和要求

本章的目的是使学生掌握并应用IIR滤波器的设计方法。理解数字滤波器的概念;熟练掌握用模拟滤波器设计IIR数字滤波器(冲激响应不变法和双线性变换法);掌握设计IIR 数字滤波器的频率变换法。

(二)课程内容

6.4用模拟滤波器设计数字滤波器

6.5 冲激响应不变法

6.7 双线性变换法

6.9 设计IIR滤波器的频率变换法

6.10、先利用模拟域频带变换法,再利用数字化法设计数字各型滤波器

6.11先将模拟归一化低通原型数字化为数字低通,再利用数字域频带变换法设计数字各型滤波器

本章的重点和难点都是利用冲激响应不变法和双线性变换法设计IIR数字低通滤波器。(三)考核知识点

1、数字滤波器设计的基本概念

2、利用冲激响应不变法设计IIR数字低通滤波器

3、利用双线性变换法设计IIR数字低通滤波器

4、数字高通、带通和带阻滤波器的设计

(四)考核要求

1、数字滤波器设计的基本概念

识记:(1)数字滤波器的概念;(2)滤波器的设计指标;(3)IIR和FIR滤波器设计特点。

领会:(1)高通滤波器;(2)低通滤波器;(3)带通滤波器;(4)带阻滤波器;(5)数字滤波器的设计步骤;(6)IIR和FIR滤波器。

2、冲激响应不变变换法设计IIR数字滤波器

识记:(1)冲激响应不变变换法的概念;(2)混叠失真的概念;(3)冲激响应不变变换法设计原理。

领会:(1)模拟波波器的数字化方法;(2)脉冲响应不变变换法设计IIR数字滤波器的设计步骤;(3)适用范围

简单应用:用冲激响应不变变换法设计IIR数字滤波器。

3、双线性变换法设计IIR数字滤波器

识记:(1)双线性变换法的概念;(2)频率畸变的概念;(3)非线性失真的概念;(4)双线性变换法变换原理。

领会:(1)预畸变的方法;(2)模拟滤波器的数字化方法;(3)双线性变换法设计IIR数字滤波器的设计步骤;(4)适用范围。

简单应用:用双线性变换法设计IIR数字滤波器。

4、数字高通、带通和带阻滤波器的设计

领会:(1)先利用模拟域频带变换法,再利用数字化法设计数字各型滤波器;(2)先将模拟归一化低通原型数字化为数字低通,再利用数字域频带变换法设计数字各型滤波器。

识记:设计IIR滤波器的频率变换法的概念。

第7章有限长单位冲激响应(FIR)数字滤波器的设计方法

(一)学习的目的和要求

本章的目的是使学生掌握并应用FIR滤波器的设计方法。深刻理解具有线性相位FIR 滤波器的特点;掌握FIR数字滤波器的窗函数设计法和频率抽样设计法;深刻理解IIR与FIR数字滤波器的比较。

(二)课程内容

7.1 引言

7.2线性相位FIR滤波器的特点

7.3窗函数设计法

7.4 频率抽样设计法

7.6 IIR与FIR数字滤波器的比较

本章的重点和难点都是FIR数字滤波器的窗函数设计法。

(三)考核知识点

1、线性相位FIR滤波器的特点和条件

2、FIR数字滤波器的窗函数设计法

3、FIR数字滤波器的频率抽样设计法

4、IIR与FIR数字滤波器的比较

(四)考核要求

1、线性相位FIR滤波器的特点

识记:(1)线性相位数字滤波器的概念;(2)线性相位FIR数字滤波器的条件;(3)线性相位FIR数字滤波器的零点、极点分布特点。

领会:四种形式的线性相位FIR数字滤波器的幅小辈特性和相频特性特点。

简单应用:根据线性相位FIR数字滤波器的零点分布判断滤波器的传输函数。

2、窗函数设计FIR滤波器

识记:(1)窗函数的基本概念;(2)主瓣和旁瓣的概念;(3)主瓣宽度和旁瓣衰减的概念;(4)窗函数设计FIR滤波器的基本原理。

领会:(1)窗函数对理想频率响应的特性的影响;(2)窗函数设计FIR滤波器的步骤。

简单应用:应用窗函数设计法设计具有线性相位的FIR数字滤波器。

3、频率采样法设计FIR滤波器

领会:频率采样的基本概念。

4、IIR与FIR数字滤波器的比较

识记:IIR与FIR数字滤波器的比较。

三关于大纲的说明与考核实施要求

(一)考核的能力层次表述

1. 关于考核知识点说明:考试大纲中所列考核知识点是本章所必需要考核的基本知识和范围,是自学者重点要掌握的知识。

2. 关于考核要求的说明:考试大纲中所规定的考核要求是指在学习了各章的内容后对各章规定的考核目标。明确考核要求,使自学应考者能够进一步明确考试内容和要求,更有目的地系统学习教材;使考试命题能够更加明确命题范围,更准确地安排试题的知识能力层次和难易程度。

识记:要求考生能够对大纲中的知识点,如定义、定理、公式、性质、法则等有清晰准确的认识,并能做出正确的判断和选择。

领会:要求考生能够对大纲中的概念、定理、公式、法则等有一定的理解,清楚它与有关知识点的联系与区别,并能做出正确的表达和解释。

简单应用:要求考生能够运用本大纲中各部分的少数几个知识点,解决简单的计算、证明或应用问题。

综合应用:要求考生能够对大纲中的概念、定理、公式、法则等熟悉和理解的基础上,会运用多个知识点,分析、计算和推导解决稍复杂的一些问题。

(二)教材

指定教材:《数字信号处理》(第二版)(2001年版),丁玉美、高西全主编,西安电子科技大学出版社(暂定)

推荐教材:《数字信号处理教程》(第二版),程佩青主编,清华大学出版社

参考书目:

1、《离散时间信号处理》,刘树棠、黄建国译,奥本海姆,谢弗,巴克著,西安交通大学出版社。

2、《数字信号处理》,丁玉美编著,西安电子科技大学出版社。

3、《数字信号处理–基于计算机的方法》(中文版)Sanjit K. Mitra编,电子工业出版社

(三)自学方法指导

1、在开始阅读指定教材某一章之前,先翻阅大纲中有关这一章的考核知识点及对知识点的能力层次要求和考核目标,以便在阅读教材时做到心中有数,有的放矢。

2、阅读教材时,要逐段细读,逐句推敲,集中精力,吃透每一个知识点,对基本概念必须深刻理解,对基本理论必须彻底弄清,对基本方法必须牢固掌握。

3、在自学过程中,既要思考问题,也要做好阅读笔记,把教材中的基本概念、原理、方法等加以整理,这可从中加深对问题的认知、理解和记忆,以利于突出重点,并涵盖整个内容,可以不断提高自学能力。

