外文资料翻译--应用坐标测量机的机器人运动学姿态的标定翻译-精品

外文资料翻译--应用坐标测量机的机器人运动学姿态的标定翻译-精品
外文资料翻译--应用坐标测量机的机器人运动学姿态的标定翻译-精品

毕业设计(论文)外文资料翻译

系部:机械工程系

专业:机械工程及自动化

姓名:

学号:

外文出处:The Internation Journal of Advanced

(用外文写)

Manufacturing Technology

附件: 1.外文资料翻译译文;2.外文原文。

指导教师评语:

签名:

年月日注:请将该封面与附件装订成册。

附件1:外文资料翻译译文

应用坐标测量机的机器人运动学姿态的标定

这篇文章报到的是用于机器人运动学标定中能获得全部姿态的操作装置——

坐标测量机(CMM)。运动学模型由于操作器得到发展, 它们关系到基坐标和工件。工件姿态是从实验测量中引出的讨论, 同样地是识别方法学。允许定义观察策略的完全模拟实验已经实现。实验工作的目的是描写参数辨认和精确确认。用推论原则的那方法能得到在重复时近连续地校准机器人。

关键字:机器人标定坐标测量参数辨认模拟学习精确增进

1. 前言

机器手有合理的重复精度(0.3毫米)而知名, 但仍有不好的精确性(10.0 毫米)。为了实现机器手精确性,机器人可能要校准也是好理解。在标定过程中,几个连续的步骤能够精确地识别机器人运动学参数,提高精确性。这些步骤为如下描述:

1 操作器的运动学模型和标定过程本身是发展,和通常有标准运动学模型的工具实现的。作为结果的模型是定义基于厂商的运动学参数设置错误量, 和识别未知的,实际的参数设置。

2 机器人姿态的实验测量法(部分的或完成) 是拿走为了获得从联系到实际机

器人的参数设置数据。

3 实际的运动学参数识别是系统地改变参数设置和减少在模型阶段错误量的

定义。一个接近完成辨认由分析不同中间姿态变量P和运动学参数K的微分关系决定:

于是等价转化得:

两者择一, 问题可以看成为多维的优化问题,这是为了减少一些定义的错误功能到零点,运动学参数设置被改变。这是标准优化问题和可能解决用的众所周知的方法。

4 最后一步是机械手控制中的机器人运动学识别和在学习之下的硬件系统的

详细资料。

包含实验数据的这张纸用于标度过程。可获得的几个方法是可用于完成这任务, 虽然他们相当复杂,获得数据需要大量的成本和时间。这样的技术包括使用可视化的和自动化机械,伺服控制激光干涉计,有关声音的传感器和视觉传感器。理想测量系统将获得操作器的全部姿态(位置和方向),因为这将合并机械臂各个位置的全部信息。上面提到的所有方法仅仅用于唯一部分的姿态, 需要更多的数据是为了标度过程到进行。

2.理论

文章中的理论描述,为了操作器空间放置的各自的位置,全部姿态是可测量的,虽然进行几个中间测量,是为了获得姿态。测量姿态使用装置是坐标测量机(CMM),它是三轴的,棱镜测量系统达到0.01毫米的精确。机器人操作器是能校准的,PUMA 560,放置接近于CMM,特殊的操作装置能到达边缘。图1显示了系统不同部分安排。在这部分运动学模型将是发展, 解释姿态估算法,和参数辨认方法。

2.1 运动学的参数

在这部分,操作器的基本运动学结构将被规定,它关系到完全坐标系统的讨论, 和终点模型。从这些模型,用于可能的技术的运动学参数的识别将被规定,和描述决定这些参数的方法。

那些基础的模型工具用于描写不同的物体和工件操作器位置空间的关系的方法是Denavit-Hartenberg 方法,在Hayati 有调整计划,停泊处 和当二连续的接缝轴是名义上地平行的用于说明不相称模型 。如图2

这中方法存在于物体或相互联系的操作杆结构中,和运动学中需要从一个坐标到另一个坐标这种同类变化是被定义的。这种变化是相同形式的

上面的关系可以解释通过四个基本变化操作实现坐标系n-1到结构坐标系n 的变化。只有需要找到与前一个的关系的四个变化是必需的,在那个时候连续的轴是不平行的,n β定义为零点。

当应用于一个结构到下一个结构的等价变化坐标系与更改Denavit-Hartenberg 系相一致时,它们将被书写成矩阵元素实现运动学参数功能的矩阵形状。这些参数是变化的简单变量:关节角n θ,连杆偏置n d , 连杆长度n a ,扭角n β,矩阵通常表示如下:

对于多连接的, 例如机械操作臂,各自连续的链环和两者瞬间的位置描写在前一个矩阵变化中。这种变化从底部链环开始到第n 链环因此关系如下:

图3表示出PUMA 机器人在Denavit-Hartenberg 系中每一连杆,完全坐标系和工具结构。变化从世界坐标系到机器人底部结构需要仔细考虑过,因为潜在的参数取决于被选择的改变类型。考虑到图4,世界坐标w w w z y x ,,,在D-H 系中定义的从世界坐标到机器人基坐标000,,z y x ,坐标b b b z y x ,,是PUMA 机器人定义的基坐标和机器人第二个D-H 结构中坐标111,,z y x 。我们感兴趣的是从世界坐标到111,,z y x 必需的最小的参数数量。实现这种变化有两种路径:路径1,从w w w z y x ,,到000,,z y x D-H 变化包括四

个参数,接着从000,,z y x 到b b b z y x ,,的变化将牵连二个参数` 和`d 的变化

图3

图4

最后,另外从b b b z y x ,,到111,,z y x 的D-H 变化中有四个参数其中1θ?和`φ两个参数是关于轴Z 0因此不能独立地识别, 1d ?和`d 是沿着轴Z 0因此也不能是独立地识别。因此,用这路径它需要从世界坐标到PUMA 机器人的第一个坐标有八个独立的运动学参数。路径2,同样地二中择一,从世界坐标到底部结构坐标b b b z y x ,,的变化可以是直接定义。因此坐标变换需要六个参数,如Euler 形式:

