在数控车床上加工软轴零件

在数控车床上加工软轴零件
在数控车床上加工软轴零件

在数控车床上加工软轴零件

在数控机床上加工零件,主要取决于加工程序,它与普通机床不同,不必制造、更换许多工具、夹具,不需要经常调整机床。因此,数控机床适用于零件频繁更换的场合。也就是适合单件、小批生產及新产品的开发,缩短了生产准备周期,节省了大量工艺设备的费用。文章通过实际工作中的产品加工实例来论述怎样保证零件的使用要求。

标签:数控机床;加工方法;程序设计;子程序

我校有一定量仪产品,零件名称为软轴,如图1所示。该零件形状不算复杂,只有两级外圆,两级孔,加上一条矩形螺纹,材料为尼龙,虽似简单,但加工时稍有不慎,很容易造成废品。

1 零件的设计目的

该零件在装配时主要与电机轴和发信盘联接(如图2),由于工作过程中的受力问题,为避免刚性连接,特设计为用尼龙加工成的软轴零件,起到缓冲作用,另外,又因为受到正反转因素,为使其工作时安全,将工件螺纹的旋向设计为左旋,减少其容易折断的缺点,因此在加工时既要保证孔的精度,又要保证螺纹要求。

2 工件的加工难点

(1)由于这个工件材料是尼龙,壁厚较薄,在加工时容易变形,遇到高温时会溶解硬化,特别钻孔时不能选择太高的转速。

(2)零件内孔为,公差较小,材料较软,在加工中很容易出现钻大孔径现象。

(3)车矩形螺纹时如果刀具角度不正确,吃刀深度不合理,会导致螺纹扭曲变形,所以加工的刀具要锋利,角度要正确,余量要合理分配好。

3 机床的选择

针对此工件为小批量生产(50件),重点要保证孔的精度和螺纹的位置,如果在普通车床上加工,较难达到每件零件的螺纹起点和终点的尺寸一致,故选择卧式数控车床来完成,从车间现有机床考虑,选择国产型号GSK980TD数控设备即可满足上述要求。

4 刀具与切削用量的选择

此零件主要加工面有外圆柱面、外螺纹、切断和内孔,所需四把刀具,外圆

数控车床主要是加工回转体零件.

数控车床主要是加工回转体零件,典型的加工表面不外乎外圆柱、外圆锥、螺纹、圆弧面、切槽等。例如,要加工形状如图所示的零件,采用手工编程方法比较合适。由于不同的数控系统其编程指令代码有所不同,因此应根据设备类型进行编程。以西门子802S数控系统为例,应进行如下操作。 图1 零件图 (1)确定加工路线 按先主后次,先精后粗的加工原则确定加工路线,采用固定循环指令对外轮廓进行粗加工,再精加工,然后车退刀槽,最后加工螺纹。 (2)装夹方法和对刀点的选择 采用三爪自定心卡盘自定心夹紧,对刀点选在工件的右端面与回转轴线的交点。 (3)选择刀具 根据加工要求,选用四把刀,1号为粗加工外圆车刀,2号为精加工外圆车刀,3号为切槽刀,4号为车螺纹刀。采用试切法对刀,对刀的同时把端面加工出来。 (4)确定切削用量 车外圆,粗车主轴转速为500r/min,进给速度为0.3mm/r,精车主轴转速为800r/min,进给速度为0.08mm/r,切槽和车螺纹时,主轴转速为300r/min,进给速度为0.1mm/r。 (5)程序编制 确定轴心线与球头中心的交点为编程原点,零件的加工程序如下: 主程序 JXCP1.MPF N05 G90 G95 G00 X80 Z100 (换刀点) N10 T1D1 M03 S500 M08 (外圆粗车刀) -CNAME=“L01” R105=1 R106=0.25 R108=1.5 (设置坯料切削循环参数) R109=7 R110=2 R111=0.3 R112=0.08 N15 LCYC95 (调用坯料切削循环粗加工) N20 G00 X80 Z100 M05 M09 N25 M00 N30 T2D1 M03 S800 M08 (外圆精车刀)

轴类零件的加工工艺资料

轴类零件的加工工艺 绪论 本课题主要研究轴类零件加工过程,加工工艺注意点及改进的方法,通过总结非标件的加工以及典型半成品轴类零件的加工实例来加以说明。现在许多制造最终成品的工厂为了提高机器的某些性能或者降低成本,需要找机械加工厂定做的,常常会因为设备、技术或者工艺规程制定的不是很好,加工出来的部件无法满足使用要求,所以需要一次次的总结,改进加工工艺,从而完善产品。经过总结了生产上出现的问题,写下了这篇论文。 轴类零件是机器中经常遇到的典型零件之一。它在机械中主要用于支承齿轮、带轮、凸轮以及连杆等传动件,以传递扭矩。按结构形式不同,轴可以分为阶梯轴、锥度心轴、光轴、空心轴、曲轴、凸轮轴、偏心轴、各种丝杠等。 图轴的种类 a)光轴 b)空心轴 c)半轴 d)阶梯轴 e)花键轴 f)十字轴 g)偏心轴 h)曲轴 i) 凸轮轴 1 轴类零件的功用、结构特点 轴类零件是机器中经常遇到的典型零件之一。它在机械中主要用于支承齿轮、带轮、凸轮以及连杆等传动件,以传递扭矩。按结构形式不同,轴可以分为阶梯轴、锥度心轴、光轴、空心轴、曲轴、凸轮轴、偏心轴、各种丝杠等。它主要用来支承传动零部件,传递扭矩