4、完成书后作业和适当的辅导练习是理解、消化和巩固所学知识,培养分析问题、解决问题及提高能力的重要环节,在做练习之前,应认真阅读教材,按考核目标所要求的不同层次,掌握教材内容,在练习过程中对所学知识进行合理的回顾与发挥,注重理论联系实际和具体问题具体分析,解题时应注意培养逻辑性,针对问题围绕相关知识点进行层次(步骤)分明的论述或推导,明确各层次(步骤)间的逻辑关系。

(四)自学方式的指导

1、本门课程的任务是研究数字信号处理,在系统学习的基础上重点掌握数字信号处理的基本概念、基本原理、信号分析和处理以及它的具体应用。

2、掌握线性时不变离散时间系统的三种分析方法——卷积和方法、频域分析方法和Z 变换分析法。

3. 掌握离散时间信号的频谱——傅里叶变换;离散傅里叶变换(DFT)及其快速算法(FFT)。

4. 掌握数字滤波器的基本结构;IIR和FIR数字滤波器设计的常用方法。

(五)对社会助学的要求

1、社会助学者应根据本大纲规定的课程内容和考核要求,认真钻研指定教材,明确本课程与其他课程不同的特点和学习要求,对自学应考者进行切实有效的辅导,引导他们防止自学中的各种偏向,把握社会助学的正确导向。

2、要正确处理基础知识和应用能力的关系,努力引导自学应考者将识记、理解同应用联系起来,把基础知识和理论转化为应用能力,在全面辅导的基础上,着重培养和提高自学应考者的分析问题和解决问题的能力。

3、要正确处理重点和一般的关系。课程内容有重点与一般之分,但考试内容是全面的,而且重点与一般是相互联系的,不是截然分开的。社会助学者应指导自学应考者全面系统地学习教材,掌握全部课程内容和考核知识点,在此基础上再突出重点。总之,要把重点学习同兼顾一般结合起来,切勿孤立地抓重点,把自学应考者引向猜题押题。

4、本课程总学时数与各章的学时分配如下表所示:

(六)关于命题、考试工作的若干规定

1、本大纲各章所提到的内容和考核目标都是考试内容。试题覆盖到章,适当突出重点。

2、试卷中对不同能力层次的试题比例大致是:"识记"为20%、"理解"为25%、"应用"为55%。

3、试题难易程度应合理:易、较易、较难、难比例为2:3:3:2。

4、每份试卷中,各类考核点所占比例约为:重点占65%,次重点占25%,一般占10%。

5、题型结构的说明:本课程考试的题型结构有:单项选择题、简答题、分析题、计算题、作图题、综合应用题。

6、考试采用闭卷笔试,考试时间150分钟,采用百分制评分,60分合格。

题型举例

一、单项选择题

1、当N>>1时,直接计算N 点DFT 所需的乘法次数与( )成正比。

A .N B. NLog 2N C. N 2 D. 4 N 2

二、简答题

1、比较IIR 与FIR 数字滤波器的优缺点。

三、分析题

1、设离散系统的输入为()n x ,输出为()n y ,分析系统()()0T x n x n n =-????的线性、 稳

定、因果及移不变特性,并说明理由。

四、计算题

1、求信号()()0sin()x n n n u n ω=的z 变换及其收敛域?

五、作图题

1、设}8,0,7,3,5{)(=n x ,}2,8,4,7,9{)(=n y ,求x(n)+y(n)并作图。

六、综合应用题

1、序列()n x 的DFT 相当于从单位圆上1z =开始,对序列的z 变换()X z 进行N 点的等间隔采样的结果。若想在半径为r 的圆上对z 变换采样,如何调整()n x ,使其DFT 相当于在期望的半径上对()X z 采样?

DSP技术与算法实现学习报告

DSP技术与算法实现学习报告 一.课程认识 作为一个通信专业的学生,在本科阶段学习了数字信号处理的一些基本理论知识,带着进一步学习DSP技术以及将其理论转化为实际工程实现的学习目的,选择了《DSP技术与算法实现》这门课程。通过对本课程的学习,我在原有的一些DSP基础理论上,进一步学习到了其一些实现方法,系统地了解到各自DSP芯片的硬件结构和指令系统,受益匪浅。 本门课程将数字信号处理的理论与实现方法有机的结合起来,在简明扼要地介绍数字信号处理理论和方法的基本要点的基础上,概述DSP的最新进展,并以目前国际国内都使用得最为广泛的德克萨斯仪器公式(TI,Texas Instruments)的TMS320、C54xx系列DSP为代表,围绕“DSP实现”这个重点,着重从硬件结构特点,软件指令应用和开发工具掌握出发,讲解DSP应用的基础知识,讨论各种数字信号处理算法的实现方法及实践中可能遇到的主要问题,在此基础上实现诸如FIR、IIR、FFT等基本数字信号处理算法等等。 1.TI的DSP体系 TI公司主要推出三大DSP系列芯片,即TMS320VC2000,TMS320VC5000,TMS320VC6000系列。 TMS320VC200系列主要应用于控制领域。它集成了Flash存储器、高速A/D转换器、可靠的CAN模块及数字马达控制等外围模块,适用于三相电动机、变频器等高速实时的工控产品等数字化控制化领域。 TMS320VC5000系列主要适用于通信领域,它是16为定点DSP芯片,主要应用在IP 电话机和IP电话网、数字式助听器、便携式音频/视频产品、手机和移动电话基站、调制调解器、数字无线电等领域。它主要分为C54和C55系列DSP。课程着重讲述了C54系列的主要特性,它采用改进哈弗结构,具有一个程序存储器总线和三个数据存储器总线,17×17-bit乘法器、一个供非流水的MAC(乘法/累加)使用的专用加法器,一个比较、选择、存储单元(Viterbi加速器),配备了双操作码指令集。 TMS320VC6000系列主要应用于数字通信和音频/视频领域。它是采用超长指令字结构设计的高性能芯片,其速度可以达到几十亿MIPS浮点运算,属于高端产品应用范围。