下面是从b b b z y x ,,到111,,z y x D -H 变化中的四个参数,但1θ?与b b b ?θφ,,相关联,1d ?与zb yb xb p p p ,,相关联,减少成两个参数。很显然这种路径和路径1一样需要八个参数,但是设置不同。

上面的方法可能使用于从世界坐标系到PUMA 机器人的第二结构的移动中。在这工作中,选择路径2。工具改变引起需要六个特殊参数的改变的Euler 形式:

用于运动学模型的参数总数变成30,他们定义于表1

2.2 辨认方法学

运动学的参数辨认将是进行多维的消去过程, 因此避免了雅可比系统的标定,过程如下:

1. 首先假设运动学的参数, 例如标准设置。

2. 为选择任意关节角的设置。

3. 计算PUMA机器人末端操作器。

4. 测量PUMA机器人末端操作器的位姿如关节角,通常标准的和预言的位姿将是不同的。

5. 为了最好使预言位姿达到标准的位姿,在整齐的方式更改运动学的参数。

这个过程应用于不是单一的关节角设置而是一定数量的关节角,与物理测量数量等同的全部关节角设置是需要,必须满足

在这儿:

Kp是识别的运动学参数的数量

N是测量位姿的数

Dr是测量过程中自由度的数量

文章中,给定了自由度的数量,赠值为

因此全部位姿是测量的。在实践中,更多的测量应该是在实验测量法去掉补偿结果。优化程序使用命名为ZXSSO,和标准库功能的IMSL。

2.3 位姿测量法

显然它是从上面的方法确定PUMA机器人全部位姿是必需的为了实现标定。这种方法现在将详细地描写。如图5所示,末端操作器由五个确定的工具组成。考虑到借助于工具坐标和世界坐标中间各个坐标的形式,如图6

这些坐标的关系如下:

p是关于世界坐标结构的第i个球的4x1列向量坐标, Pi是关于工具坐标结构,

i

第i个球的4x1坐标的列向量, T是从世界坐标结构到工具坐标结构变化的4x4矩阵。

设定Pi,测量出,

p,然后算出T,使用于在标定过程的位姿的测量。它是不会

i

很简单,但是不可能由等式(11)反求出T。上面的过程由四个球A, B, C和D来实现,如下:

或为

由于P`, T 和P 全部相符合,反解求的位姿矩阵

在实践中当PUMA 机器人放置在确定的位置上,对于CMM 由四个球决定Pi 是困难的。准确的测量三个球,第四球根据十字相乘可以获得

考虑到决定的球中心坐标的是基于球表面点的测量,没有分析可获到的程序。 另外,数字优化的使用是为了求惩罚函数的最小解

这里),,(w v u 是确定球中心,),,(i i i z y x 是第i 个球表面点的坐标且r 是球的半径。在测试过程中,发现只测量四个表面上的点来确定中心点是非常有效的。

附件2:外文原文(复印件)

Full-Pose Calibration of a Robot Manipulator Using a Coordinate-

Measuring Machine

The work reported in this article addresses the kinematic calibration of a robot manipulator using a coordinate measuring m a c h i n e(C M M)w h i c h i s a b l e t o o b t a i n t h e f u l l p o s e o f t h e e n d-e f f e c t o r.A k i n e m a t i c m o d e l i s d e v e l o p e d f o r t h e manipulator, its relationship to the world coordinate frame and the tool. The derivation of the tool pose from experimental measurements is discussed, as is the identification methodology.

A complete simulation of the experiment is performed, allowing the observation strategy to be defined. The experimental work is described together with the parameter identification and accuracy verification. The principal conclusion is that the m et ho d is a b le t o c al ib r a te t h e ro bot s ucc es sfu l l y, with a resulting accuracy approaching that of its repeatability.

Keywords: Robot calibration; Coordinate measurement; Parameter identification; Simulation study; Accuracy enhancement 1. Introduction

It is wel l known tha t robo t manip ula tors t ypical ly ha ve reasonable repeatability (0.3 ram), yet exhibit poor accuracy

(10.0m m).T h e p r o c e s s b y w h i c h r o b o t s m a y b e c a l i b r a t e d

i n o r d e r t o a c h i e v e a c c u r a c i e s a p p r o a c h i n g t h a t o f t h e m a n i p u l a t o r i s a l s o w e l l u n d e r s t o o d .I n t h e c a l i b r a t i o n process, several sequential steps enable the precise kinematic p ar am et er s o f th e m an ip u l ato r to be identifi ed, leading to improved accuracy. These steps may be described as follows: 1. A kinematic model of the manipulator and the calibration process itself is developed and is usually accomplished with s t a n d a r d k i n e m a t i c m o d e l l i n g t o o l s.T h e r e s u l t i n g m o d e l i s u s e d t o d e f i n e a n e r r o r q u a n t i t y b a s e d o n a n o m i n a l (m a n u f a c t u r e r's)k i n e m a t i c p a r a m e t e r s e t,a n d a n u n k n o w n, actual parameter set which is to be identified.

2. Ex pe ri me n ta l m ea su re m e nts o f th e rob ot po se (p art ial o r complete) are taken in order to obtain data relating to the actual parameter set for the robot.

3.The actual kinematic parameters are identified by systematically

c h a n g i n g t h e n o m i n a l p a r a m e t e r s e t s o a s t o r e

d u c

e t h e e r r o r q u a n t i t y d e

f i n e d i n t h e m o d e l l i n

g p

h a s e.O n e a p p r o a c h t o a c h

i e v i n g t h i s i d e n t i f i c a t i o n i s d e t e r m i n i n g

t h e a n a l y t i c a l d i f f e r e n t i a l r e l a t i o n s h i p b e t w e e n t h e p o s e v a r i a b l e s P a n d t h e k i n e m a t i c p a r a m e t e r s K i n t h e f o r m of a Jacobian,

and then inverting the equation to calculate the deviation of t h e k i n e m a t i c p a r a m e t e r s f r o m t h e i r n o m i n a l v a l u e s

Alternatively, the problem can be viewed as a multidimensional o p t i m i s a t i o n t a s k,i n w h i c h t h e k i n e m a t i c p a r a m e t e r set is changed in order to reduce some defined error function t o z e r o.T h i s i s a s t a n d a r d o p t i m i s a t i o n p r o b l e m a n d m a y be solved using well-known methods.

