《线性代数》考试大纲

《线性代数》考试大纲
《线性代数》考试大纲

《线性代数》考试大纲

一、考试基本要求:

第一部份: 行列式

1. 二阶、三阶行列式计算的对角线法则

2. 排列与排列的逆序数的计算

3. 奇排列与偶排列

4. n 阶行列式的定义

5. n 阶行列式的一般项的符号的确定

6. 行列式的5条性质

7. 简单的n 阶行列式的计算

8. 行列式的子式,余子式与代数余子式

9. 行列式依行依列展开

10. 掌握公式 ∑j=1n a ij A sj =???D i=s 0 i ≠s , ∑i=1

n a ij A it =???D i=t 0 i ≠t 11. 利用行列式性质计算行列式

12. 理解拉菩拉斯定理n 阶行列式计算依k 行k 列展开

13. 掌握克莱姆法则

14. 利用克莱姆法则解线性方程组

15. 掌握n 元n 个方程的齐次线性方程组有非零解的充要条件

16. 带有参数的齐次线性方程组的解的讨论

第二部份 矩阵

考核要求:

1. 矩阵的定义

2. 理解矩阵相等的定义与零矩阵

3. 矩阵的线性运算(加法与数乘),负矩阵及其算律

4. 矩阵与矩阵的乘法与算律

5. 注意矩阵的乘法不满足交换律与相消律

6. 方阵乘积的行列式等于方阵行列式的积

7. 方阵的方幂运算

8. 矩阵的转置及其算律

9. 几种特殊的矩阵,行(列)矩阵,对角阵,数量矩阵,单位矩阵,上下三角阵,对称阵

10. 掌握分块矩阵的方法

11. 掌握分块矩阵的运算和对角分块矩阵上(下)三角形分块矩阵的运算特点

12. 理解逆矩阵的定义与性质

13. 方阵的伴随矩阵与性质

14. 方矩阵可逆的充要条件

15. 逆矩阵的伴随矩阵求法

16. 逆矩阵的3条性质

17. 应用逆矩阵解矩阵方程

18. 掌握逆矩阵的基本证明方法

19. 分块矩阵求逆矩阵的方法

20. 掌握矩阵的初等行(列)变换

21. 掌握三种初等矩阵与初等变换的关系

22. 初等矩阵的性质

23. 掌握行阶梯形矩阵与行最简阶梯形矩阵

24. 运用矩阵的行初等变换化为最简阶梯形矩阵

25.理解方阵可逆的充要条件是它可以表成一系列初等矩阵之积

26.掌握用初等变换求逆矩阵的方法

27.矩阵的k阶子式

28.理解矩阵的秩的概念与满秩矩阵

29.理解矩阵的初等变换不改变矩阵的秩

30.掌握用初等变换求矩阵的秩的方法

31.掌握n阶方阵A的秩

32.掌握若矩阵A是可逆矩阵则秩(AB)=秩B

第三部份线性方程组

考核要求:

1.线性方程组的增广矩阵与系数矩阵

2.对增广矩阵作行的初等变换求解线性方程组

3.线性方程组的一般解与自由未知量

4.非齐次线性方程组有解的判别方法

5.带有参数的线性方程组的解的个数的讨论

6.齐次线性方程组有非零解的充要条件

7.n元n个方程的齐次线性方程组有非零解的判别

8.理解n维向量及n维向量空间

9.掌握n维向量的线性运算及算律

10.知道向量β由向量组α1,α2,…,αm线性表出的含义

11.掌握判别β可以由向量组α1,α2,…,αm线性表出对具体方法

12.理解向量组线性相关与线性无关的定义

13.利用定义判断向量组的线性相关性

14.掌握向量组线性相关的充要条件是其中一个可由其余线性表示

15.掌握向量组线性相关性的矩阵判别法

16.理解用矩阵的秩来判别列向量组线性相关的定理

17.理解向量组线性相关性的一些常用性质

18.理解向量组的极大线性无关组的概念

19.理解向量组的极大线性无关组的充要条件

20.掌握用矩阵的行初等变换求最大无关组的方法

21.理解向量组的秩的概念

22.理解矩阵的列(行)秩的概念及矩阵的列秩等于矩阵的秩的定理

23.已知带有参数λ的向量组的秩求参数λ

24.齐次线性方程组的解向量的性质

25.理解齐次线性方程组的基础解系

26.基础解系中所含解向量的个数

27.利用化行初等变换求最简阶梯形矩阵得到基础解系

28.求齐次线性方程组的通解(用基础解系表示)