和承受载荷。轴类零件是旋转体零件,其长度大于直径,一般由同心轴的外圆柱面、圆锥面、内孔和螺纹及相应的端面所组成。根据结构形状的不同,轴类零件可分为光轴、阶梯轴、空心轴和曲轴等。 轴的长径比小于5的称为短轴,大于20的称为细长轴,大多数轴介于两者之间。 1.1轴类零件的毛坯和材料 1.1.1轴类零件的毛坯 轴类毛坯常用圆棒料和锻件;大型轴或结构复杂的轴采用铸件。毛坯经过加热锻造后,可使金属内部纤维组织沿表面均匀分布,获得较高的抗拉、抗弯及抗扭强度。 根据生产规模的不同,毛坯的锻造方式有自由锻和模锻两种。中小批生产多采用自由锻,大批大量生产时采用模锻。 1.1.2轴类零件的材料 轴类零件材料常用45钢,精度较高的轴可选用40Cr、轴承钢GCr15、弹簧钢65Mn,也可选用球墨铸铁;对高速、重载的轴,选用20Mn2B、20Cr等低碳合金钢或38CrMoAl氮化钢。 45钢是轴类零件的常用材料,它价格便宜经过调质(或正火)后,可得到较好的切削性能,而且能获得较高的强度和韧性等综合机械性能,淬火后表面硬度可达45~52HRC。 40Cr等合金结构钢适用于中等精度而转速较高的轴类零件,这类钢经调质和淬火后,具有较好的综合机械性能。 轴承钢GCr15和弹簧钢65Mn,经调质和表面高频淬火后,表面硬度可达50~58HRC,并具有较高的耐疲劳性能和较好的耐磨性能,可制造较高精度的轴。 精密机床的主轴(例如磨床砂轮轴、坐标镗床主轴)可选用38CrMoAIA氮化钢。这种钢经调质和表面氮化后,不仅能获得很高的表面硬度,而且能保持较软的芯部,因此耐冲击韧性好。与渗碳淬火钢比较,它有热处理变形很小,硬度更高的特性。 2 轴类零件一般加工要求及方法 2.1 轴类零件加工工艺规程注意点

车床零件加工工艺

轴类零件的数控加工工艺分析与编制 班级 姓名 学号 综合成绩 项目一轴类零件的数控加工工艺分析与编制 零件图 项目一轴类零件的数控加工工艺分析与编制 零件图 任务一、零件图纸的工艺分析 该零件由圆柱、槽、螺纹等表面形成 设计基准径向以轴线为基准,轴向以工件右端面为基准。 未注倒角C1 表面粗糙度为Ra3.2,Ra1.6 工件材料为45钢 任务二、工艺路线的拟定 1、表面加工的方法 粗车---精车 粗车1.5 精车0.5 精度等级 IT7,IT8 表面粗糙度 3.2,1.6 2、毛坯尺寸 ?15mm*145mm 3、工序划分 任务三、机床的选择 零件毛坯尺寸:?35mm*145mm 零件最高精度:IT7,IT8 刀具类型:外圆车刀、螺纹刀 机床:CK6141 机床参数 主电机功率:4000(kw)

刀具数量:4 最大加工长度:1000(mm) 最大加工直径:58(mm) 最大回转直径:224(mm) 精度级:IT6~IT8 卡盘:三爪卡盘 任务四、装夹方案及夹具的选择 通过对刀的方式找基准 径向基准为轴线 轴向基准为工件两端面 夹具为三爪卡盘 任务五、刀具的选择 工件材料:45钢 刀具材料:硬质合金(刀片) P类:精JC215V(黛杰) 粗JC450V 适用加工结构钢、工具钢、耐热钢、铸钢可锻造钢,是钢材连续切削加工首选刀具材料任务六、刀片规格 外圆车刀 CNMG080404 切槽刀 N123H2-03 50-0004-GF 螺纹刀 R166.0G-16MM01-150 任务五、刀具的选择 工件材料:45钢 刀具材料:硬质合金(刀片) P类:精JC215V(黛杰) 粗JC450V 适用加工结构钢、工具钢、耐热钢、铸钢可锻造钢,是钢材连续切削加工首选刀具材料任务六、刀片规格 外圆车刀 CNMG080404 切槽刀 N123H2-03 50-0004-GF 螺纹刀 R166.0G-16MM01-150 任务七、切削用量的选择 1.8切削用量选择 1.Ap的选择 参考书本《数控加工工艺规划》表1-2 16p

数控车床加工件零件图及编程程序

数控车床加工件零件图 及编程程序 内部编号:(YUUT-TBBY-MMUT-URRUY-UOOY-DBUYI-0128)

加工件1: 根据下图零件,按GSK-980T数控系统要求编制加工程序。刀具装夹位置:粗、精车用1号外圆车刀,切断用4号切断刀。 编程参考 1 O 1001 ;说明: N10G50 X50 Z100 ;以换刀点定位工件坐标系 N20M3 S560 ;启动主轴 N30T0101 ;换1号刀 N40G0 X25 Z2 ;快速移动到加工出发点 N50G71 U0.8 R0.5 ;执行外圆粗加工循环 N60G71 P70 Q140 U0.5 W0.2 F100 ;留余量X0.5 Z0.2,进给量100 mm/min N70G0 X0 ;轮廓加工起始行 N80G1 Z0 F30 ;精加工进给量30 N90G3 X10 Z-5 R5 ; N100G1 Z-15 ; N110X18 W-10 ; N120W-7 ; N130X21 ; N140X23 Z-33 ; N150Z-45 ;轮廓加工结束行 N160G70 P70 Q140 ;执行精加工循环 N170G0 X50 Z100 ;回换刀点 N180T0404 ;换4号切断刀 N190G0 X27 Z-40.1 ;定位切断起点,留0.1mm余量N200G1 X12 F15 ; N210G0 X25 ; N220Z-40 ; N230G1 X0 F10 ;切断,进给量10mm/min N240G0 X50 ; N250Z100 M5 ;回换刀点,停主轴 N260T0100 ;换回基准刀 N270M30 ;结束程序 %

典型轴类零件的数控加工工艺设计

典型轴类零件的数控加工工艺设计 1 2020年5月29日

摘要 数控技术是用数字信息对机械运动和工作过程进行控制的技术,数控装备是以数控技术为代表的新技术对传统制造产业和新兴制造的渗透形成的机电一体化产品,即所谓的数字化装备。 本次设计就是进行数控加工工艺设计典型轴类零件,主要侧重于该零件的数控加工工艺和编程,包括完成该零件的工艺规程,主要工序工装设计,并绘制零件图、夹具图等。 经过本次毕业设计,对典型轴类零件的设计又有了深的认识。从而达到了巩固、扩大、深化所学知识的目的,培养和提高了综合分析问题和解决问题的能力以及培养了科学的研究和创新能力。 1 2020年5月29日