4. The final step involves the incorporation of the identified k i n e m a t i c p a r a m e t e r s i n t h e c o n t r o l l e r o f t h e r o b o t a r m, the details of which are rather specific to the hardware of the system under study.

This paper addresses the issue of gathering the experimental d a t a u s e d i n t h e c a l i b r a t i o n p r o c e s s.S e v e r a l m e t h o d s a r e available to perform this task, although they vary in complexity, c o s t a n d t h e t i m e t a k e n t o a c q u i r e t h e d a t a.E x a m p l e s o f s u c h t e c h n i q u e s i n c l u d e t h e u s e o f v i s u a l a n d a u t o m a t i c t h e o d o l i t e s,s e r v o c o n t r o l l e d l a s e r i n t e r f e r o m e t e r s, a c o u s t i c s e n s o r s a n d v i d u a l s e n s o r s .A n i d e a l m e a s u r i n g system would acquire the full pose of the manipulator (position and orientation), because this would incorporate the maximum information for each position of the arm. All of the methods m e n t i o n e d a b o v e u s e o n l y t h e p a r t i a l p o s e,r e q u i r i n g m o r e

d a t a t o b

e t a k e n

f o r t h e c a l i b r a t i o n p r o c e s s t o p r o c e e d.

2. Theory

In the method described in this paper, for eac h position in which the manipulator is placed, the full pose is measured, although several intermediate measurements have to be taken in order to arrive at the pose. The device used for the pose m e a s u r e m e n t i s a c o o r d i n a t e-m e a s u r i n g m a c h i n e(C M M), w h i c h i s a t h r e e-a x i s,p r i s m a t i c m e a s u r i n g s y s t e m w i t h a q u o t e d a c c u r a c y o f0.01r a m.T h e r o b o t m a n i p u l a t o r t o b e c a l i b r a t e d,a P U M A560,i s p l a c e d c l o s e t o t h e C M M,a n d a special end-effector is attached to the flange. Fig. 1 shows the arrangement of the various parts of the system. In this s e c t i o n t h e k i n e m a t i c m o d e l w i l l b e d e v e l o p e d,t h e p o s e estimation algorithms explained, and the parameter identification methodology outlined.

2.1 Kinematic Parameters

In this section, the basic kinematic structure of the manipulator will be specified, its relation to a user-defined world coordinate system discussed, and the end-point toil modelled. From these m o d e l s,t h e k i n e m a t i c p a r a m e t e r s w h i c h m a y b e i d e n t i f i e d using the proposed technique will be specified, and a method f o r d e t e r m i n i n g t h o s e p a r a m e t e r s d e s c r i b e d. The fundamental modelling tool used to describe the spatial relationship between the various objects and locations in the m a n i p u l a t o r w o r k s p a c e i s t h e D e n a v i t-H a r t e n b e r g m e t h o d ,w i t h m o d i f i c a t i o n s p r o p o s e d b y H a y a t i,M o o r i n g a n d W u t o a c c o u n t f o r d i s p r o p o r t i o n a l m o d e l s w he n tw o co n se cu t iv e jo i n t a x e s ar e nom ina ll y p a r all el. A s s h o w n i n F i g.2,t h i s m e t h o d p l a c e s a c o o r d i n a t e f r a m e o n

each object or manipulator link of interest, and the kinematics a r e d e f i n e d b y t h e h o m o g e n e o u s t r a n s f o r m a t i o n r e q u i r e d t o change one coordinate frame into the next. This transformation takes the familiar form

T h e a b o v e e q u a t i o n m a y b e i n t e r p r e t e d a s a m e a n s t o t r a n s f o r m f r a m e n-1i n t o f r a m e n b y m e a n s o f f o u r o u t o f t h e f i v e o p e r a t i o n s i n d i c a t e d.I t i s k n o w n t h a t o n l y f o u r transformations are needed to locate a coordinate frame with r es pe ct t o t he p r ev io us o ne.W he n conse cut iv e a x e s a re no t parallel, the value of/3. is defined to be zero, while for the case when consecutive axes are parallel, d. is the variable chosen to be zero.

W h e n c o o r d i n a t e f r a m e s a r e p l a c e d i n c o n f o r m a n c e w i t h the modified Denavit-Hartenberg method, the transformations given in the above equation will apply to all transforms of o n e f r a m e i n t o t h e n e x t,a n d t h e s e m a y b e w r i t t e n i n a g e n e r i c m a t r i x f o r m,w h e r e t h e e l e m e n t s o f t h e m a t r i x a r e functions of the kinematic parameters. These parameters are simply the variables of the transformations: the joint angle 0., the common normal offset d., the link length a., the angle o f tw is t a., a nd th e an g l e /3.. Th e mat rix f orm i s u suall y expressed as follows:

For a serial linkage, such as a robot manipulator, a coordinate frame is attached to each consecutive link so that both the instantaneous position together with the invariant geometry a r e d e s c r i b e d b y t h e p r e v i o u s m a t r i x t r a n s f o r m a t i o n.'T h e

transformation from the base link to the nth link will therefore be given by

F i g.3s h o w s t h e P U M A m a n i p u l a t o r w i t h t h e D e n a v i t-H a r t e n b e r g f r a m e s a t t a c h e d t o e a c h l i n k,t o g e t h e r with world coordinate frame and a tool frame. The transformation f r o m t h e w o r l d f r a m e t o t h e b a s e f r a m e o f t h e manipulator needs to be considered carefully, since there are potential parameter dependencies if certain types of transforms a r e c h o s e n.C o n s i d e r F i g.4,w h i c h s h o w s t h e w o r l d f r a m e x w,y,,z,,t h e f r a m e X o,Y o,z0w h i c h i s d e f i n e d b y a D H t r a n s f o r m f r o m t h e w o r l d f r a m e t o t h e f i r s t j o i n t a x i s o f t h e m a n i p u l a t o r,f r a m e X b,Y b,Z b,w h i c h i s t h e P U M A