29.非齐次线性方程组的解向量与它的导出组的解向量之间的关系

30.非齐次线性方程组的解的结构定理

31.求非齐次线性方程组的通解(写成结构解的形式)

第四部份向量空间的线性变换

考核要求:

1.理解向量关于基的坐标

2.掌握过渡矩阵的求法

3.掌握施密特正交化方法

第五部份矩阵的特征值

考核要求:

4.理解矩阵的特征值与相应的特征向量概念

5.理解矩阵的特征多项式与特征方程概念

6.掌握求矩阵特征值与特征向量的方法

7.A与A T有相同的特征值

8.理解不同特征值对应的特征向量线性无关

9.掌握相似矩阵的定义

10.掌握相似矩阵的基本性质

11.理解n阶矩阵A相似于对角矩阵的充要条件是A有n个线性无关的特征向量

12.掌握相似对角矩阵的具体算法

13.理解n阶矩阵A相似于对角阵的充要条件是对于A的每一个n i重特征值λi,有秩(λi I-A)=n-n i

14.理解约当形矩阵于约当块的基本概念

15.任一个矩阵与约当矩阵相似

16.理解向量的内积

17.掌握内积运算的基本性质

18.掌握向量的范数及其基本性质

19.掌握柯西-布涅可夫斯基不等式

20.理解正交向量与正交向量组的概念

21.掌握正交向量组必是线性无关的

22.掌握向量组正交单位化的方法

23.理解正交矩阵概念

24.掌握正交矩阵的基本性质

25.理解实对称矩阵的特征值都是实数

26.理解实对称矩阵的不同的特征值对应的特征向量是正交的

27.掌握实对称矩阵正交对角化的具体算法

第六部份二次型

考核要求:

1.理解x1,x2,…,x n的一个n元二次型

2.掌握二次型的矩阵及其特点,二次型的矩阵乘积写法

3.理解变量x1,x2,…,x n到变量x1,x2,…,x n间的线性替换

4.掌握线性替换的矩阵及非退化的线性替换

5.理解二次型的标准形与二次型的秩

6.理解两个矩阵合同的定义

7.理解二次型通过非退化线性替换得到的二次型的矩阵是合同的

8.掌握用配方法将二次型化为标准形的具体方法,并能写出非退化线性替换的变换式

9.理解任何一个二次型与某个对角矩阵合同

10.掌握用初等变换方法将二次型化为标准形的具体过程

11.掌握用正交变换方法将二次型化为标准形的具体过程

12.理解任一个实对称矩阵A必存在一个正交矩阵Q使得Q T AQ=D,其中D为对角矩阵

13.理解二次型与对称矩阵的规范形

14.理解二次型与对称矩阵的规范形是唯一的

15.掌握把二次型与对称矩阵化为规范形的方法

16.理解二次型的正、负惯性指标及惯性定理

17.理解正定、负定、半正定、半负定与不定二次型

18.理解正定、负定、半正定、半负定与不定的对称矩阵

19.理解实对称矩阵是正定的充要条件

20.掌握用顺序主子式判别对称矩阵为正定矩阵的方法

21.理解对称矩阵为正定的充要条件是它的特征值全大于零

22.带有参数的二次型的正定性的讨论方法

三、考试形式及试卷结构

1、考试形式为闭卷、笔试。考试时间为120分钟,试卷满分为100分。

2、试卷内容比例:试卷内容将覆盖全部教学内容。其中:第1、2、

3、

4、

5、6等各部份所占比例为15-20%。

3、试卷难易比例:易、中、难分别为40%、40%和 20%。

4、试卷中了解、掌握、熟练掌握的知识点所占比例为1:3:6

5、试卷题型比例:

选择题(10题,每题2分),

填空题(10题,每题2分),

计算题(5题,每题8分),

证明题(2题,每题10分)。

四、参考书目

[1] 同济大学数学教研室编<<线性代数>>(第三版),高等教育出版社,1999年6月。

[2] 线性代数(工程数学)/魏战线主编,辽宁大学出版社,2000年10月。

[3] 线性代数全程学习指导与解题能力训练:同济·线性代数第四版/刘学生主编.--大连:大连理工大学出版社,2001.