关键词:数控技术典型轴类零件加工工艺毕业设计 2 2020年5月29日

目录 摘要 (1) 目录 (2) 1.引言 (3) 1.引言 (3) 2.零件分析 (4) 2.1毛坯的选择 (4) 2.2 机床的选择 (4) 3.零件图加工艺分析 (7) 3.1零件的工艺分析 (7) 3.2 零件的加工工艺设计 (11) 4.零件图加工程序编写 (21) 4.1零件左端加工程序编写 (21) 4.2零件右端加工程序编写 (22) 5. 程序调试 (25) 致谢 (26) 参考文献 (27) 3 2020年5月29日

1.引言 数控技术集传统的机械制造技术、计算机技术、成组技术与现代控制技术、传感检测技术、信息处理技术、网络通讯技术、液压气动技术、光机电技术于一体,是现代先进制造技术的基础和核心。数控车床己经成为现代企业的必须品。随着数控技术的不断成熟和发展及市场日益繁荣,其竞争也越来越激烈,人们对数控车床选择也有了更加广阔的范围,对数控机床技术的掌握也越来越高。随着社会经济的快速发展,人们对生活用品的要求也越来越高,企业对生产效率也有相应的提高。数控机床的出现实现了广大人们的这一愿望。数控车削加工工艺是实现产品设计、保证产品的质量、保证零件的精度,节约能源、降低消耗的重要手段。是企业进行生产准备、计划调度、加工操作、安全生产、技术检测和健全劳动组织的重要依据。也是企业对高品质、高品种、高水平,加速产品更新,提高经济效益的技术保证。这不但满足了广大消费者的目的,即实现了产品多样化、产品高质量、更新速度快的要求,同时推动了企业的快速发展,提高了企业的生产效率。 数控工艺规程的编制是直接指导产品或零件制造工艺过程和操作方法的工艺文件,它将直接影响企业产品质量、效 4 2020年5月29日

典型轴类零件数控加工工艺设计

目录 摘要 (3) 绪论 (5) 一、选择本课题的目的及意义 (5) 二、数控机床及数控技术的应用与发展 (5) (一)数控机床的应用与发展 (5) (二)数控技术的应用与发展 (6) 三、对课题任务的阐述 (6) 第二章工艺方案分析 (7) 2.2零件图分析及毛坯的选择 (7) 2.3设备的选择 (8) 2.5确定加工方法 (10) 2.6确定加工方案 (10) 第三章确定零件的定位基准和装夹方式 (12) 1.粗基准选择原则 (12) 2.精基准选择原则 (12) 3.定位基准 (12) 4.装夹方式 (12) 第四章工艺过程 (13) 1.工序与工步的划分 (13) 2.工步的划分 (13) 第五章确定加工顺序及进给路线 (14) 1.零件加工必须遵守的安排原则 (14) 2.进给路线 (14) 第六章刀具及切削用量的选择 (14) 6.1选择数控刀具的原则 (14) 6.2选择数控车削用刀具 (15) 6.3设置刀点和换刀点 (16) 6.4切削用量的选择 (16) 1.背吃刀量的选择 (16) 选择背吃刀量: (16) 2.主轴转速的选择 (17) 3.进给量的选取 (17) 4.进给速度的选取 (17) 7.1轴类零件加工工艺分析 (18) 7.2典型轴类零件加工工艺 (20) 7.3加工坐标系设置 (21) 7.4手工编程 (22) 第八章结束语 (25)

第九章致谢词 (26) 参考文献 (27)

摘要 数控技术是用数字信息对机械运动和工作过程进行控制的技术,数控装备是以数控技术为代表的新技术对传统制造产业和新兴制造的渗透形成的机电一体化产品,即所谓的数字化装备,数控技术的应用不但给传统制造业带来了革命性的变化,使制造业成为工业化的象征,而且随着数控技术的不断发展和应用领域的扩大,对国计民生的一些重要行业(IT、汽车、医疗、轻工等)的发展起着越来越重要的作用,因为这些行业所需要装备的数字化已是现代发展的大趋势。而数控加工技术是随着数控机床的产生、发展而逐步完善起来的一种应用技术,是机械制造业人员长期从事数控加工时间的经验总结。数控加工技术就是用数控机床加工零件的方法。在数控加工中,利用工件的旋转运动和刀具的直线运动或者曲线运动来改变毛坯的尺寸和形状,把毛坯加工成符合精度要求的零件。数控车削加工是利用工件相对于刀具的旋转运动对工件进行切削加工的方法。车削适合加工回转类零件、内外圆锥面、端面、圆弧面、沟槽、螺纹和回转成形面等,所用的刀具主要是车刀。数控车削加工是现代制造技术的典型代表,在制造业的各个领域得到广泛的应用如航天、汽车、精密机械等。总之,它是从零件图纸到获得数控加工程序的全过程。已经成为这些行业不可或缺的加工手段。 关键词:数控技术;车削加工;数控加工工艺;数控编程

轴类零件数控加工编程实例概要

实训项目四轴类零件的加工 模块一外圆轮廓加工 课题一单一指令加工 一、实训目的与要求 1.运用单一指令,掌握轴类零件的外圆轮廓车削加工工艺的制定 2.掌握零件加工程序的调试和图形校验 二、实训难点与重点 1.掌握数控车床外圆轮廓车削加工的单一指令的应用 2.能够正确地对零件进行数控车削工艺分析 3.通过对轴类零件外圆轮廓车削的加工,掌握数控车床的编程技巧 三、实训内容 (一)实训内容 编制如图4-1所示零件的加工程序,零件图上的螺纹和切槽不加工。材料为尼龙棒或45钢,毛坯尺寸 40×90mm。 图4-1 (二)工艺分析 1.刀具设置 1号刀:机夹车刀(硬质合金可转位刀片); 2号刀:机夹车刀(硬质合金可转位刀片); 2.工艺路线 (1)棒料伸出卡盘外约90mm,找正后夹紧。