manufacturer's defined base frame, and frame xl, Yl, zl which is the second DH frame of the manipulator. We are interested i n d e t e r m i n i n g t h e m i n i m u m n u m b e r o f p a r a m e t e r s r e q u i r e d to move from the world frame to the frame x~, Yl, z~. There are two transformation paths that will accomplish this goal: P a t h1:A D H t r a n s f o r m f r o m x,,y,,z,,t o x0,Y o,z o i n v o l v i n g f o u r p a r a m e t e r s,f o l l o w e d b y a n o t h e r t r a n s f o r m f r o m x o,Y o,z0t o X b,Y b,Z b w h i c h w i l l i n v o l v e o n l y t w o parameters ~b' and d' in the transform

Finally, another DH transform from xb, Yb, Zb to Xt, y~, Z~ w hi ch i nv ol v es f o ur p ar a m ete r s e xc ept t hat A01 a n d 4~' ar e b o t h a b o u t t h e a x i s z o a n d c a n n o t t h e r e f o r e b e i d e n t i f i e d independently, and Adl and d' are both along the axis zo and also cannot be identified independently. It requires, therefore, o nl y ei gh t i nd ep e nd en t k i nem a t ic p arame ter s to g o fr om th e world frame to the first frame of the PUMA using this path. Path 2: As an alternative, a transform may be defined directly from the world frame to the base frame Xb, Yb, Zb. Since this is a frame-to-frame transform it requires six parameters, such as the Euler form:

T h e f o l l o w i n g D H t r a n s f o r m f r o m x b,Y b,z b t O X l,Y l,z l would involve four parameters, but A0~ may be resolved into 4~,, 0b, ~, and Ad~ resolved into Pxb, Pyb, Pzb, reducing the

parameter count to two. It is seen that this path also requires e i g h t p a r a m e t e r s a s i n p a t h i,b u t a d i f f e r e n t s e t.

E i t h e r o f t h e a b o v e m e t h o d s m a y b e u s e d t o m o v e f r o m t h e w o r l d f r a m e t o t h e s e c o n d f r a m e o f t h e P U M A.I n t h i s w o r k,t h e s e c o n d p a t h i s c h o s e n.T h e t o o l t r a n s f o r m i s a n E u l e r t r a n s f o r m w h i c h r e q u i r e s t h e s p e c i f i c a t i o n o f s i x parameters:

T he t ot al n u mb er of p ar a m ete r s u se d in the k ine m a tic mode l becomes 30, and their nominal values are defined in Table 1.

2.2 Identification Methodology

The kinematic parameter identification will be performed as a multidimensional minimisation process, since this avoids the calculation of the system Jacobian. The process is as follows: 1. Be gi n wi t h a g ue ss s e t of k in em atic par am ete r s, such as the nominal set.

2. Select an arbitrary set of joint angles for the PUMA.

3. Calculate the pose of the PUMA end-effector.

4.M e a s u r e t h e a c t u a l p o s e o f t h e P U M A e n d-e f f e c t o r f o r t he s am e se t o f j oi nt a n g les.In g enera l, th e m e a sur ed an d predicted pose will be different.

5. Mo di fy t h e ki n em at ic p ara m e te rs in a n o rd erl y man ner i n o r d e r t o b e s t f i t(i n a l e a s t-s q u a r e s s e n s e)t h e m e a s u r e d pose to the predicted pose.

The process is applied not to a single set of joint angles but to a number of joint angles. The total number of joint angle

s e t s r e q u i r e d,w h i c h a l s o e q u a l s t h e n u m b e r o f p h y s i c a l measurement made, must satisfy

K p i s t h e n u m b e r o f k i n e m a t i c p a r a m e t e r s t o b e i d e n t i f i e d N i s t h e n u m b e r o f m e a s u r e m e n t s(p o s e s)t a k e n D r r e p r e s e n t s t h e n u m b e r o f d e g r e e s o f f r e e d o m p r e s e n t i n each measurement.

In the system described in this paper, the number of degrees of freedom is given by

since full pose is measured. In practice, many more measurements s h o u l d b e t a k e n t o o f f s e t t h e e f f e c t o f n o i s e i n t h e e xp er im en ta l m ea s ur em en t s. T h e o pt imisa tio n pro c e dur e use d is known as ZXSSO, and is a standard library function in the IMSL package .

2.3 Pose Measurement

It is apparent from the above that a means to determine the f u l l p o s e o f t h e P U M A i s r e q u i r e d i n o r d e r t o p e r f o r m t h e calibration. This method will now be described in detail. The end-effector consists of an arrangement of five precisiontooling b a l l s a s s h o w n i n F i g. 5.C o n s i d e r t h e c o o r d i n a t e s o f the centre of each ball expressed in terms of the tool frame (Fig. 5) and the world coordinate frame, as shown in Fig. 6. T h e r e l a t i o n s h i p b e t w e e n t h e s e c o o r d i n a t e s m a y b e w r i t t e n as:

w he re P i' i s t he 4 x 1 c o lum n ve ct or of th e coo r d ina tes o f the ith ball expressed with respect to the world frame, P~ is t he 4 x 1 c o lu mn ve ct or o f t h e c oo rdina tes o f t h e it h bal l expressed with respect to the tool frame, and T is the 4 ? 4 h o m o g e n i o u s t r a n s f o r m f r o m t h e w o r l d f r a m e t o t h e t o o l frame.