大学线性代数必过复习资料

复习重点: 第一部分行列式 1. 排列的逆序数(P.5例4; P26第2、4题) 2. 行列式按行(列)展开法则(P.21例13;P.28第9题) 3. 行列式的性质及行列式的计算(P.27第8题)第二部分矩阵 1. 矩阵的运算性质 2. 矩阵求逆及矩阵方程的求解(P.56第17、18题;P.78第5题) 3. 伴随阵的性质(P.41例9; P56第23、24题;P.109第25题)、正交阵的性质(P.116) 4. 矩阵的秩的性质(P.69至71; P100例13、14、15) 第三部分线性方程组 1. 线性方程组的解的判定(P71定理3; P.77定理4、5、6、7),带参数的方程组的解的判定 (P.75 例13 ; P80 第16、17、18 题) 2. 齐次线性方程组的解的结构(基础解系与通解的关系) 3. 非齐次线性方程组的解的结构(通解)第四部分向量组(矩阵、方程组、向量组三者之间可以相互转换)1?向量组的线性表示 2. 向量组的线性相关性 3. 向量组的秩第五部分方阵的特征值及特征向量 1. 施密特正交化过程 2. 特征值、特征向量的性质及计算(P.120例8、9、10; P.135第7至13题) 3. 矩阵的相似对角化,尤其是对称阵的相似对角化(P.135第15、16、19、23题) 要注意的知识点: 线性代数 1、行列式 1. n行列式共有n2个元素,展开后有n!项,可分解为2n行列式; 2. 代数余子式的性质: ①、A j和a j的大小无关; ②、某行(列)的元素乘以其它行(列)元素的代数余子式为0; ③、某行(列)的元素乘以该行(列)元素的代数余子式为 A ; 3. 代数余子式和余子式的关系:M j ( 1y j A j A j ( 1/ j M j 4. 行列式的重要公式: ①、主对角行列式:主对角元素的乘积;

线性代数习题3答案(高等教育出版社)

习题3 1.11101134032αβγαβαβγ ===-+-设(,,),(,,),(,,),求和 1110111003231112011340015αβαβγ-=-=+-=+-=解:(,,)(,,)(,,) (,,)(,,)(,,)(,,) 1231232.32525131015104111αααααααααα -++=+===-设()()(),其中(,,,) (,,,),(,,,),求1231233251 32561 [32513210151054111] 6 1234ααααααααααα-++=+=+-=+--=解:因为()()(),所以(), 所以(,,,)(,,,)(,,,)(,,,) 123412343.12111111111111111111,,,βααααβαααα===--=--=--设有(,,,),(,,,),(,,,), (,,,),(,,,)试将表示成的线性组合。 123412341234123412341234 1211 5111 ,,,; 4444 5111 4444 x x x x x x x x x x x x x x x x x x x x βαααα+++=??+--=? ?-+-=??--+=?===-=-=+--解:因为线性方程组的解为 所以得: 1234.111112313) t ααα===设讨论下面向量组的线性的相关性 ()(,,),(,,),(,, 111 1235, 1355t t t t =-=≠解:因为所以,当时,向量组线性相关,当时线性无关。 . 323232.5213132321321的线性相关性, ,线性无关,讨论,,设αααααααααααα++++++ . 0)23()32()23(.0)32()32()32(332123211321213313223211=++++++++=++++++++ααααααααααααx x x x x x x x x x x x 整理得:解:设

线性代数B复习题

线性代数B 复习资料 (一)单项选择题 1.设A ,B 为n 阶方阵,且()E AB =2 ,则下列各式中可能不成立的是( A ) (A )1-=B A (B)1-=B ABA (C)1-=A BAB (D)E BA =2 )( 2.若由AB=AC 必能推出B=C (A ,B ,C 均为n 阶矩阵)则A 必须满足( C ) (A)A ≠O (B)A=O (C )0≠A (D) 0≠AB 3.A 为n 阶方阵,若存在n 阶方阵B ,使AB=BA=A ,则( D ) (A) B 为单位矩阵 (B) B 为零方阵 (C) A B =-1 (D ) 不一定 4.设A 为n ×n 阶矩阵,如果r(A)