数字信号处理知识点总结

《数字信号处理》辅导 一、离散时间信号和系统的时域分析 (一) 离散时间信号 (1)基本概念 信号:信号传递信息的函数也是独立变量的函数,这个变量可以是时间、空间位置等。 连续信号:在某个时间区间,除有限间断点外所有瞬时均有确定值。 模拟信号:是连续信号的特例。时间和幅度均连续。 离散信号:时间上不连续,幅度连续。常见离散信号——序列。 数字信号:幅度量化,时间和幅度均不连续。 (2)基本序列(课本第7——10页) 1)单位脉冲序列 1,0()0,0n n n δ=?=?≠? 2)单位阶跃序列 1,0 ()0,0n u n n ≥?=?≤? 3)矩形序列 1,01 ()0,0,N n N R n n n N ≤≤-?=?<≥? 4)实指数序列 ()n a u n 5)正弦序列 0()sin()x n A n ωθ=+ 6)复指数序列 ()j n n x n e e ωσ= (3)周期序列 1)定义:对于序列()x n ,若存在正整数N 使()(),x n x n N n =+-∞<<∞ 则称()x n 为周期序列,记为()x n ,N 为其周期。 注意正弦周期序列周期性的判定(课本第10页) 2)周期序列的表示方法: a.主值区间表示法 b.模N 表示法 3)周期延拓 设()x n 为N 点非周期序列,以周期序列L 对作()x n 无限次移位相加,即可得到周期序列()x n ,即 ()()i x n x n iL ∞ =-∞ = -∑ 当L N ≥时,()()()N x n x n R n = 当L N <时,()()()N x n x n R n ≠ (4)序列的分解 序列共轭对称分解定理:对于任意给定的整数M ,任何序列()x n 都可以分解成关于/2c M =共轭对称的序列()e x n 和共轭反对称的序列()o x n 之和,即

现代数字信号处理及其应用——LMS算法结果及分析

LMS 算法MATLAB 实现结果及其分析 一、LMS :为课本155页例题 图1.1:LMS 算法学习曲线(初始权向量[]T 00w ?=) 图1.2滤波器权系数迭代更新过程曲线(步长075.0=μ) 图1.3滤波器权系数迭代更新过程曲线(步长025.0=μ)图1.4滤波器权系数迭代更新过程曲线(步长015.0=μ) 分析解释: 在图1.1中,收敛速度最慢的是步长为015.0=μ的曲线,收敛速度最快的是步长075.0=μ的曲线,所以可以看出LMS 算法的收敛速度随着步长参数的减小而相应变慢。图1.2、1.3、1.4分别给出了步长为075.0=μ、025.0=μ、025.0=μ的滤波器权系数迭代更新过程曲线,可以发现其不是平滑的过程,跟最抖下降法不一样,体现了其权向量是一个随机过程向量。

LMS2:为课本155页例题,156页图显示结果 图2.1:LMS 算法学习曲线(初始权向量[]T 00w ?=) 图2.2滤波器权系数迭代更新过程曲线(步长025.0=μ) 图2.3滤波器权系数迭代更新过程曲线(步长025.0=μ)图2.4最陡下降法权值变化曲线(步长025.0=μ) 分析解释: 图2.1给出了步长为025.0=μ的学习曲线,图2.2给出了滤波器权向量的单次迭代结果。图2.3给出了一 次典型实验中所得到的权向量估计()n w ?=,以及500次独立实验得到的平均权向量()}n w ?E{=的估计,即()∑==T t n w T 1 t )(?1n w ?,其中)(?n w t 是第t 次独立实验中第n 次迭代得到的权向量,T 是独立实验次数。可以发现,多次独立实验得到的平均权向量()}n w ?E{=的估计平滑了随机梯度引入的梯度噪声,使得其结果与使用最陡下降法(图2.4)得到的权向量趋于一致,十分接近理论最优权向量[]T 7853.08361.0w 0-=。 LMS3:为课本172页习题答案

数字信号处理教案

数字信号处理教案 余月华

课程特点: 本课程是为电子、通信专业三年级学生开设的一门课程,它是在学生学完了信号与系统的课程后,进一步为学习专业知识打基础的课程。本课程将通过讲课、练习使学生掌握数字信号处理的基本理论和方法。课程内容包括:离散时间信号与系统;离散变换及其快速算法;数字滤波器结构;数字滤波器设计;数字信号处理系统的实现等。 本课程逻辑性很强, 很细致, 很深刻;先难后易, 前三章有一定的难度, 倘能努力学懂前三章(或前三章的0080), 后面的学习就会容易一些;只要在课堂上专心听讲, 一般是可以听得懂的, 但即便能听懂, 习题还是难以顺利完成。这是因为数字信号分析技巧性很强, 只了解基本的理论和方法, 不辅以相应的技巧, 是很难顺利应用理论和方法的。论证训练是信号分析课基本的,也是重要的内容之一, 也是最难的内容之一。 因此, 理解证明的思维方式, 学习基本的证明方法, 掌握叙述和书写证明的一般语言和格式, 是信号分析教学贯穿始终的一项任务。 鉴于此, 建议的学习方法是: 预习, 课堂上认真听讲, 必须记笔记, 但要注意以听为主, 力争在课堂上能听懂七、八成。 课后不要急于完成作业, 先认真整理笔记, 补充课堂讲授中太简或跳过的推导, 阅读教科书, 学习证明或推导的叙述和书写。基本掌握了课堂教学内容后, 再去做作业。在学习中, 要养成多想问题的习惯。 课堂讲授方法: 1. 关于教材: 《数字信号处理》 作者 丁玉美 高西全 西安电子科技大学出版社 2. 内容多, 课时紧: 大学课堂教学与中学不同的是每次课介绍的内容很多, 因此, 内容重复的次数少, 讲课只注重思想性与基本思路, 具体内容或推导特别是同类型或较简的推理论证及推导计算, 可能讲得很简, 留给课后的学习任务一般很重。. 3. 讲解的重点: 概念的意义与理解, 理论的体系, 定理的意义、条件、结论、定理证明的分析与思路, 具有代表性的证明方法, 解题的方法与技巧,某些精细概念之间的本质差别. 在教学中, 可能会写出某些定理证明, 以后一般不会做特别具体的证明叙述. 4. 要求、辅导及考试: a. 学习方法: 适应大学的学习方法, 尽快进入角色。 课堂上以听为主, 但要做课堂笔记,课后一定要认真复习消化, 补充笔记,一般课堂教学与课外复习的时间比例应为1 : 3 。 b. 作业: 大体上每两周收一次作业, 一次收清。每次重点检查作业总数的三分之一。 作业的收交和完成情况有一个较详细的登记, 缺交作业将直接影响学期总评成绩。 c. 辅导: 大体两周一次。 d. 考试: 只以最基本的内容进行考试, 大体上考课堂教学和所布置作业的内容。 课程的基本内容与要求 第一章. 时域离散信号与时域离散系统 1. 熟悉6种常用序列及序列运算规则; 2. 掌握序列周期性的定义及判断序列周期性的方法; 3. 掌握离散系统的定义及描述方法(时域描述和频域描述); 4. 掌握LSI 系统的线性移不变和时域因果稳定性的判定; 第二章 时域离散信号与系统的傅立叶变换分析方法