The n may be foun d, a n d use d as th e m easure d pose in t he calibration process. It is not quite that simple, however, since it is not possible to invert equation (11) to obtain T. The a bo ve p ro ce s s is pe rf or m e d f o r t he four ba ll s, A, B, C an d D, and the positions ordered as:

or in the form:

S i n c e P',T a n d P a r e a l l n o w s q u a r e,t h e p o s e m a t r i x m a y be obtained by inversion:

I n pr ac ti ce it m a y be d i f fic u l t fo r the CM M to a c ces s fou r b a i l s t o d e t e r m i n e P~w h e n t h e P U M A i s p l a c e d i n c e r t a i n configurations. Three balls are actually measured and a fourth ball is fictitiously located according to the vector cross product:

R e g a r d i n g t h e d e t e r m i n a t i o n o f t h e c o o r d i n a t e s o f t h e

c e n t r e o f a b a l l b a s e

d o n m

e a s u r e d p o i n t s o n i t s s u r

f a c e, n o a n a l y t i c a l p r o c e d u r e s a r e a v a i l a b l e.A n o t h e r n u m e r i c a l optimisation scheme was used for this purpose such that the penalty function:

w a s m i n i m i s e d,w h e r e(u,v,w)a r e t h e c o o r d i n a t e s o f t h e c e n t r e o f t h e b a l l t o h e d e t e r m i n e d,(x/,y~,z~)a r e t h e coordinates of the ith point on the surface of the ball and r i s th e ba ll di am e te r. I n the tes ts performed, it was found sufficient to measure only four points (i = 4) on the surface to determine the ball centre.

英文论文及中文翻译

International Journal of Minerals, Metallurgy and Materials Volume 17, Number 4, August 2010, Page 500 DOI: 10.1007/s12613-010-0348-y Corresponding author: Zhuan Li E-mail: li_zhuan@https://www.360docs.net/doc/6e4910804.html, ? University of Science and Technology Beijing and Springer-Verlag Berlin Heidelberg 2010 Preparation and properties of C/C-SiC brake composites fabricated by warm compacted-in situ reaction Zhuan Li, Peng Xiao, and Xiang Xiong State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China (Received: 12 August 2009; revised: 28 August 2009; accepted: 2 September 2009) Abstract: Carbon fibre reinforced carbon and silicon carbide dual matrix composites (C/C-SiC) were fabricated by the warm compacted-in situ reaction. The microstructure, mechanical properties, tribological properties, and wear mechanism of C/C-SiC composites at different brake speeds were investigated. The results indicate that the composites are composed of 58wt% C, 37wt% SiC, and 5wt% Si. The density and open porosity are 2.0 g·cm–3 and 10%, respectively. The C/C-SiC brake composites exhibit good mechanical properties. The flexural strength can reach up to 160 MPa, and the impact strength can reach 2.5 kJ·m–2. The C/C-SiC brake composites show excellent tribological performances. The friction coefficient is between 0.57 and 0.67 at the brake speeds from 8 to 24 m·s?1. The brake is stable, and the wear rate is less than 2.02×10?6 cm3·J?1. These results show that the C/C-SiC brake composites are the promising candidates for advanced brake and clutch systems. Keywords: C/C-SiC; ceramic matrix composites; tribological properties; microstructure [This work was financially supported by the National High-Tech Research and Development Program of China (No.2006AA03Z560) and the Graduate Degree Thesis Innovation Foundation of Central South University (No.2008yb019).] 温压-原位反应法制备C / C-SiC刹车复合材料的工艺和性能 李专,肖鹏,熊翔 粉末冶金国家重点实验室,中南大学,湖南长沙410083,中国(收稿日期:2009年8月12日修订:2009年8月28日;接受日期:2009年9月2日) 摘要:采用温压?原位反应法制备炭纤维增强炭和碳化硅双基体(C/C-SiC)复合材

机器人外文翻译

英文原文出自《Advanced Technology Libraries》2008年第5期 Robot Robot is a type of mechantronics equipment which synthesizes the last research achievement of engine and precision engine, micro-electronics and computer, automation control and drive, sensor and message dispose and artificial intelligence and so on. With the development of economic and the demand for automation control, robot technology is developed quickly and all types of the robots products are come into being. The practicality use of robot products not only solves the problems which are difficult to operate for human being, but also advances the industrial automation program. At present, the research and development of robot involves several kinds of technology and the robot system configuration is so complex that the cost at large is high which to a certain extent limit the robot abroad use. To development economic practicality and high reliability robot system will be value to robot social application and economy development. With the rapid progress with the control economy and expanding of the modern cities, the let of sewage is increasing quickly: With the development of modern technology and the enhancement of consciousness about environment reserve, more and more people realized the importance and urgent of sewage disposal. Active bacteria method is an effective technique for sewage disposal,The lacunaris plastic is an effective basement for active bacteria adhesion for sewage disposal. The abundance requirement for lacunaris plastic makes it is a consequent for the plastic producing with automation and high productivity. Therefore, it is very necessary to design a manipulator that can automatically fulfill the plastic holding. With the analysis of the problems in the design of the plastic holding manipulator and synthesizing the robot research and development condition in recent years, a economic scheme is concluded on the basis of the analysis of mechanical configuration, transform system, drive device and control system and guided by the idea of the characteristic and complex of mechanical configuration,

人形机器人论文中英文资料对照外文翻译

中英文资料对照外文翻译 最小化传感级别不确定性联合策略的机械手控制 摘要:人形机器人的应用应该要求机器人的行为和举止表现得象人。下面的决定和控制自己在很大程度上的不确定性并存在于获取信息感觉器官的非结构化动态环境中的软件计算方法人一样能想得到。在机器人领域,关键问题之一是在感官数据中提取有用的知识,然后对信息以及感觉的不确定性划分为各个层次。本文提出了一种基于广义融合杂交分类(人工神经网络的力量,论坛渔业局)已制定和申请验证的生成合成数据观测模型,以及从实际硬件机器人。选择这个融合,主要的目标是根据内部(联合传感器)和外部( Vision 摄像头)感觉信息最大限度地减少不确定性机器人操纵的任务。目前已被广泛有效的一种方法论就是研究专门配置5个自由度的实验室机器人和模型模拟视觉控制的机械手。在最近调查的主要不确定性的处理方法包括加权参数选择(几何融合),并指出经过训练在标准操纵机器人控制器的设计的神经网络是无法使用的。这些方法在混合配置,大大减少了更快和更精确不同级别的机械手控制的不确定性,这中方法已经通过了严格的模拟仿真和试验。 关键词:传感器融合,频分双工,游离脂肪酸,人工神经网络,软计算,机械手,可重复性,准确性,协方差矩阵,不确定性,不确定性椭球。 1 引言 各种各样的机器人的应用(工业,军事,科学,医药,社会福利,家庭和娱乐)已涌现了越来越多产品,它们操作范围大并呢那个在非结构化环境中运行 [ 3,12,15]。在大多数情况下,如何认识环境正在发生变化且每个瞬间最优控制机器人的动作是至关重要的。移动机器人也基本上都有定位和操作非常大的非结构化的动态环境和处理重大的不确定性的能力[ 1,9,19 ]。每当机器人操作在随意性自然环境时,在给定的工作将做完的条件下总是存在着某种程