(完整word版)线性代数考试题及答案解析

WORD 格式整理 2009-2010学年第一学期期末考试 《线性代数》试卷 答卷说明:1、本试卷共6页,五个大题,满分100分,120分钟完卷。 2、闭卷考试。 评阅人:_____________ 总分人:______________ 一、单项选择题。(每小题3分,共24分) 【 】1.行列式=----3111131111311113 (A)0 (B) 1 (C) 2 (D)3 【 】2.设A 为3阶方阵,数2-=λ,3=A ,则=A λ (A) 24 (B) 24- (C) 6 (D) 6- 【 】3.已知,,B A 为n 阶方阵,则下列式子一定正确的是 (A)BA AB = (B)2222B)(A B AB A ++=+ (C)BA AB = (D) 22))((B A B A B A -=-+ 【 】4.设A 为3阶方阵, 0≠=a A ,则=*A (A) a (B) 2a (C) 3a (D) 4a __ __ ___ __ __ ___ __ __ 系_ __ __ ___ __ 专业_ __ __ ___ __ _班级 姓名_ __ ___ __ __ ___ __ 学号__ ___ __ __ ___ __ _ ………… … … … … … … … … ( 密) … … … … … … … … … … … … ( 封 ) … … … …… … … … … … … … ( 线 ) … … … … … … … … … … … …

(A) )()(B R A R < (B) )()(B R A R > (C) )()(B R A R = (D) 不能确定)(A R 和)(B R 的大小 【 】6.设n 元齐次线性方程组0=Ax 的系数矩阵A 的秩为r ,则0=Ax 有非零解 的充分必要条件是 (A) n r = (B) n r ≥ (C) n r < (D) n r > 【 】7. 向量组)2(,,,21≥m a a a m 线性相关的充分必要条件是 (A) m a a a ,,,21 中至少有一个零向量 (B) m a a a ,,,21 中至少有两个向量成比例 (C) m a a a ,,,21 中每个向量都能由其余1-m 个向量线性表示 (D) m a a a ,,,21 中至少有一个向量可由其余1-m 个向量线性表示 【 】8. n 阶方阵A 与对角阵相似的充分必要条件是 (A)n A R =)( (B)A 有n 个互不相同的特征值 (C)A 有n 个线性无关的特征向量 (D)A 一定是对称阵 二、填空题。(每小题3分,共15分) 1.已知3阶行列式D 的第2行元素分别为1,2,1-,它们的余子式分别为2,1,1-,则=D 。 2.设矩阵方程??????-=???? ??12640110X ,则=X 。 3.设*=ηx 是非齐次线性方程组b Ax =的一个特解,21,ξξ为对应齐次线性方程组 0=Ax 的基础解系, 则非齐次线性方程组b Ax =的通解为 . 4.设n m ?矩阵A 的秩r A R =)(,则n 元齐次线性方程组0=Ax 的解集S 的最大无关组S 的秩=R 。

线性代数期末考试试卷答案合集

×××大学线性代数期末考试题 一、填空题(将正确答案填在题中横线上。每小题2分,共10分) 1. 若02 2 1 50 1 31 =---x ,则=χ__________。 2.若齐次线性方程组??? ??=++=++=++0 00321 321321x x x x x x x x x λλ只有零解,则λ应满足 。 3.已知矩阵n s ij c C B A ?=)(,,,满足CB AC =,则A 与B 分别是 阶矩阵。 4.矩阵??? ? ? ??=32312221 1211 a a a a a a A 的行向量组线性 。 5.n 阶方阵A 满足032 =--E A A ,则=-1A 。 二、判断正误(正确的在括号填“√”,错误的在括号填“×”。每小题2分,共10分) 1. 若行列式D 中每个元素都大于零,则0?D 。( ) 2. 零向量一定可以表示成任意一组向量的线性组合。( ) 3. 向量组m a a a ,, , 21中,如果1a 与m a 对应的分量成比例,则向量组s a a a ,,, 21线性相关。( ) 4. ? ? ??? ???? ???=010********* 0010 A ,则A A =-1。( ) 5. 若λ为可逆矩阵A 的特征值,则1 -A 的特征值为λ。 ( ) 三、单项选择题 (每小题仅有一个正确答案,将正确答案题号填入括号。每小题2分,共10分) 1. 设A 为n 阶矩阵,且2=A ,则=T A A ( )。 ① n 2 ② 1 2 -n ③ 1 2 +n ④ 4 2. n 维向量组 s ααα,,, 21(3 £ s £ n )线性无关的充要条件是( )。 ① s ααα,, , 21中任意两个向量都线性无关 ② s ααα,, , 21中存在一个向量不能用其余向量线性表示