DSP常见算法的实现

3.6 常见的算法实现 在实际应用中虽然信号处理的方式多种多样,但其算法的基本要素却大多相同,在本节中介绍几种较为典型的算法实现,希望通过对这些例子(单精度,16bit )的分析,能够让大家熟悉DSP 编程中的一些技巧,在以后的工作中可以借鉴,达到举一反三的效果。 1. 函数的产生 在高级语言的编程中,如果要使用诸如正弦、余弦、对数等数学函数,都可以直接调用运行库中的函数来实现,而在DSP 编程中操作就不会这样简单了。虽然TI 公司提供的实时运行库中有一些数学函数,但它们所耗费的时间大多太长,而且对于大多数定点程序使用双精度浮点数的返回结果有点“大材小用”的感觉,因此需要编程人员根据自身的要求“定制”数学函数。实现数学函数的方法主要有查表法、迭代法和级数逼近法等,它们各有特点,适合于不同的应用。 查表法是最直接的一种方法,程序员可以根据运算的需要预先计算好所有可能出现的函数值,将这些结果编排成数据表,在使用时只需要根据输入查出表中对应的函数值即可。它的特点是速度快,但需要占用大量的存储空间,且灵活度低。当然,可以对上述查表法作些变通,仅仅将一些关键的函数值放置在表中,对任意一个输入,可根据和它最接近的数据采用插值方法来求得。这样占用的存储空间有所节约,但数值的准确度有所下降。 迭代法是一种非常有用的方法,在自适应信号处理中发挥着重要的作用。作为函数产生的一种方法,它利用了自变量取值临近的函数值之间存在的关系,如时间序列分析中的AR 、MA 、ARMA 等模型,刻画出了信号内部的特征。因为它只需要存储信号模型的参量和相关的状态变量,所以所占用的存储空间相对较少,运算时间也较短。但它存在一个致命的弱点,由于新的数值的产生利用了之前的函数值,所以它容易产生误差累积,适合精度要求不高的场合。 级数逼近法是用级数的方法在某一自变量取值范围内去逼近数学函数,而将自变量取值在此范围外的函数值利用一些数学关系,用该范围内的数值来表示。这种方法最大的优点是灵活度高,且不存在误差累积,数值精度由程序员完全控制。该方法的关键在于选择一个合适的自变量取值区间和寻找相应的系数。 下面通过正弦函数的实现,具体对上述三种方法作比较。 查表法较简单,只需要自制一张数据表,也可以利用C5400 DSP ROM 内的正弦函数表。 迭代法的关键是寻找函数值间的递推关系。假设函数采样时间间隔为T ,正弦函数的角频率为ω,那么可以如下推导: 令()()()T T ω?β?αω?-+=+sin sin sin 等式的左边展开为 T T side left ω?ω?sin cos cos sin _+= 等式的右边展开为 ()T T side right ω?βωα?sin cos cos sin _-+= 对比系数,可以得到1,cos 2-==βωαT 。令nT =?,便可以得到如下的递推式: [][][]21cos 2---=n s n s T n s ω

如何学习数字信号处理

如何学好数字信号处理课程 《数字信号处理》是相关专业本科生培养中,继《信号与系统》、《通信原理》、《数字逻辑》等课程之后的一门专业技术课。数字信号处理的英文缩写是DSP ,包括两重含义:数字信号处理技术(Digital Signal Processing )和数字信号处理器(Digital Signal Processor )。目前我们对本科生开设的数字信号处理课程大多侧重在处理技术方面,由于课时安排和其他一些原因,通常的特点是注重理论推导而忽略具体实现技术的介绍。最后导致的结果就是学生在学习了数字信号处理课程之后并不能把所学的理论知识与实际的工程应用联系起来,表现在他们做毕业设计时即使是对学过的相关内容也无法用具体的手段来实现,或者由于无法与具体实际相挂钩理解而根本就忘记了。我相信,我们开设本课程的根本目的应该是让学生在熟练掌握数字信号处理的基本原理基础上,能结合工程实际学习更多的DSP 实现技术及其在通信、无线电技术中的应用技能,这也是符合DSP 本身的二重定义的,学生通过本课程的学习,将应该能从事数字信号处理方面的研究开发、产品维护等方面的技术工作。其实很多学生在大学四年学习过后都有这种反思:到底我在大学学到了什么呢?难道就是一些理论知识吗?他们将如何面对竞争日益激烈的社会呢? 因此,大家在应用MATLAB学习并努力掌握数字信号处理的原理,基本理论的同时,应该始终意识到该课程在工程应用中的重要性,并在课后自学一些有关DSP技术及FPGA技术方面的知识。这样,学习本课程学习的三部曲是:一,学习数字信号处理的基本理论;二,掌握如何用MATLAB 实现一些基本的算法,如FFT ,FIR 和IIR 滤波器设计等;三,选择一种数字信号处理器作为实现平台进行实践学习,比如TI 公司的TMS320C54x 系列芯片,包括该处理器的硬件和软件系统,如Code Composer Studio及像MATLAB Link for Code Composer Studio这样的工具。 在学习数字信号处理的过程中,要注重培养自己的工程思维方法。数字信号处理的理论含有许多研究问题和解决问题的科学方法,例如频率域的分析方法、傅里叶变换的离散做法、离散傅里叶变换的快速计算方法等, 这些方法很好。虽然它们出现在信号处理的专业领域, 但是, 其基本精神是利用事物的特点和规律解决实际问题, 这在各个领域中是相同的。还有, 数字信号处理的理论的产生是有原因的, 这些原因并不难懂, 就是理论为应用服务, 提高使用效率。 例如: 为什么要使用频率域的分析方法?原因是从时间看问题, 往往看到事物的表面, 就像 我们用眼睛看水只能看到水的颜色, 看不到水的基本成分, 同样, 从时间看信号只能看到信号变化的大小和快慢,看不到信号的基本成分; 若采用分解物质的方法, 从成分的角度去看, 用化学分析则能看到水的各种成分, 同样, 用分解信号的方法则能看到信号里的基本成分, 至于基本成分的选择则视哪种基本类型最适合实际信号处理, 这就是频率域的分析方法。 又如: 为什么要采用离散的傅里叶变换?原因很简单, 因为要利用计算机计算傅里叶变换, 而计算机只能计算数据, 不能计算连续变量, 所以必须分离连续的傅里叶变换, 使它成为离散的傅里叶变换。 再如: 为什么要采用离散傅里叶变换的快速计算方法?原因是, 理论上离散傅里叶变换能让计算机分析频谱, 但是, 直接按照离散傅里叶变换的定义计算它, 计算量太大, 实用价值不大; 只有采用巧妙的方法降低计算量, 则离散傅里叶变换才有实用价值,这种巧妙的方法就 是离散傅里叶变换的快速计算方法。降低计算量的巧妙之处在, 离散傅里叶变换的计算量与信号的长度成正比, 科学家想办法将信号分解成为短信号, 分解成为短信号的方法有多种, 只要开动脑筋,我们也是一样可以想出来的。 最后,感谢同学们对我的支持,我会尽我所能,与大家共同探索"数字信号处理"领域的奇妙世界。