(2)用1号刀,进行零件的轮廓粗加工。 (3)用2号刀,进行零件的轮廓精加工。 3.加工工艺卡片 1.FANUC0i mate-TC系统 (1)粗加工程序 O1000 程序名 G54G98G21;采用G54坐标系,分进给,公制单位S600M3;主轴正转,600r/min T0101;换1号外圆粗加工刀 G0X42Z0; G1X-1F100; 车端面 Z2; G0X39; G1Z-80F100;粗车Φ39外圆 X45; G0Z2; G1X31F100;粗车Φ31外圆 Z-40; X45; G0Z2; G1X23F100;粗车Φ23外圆 Z-20; X26; X31Z-40;粗车螺纹右倒角 X45; G0Z2; G1X19F100; G3X23Z-2R11;第一次粗车R11圆弧 X35; G0Z2; G1X15F100; G3X23Z-4R11;第二次粗车R11圆弧 X35; G0Z2; G1X11F100; G3X23Z-6R11;第三次粗车R11圆弧 X35; G0Z2; G1X7F100; G3X23Z-8R11;第四次粗车R11圆弧 X35; G0Z2; G1X3F100; G3X23Z-10R11;第五次粗车R11圆弧 X35; G0X100;快速退刀

数控车床加工件零件图及编程程序

加工件1: 根据下图零件,按GSK-980T数控系统要求编制加工程序。刀具装夹位置:粗、精车用1号外圆车刀,切断用4号切断刀。 编程参考 1 O 1001 ;说明: N10 G50 X50 Z100 ;以换刀点定位工件坐标系 N20 M3 S560 ;启动主轴 N30 T0101 ;换1号刀 N40 G0 X25 Z2 ;快速移动到加工出发点 N50 G71 U0.8 R0.5 ;执行外圆粗加工循环 N60 G71 P70 Q140 U0.5 W0.2 F100 ;留余量X0.5 Z0.2,进给量100 mm/min N70 G0 X0 ;轮廓加工起始行 N80 G1 Z0 F30 ;精加工进给量30 N90 G3 X10 Z-5 R5 ; N100 G1 Z-15 ; N110 X18 W-10 ; N120 W-7 ; N130 X21 ; N140 X23 Z-33 ; N150 Z-45 ;轮廓加工结束行 N160 G70 P70 Q140 ;执行精加工循环 N170 G0 X50 Z100 ;回换刀点 N180 T0404 ;换4号切断刀 N190 G0 X27 Z-40.1 ;定位切断起点,留0.1mm余量 N200 G1 X12 F15 ; N210 G0 X25 ; N220 Z-40 ; N230 G1 X0 F10 ;切断,进给量10mm/min N240 G0 X50 ; N250 Z100 M5 ;回换刀点,停主轴 N260 T0100 ;换回基准刀 N270 M30 ;结束程序 % 加工件2:

下图为待加工零件,材料:φ25铝合金棒料;粗、精车用1号外圆车刀,切断用4号切断刀;换刀点定在X50,Z100,请根据GSK-980T系统要求编制加工程序。 编程参考2 O 1002 ;说明: N10 G50 X50 Z100 ;以换刀点定位工件坐标系 N20 M3 S560 ;启动主轴 N30 T0101 ;换1号刀 N40 G0 X25 Z2 ;快速移动到加工出发点 N50 G71 U0.8 R0.5 ;执行外圆粗加工循环 N60 G71 P70 Q140 U0.5 W0.2 F100 ;留余量X0.5 Z0.2,进给量100 mm/min N70 G0 X4.307 ;轮廓加工起始行 N80 G1 Z0 F30 ;精加工进给量30 N90 G3 X8.268 Z-1.722 R2 ; N100 G1 X12 Z-15 ; N110 W-5 ; N120 X14 ; N130 G2 X23.5 Z-30 R15 ; N140 Z-45 ;轮廓加工结束行 N150 G70 P70 Q140 ;执行精加工循环 N160 G0 X50 Z100 ;回换刀点 N170 T0404 ;换4号切断刀 N180 G0 X26 Z-36 ;定位切槽起点 N190 G1 X18 F10 ;切槽 N200 G4 X4 ;槽底暂停4秒 N210 G0 X26 ; N220 Z-40.1 ;定位切断起点,留0.1mm余量 N230 G1 X12 F15 ; N240 G0 X20 ; N250 Z-39 ;退刀至倒角起点 N260 G1 X16 Z-40 F10 ;车尾端倒角 N270 X0 F10 ;切断,进给量10mm/min N280 G0 X50 Z100 ; N290 M5 ;回换刀点,停主轴 N300 T0100 ;换回基准刀 N310 M30 ;结束程序 % 加工件3: 工件如下图所示,材料:φ25铝合金棒料;粗、精车用1号外圆车刀,60°螺纹刀装在3号刀位,切断用4号切断刀;换刀点定在X50,Z100,请根据GSK-980T系统要求编制加工程序。

典型轴类零件加工工艺分析

6.4典型轴类零件加工工艺分析 6.4.1 轴类零件加工的工艺分析 (1)轴类零件加工的工艺路线 1)基本加工路线 外圆加工的方法很多,基本加工路线可归纳为四条。 ① 粗车—半精车—精车 对于一般常用材料,这是外圆表面加工采用的最主要的工艺路线。 ② 粗车—半精车—粗磨—精磨 对于黑色金属材料,精度要求高和表面粗糙度值要求较小、零件需要淬硬时,其后续工序只能用磨削而采用的加工路线。 ③ 粗车—半精车—精车—金刚石车 对于有色金属,用磨削加工通常不易得到所要求的表面粗糙度,因为有色金属一般比较软,容易堵塞沙粒间的空隙,因此其最终工序多用精车和金刚石车。 ④ 粗车—半精—粗磨—精磨—光整加工 对于黑色金属材料的淬硬零件,精度要求高和表面粗糙度值要求很小,常用此加工路线。 2)典型加工工艺路线 轴类零件的主要加工表面是外圆表面,也还有常见的特特形表面,因此针对各种精度等级和表面粗糙度要求,按经济精度选择加工方法。 对普通精度的轴类零件加工,其典型的工艺路线如下: 毛坯及其热处理—预加工—车削外圆—铣键槽—(花键槽、沟槽)—热处理—磨削—终检。 (1)轴类零件的预加工 轴类零件的预加工是指加工的准备工序,即车削外圆之前的工艺。 校直毛坯在制造、运输和保管过程中,常会发生弯曲变形,为保证加工余量的均匀及装夹可靠,一般冷态下在各种压力机或校值机上进行校值, (2) 轴类零件加工的定位基准和装夹