线性代数考试题及答案3

2009-2010学年第一学期期末考试 《线性代数》试卷 答卷说明:1、本试卷共6页,五个大题,满分100分,120分钟完卷。 2、闭卷考试。 评阅人:_____________ 总分人:______________ 一、单项选择题。(每小题3分,共24分) 【 】1.行列式=----3111131111311113 (A)0 (B) 1 (C) 2 (D)3 【 】2.设A 为3阶方阵,数2-=λ,3=A ,则=A λ (A) 24 (B) 24- (C) 6 (D) 6- 【 】3.已知,,B A 为n 阶方阵,则下列式子一定正确的是 (A)BA AB = (B)2222B)(A B AB A ++=+ (C)BA AB = (D) 22))((B A B A B A -=-+ 【 】4.设A 为3阶方阵, 0≠=a A ,则=*A (A) a (B) 2a (C) 3a (D) 4a 【 】5.设矩阵A 与B 等价,则有 __ __ ___ __ __ ___ __ __ 系_ __ __ ___ __ 专业_ __ __ ___ __ _班级 姓名_ __ ___ __ __ _____ 学号__ ___ __ __ ___ __ _ …… …… … … … … … … … … ( 密 ) … … … … … … … … … … … … ( 封 ) … … … …… … … … … … … … ( 线 ) … … … … … … … … … … … …

(C) )()(B R A R = (D) 不能确定)(A R 和)(B R 的大小 【 】6.设n 元齐次线性方程组0=Ax 的系数矩阵A 的秩为r ,则0=Ax 有非零解 的充分必要条件是 (A) n r = (B) n r ≥ (C) n r < (D) n r > 【 】7. 向量组)2(,,,21≥m a a a m 线性相关的充分必要条件是 (A) m a a a ,,,21 中至少有一个零向量 (B) m a a a ,,,21 中至少有两个向量成比例 (C) m a a a ,,,21 中每个向量都能由其余1-m 个向量线性表示 (D) m a a a ,,,21 中至少有一个向量可由其余1-m 个向量线性表示 【 】8. n 阶方阵A 与对角阵相似的充分必要条件是 (A)n A R =)( (B)A 有n 个互不相同的特征值 (C)A 有n 个线性无关的特征向量 (D)A 一定是对称阵 二、填空题。(每小题3分,共15分) 1.已知3阶行列式D 的第2行元素分别为1,2,1-,它们的余子式分别为2,1,1-,则=D 。 2.设矩阵方程??????-=???? ??12640110X ,则=X 。 3.设*=ηx 是非齐次线性方程组b Ax =的一个特解,21,ξξ为对应齐次线性方程组 0=Ax 的基础解系, 则非齐次线性方程组b Ax =的通解为 . 4.设n m ?矩阵A 的秩r A R =)(,则n 元齐次线性方程组0=Ax 的解集S 的最大无关组0S 的秩=0s R 。 5.设λ是方阵A 的特征值,则 是2 A 的特征值

线性代数复习题及答案

《 线性代数复习提纲及复习题 》 理解或掌握如下内容: 第一章 n 阶行列式 .行列式的定义,排列的逆系数,行列式性质,代数余子式, 行列式的计算,三角化法及降阶法,克莱姆法则。 第二章 矩阵及其运算 矩阵的线性运算,初等变换与初等矩阵的定义,方阵的逆矩阵定义及性质 方阵的逆矩阵存在的充要条件,用初等变换求逆矩阵,矩阵方程的解法,矩阵的秩的定义及求法;齐次线性方程组只有零解、有非零解的充要条件,;非齐次线性方程组有解的充要条件,解的判定。 第三章 线性方程组 n维向量的线性运算,向量组线性相关性的定义及证明,向量空间,向量组的极大线性无关组、秩; 齐次线性方程组的基础解系,解的结构,方程组求解;非齐次线性方程组解的结构,用初等变换解方程组,增广矩阵含有字母元素的方程组的求解。 复习题: 一、填空 (1)五阶行列式的项5441352213a a a a a 前的符号为 负 ; (2)设)3,3,2(2),3,3,1(-=+-=-βαβα,则α= (1,0,0) ; (3)设向量组γβα,,线性无关,则向量组γβαβα2,,+-线性 无关 ; (4)设* A 为四阶方阵A 的伴随矩阵,且*A =8,则12)(2-A = 4 ; (5)线性方程组054321=++++x x x x x 的解空间的维数是 4 ; (6)设???? ? ??=k k A 4702031,且0=T A 则k = 0或6 ; (7)n 元齐次线性方程组0=Ax 的系数矩阵A 的秩r(A)秩是r,则其解空间的维数是 n-r ; (8)的解的情况是:方程组b Ax b A R A R 2),,()3(== 有解 ; (9)方阵A 的行向量组线性无关是A 可逆的 充要 条件;