数字信号处理总结与-习题(答案

对模拟信号(一维信号,是时间的函数)进行采样后,就是 离散 信号,再进行幅度量化后就是 数字信号。2、若线性时不变系统是有因果性,则该系统的单位取样响应序列h(n)应满足的充分必要条件是 当n<0时,h(n)=0 。3、序列)(n x 的N 点DFT 是)(n x 的Z 变换在 单位圆 的N 点等间隔采样。4、)()(5241 n R x n R x ==,只有 当循环卷积长度L ≥8 时,二者的循环卷积等于线性卷积。5、已知系统的单位抽样响应为h(n),则系统稳定的充要条件是 ()n h n ∞ =-∞ <∞ ∑ 6、用来计算N =16点DFT ,直接计算需要(N 2 )16*16=256_次复乘法,采用基2FFT 算法, 需要__(N/2 )×log 2N =8×4=32 次复乘法。7、无限长单位冲激响应(IIR )滤波器的基本结构有直接Ⅰ型,直接Ⅱ型,_级联型_和 并联型_四种。8、IIR 系统的系统函数为)(z H ,分别用直接型,级联型,并联型结构实现,其中 并 联型的运算速度最高。9、数字信号处理的三种基本运算是:延时、乘法、加法 10、两个有限长序列 和 长度分别是 和 ,在做线性卷积后结果长度是__N 1+N 2-1_。11、N=2M 点基2FFT ,共有 M 列蝶形, 每列有N/2 个蝶形。12、线性相位FIR 滤波器的零点分布特点是 互为倒数的共轭对 13、数字信号处理的三种基本运算是: 延时、乘法、加法 14、在利用窗函数法设计FIR 滤波器时,窗函数的窗谱性能指标中最重要的是___过渡带宽___与__阻带最小衰减__。16、_脉冲响应不变法_设计IIR 滤波器不会产生畸变。17、用窗口法设计FIR 滤波器时影响滤波器幅频特性质量的主要原因是主瓣使数字滤波器存在过渡带,旁瓣使数字滤波器存在波动,减少阻带衰减。18、单位脉冲响应分别为 和 的两线性系统相串联,其等效系统函数时域及频域表达式分别是h(n)=h 1(n)*h 2(n), =H 1(e j ω )× H 2(e j ω )。19、稳定系统的系统函数H(z)的收敛域包括 单位圆 。20、对于M 点的有限长序列x(n),频域采样不失真的条件是 频域采样点数N 要大于时域采样点数M 。 1、下列系统(其中y(n)为输出序列,x(n)为输入序列)中哪个属于线性系统?( y(n)=x(n 2 ) ) A.窗函数的截取长度增加,则主瓣宽度减小,旁瓣宽度减小 B.窗函数的旁瓣相对幅度取决于窗函数的形状,与窗函数的截取长度无关 C.为减小旁瓣相对幅度而改变窗函数的形状,通常主瓣的宽度会增加 D.窗函数法能用于设计FIR 高通滤波4、因果FIR 滤波器的系统函数H(z)的全部极点都在(z = 0 )处。6、已知某序列z 变换的收敛域为|z|<1,则该序列为(左边序列)。7、序列)1() (---=n u a n x n ,则)(Z X 的收敛域为(a Z <。8、在对连续信号均匀 采样时,要从离散采样值不失真恢复原信号,则采样周期T s 与信号最高截止频率f h 应满足关系(T s <1/(2f h ) ) 9、 )()(101n R n x =,)()(72n R n x =,用DFT 计算二者的线性卷积,为使计算量尽可能的少,应使DFT 的长度N 满足 (16=N )。10、线性相位FIR 滤波器有几种类型( 4) 。11、在IIR 数字滤波器的设计中,用哪种方法只适 合于片断常数特性滤波器的设计。(双线性变换法)12、下列对IIR 滤波器特点的论述中错误的是( C )。 A .系统的单位冲激响应h(n)是无限长的B.结构必是递归型的C.肯定是稳定的D.系统函数H(z)在有限z 平面(0<|z|<∞)上有极点 13、有限长序列h(n)(0≤n ≤N-1)关于τ= 2 1 -N 偶对称的条件是(h(n)=h(N-n-1))。14、下列关于窗函数设计法的说法中错误的是( D )。A.窗函数的截取长度增加,则主瓣宽度减小,旁瓣宽度减小 B.窗函数的旁瓣相对幅度取决于窗函数的形状,与窗函数的截取长度无关 C.为减小旁瓣相对幅度而改变窗函数的形状,通常主瓣的宽度会增加 D.窗函数法不能用于设计FIR 高通滤波器 15、对于傅立叶级数而言,其信号的特点是(时域连续非周期,频域连续非周期)。

数字信号处理期末论文

题目:基于DSP的FFT程序设计的研究 作者届别 系别专业 指导老师职称 完成时间2013.06

内容摘要 快速傅里叶变(Fas Fourier Tranformation,FFT)是将一个大点数N的DFT分解为若干小点的D F T的组合。将用运算工作量明显降低,从而大大提高离散傅里叶变换(D F T) 的计算速度。因各个科学技术领域广泛的使用了FFT 技术它大大推动了信号处理技术的进步,现已成为数字信号处理强有力的工具,本论文将比较全面的叙述各种快速傅里叶变换算法原理、特点,并完成了基于MATLAB的实现。 关键词:频谱分析;数字信号处理;MATLAB;DSP281x

引言: 1965年,库利(J.W.Cooley)和图基(J.W.Tukey)在《计算数学》杂志上发表了“机器计算傅立叶级数的一种算法”的文章,这是一篇关于计算DFT的一种快速有效的计算方法的文章。它的思路建立在对DFT运算内在规律的认识之上。这篇文章的发表使DFT的计算量大大减少,并导致了许多计算方法的发现。这些算法统称为快速傅立叶变换(Fast Fourier Transform),简称FFT,1984年,法国的杜哈梅尔(P.Dohamel)和霍尔曼(H.Hollmann)提出的分裂基快速算法,使运算效率进一步提高。FFT即为快速傅氏变换,是离散傅氏变换的快速算法,它是根据离散傅氏变换的奇、偶、虚、实等特性,对离散傅立叶变换的算法进行改进获得的。它对傅氏变换的理论并没有新的发现,但是对于在计算机系统或者说数字系统中应用离散傅立叶变换,可以说是进了一大步。 随着科学的进步,FFT算法的重要意义已经远远超过傅里叶分析本身的应用。FFT算法之所以快速,其根本原因在于原始变化矩阵的多余行,此特性也适用于傅里叶变换外的其他一些正交变换,例如,快速沃尔什变换、数论变换等等。在FFT的影响下,人们对于广义的快速正交变换进行了深入研究,使各种快速变换在数字信号处理中占据了重要地位。因此说FFT对数字信号处理技术的发展起了重大推动作用。 信号处理中和频谱分析最为密切的理论基础是傅立叶变换(Fouriertransform,FT)。快速傅立叶变换(FFT)和数字滤波是数字信号处理的基本内容。信号时域采样理论实现了信号时域的离散化,而离散傅里叶变换理论实现了频域离散化,因而开辟了数字技术在频域处理信号的新途径,推进了信号的频谱分析技术向更广的领域发展。 1.信号的频谱分析 如果信号频域是离散的,则信号在时域就表现为周期性的时间函数;相反信号在时域上是离散的,则该信号在频域必然表现为周期的频率函数。不难设想,一个离散周期序列,它一定具有既是周期又是离散的频谱。有限长序列的离散傅里叶变换和周期序列的离散傅里叶级数本质是一样的。因而有限长序列的离散傅里叶变换的定义为:x(n)和X(k)是一个有限长序列的离散傅里叶变换对。