1)以工件的中心孔定位在轴的加工中,零件各外圆表面,锥孔、螺纹表面的同轴度,端面对旋转轴线的垂直度是其相互位置精度的主要项目,这些表面的设计基准一般都是轴的中心线,若用两中心孔定位,符合基准重合的原则。中心孔不仅是车削时的定为基准,也是其它加工工序的定位基准和检验基准,又符合基准统一原则。当采用两中心孔定位时,还能够最大限度地在一次装夹中加工出多个外圆和端面。 2)以外圆和中心孔作为定位基准(一夹一顶)用两中心孔定位虽然定心精度高,但刚性差,尤其是加工较重的工件时不够稳固,切削用量也不能太大。粗加工时,为了提高零件的刚度,可采用轴的外圆表面和一中心孔作为定位基准来加工。这种定位方法能承受较大的切削力矩,是轴类零件最常见的一种定位方法。 3)以两外圆表面作为定位基准在加工空心轴的内孔时,(例如:机床上莫氏锥度的内孔加工),不能采用中心孔作为定位基准,可用轴的两外圆表面作为定位基准。当工件是机床主轴时,常以两支撑轴颈(装配基准)为定位基准,可保证锥孔相对支撑轴颈的同轴度要求,消除基准不重合而引起的误差。 4)以带有中心孔的锥堵作为定位基准在加工空心轴的外圆表面时,往往还采用代中心孔的锥堵或锥套心轴作为定位基准,见图6.9所示。 锥堵或锥套心轴应具有较高的精度,锥堵和锥套心轴上的中心孔即是其本身制造的定位基准,又是空心轴外圆精加工的基准。因此必须保证锥堵或锥套心轴上锥面与中心孔有较高的同轴度。在装夹中应尽量减少锥堵的安装此书,减少重复安装误差。实际生产中,锥堵安装后,中途加工一般不得拆下和更换,直至加工完毕。 图 6.9 锥堵和锥套心轴 a)锥堵 b)锥套心轴

典型轴类零件的数控加工工艺编制

典型轴类零件的数控加工工艺编制数控技术是用数字信息对机械运动和工作过程进行操纵的技术,数控装备是以数控技术为代表的新技术对传统制造产业和新兴制造的渗透形成的机电一体化产品,即所谓的数字化装备。 本次设计确实是进行数控加工工艺设计典型轴类零件,要紧侧重于该零件的数控加工工艺和编程,包括完成该零件的工艺规程,要紧工序工装设计,并绘制零件图、夹具图等。 通过本次毕业设计,对典型轴类零件的设计又有了深的认识。从而达到了巩固、扩大、深化所学知识的目的,培养和提高了综合分析咨询题和解决咨询题的能力以及培养了科学的研究和创新能力。 关键词:数控技术典型轴类零件加工工艺毕业设计

摘要 (1) 目录 (2) 1.引言 (3) 1.引言 (3) 2.零件分析 (4) 2.1毛坯的选择 (4) 2.2 机床的选择 (4) 3.零件图加工艺分析 (7) 3.1零件的工艺分析 (7) 3.2 零件的加工工艺设计 (11) 4.零件图加工程序编写 (21) 4.1零件左端加工程序编写 (21) 4.2零件右端加工程序编写 (22) 5. 程序调试 (25) 致谢 (26) 参考文献 (27)

数控技术集传统的机械制造技术、运算机技术、成组技术与现代操纵技术、传感检测技术、信息处理技术、网络通讯技术、液压气动技术、光机电技术于一体,是现代先进制造技术的基础和核心。数控车床己经成为现代企业的必需品。随着数控技术的不断成熟和进展及市场日益繁荣,其竞争也越来越猛烈,人们对数控车床选择也有了更加宽敞的范畴,对数控机床技术的把握也越来越高。随着社会经济的快速进展,人们对生活用品的要求也越来越高,企业对生产效率也有相应的提高。数控机床的显现实现了宽敞人们的这一愿望。数控车削加工工艺是实现产品设计、保证产品的质量、保证零件的精度,节约能源、降低消耗的重要手段。是企业进行生产预备、打算调度、加工操作、安全生产、技术检测和健全劳动组织的重要依据。也是企业对高品质、高品种、高水平,加速产品更新,提高经济效益的技术保证。这不但满足了宽敞消费者的目的,即实现了产品多样化、产品高质量、更新速度快的要求,同时推动了企业的快速进展,提高了企业的生产效率。 数控工艺规程的编制是直截了当指导产品或零件制造工艺过程和操作方法的工艺文件,它将直截了当阻碍企业产品质量、效益、竞争能力。本文通过对典型轴类零件数控加工工艺的分析,对零件进行编程加工,给出了关于典型零件数控加工工艺分析的方法,关于提高制造质量、实际生产具有一定的意义。依照数控机床的特点,针对具体的零件,进行了工艺方案的分析,工装方案的确定,刀具和切削用量的选择,确定加工顺序和加工路线,数控加工程序编制。通过整个工艺的过程的制定,充分表达了数控设备在保证加工精度,加工效率,简化工序等方面的优势。 本人以严谨务实的认真态度进行了此次设计,但由于知识水平与实际体会有限。在设计中会显现一些错误、缺点和疏漏,诚请各位评审老师提出批判和指正。

数控车床轴类零件加工

毕业实习报告 题目:数控车床轴类零件加工 学院(系): 专业: 班级: 学生: 指导教师(职称): 完成日期:2012年6月10日

数控车床轴类零件加工目录 摘要 前言 1.零件图工艺分析 1.1数控加工工艺基本特点 1.2设备选择 1.3确定零件的定位基准和装夹方式 1.3.1粗基准选择原则 1.3.2精基准选择原则 1.3.3定位基准 1.3.4装夹方式 1.4加工方法的选择和加工方案的确定 1.4.1加工方法的选择 1.4.2加工方案的确定 1.5工序与工歩的划分 1.5.1按工序划分 1.5.2工歩的划分 1.6确定加工顺序及进给路线 1.6.1零件加工必须遵守的安排原则