关于力的外文文献翻译、中英文翻译、外文翻译

五、外文资料翻译 Stress and Strain 1.Introduction to Mechanics of Materials Mechanics of materials is a branch of applied mechanics that deals with the behavior of solid bodies subjected to various types of loading. It is a field of study that i s known by a variety of names, including “strength of materials” and “mechanics of deformable bodies”. The solid bodies considered in this book include axially-loaded bars, shafts, beams, and columns, as well as structures that are assemblies of these components. Usually the objective of our analysis will be the determination of the stresses, strains, and deformations produced by the loads; if these quantities can be found for all values of load up to the failure load, then we will have obtained a complete picture of the mechanics behavior of the body. Theoretical analyses and experimental results have equally important roles in the study of mechanics of materials . On many occasion we will make logical derivations to obtain formulas and equations for predicting mechanics behavior, but at the same time we must recognize that these formulas cannot be used in a realistic way unless certain properties of the been made in the laboratory. Also , many problems of importance in engineering cannot be handled efficiently by theoretical means, and experimental measurements become a practical necessity. The historical development of mechanics of materials is a fascinating blend of both theory and experiment, with experiments pointing the way to useful results in some instances and with theory doing so in others①. Such famous men as Leonardo da Vinci(1452-1519) and Galileo Galilei (1564-1642) made experiments to adequate to determine the strength of wires , bars , and beams , although they did not develop any adequate theo ries (by today’s standards ) to explain their test results . By contrast , the famous mathematician Leonhard Euler(1707-1783) developed the mathematical theory any of columns and calculated the critical load of a column in 1744 , long before any experimental evidence existed to show the significance of his results ②. Thus , Euler’s theoretical results remained unused for many years, although today they form the basis of column theory. The importance of combining theoretical derivations with experimentally determined properties of materials will be evident theoretical derivations with experimentally determined properties of materials will be evident as we proceed with

英文文献及中文翻译

毕业设计说明书 英文文献及中文翻译 学院:专 2011年6月 电子与计算机科学技术软件工程

https://www.360docs.net/doc/6e4910804.html, Overview https://www.360docs.net/doc/6e4910804.html, is a unified Web development model that includes the services necessary for you to build enterprise-class Web applications with a minimum of https://www.360docs.net/doc/6e4910804.html, is part of https://www.360docs.net/doc/6e4910804.html, Framework,and when coding https://www.360docs.net/doc/6e4910804.html, applications you have access to classes in https://www.360docs.net/doc/6e4910804.html, Framework.You can code your applications in any language compatible with the common language runtime(CLR), including Microsoft Visual Basic and C#.These languages enable you to develop https://www.360docs.net/doc/6e4910804.html, applications that benefit from the common language runtime,type safety, inheritance,and so on. If you want to try https://www.360docs.net/doc/6e4910804.html,,you can install Visual Web Developer Express using the Microsoft Web Platform Installer,which is a free tool that makes it simple to download,install,and service components of the Microsoft Web Platform.These components include Visual Web Developer Express,Internet Information Services (IIS),SQL Server Express,and https://www.360docs.net/doc/6e4910804.html, Framework.All of these are tools that you use to create https://www.360docs.net/doc/6e4910804.html, Web applications.You can also use the Microsoft Web Platform Installer to install open-source https://www.360docs.net/doc/6e4910804.html, and PHP Web applications. Visual Web Developer Visual Web Developer is a full-featured development environment for creating https://www.360docs.net/doc/6e4910804.html, Web applications.Visual Web Developer provides an ideal environment in which to build Web sites and then publish them to a hosting https://www.360docs.net/doc/6e4910804.html,ing the development tools in Visual Web Developer,you can develop https://www.360docs.net/doc/6e4910804.html, Web pages on your own computer.Visual Web Developer includes a local Web server that provides all the features you need to test and debug https://www.360docs.net/doc/6e4910804.html, Web pages,without requiring Internet Information Services(IIS)to be installed. Visual Web Developer provides an ideal environment in which to build Web sites and then publish them to a hosting https://www.360docs.net/doc/6e4910804.html,ing the development tools in Visual Web Developer,you can develop https://www.360docs.net/doc/6e4910804.html, Web pages on your own computer.

工业机器人外文翻译

附录外文文献 原文 Industrial Robots Definition “A robot is a reprogrammable,multifunctional machine designed to manipulate materials,parts,tools,or specialized devices,through variable programmed motions for the performance of a variety of tasks.” --Robotics Industries Association “A robot is an automatic device that performs functions normally ascribrd to humans or a machine in orm of a human.” --Websters Dictionary The industrial robot is used in the manufacturing environment to increase productivity . It can be used to do routine and tedious assembly line jobs , or it can perform jobs that might be hazardous to do routine and tedious assembly line jobs , or it can perform jobs that might be hazardous to the human worker . For example , one of the first industrial robots was used to replace the nuclear fuel rods in nuclear power plants . A human doing this job might be exposed to harmful amounts of radiation . The industrial robot can also operate on the assembly line , putting together small components , such as placing electronic components on a printed circuit board . Thus , the human worker can be relieved of the routine operation of this tedious task . Robots can also be programmed to defuse bombs , to serve the handicapped , and to perform functions in numerous applications in our society . The robot can be thought of as a machine that will move an end-of-arm tool , sensor , and gripper to a preprogrammed location . When the robot arrives at this location , it will perform some sort of task . This task could be welding , sealing , machine loading , machine unloading , or a host of assembly jobs . Generally , this work can be accomplished without the involvement of a human being , except for programming and for turning the system on and off . The basic terminology of robotic systems is introduced in the following :