数字信号处理教案

数字信号处理教案

课程特点: 本课程是为电子、通信专业三年级学生开设的一门课程,它是在学生学完了信号与系统的课程后,进一步为学习专业知识打基础的课程。本课程将通过讲课、练习使学生掌握数字信号处理的基本理论和方法。课程内容包括:离散时间信号与系统;离散变换及其快速算法;数字滤波器结构;数字滤波器设计;数字信号处理系统的实现等。 本课程逻辑性很强, 很细致, 很深刻;先难后易, 前三章有一定的难度, 倘能努力学懂前三章(或前三章的0080), 后面的学习就会容易一些;只要在课堂上专心听讲, 一般是可以听得懂的, 但即便能听懂, 习题还是难以顺利完成。这是因为数字信号分析技巧性很强, 只了解基本的理论和方法, 不辅以相应的技巧, 是很难顺利应用理论和方法的。论证训练是信号分析课基本的,也是重要的内容之一, 也是最难的内容之一。 因此, 理解证明的思维方式, 学习基本的证明方法, 掌握叙述和书写证明的一般语言和格式, 是信号分析教学贯穿始终的一项任务。 鉴于此, 建议的学习方法是: 预习, 课堂上认真听讲, 必须记笔记, 但要注意以听为主, 力争在课堂上能听懂七、八成。 课后不要急于完成作业, 先认真整理笔记, 补充课堂讲授中太简或跳过的推导, 阅读教科书, 学习证明或推导的叙述和书写。基本掌握了课堂教学内容后, 再去做作业。在学习中, 要养成多想问题的习惯。 课堂讲授方法: 1. 关于教材: 《数字信号处理》 作者 丁玉美 高西全 西安电子科技大学出版社 2. 内容多, 课时紧: 大学课堂教学与中学不同的是每次课介绍的内容很多, 因此, 内容重复的次数少, 讲课只注重思想性与基本思路, 具体内容或推导特别是同类型或较简的推理论证及推导计算, 可能讲得很简, 留给课后的学习任务一般很重。. 3. 讲解的重点: 概念的意义与理解, 理论的体系, 定理的意义、条件、结论、定理证明的分析与思路, 具有代表性的证明方法, 解题的方法与技巧,某些精细概念之间的本质差别. 在教学中, 可能会写出某些定理证明, 以后一般不会做特别具体的证明叙述. 4. 要求、辅导及考试: a. 学习方法: 适应大学的学习方法, 尽快进入角色。 课堂上以听为主, 但要做课堂笔记,课后一定要认真复习消化, 补充笔记,一般课堂教学与课外复习的时间比例应为1 : 3 。 b. 作业: 大体上每两周收一次作业, 一次收清。每次重点检查作业总数的三分之一。 作业的收交和完成情况有一个较详细的登记, 缺交作业将直接影响学期总评成绩。 c. 辅导: 大体两周一次。 d. 考试: 只以最基本的内容进行考试, 大体上考课堂教学和所布置作业的内容。 课程的基本内容与要求 第一章. 时域离散信号与时域离散系统 1. 熟悉6种常用序列及序列运算规则; 2. 掌握序列周期性的定义及判断序列周期性的方法; 3. 掌握离散系统的定义及描述方法(时域描述和频域描述); 4. 掌握LSI 系统的线性移不变和时域因果稳定性的判定; 第二章 时域离散信号与系统的傅立叶变换分析方法

数字信号处理复习总结-最终版

绪论:本章介绍数字信号处理课程的基本概念 0.1信号、系统与信号处理 1?信号及其分类 信号是信息的载体,以某种函数的形式传递信息。这个函数可以是时间域、频率域或其它域,但最基础的域是时域。 分类: 周期信号/非周期信号 确定信号/随机信号能量信号/功率信号 连续时间信号/离散时间信号/数字信号按自变量与函数值的取值形式不同分类: 2?系统 系统定义为处理(或变换)信号的物理设备,或者说,凡是能将信号加以变换以达到人们要求的各种设备都称为系统。 3. 信号处理 信号处理即是用系统对信号进行某种加工。包括:滤波、分析、变换、综合、压缩、估计、识别等等。所谓“数字信号处理”,就是用数值计算的方法,完成对信号的处理。 0.2数字信号处理系统的基本组成 数字信号处理就是用数值计算的方法对信号进行变换和处理。不仅应用于数字化信号的处理, 而且也可应用于模拟信号的处理。以下讨论模拟信号数字化处理系统框图。 精选

PrF ADC DSP DAC PoF (1)前置滤波器 将输入信号X a(t )中高于某一频率(称折叠频率,等于抽样频率的一半)的分量加以滤除。 (2)A/D变换器 在A/D变换器中每隔T秒(抽样周期)取出一次X a(t)的幅度,抽样后的信号称为离散信号。在A/D 变换器中的保持电路中进一步变换为若干位码。 (3)数字信号处理器(DSP) (4)D/A变换器 按照预定要求,在处理器中将信号序列x(n)进行加工处理得到输出信号y(n)。由一个二进制码流产生一个阶梯波形,是形成模拟信号的第一步。 (5)模拟滤波器 把阶梯波形平滑成预期的模拟信号;以滤除掉不需要的高频分量,生成所需的模拟信号y a(t)。 0.3数字信号处理的特点 (1)灵活性。(2)高精度和高稳定性。(3)便于大规模集成。(4)对数字信号可以存储、运算、系统可以获得高性能指标。 0.4数字信号处理基本学科分支 数字信号处理(DSP)一般有两层含义,一层是广义的理解,为数字信号处理技术 ----- D igitalSignalProcessing 另一层是狭义的理解,为数字信号处理器----- DigitalSignalProcesso。 0.5课程内容 该课程在本科阶段主要介绍以傅里叶变换为基础的“经典”处理方法,包括:(1)离散傅里叶变换及其快速算法。(2)滤波理论(线性时不变离散时间系统,用于分离相加性组合的信号,要求信号 频谱占据不同的频段)。 在研究生阶段相应课程为“现代信号处理”(AdvancedSignalProcessin)信号对象主要是随机信 号,主要内容是自适应滤波(用于分离相加性组合的信号,但频谱占据同一频段)和现代谱估计。 简答题: 1 ?按自变量与函数值的取值形式是否连续信号可以分成哪四种类型?