1.6.2进给路线 1.7刀具的选择 1.8切削用量选择 1.8.1背吃刀量的选择 1.8.2主轴转速的选择 1.8.3进给速度的选择 1.9编程误差及其控制 1.9.1编程误差 1.9.2误差控制 2.编程中工艺指令的处理 2.1常用G指令代码功能表 2.2常用M指令代码功能表 3.程序编制及模拟运行、零件加工或精度自检 3.1程序编制 3.2模拟运行 3.3零件加工 3.4精度自检 设计小结 摘要 数控技术是用数字信息对机械运动和工作过程进行控制的技术,数控装备是以数控技术为代表的新技术对传统制造产业和新兴制造的渗透形成的机电一体化产品,即所谓的数字化

装备,数控技术的应用不但给传统制造业带来了革命性的变化,使制造业成为工业化的象征,而且随着数控技术的不但发展和应用领域的扩大他对归计民生的一些重要行业(IT、汽车、医疗、轻工等)的发展起着越来越重要的作用,因为这些行业所需要装备的数字化已是现代发展的大趋势.在我国加入WTO和对外开放进一步深化的新环境下,发展我国数控技术及装备是提高我国制造业信息化水平和国际竞争能力的重要性保证.数控加工与编程毕业设计是数控专业教学体系中构成数控加工技术专业知识及专业技能的重要组成部分,通过毕业设计使我们学会了对相关学科中的基本理论基本知识进行综合运用,同时使对本专业有较完整的系统的认识,从而达到巩固、扩大、深化所学知识的目的,培养和提高了综合分析问题和解决问题的能力以及培养了科学的研究和创新能力。 选这个题目的目的是它能体现出我对所学知识的掌握程度和灵活规范的运用所学知识,在我认为要成为一名合格的在学生,以自己的的思路用所学的知识来完成一份成功的毕业设计是必不可少的。 此次的毕业设计主要解决的问题是零件的装夹、刀具的对刀、工艺路线的制订、工序与工步的划分、刀具的选择、切削用量的确定、车削加工程序的编写、机床的熟练操作。主要困难的是两次装夹中的水平Z向长度难以保证、切削用量的参数设定、对刀的精度、工艺路线的制订。 运用数控原理、数控工艺、数控编程、专业软件等专业知识和数控机床实际操作的一次综合练习,能让我感触当代科学的前沿,体验数控魅力,为人们的生活带来方便,进一步认识数控技术,熟练数控机床的操作,掌握数控,开发数控内在潜力。 关键词:数控数控技术毕业设计 前言 本次毕业设计是学院为了提高学生的数控技术及相关技能等综合运用能力,通过毕业设计和完成毕业论文也是学院对毕业生生毕业资格的审核条件,同时也为我们以后的工作打下理论基础,本次设计是由指导老师钟春燕老师精心指导下完成的。 数控技术是数字程序控制数控机械实现自动工作的技术。它广泛用于机械制造和自动化领域,较好地解决多品种、小批量和复杂零件加工以及生产过程自动化问题。随着科技的迅猛发展,自动控制技术已广泛地应用于数控机床、机器人以及各类机电一体化设备上。同时,社会经济的飞速发展,对数控装置和数控机械要求在理论和应用方面有迅速的发展和提高。数控加工和编程毕业设计是数控专业教学体系中构成数控加工技术专业知识及专业技能的重要组成部分,通过毕业设计使我们学会了对相关学科中的基本理论、基本知识进行综合运用,

轴类零件机械加工工艺编制样本

轴类零件机械加工工艺编制 目录 ●任务1 分析轴类零件技术资料 ●任务2 拟定轴类零件生产类型 ●任务3 轴类零件毛坯类型及其制造办法 ●任务4 选取轴类零件定位基准和加工装备 ●任务5 拟定轴类零件工艺路线 ●任务6 设计轴类零件加工工序 ●任务7 填写轴类零件机械加工工艺文献

任务一分析轴类零件技术资料 教学目的 ?能看懂轴类零件零件图和装配图。 ?明确轴类零件在产品中作用,找出其重要技术规定。 ?拟定轴类零件加工核心表面。 一、看懂传动轴构造形状 如图1,零件图采用了主视图和移出断面图表达其形状构造。从主视图可以 看出,主体由四段不同直径回转体构成,有轴颈、轴肩、键槽、挡圈槽、倒角等构造,由此可以想象出传动轴构造形状,如图2所示。 二、明确传动轴装配位置和作用 传动轴起支承齿轮、传递扭矩作用。 ? 30js6外圆(轴颈)用于安装轴承,? 35轴肩起轴承向定位作用。? 25f7、? 25g6及轴肩用于安装齿轮及齿轮轴向定位,采用普通平键连接,左轴端有挡圈槽,用于安装挡圈,以轴向固定齿轮。 三、拟定传动轴加工核心表面 (1)? 25f7、? 25g6轴头? 30js6轴颈都具备较高尺寸精度(IT7,IT6)和位 置精度(同轴度为0.02)规定,表面粗糙度(Ra值分别为0.8 um)?35 轴肩两端面虽然尺寸精度规定不高,但表面精糙度规定较高(Ra值为1.6um);因此? 25f7、? 25g6轴头、? 30js6轴颈及? 35轴肩两端均为加工核心表面。 (2)键糟侧面(宽度)尺寸精度(IT9)规定中档,位置精度(对称度0.012)

规定比较高,表面粗糙度(Ra值为3.2um)规定中档,键槽底面(深度)尺寸精度(21 )和表面精糙度(Ra值为6.3um)规定都较低,因此键槽是次要加工表面。 (3)挡圈槽、左、右、倒角等别的表面,尺寸及表面精度规定都比较低,均为次要加工表面,如图3所示。 任务2 拟定轴类零件生产类型 教学目的 ?掌握轴类零件生产大纲计算办法。 ?掌握轴类零件生产类型及其工艺特性拟定办法。 一、计算传动轴生产大纲 依照任务书知: (1)产品生产大纲Q=150台/年; (2)每台产品中传动轴数量n=1件/台; (3)传动轴备品率a=5%; (4)传动轴废品百分率b=0.5%; 传动轴生产大纲计算如下: N=Qn(1+a)(1+b) =150x1(1+5%)(1+0.5%)