2020线性代数试题(带解题过程)

线性代数试题 一 填空题 ◆1. 设A 为3阶方阵且2=A ,则=-*-A A 231 ; 【分析】只要与*A 有关的题,首先要想到公式,E A A A AA ==**,从中推 你要的结论。这里11*2--==A A A A 代入 A A A A A 1)1(231311-= -=-=---*- 注意: 为什么是3)1(- ◆2. 设133322211,,α+α=βα+α=βα+α=β, 如321,,ααα线性相关,则321,,βββ线性______(相关) 如321,,ααα线性无关,则321,,βββ线性______(无关) 【分析】对于此类题,最根本的方法是把一个向量组由另一个向量表示的问题转化为矩阵乘 法的关系,然后用矩阵的秩加以判明。 ???? ??????=110011101],,[],,[321321αααβββ,记此为AK B = 这里)()()(A r AK r B r ==, 切不可两边取行列式!!因为矩阵不一定是方阵!! 你来做 下面的三个题: (1)已知向量组m ααα,,,21 (2≥m )线性无关。设 111322211,,,,ααβααβααβααβ+=+=+=+=--m m m m m 试讨论向量组m βββ,,,21 的线性相关性。(答案:m 为奇数时无关,偶数时相关) (2)已知321,,ααα线性无关,试问常数k m ,满足什么条件时,向量组 312312,,αααααα---m k 线性无关?线性相关?(答案:当1≠mk 时,无关;当1=mk 时,相关) (3)教材P103第2(6)题和P110例4和P113第4题 ◆3. 设非齐次线性方程b x A m =?4,2)(=A r ,321,,ηηη是它的三个解,且

线性代数 复习提纲(一天就过)

《线性代数》复习提纲 第一部分:基本要求(计算方面) 四阶行列式的计算; N阶特殊行列式的计算(如有行和、列和相等); 矩阵的运算(包括加、减、数乘、乘法、转置、逆等的混合运算); 求矩阵的秩、逆(两种方法);解矩阵方程; 含参数的线性方程组解的情况的讨论; 齐次、非齐次线性方程组的求解(包括唯一、无穷多解); 讨论一个向量能否用和向量组线性表示; 讨论或证明向量组的相关性; 求向量组的极大无关组,并将多余向量用极大无关组线性表

示; 将无关组正交化、单位化; 求方阵的特征值和特征向量; 讨论方阵能否对角化,如能,要能写出相似变换的矩阵及对角阵; 通过正交相似变换(正交矩阵)将对称矩阵对角化; 写出二次型的矩阵,并将二次型标准化,写出变换矩阵; 判定二次型或对称矩阵的正定性。 第二部分:基本知识 一、行列式 1.行列式的定义 用n^2个元素aij组成的记号称为n阶行列式。

(1)它表示所有可能的取自不同行不同列的n个元素乘积的代数和; (2)展开式共有n!项,其中符号正负各半; 2.行列式的计算 一阶|α|=α行列式,二、三阶行列式有对角线法则; N阶(n>=3)行列式的计算:降阶法 定理:n阶行列式的值等于它的任意一行(列)的各元素与其对应的代数余子式乘积的和。 方法:选取比较简单的一行(列),保保留一个非零元素,其余元素化为0,利用定理展开降阶。 特殊情况 上、下三角形行列式、对角形行列式的值等于主对角线上元素的乘积;