平面设计中英文对照外文翻译文献

(文档含英文原文和中文翻译) 中英文翻译 平面设计 任何时期平面设计可以参照一些艺术和专业学科侧重于视觉传达和介绍。采用多种方式相结合,创造和符号,图像和语句创建一个代表性的想法和信息。平面设计师可以使用印刷,视觉艺术和排版技术产生的最终结果。平面设计常常提到的进程,其中沟通是创造和产品设计。 共同使用的平面设计包括杂志,广告,产品包装和网页设计。例如,可能包括产品包装的标志或其他艺术作品,举办文字和纯粹的设计元素,如形状和颜色统一件。组成的一个最重要的特点,尤其是平面设计在使用前现有材料或不同的元素。 平面设计涵盖了人类历史上诸多领域,在此漫长的历史和在相对最近爆炸视觉传达中的第20和21世纪,人们有时是模糊的区别和重叠的广告艺术,平面设计和美术。毕竟,他们有着许多相同的内容,理论,原则,做法和语言,有时同样的客人或客户。广告艺术的最终目标是出售的商品和服务。在平面

设计,“其实质是使以信息,形成以思想,言论和感觉的经验”。 在唐朝( 618-906 )之间的第4和第7世纪的木块被切断打印纺织品和后重现佛典。阿藏印在868是已知最早的印刷书籍。 在19世纪后期欧洲,尤其是在英国,平面设计开始以独立的运动从美术中分离出来。蒙德里安称为父亲的图形设计。他是一个很好的艺术家,但是他在现代广告中利用现代电网系统在广告、印刷和网络布局网格。 于1849年,在大不列颠亨利科尔成为的主要力量之一在设计教育界,该国政府通告设计在杂志设计和制造的重要性。他组织了大型的展览作为庆祝现代工业技术和维多利亚式的设计。 从1892年至1896年威廉?莫里斯凯尔姆斯科特出版社出版的书籍的一些最重要的平面设计产品和工艺美术运动,并提出了一个非常赚钱的商机就是出版伟大文本论的图书并以高价出售给富人。莫里斯证明了市场的存在使平面设计在他们自己拥有的权利,并帮助开拓者从生产和美术分离设计。这历史相对论是,然而,重要的,因为它为第一次重大的反应对于十九世纪的陈旧的平面设计。莫里斯的工作,以及与其他私营新闻运动,直接影响新艺术风格和间接负责20世纪初非专业性平面设计的事态发展。 谁创造了最初的“平面设计”似乎存在争议。这被归因于英国的设计师和大学教授Richard Guyatt,但另一消息来源于20世纪初美国图书设计师William Addison Dwiggins。 伦敦地铁的标志设计是爱德华约翰斯顿于1916年设计的一个经典的现代而且使用了系统字体设计。 在20世纪20年代,苏联的建构主义应用于“智能生产”在不同领域的生产。个性化的运动艺术在俄罗斯大革命是没有价值的,从而走向以创造物体的功利为目的。他们设计的建筑、剧院集、海报、面料、服装、家具、徽标、菜单等。 Jan Tschichold 在他的1928年书中编纂了新的现代印刷原则,他后来否认他在这本书的法西斯主义哲学主张,但它仍然是非常有影响力。 Tschichold ,包豪斯印刷专家如赫伯特拜耳和拉斯洛莫霍伊一纳吉,和El Lissitzky 是平面设计之父都被我们今天所知。 他们首创的生产技术和文体设备,主要用于整个二十世纪。随后的几年看到平面设计在现代风格获得广泛的接受和应用。第二次世界大战结束后,美国经济的建立更需要平面设计,主要是广告和包装等。移居国外的德国包豪斯设计学院于1937年到芝加哥带来了“大规模生产”极简到美国;引发野火的“现代”建筑和设计。值得注意的名称世纪中叶现代设计包括阿德里安Frutiger ,设计师和Frutiger字体大学;保兰德,从20世纪30年代后期,直到他去世于1996年,采取的原则和适用包豪斯他们受欢迎的广告和标志设计,帮助创造一个独特的办法,美国的欧洲简约而成为一个主要的先驱。平面设计称为企业形象;约瑟夫米勒,罗克曼,设计的海报严重尚未获取1950年代和1960年代时代典型。 从道路标志到技术图表,从备忘录到参考手册,增强了平面设计的知识转让。可读性增强了文字的视觉效果。 设计还可以通过理念或有效的视觉传播帮助销售产品。将它应用到产品和公司识别系统的要素像标志、颜色和文字。连同这些被定义为品牌。品牌已日益成为重要的提供的服务范围,许多平面设计师,企业形象和条件往往是同时交替使用。

中文和英文简历和专业英语材料翻译

韶关学院 期末考核报告 科目:专业英语 学生姓名: 学号: 同组人: 院系: 专业班级: 考核时间:2012年10月9日—2012年11月1 日评阅教师: 评分:

第1章英文阅读材料翻译 (1) 第2章中文摘要翻译英文 (3) 第3章中文简历和英文简历 (4) 第4章课程学习体会和建议 (6) 参考文献 (7)