数字信号处理技术及发展趋势

数字信号处理技术及发展趋势 贵州师范大学物电学院电子信息科学与技术 罗滨志 120802010051 摘要 数字信号处理的英文缩写是DSP,而数字信号处理又是电子设计领域的术语,其实现的功能即是用离散(在时间和幅度两个方面)所采样出来的数据集合来表示和处理信号和系统,其中包括滤波、变换、压缩、扩展、增强、复原、估计、识别、分析、综合等的加工处理,从而达到可以方便获得有用的信息,方便应用的目的【1】。而DPS实现的功能即是对信号进行数字处理,数字信号又是离散的,所以DSP大多应用在离散信号处理当中。 从DSP的功能上来看,其发展趋势日益改变着我们的科技的进步,也给世界带来了巨大的变化。从移动通信到消费电子领域,从汽车电子到医疗仪器,从自动控制到军用电子系统中都可以发现它的身影【2】。拥有无限精彩的数字信号处理技术让我们这个世界充满变化,充满挑战。 In this paper Is the abbreviation of digital signal processing DSP, the digital signal processing (DSP) is the term in the field of electronic design, the function of its implementation is to use discrete (both in time and amplitude) sampling represented data collection and processing of signals and systems, including filtering, transformation, compression, extension, enhancement, restoration, estimation, identification, analysis, and comprehensive processing, thus can get useful information, convenient for the purpose of convenient application [1]. And DPS the functions is to digital signal processing, digital signal is discrete, so most of DSP applications in discrete signal processing. From the perspective of the function of DSP, and its development trend is increasingly changing our of the progress of science and technology, great changes have also brought the world. From mobile communication in the field of consumer electronics, from automotive electronics to medical equipment, from automatic control to the military electronic systems can be found in the figure of it [2]. Infinite wonderful digital signal processing technology to let our world full of changes, full of challenges

《数字信号处理》课程教学大纲

《数字信号处理》课程教学大纲 (10级) 编号:40023600 英文名称:Digital Signal Processing 适用专业:通信工程;电子信息工程 责任教学单位:电子工程系通信工程教研室 总学时:56 学分:3.5 考核形式:考试 课程类别:专业基础课 修读方式:必修 教学目的:数字信号处理是通信工程、电子信息工程专业的一门专业基础课,通过本课程的学习使学生建立数字信号处理的基本概念、掌握数字信号处理的基本理论、基本分析方法和数字滤波器的基本设计方法,具有初步的算法分析和运用MATLAB编程的能力,了解数字信号处理的新方法和新技术。为学习后续专业课程和从事数字信号处理方面的研究工作打下基础。 主要教学内容及要求: 1.绪论 了解数字信号处理的特点,应用领域,发展概况和发展局势。 2.时域离散信号和时域离散系统 了解连续信号、时域离散信号和数字信号的定义和相互关系;掌握序列的表示、典型序列、序列的基本运算;掌握时域离散系统及其性质,掌握时域离散系统的时域分析,掌握采样定理、连续信号与离散信号的频谱关系。 3.时域离散信号和系统的频域分析 掌握序列的傅里叶变换(FT)及其性质;掌握序列的Z变换(ZT) 、Z变换的主要性质;掌握离散系统的频域分析;了解梳状滤波器,最小相位系统。 4.离散傅里叶变换(DFT) 掌握离散傅里叶变换(DFT)的定义,掌握DFT、ZT、FT、DFS之间的关系;掌握DFT的性质;掌握频域采样;掌握DFT的应用、用DFT计算线性卷积、用DFT分析信号频谱。 5.快速傅里叶变换(FFT) 熟悉DFT的计算问题及改进途经;掌握DIT-FFT算法及其编程思想;掌握IDFT的高效算法。 6.数字滤波网络 了解滤波器结构的基本概念与分类;掌握IIR-DF网络结构(直接型,级联型,并联型);掌握FIR-DF网络结构(直接型,线性相位型,级联型,频率采样型,快速卷积型)。 7.无限冲激响应(IIR)数字滤波器设计 熟悉滤波的概念、滤波器的分类及模拟和数字滤波器的技术指标;熟悉模拟滤波器的设计;掌握用冲激响应不变法设计IIR数字滤波器;掌握用双线性变换法设计IIR数字滤波器。 8.有限冲激响应(FIR)数字滤波器设计 熟悉线性相位FIR数字滤波器的特点;掌握FIR数字滤波器的窗函数设计法;掌握FIR数字滤波器的频率抽样设计法;了解FIR数字滤波器的切比雪夫最佳一致逼近设计法。 本课程与其他课程的联系与分工:先修课程:信号与系统,复变函数与积分变换,数字电路;后续课程有:DSP原理及应用,语音信号处理,数字图像处理等。

数字信号处理学习心得体会

数字信号处理学习心得 体会

数字信号处理学习心得 一、课程认识和内容理解 《数字信号处理》是我们通信工程和电子类专业的一门重要的专业基础课程,主要任务是研究数字信号处理理论的基本概念和基本分析方法,通过建立数学模型和适当的数学分析处理,来展示这些理论和方法的实际应用。 数字信号处理技术正飞速发展,它不但自成一门学科,更是以不同形式影响和渗透到其他学科:它与国民经济息息相关,与国防建设紧密相连;它影响或改变着我们的生产、生活方式,因此受到人们普遍的关注。信息科学是研究信息的获取、传输、处理和利用的一门科学,信息要用一定形式的信号来表示,才能被传输、处理、存储、显示和利用,可以说,信号是信息的表现形式。这学期数字信号处理所含有的具体内容如下: 第一单元的课程我们深刻理解到时域离散信号和时域离散系统性质和特点;时域离散信号和时域离散系统时域分析方法;模拟信号的数字处理方法。 第二单元的课程我们理解了时域离散信号(序列)的傅立叶变换,时域离散信号Z变换,时域离散系统的频域分析。 第三单元的课程我们学习了离散傅立叶变换定义和性质,离散傅立叶变换应用——快速卷积,频谱分析。 第四单元的课程我们重点理解基 2 FFT算法——时域抽取法﹑频域抽取法,FFT的编程方法,分裂基FFT算法。 第五单元的课程我们学了网络结构的表示方法——信号流图,无限脉冲响