(2)行列式值为0的几种情况: Ⅰ行列式某行(列)元素全为0; Ⅱ行列式某行(列)的对应元素相同; Ⅲ行列式某行(列)的元素对应成比例; Ⅳ奇数阶的反对称行列式。 二.矩阵 1.矩阵的基本概念(表示符号、一些特殊矩阵――如单位矩阵、对角、对称矩阵等); 2.矩阵的运算 (1)加减、数乘、乘法运算的条件、结果; (2)关于乘法的几个结论:

线性代数试题三

一、单项选择题(本大题共10小题,每小题2分,共20分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1.排列53142的逆序数τ(53142)=( ) A .7 B .6 C .5 D .4 2.下列等式中正确的是( ) A .()2 22 B BA AB A B A +++=+ B .()T T T B A AB = C .()()2 2 B A B A B A -=+- D .()A A A A 233-=- 3.设k 为常数,A 为n 阶矩阵,则|k A |=( ) A .k|A | B .|k||A | C .n k |A | D .n |k ||A | 4.设n 阶方阵A 满足02=A ,则必有( ) A .E A +不可逆 B .E A -可逆 C .A 可逆 D .0=A 5.设? ?? ?? ??=333231232221131211a a a a a a a a a A ,????? ??=321x x x X ,????? ??=321y y y Y ,则关系式( ) ??? ??+=+=+=3332231133 33222211223 312211111y a y a y a x y a y a y a x y a y a y a x +++ 的矩阵表示形式是 A .AY X = B .Y A X T = C .YA X = D .A Y X T = 6.若向量组(Ⅰ):r ,,,αααΛ21可由向量组(Ⅱ):s 21,βββ,,Λ线性表示,则必有( ) A .秩(Ⅰ)≤秩(Ⅱ) B .秩(Ⅰ)>秩(Ⅱ) C .r ≤s D .r>s 7.设21ββ,是非齐次线性方程组b Ax =的两个解,则下列向量中仍为方程组解的是( ) A .21+ββ B .21ββ- C . 222 1ββ+ D . 5 232 1ββ+ 8.设A ,B 是同阶正交矩阵,则下列命题错误..的是( ) A .1-A 也是正交矩阵 B .*A 也是正交矩阵 C .AB 也是正交矩阵 D .B A +也是正交矩阵 9.下列二次型中,秩为2的二次型是( ) A .212x B .212221 44x x x x -+ C .21x x D .322221 2x x x x ++ 10.已知矩阵??? ? ? ??--=21111010 0A ,则二次型=Ax x T ( ) A .32212 221 222x x x x x x -++ B .32312 322x x 2x x 2x 2x +-+ C .32312322 222x x x x x x -++ D .32312 321x x 2x x 2x 2x +-+ 二、填空题(本大题共10小题,每小题2分,共20分) 请在每小题的空格中填上正确答案。错填、不填均无分。 11.已知A ,B 为n 阶矩阵,A =2,B =-3,则1-B A T =_________________.

线性代数期末考试试题

《线性代数》重点题 一. 单项选择题 1.设A 为3阶方阵,数 = 3,|A | =2,则 | A | =( ). A .54; B .-54; C .6; D .-6. 解. .54227)3(33-=?-=-==A A A λλ 所以填: B. 2、设A 为n 阶方阵,λ为实数,则|λA |=( ) A 、λ|A |; B 、|λ||A |; C 、λn |A |; D 、|λ|n |A |. 解. |λA |=λn |A |.所以填: C. 3.设矩阵()1,2,12A B ?? ==- ??? 则AB =( ). 解. ().24121,221???? ??--=-???? ??=AB 所以填: D. A. 0; B. ()2,2-; C. 22?? ?-??; D. 2142-?? ?-?? . 4、123,,a a a 是3维列向量,矩阵123(,,)A a a a =.若|A |=4,则|-2A |=( ). A 、-32; B 、-4; C 、4; D 、32. 解. |-2A |=(-2)3A =-8?4=-32. 所以填: D. 5.以下结论正确的是( ). A .一个零向量一定线性无关; B .一个非零向量一定线性相关; C .含有零向量的向量组一定线性相关; D .不含零向量的向量组一定线性无关. 解. A .一个零向量一定线性无关;不对,应该是线性相关. B .一个非零向量一定线性相关;不对,应该是线性无关. C .含有零向量的向量组一定线性相关;对. D .不含零向量的向量组一定线性无关. 不对, 应该是:不能判断. 所以填: C. 6、 1234(1,1,0,0),(0,0,1,1),(1,0,1,0),(1,1,1,1),αααα====设则它的极 大无关组为( ) A 、 12,; αα B 、 123,, ;ααα C 、 124,, ;ααα D 、1234,, ,αααα