第1章英文阅读材料翻译 Mechanization and Automation Processes of mechanization have been developing and becoming more complex ever since the beginning of the Industrial Revolution at the end of the 18th century. The current developments of automatic processes are, however, different from the old ones. The “automation” of the 20th century is distinct from the mechanization of the 18th and 19th centuries inasmuch as mechanization was applied to individual operations, wherea s “automation” is concerned with the operation and control of a complete producing unit. And in many, though not all, instances the element of control is so great that whereas mechanization displaces muscle, “automation”displaces brain as well. The distinction between the mechanization of the past and what is happening now is, however, not a sharp one. At one extreme we have the electronic computer with its quite remarkable capacity for discrimination and control, while at the other end of the scale are “ transfer machines” , as they are now called, which may be as simple as a conveyor belt to another. An automatic mechanism is one which has a capacity for self-regulation; that is, it can regulate or control the system or process without the need for constant human attention or adjustment. Now people often talk about “feedback” as begin an essential factor of the new industrial techniques, upon which is base an automatic self-regulating system and by virtue of which any deviation in the system from desired condition can be detected, measured, reported and corrected. when “feedback” is applied to the process by which a large digital computer runs at the immense speed through a long series of sums, constantly rejecting the answers until it finds one to fit a complex set of facts which have been put to it, it is perhaps different in degree from what we have previously been accustomed to machines. But “feedback”, as such, is a familiar mechanical conception. The old-fashioned steam engine was fitted with a centrifugal governor, two balls on levers spinning round and round an upright shaft. If the steam pressure rose and the engine started to go too fast, the increased speed of the spinning governor caused it to rise up the vertical rod and shut down a valve. This cut off some of the steam and thus the engine brought itself back to its proper speed. The mechanization, which was introduced with the Industrial Revolution, because it was limited to individual processes, required the employment of human labor to control each machine as well as to load and unload materials and transfer them from one place to another. Only in a few instances were processes automatically linked together and was production organized as a continuous flow. In general, however, although modern industry has been highly mechanized ever since the 1920s, the mechanized parts have not as a rule been linked together. Electric-light bulbs, bottles and the components of innumerable mass-produced

管道机器人外文翻译

一款使用离合器连接类型的内窥管道机器人 摘要-这篇论文展示了一款使用离合器的新型内窥管道机器人,用于直径小于或等于100mmde 管道内窥。这款机器人拥有三条驱动轴,且每条驱动轴各有一个离合器,离合器的设计依据平行联动原理。内窥管道机器人牢固的模型机构已经过驱动,原型机也被制作出来。机器人系统已经过一系列的仿真软件模拟和实验验证。 1.简介 管内机器人经过漫长的发展,根据运动模型可分为几种基本类型,比如轮驱动、蠕动、自动足、螺旋驱动、爬行、PIG和惰性运行等类型。在这些类型之中,轮式驱动应用最为广泛。在过去的十年时间间,机器人各式各样的驱动类型研究呈现井喷式增长。不同的驱动类型的机器人一般会有三个驱动轴,依靠单独控制各轴的速度,可以让机器人实现通过关节或者T型管道。而且这种类型机器人与轮式驱动、螺旋驱动和PIG等类型比较起来会有较大的可折叠区域,比较节省空间。 近来,随着小型化管道机器人市场的扩大,对直径小于100mm的管道机器人的关注同时愈来愈热。因为室内管道的清洁程度会直接影响到人的健康,因此,对室内管道的清洁与监测变得愈加重要,同时直径小于100mm的机器人也将主要用于室内管道清洁。机械装置使用的是平行连杆机构,有助于实现装置

减速功能。减速器与其他使用两个底板的典型减速器不同,第二部分将会详细介绍机器人系统的特征。第三部分将会讲解机构的运动学分析。机构的有效性将会通过软件仿真与实验验证,这些会在第四部分展示出来。最后,同时也是至关重要的是总结。 2.机器人特征 A机器人硬件设备及系统 如例1所示,机器人系统包括控制盒与机器人装备。根据模块化设置,控制盒与机器人硬件设备室分开的。 机器人硬件设备包含主体,三条链轮和如例2显示的三个离合轮部分。机器人长80mm,外扩至100mm。机械联动装置可确保制动功能的实现,这是因为装置有效避免了电磁制动器的缺点,比如滑移、电力不足以及规格限制。 例1.装备有机械离合装置的管道检测机器人系统 机器人装置可实现两种不同的操作模式:驱动模式与制动模式。驱动模式下的机器人会运行,制动模式会使机器人停止运行并且

英语翻译学习资料(含中英文解释)

例1.Winners do not dedicate their lives to a concept of what they imagine they should be, rather, they are themselves and as such do not use their energy putting on a performance, maintaining pretence and manipulating(操纵) others . They are aware that there is a difference between being loved and acting loving, between being stupid and acting stupid, between being knowledgeable and acting knowledgeable. Winners do not need to hide behind a mask. 1.dedicate to 把时间,精力用于 2.pretence 虚伪,虚假 6 .1 斤斤于字比句次,措辞生硬 例2.Solitude is an excellent laboratory in which to observe the extent to which manners and habits are conditioned by others. My table manners are atrocious( 丑恶)—in this respect I've slipped back hundreds of years in fact, I have no manners whatsoever(完全,全然). If I feel like it, I eat with my fingers, or out of a can, or standing up —in other words, whichever is easiest. 孤独是很好的实验室,正好适合观察一个人的举止和习惯在多大程度上受人制约。如今我吃东西的举止十分粗野;这方面一放松就倒退了几百年,实在是一点礼貌也没有。我高兴就用手抓来吃,(eat out of a can)开个罐头端着吃,站着吃;反正怎么省事就怎么吃。 3.Whatsoever 完全,全然 1.Be conditioned by 受……制约 2.Atrocious 丑恶 6 .2 结构松散,表达过于口语化 例3.有一次,在拥挤的车厢门口,我听见一位男乘客客客气气地问他前面的一位女乘客:“您下车吗?”女乘客没理他。“您下车吗?”他又问了一遍。女乘客还是没理他。他耐不住了,放大声问:“下车吗?”,那女乘客依然没反应。“你是聋子,还是哑巴?”他急了,捅了一下那女乘客,也引起了车厢里的人都往这里看。女乘客这时也急了,瞪起一双眼睛,回手给了男乘客一拳。(庄绎传,英汉翻译教程,1999 :练习 3 ) 译文1:Once at the crowded door of the bus, I heard a man passenger asked politely a woman passenger before him: “Are you getting off?” The woman made no

相关文档
最新文档