应基本网络结构,有限脉冲响应基本网络结构,时域离散系统状态变量分析法。 第六单元的课程我们理解数字滤波器的基本概念,模拟滤波器的设计,巴特沃斯滤波器的设计,切比雪夫滤波器的设计,脉冲响应不变法设计无限脉冲响应字数字滤波器,双线性变换法设计无限脉冲响应字数字滤波器,数字高通﹑带通﹑带阻滤波器的设计。 第七单元的课程我们学习了线性相位有限脉冲响应(FIR)数字滤波器,窗函数法设计有限脉冲响应(FIR)数字滤波器,频率采样法设计有限脉冲响应(FIR)数字滤波器 二、专业认识和未来规划 通信工程是一门工程学科,主要是在掌握通信基本理论的基础上,运用各种工程方法对通信中的一些实际问题进行处理。通过该专业的学习,可以掌握电话网、广播电视网、互联网等各种通信系统的原理,研究提高信息传送速度的技术,根据实际需要设计新的通信系统,开发可迅速准确地传送各种信息的通信工具等。 对于我们通信专业,我觉得是个很好的专业,现在这个专业很热门,这个专业以后就业的方向也很多,就业面很广。我们毕业以后工作,可以进入设备制造商、运营商、专有服务提供商以及银行等领域工作。当然,就业形势每年都会变化,所以关键还是要看自己。可以从事硬件方面,比如说PCB,别小看这门技术,平时我们在试验时制作的简单,这一技术难点就在于板的层数越多,要做的越稳定就越难,这可是非常有难度的,如果学好了学精了,也是非常好找工作的。也可以从事软件方面,这实际上要我们具备比较好的模电和数电的

DSP数字信号处理

数字信号处理是将信号以数字方式表示并处理的理论和技术。数字信号处理与模拟信号处理是信号处理的子集。 简介 简单地说,数字信号处理就是用数值计算的方式对信号进行加工的理论和技术,它的英文原名叫digital signal processing,简称DSP。另外DSP也是digital signal processor的简称,即数字信号处理器,它是集成专用计算机的一种芯片,只有一枚硬币那么大。有时人们也将DSP看作是一门应用技术,称为DSP 技术与应用。 《数字信号处理》这门课介绍的是:将事物的运动变化转变为一串数字,并用计算的方法从中提取有用的信息,以满足我们实际应用的需求。 本定义来自《数字信号处理》杨毅明著,由机械工业出版社2012年发行。 特征和分类 信号(signal)是信息的物理体现形式,或是传递信息的函数,而信息则是信号的具体内容。 模拟信号(analog signal):指时间连续、幅度连续的信号。 数字信号(digital signal):时间和幅度上都是离散(量化)的信号。 数字信号可用一序列的数表示,而每个数又可表示为二制码的形式,适合计算机处理。 一维(1-D)信号: 一个自变量的函数。 二维(2-D)信号: 两个自变量的函数。 多维(M-D)信号: 多个自变量的函数。 系统:处理信号的物理设备。或者说,凡是能将信号加以变换以达到人们要求的各种设备。模拟系统与数字系统。 信号处理的内容:滤波、变换、检测、谱分析、估计、压缩、识别等一系列的加工处理。 多数科学和工程中遇到的是模拟信号。以前都是研究模拟信号处理的理论和实现。 模拟信号处理缺点:难以做到高精度,受环境影响较大,可靠性差,且不灵活等。数字系统的优点:体积小、功耗低、精度高、可靠性高、灵活性大、易于大规模集成、可进行二维与多维处理 随着大规模集成电路以及数字计算机的飞速发展,加之从60年代末以来数字信号处理理论和技术的成熟和完善,用数字方法来处理信号,即数字信号处理,已逐渐取代模拟信号处理。 随着信息时代、数字世界的到来,数字信号处理已成为一门极其重要的学科和技术领域。 数字信号处理器 DSP芯片,也称数字信号处理器,是一种特别适合于进行数字信号处理运算的微处理器,其主要应用是实时快速地实现各种数字信号处理算法。根据数字信号处理的要求,DSP芯片一般具有如下主要特点: (1)在一个指令周期内可完成一次乘法和一次加法;

数字信号处理 详细分析 采样

离散傅里叶变换 一、问题的提出:前已经指出,时域里的周期性信号在频域里表现为离散的值,通常称为谱线;而时域里的离散信号(即采样数据)在频域里表现为周期性的谱。 推论:时域里的周期性的离散信号,在频域里对应为周期性的离散的谱线。 由于傅里叶变换和它的反变换的对称性,我们不妨对称地把前者称为时域的采样,后者称为频域的采样;这样,采用傅里叶变换,时域的采样可以变换成为频域的周期性离散函数,频域的采样也可以变换成列域的周期性离散函数,这样的变换被称为离散傅里叶变换,简称为DFT。图3-1就是使用采样函数序列作离散傅里叶变换的简单示例。 (a )时域的采样在频域产生的周期性 (b )频域的采样在时域产生的周期性 图3-1 采样函数的离散傅里叶变换 上图就是使用采样函数序列作离散傅立叶变换的简单示例,在时域间隔为s t 的采样函数 序列的DFT 是频域里间隔为s s t f 1 =的采样函数序列;反之,频域里间隔为s f 的采样函数序列是时域里间隔为w W f T 1=的采样函数序列,如图3-1(b)所示。 由于在离散傅立叶变换中,时域和频域两边都是离散值,因此它才是真正能作为数字信号处理的变换,又由于变换的两边都表现出周期性,因此变换并不需要在),(+∞-∞区间进行,只需讨论一个有限周期里的采样作变换就可以保留全部信息。 表3-1为傅立叶变换和傅立叶级数的关系

二、DFT 的定义和性质 离散傅里叶变换(DFT )的定义为: 1、非周期离散时间信号)(n x 的Fourier 变换定义为:ωωωd e n x e X n j j -∞ ∞-∑ =)()( (1) 反变换:ωπωππωd e e X n x n j j ?-= )(21)( )(ωj e X 的一个周期函数(周期为)π 2,上式得反变换是在)(ωj e X 的一个周期内求积分的。这里数字信号的频率用ω来表示,注意ω与Ω有所不同。设s f 为采样频率,则采样周期为 f T 1 =,采样角频率T s π2=Ω,数字域的频率s s f πω2= 式1又称为离散时间Fourier 变换(DTFT )2、周期信号的离散Fourier 级数(DFS ) 三、窗函数和谱分析 1、谱泄露和栅栏效应 离散傅立叶变换是对于在有限的时间间隔(称时间窗)里的采样数据的变换,相当于对数据进行截断。这有限的时间窗既是DFT 的前提,同时又会在变换中引起某些不希望出现的结果,即谱泄露和栅栏效应。 1)谱泄露 以简单的正弦波的DFT 为例,正弦波具有单一的频率,因而在无限长的时间的正弦波,应该观察到单一δ函数峰,如下图示,但实际上都在有限的时间间隔里观察正弦波,或者在时间窗里作DFT ,结果所得的频谱就不再是单一的峰,而是分布在一个频率范围内,下图(b )示。这样信号被时间窗截断后的频谱不再是它真正的频谱,称为谱泄露。

相关文档
最新文档