典型轴类零件数控加工工艺

典型轴类零件数控加工工艺设计 姓名:邢荣腾 职业:数控车工 身份证号:3723717 鉴定等级:技师 单位:济南铁路高级技工学校 二〇一一年十二月

在机械制造工业中并不是所有的产品零件都具有很大的批量,单件与小批量生产的零件(批量在10~100件)约占机械加工总量的80%以上。尤其是在造船、航天、航空、机床、重型机械以及国防工业更是如此。 为了满足多品种,小批量的自动化生产,迫切需要一种灵活的,通用的,能够适用产品频繁变化的柔性自动化机床。数控机床就是在这样的背景下诞生与发展起来的。它为单件、小批量生产的精密复杂零件提供了自动化的加工手段。 根据国家标准GB/T8129-1997,对机床数字控制的定义:用数字控制的装置(简称数控装置),在运行过程中,不断地引入数字数据,从而对某一生产过程实现自动控制,叫数字控制,简称数控。用计算机控制加工功能,称计算机数控(computerized numerical ,缩写CNC)。 数控机床即使采用了数控技术的机床,或者说装备了数控系统的机床。从应用来说,数控机床就是将加工过程所需的各种操作(如主轴变速、松加工件、进刀与退刀、开车与停车、选择刀具、供给切削液等)和步骤,以及刀具与工件之间的相对位移量都用数字化的代码来表示,通过控制介质将数字信息送入专用的或通用的计算机,计算机对输入的信息进行处理与运算,发出各种指令来控制机床的伺服系统或其他执行元件,是机床自动加工出所需要的零件。

一.前言 (2) 二.摘要 (4) 三.零件图工艺分析 (4) 四.数控加工工艺基本特点 (6) 五.设备选择 (6) 六.确定零件的定位基准和装夹方式 (7) 七.加工方法的选择和加工方案的确定 (9) 八.确定加工顺序及进给路线 (10) 九.刀具的选择 (10) 十.切削用量的选择 (11) 十一. 编程误差及其控制 (15) 十二.程序编制及模拟运行、零件加工、精度自检 (15) 结束语 (19)

数控车床加工编程典型实例

数控车床加工编程典型实例 随着数控机床的发展与普及,现代化企业对于懂得数控加工技术、能进行数控加工编程的技术人才的需求量必将不断增加。数控车床是目前使用最广泛的数控机床之一。本文就数控车床零件加工中的程序编制问题进行探讨。 数控机床是一种技术密集度及自动化程度很高的机电一体化加工设备,是综合应用计算机、自动控制、自动检测及精密机械等高新技术的产物。随着数控机床的发展与普及,现代化企业对于懂得数控加工技术、能进行数控加工编程的技术人才的需求量必将不断增加。数控车床是目前使用最广泛的数控机床之一。本文就数控车床零件加工中的程序编制问题进行探讨。 一、编程方法 数控编程方法有手工编程和自动编程两种。手工编程是指从零件图样分析工艺处理、数据计算、编写程序单、输入程序到程序校验等各步骤主要有人工完成的编程过程。它适用于点位加工或几何形状不太复杂的零件的加工,以及计算较简单,程序段不多,编程易于实现的场合等。但对于几何形状复杂的零件(尤其是空间曲面组成的零件),以及几何元素不复杂但需编制程序量很大的零件,由于编程时计算数值的工作相当繁琐,工作量大,容易出错,程序校验也较困难,用手工编程难以完成,因此要采用自动编程。所谓自动编程即程序编制工作的大部分或全部有计

算机完成,可以有效解决复杂零件的加工问题,也是数控编程未来的发展趋势。同时,也要看到手工编程是自动编程的基础,自动编程中许多核心经验都来源于手工编程,二者相辅相成。 二、编程步骤 拿到一张零件图纸后,首先应对零件图纸分析,确定加工工艺过程,也即确定零件的加工方法(如采用的工夹具、装夹定位方法等),加工路线(如进给路线、对刀点、换刀点等)及工艺参数(如进给速度、主轴转速、切削速度和切削深度等)。其次应进行数值计算。绝大部分数控系统都带有刀补功能,只需计算轮廓相邻几何元素的交点(或切点)的坐标值,得出各几何元素的起点终点和圆弧的圆心坐标值即可。最后,根据计算出的刀具运动轨迹坐标值和已确定的加工参数及辅助动作,结合数控系统规定使用的坐标指令代码和程序段格式,逐段编写零件加工程序单,并输入CNC装置的存储器中。 三、典型实例分析 数控车床主要是加工回转体零件,典型的加工表面不外乎外圆柱、外圆锥、螺纹、圆弧面、切槽等。例如,要加工形状如图所示的零件,采用手工编程方法比较合适。由于不同的数控系统其编程指令代码有所不同,因此应根据设备类型进行编程。以西门子802S数控系统为例,应进行如下操作。 (1)确定加工路线

轴的加工工艺

课题:轴类零件加工工艺 一、一、教学目的:熟悉轴类零件加工的主要工艺,其中包括 结构特点、技术要求分析、定位基准选择用一般工艺 路线的拟定。掌握阶梯轴的加工工艺分析和工艺路线 二、二、教学重点:轴类零件加工工艺分析 三、三、教学难点:轴类零件加工工艺路线的拟定 四、教学时数: 2 学时,其中实践性教学学时。 五、习题: 六、教学后记: 第六章第六章典型零件加工 第一节第一节轴类零件加工 一、一、概述 (一)、轴类零件的功用与结构特点 1、功用:为支承传动零件(齿轮、皮带轮等)、传动扭矩、承受载荷,以及

保证装在主轴上的工件或刀具具有一定的回转精度。 2、2、分类:轴类零件按其结构形状的特点,可分为光轴、阶梯 轴、空心轴和异形轴(包括曲轴、凸轮轴和偏心轴等)四类。 图轴的种类 a)光轴b)空心轴c)半轴d)阶梯轴e)花键轴f)十字轴g)偏心轴 h)曲轴i) 凸轮轴 若按轴的长度和直径的比例来分,又可分为刚性轴(L/d<12=和挠性轴(L/d >12)两类。 3、表面特点:外圆、内孔、圆锥、螺纹、花键、横向孔 (二)主要技术要求: 1、尺寸精度 轴颈是轴类零件的主要表面,它影响轴的回转精度及工作状态。轴颈的直径精度根据其使用要求通常为IT6~9,精密轴颈可达IT5。 2、几何形状精度 轴颈的几何形状精度(圆度、圆柱度),一般应限制在直径公差点范围内。对几何形状精度要求较高时,可在零件图上另行规定其允许的公差。 3、位置精度 主要是指装配传动件的配合轴颈相对于装配轴承的支承轴颈的同轴度,通常是用配合轴颈对支承轴颈的径向圆跳动来表示的;根据使用要求,规定高精度轴为0.001~0.005mm,而一般精度轴为0.01~0.03mm。 此外还有内外圆柱面的同轴度和轴向定位端面与轴心线的垂直度要求等。 4.表面粗糙度 根据零件的表面工作部位的不同,可有不同的表面粗糙度值,例如普通机床主轴支承轴颈的表面粗糙度为Ra0.16~0.63um,配合轴颈的表面粗糙度为Ra0.63~2.5um,随着机器运转速度的增大和精密程度的提高,轴类零件表面粗糙度值要求也将越来越小。

典型轴类零件加工工艺分析

典型轴类零件加工工艺分 析 Revised final draft November 26, 2020

阶梯轴加工工艺过程分析 图6—34为减速箱传动轴工作图样。表6—13为该轴加工工艺过程。生产批量为小批生产。材料为45热轧圆钢。零件需调质。 (一)结构及技术条件分析该轴为没有中心通孔的多阶梯轴。根据该零件工作图,其轴颈M、N,外圆P,Q及轴肩G、H、I有较高的尺寸精度和形状位置精度,并有较小的表面粗糙度值,该轴有调质热处理要求。(二)加工工艺过程分析1.确定主要表面加工方法和加工方案。 传动轴大多是回转表面,主要是采用车削和外圆磨削。由于该轴主要表面M,N,P,Q的公差等级较高(IT6),表面粗糙度值较小(μm),最终加工应采用磨削。其加工方案可参考表3-14。 2.划分加工阶段 该轴加工划分为三个加工阶段,即粗车(粗车外圆、钻中心孔),半精车(半精车各处外圆、台肩和修研中心孔等),粗精磨各处外圆。各加工阶段大致以热处理为界。 3.选择定位基准 轴类零件的定位基面,最常用的是两中心孔。因为轴类零件各外圆表面、螺纹表面的同轴度及端面对轴线的垂直度是相互位置精度的主要项目,而这些表面的设计基准一般都是轴的中心线,采用两中心孔定位就能符合基准重合原则。而且由于多数工序都采用中心孔作为定位基面,能最大限度地加工出多个外圆和端面,这也符合基准统一原则。但下列情况不能用两中心孔作为定位基面:(1)粗加工外圆时,为提高工件刚度,则采用轴外圆表面为定位基面,或以外圆和中心孔同作定位基面,即一夹一顶。(2)当轴为通孔零件时,在加工过程中,作为定位基面的中心孔因钻出通孔而消失。为了在通孔加工后还能用中心孔作为定位基面,工艺上常采用三种方法。 ①当中心通孔直径较小时,可直接在孔口倒出宽度不大于2mm的60o内锥面来代替中心孔; ②当轴有圆柱孔时,可采用图6—35a所示的锥堵,取1∶500锥度;当轴孔锥度较小时,取锥堵锥度与工件两端定位孔锥度相同;

关于解决数控车床加工各种轴类、套类、盘类零件工艺定位浅析

关于解决数控车床加工各种轴类、套类、盘类零件工艺定位浅析 摘要:数控车床加工轴类、套类、盘类零件时,绝大部分都需多次装夹,因装夹方法不合适导致很难保证加工质量。本文在分析这类零件数车加工工艺定位的基础上,结合生产实际情况,设计出一种新的定位装置来解决这类零件的装夹问题,大大提高了零件的质量和加工效率。 关键词:数控车床装夹工艺加工效率 0 前言 轴类、套类、盘类零件是比较常见的机械零件,特别是细长轴、薄壁筒套之类的零件在电器开关中应用较多,给数控车床操作者带来了不少麻烦,对加工者提出了更高的要求,如果不注意,轻者影响加工效率,进而影响生产进度,重者产生废品。因此,解决这一类零件数控车床的加工定位装夹以及加工工艺问题,既是现实生产中的迫切要求,又具有重要的经济价值意义,也给企业带来可观的经济效益。 1 数控车床加工此类零件存在的问题 数控车床在加工过程中,常用的定位方法有两种:第一种是软爪定位,这种定位方法因软爪所夹紧零件的尺寸有限,所以对于一些较长工件的加工,因伸出过长而刚性太差,而且因刀具磨损和切削用量等因素,在加工过程中容易出现窜动,因而零件的质量很不稳定。再者零件因尺寸不同加工者还需要不间断的车软爪,这不仅降低了卡爪的使用寿命,而且在装夹时会发生磕碰划伤的现象,同时无形中也增加了很大的加工成本。另外一种定位方法是前定位,这种方法需要将每件零件重新找正一次,而且还要进行两次装卡,生产效率非常低,数控设备的加工能力不能得到充分发挥。 2 设计一种解决工艺方案 为了避免上述问题,同时也是为了更好的提高零件的加工质量及产品性能,我们设计了一种适用于各种轴类、套类及盘类零件在数控机床上加工时的组合定位装置,实现加工方便,定位准确,质量稳定,生产效率高的目的。解决工艺方案如下: 1)根据生产实际情况,相关数控机床操作人员设计制造一套定位装置,要求该装置在加工各种轴类、套类及盘类零件时,定位方法科学合理,使用时充分与数控车床主轴和卡盘紧密配合,加工者可以根据零件实际情况调整定位装置的伸缩量以及该定位装置的组合方式,使零件装夹定位后达到最佳状态,即实现零件加工时的后定位。 2)将制造好的定位装置首先应用于一台数控车床(Vturn26)观察实施效果

相关文档
最新文档