线性代数试题和答案(精选版)

线性代数习题和答案 第一部分选择题(共28分) 一、单项选择题(本大题共14小题,每小题2分,共28分)在每小题列出的四个选项中只有 一个是符合题目要求的,请将其代码填在题后的括号内。错选或未选均无分。 1.设行列式a a a a 1112 2122 =m, a a a a 1311 2321 =n,则行列式 a a a a a a 111213 212223 + + 等于() A. m+n B. -(m+n) C. n-m D. m-n 2.设矩阵A= 100 020 003 ? ? ? ? ? ? ? ,则A-1等于() A. 1 3 00 1 2 001 ? ? ? ? ? ? ? ? ? ? B. 100 1 2 00 1 3 ? ? ? ? ? ? ? ? ?? C. 1 3 00 010 00 1 2 ? ? ? ? ? ? ? ?? D. 1 2 00 1 3 001 ? ? ? ? ? ? ? ? ? ? 3.设矩阵A= 312 101 214 - - - ? ? ? ? ? ? ? ,A*是A的伴随矩阵,则A *中位于(1,2)的元素是() A. –6 B. 6 C. 2 D. –2 4.设A是方阵,如有矩阵关系式AB=AC,则必有() A. A =0 B. B≠C时A=0 C. A≠0时B=C D. |A|≠0时B=C 5.已知3×4矩阵A的行向量组线性无关,则秩(A T)等于() A. 1 B. 2 C. 3 D. 4 6.设两个向量组α1,α2,…,αs和β1,β2,…,βs均线性相关,则() A.有不全为0的数λ1,λ2,…,λs使λ1α1+λ2α2+…+λsαs=0和λ1β1+λ2β2+…λsβs=0 B.有不全为0的数λ1,λ2,…,λs使λ1(α1+β1)+λ2(α2+β2)+…+λs(αs+βs)=0 C.有不全为0的数λ1,λ2,…,λs使λ1(α1-β1)+λ2(α2-β2)+…+λs(αs-βs)=0 D.有不全为0的数λ1,λ2,…,λs和不全为0的数μ1,μ2,…,μs使λ1α1+λ2α2+…+ λsαs=0和μ1β1+μ2β2+…+μsβs=0 7.设矩阵A的秩为r,则A中() A.所有r-1阶子式都不为0 B.所有r-1阶子式全为0 C.至少有一个r阶子式不等于0 D.所有r阶子式都不为0 8.设Ax=b是一非齐次线性方程组,η1,η2是其任意2个解,则下列结论错误的是() A.η1+η2是Ax=0的一个解 B.1 2 η1+ 1 2 η2是Ax=b的一个解

线性代数期末考试试卷答案合集

线性代数期末考试试卷 答案合集 文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

×××大学线性代数期末考试题 一、填空题(将正确答案填在题中横线上。每小题2分,共10分) 1. 若02 2 1 50 1 31 =---x ,则=χ__________。 2.若齐次线性方程组??? ??=++=++=++0 00321 321321x x x x x x x x x λλ只有零解,则λ应满足 。 3.已知矩阵n s ij c C B A ?=)(,,,满足CB AC =,则A 与B 分别是 阶矩阵。 4.矩阵??? ? ? ??=3231 2221 1211 a a a a a a A 的行向量组线性 。 5.n 阶方阵A 满足032=--E A A ,则=-1A 。 二、判断正误(正确的在括号内填“√”,错误的在括号内填“×”。每小题2分,共10分) 1. 若行列式D 中每个元素都大于零,则0?D 。( ) 2. 零向量一定可以表示成任意一组向量的线性组合。( ) 3. 向量组m a a a ,, , 21中,如果1a 与m a 对应的分量成比例,则向量组s a a a ,,, 21线性相关。( ) 4. ? ? ??? ???? ???=010********* 0010 A ,则A A =-1。( ) 5. 若λ为可逆矩阵A 的特征值,则1-A 的特征值为λ。 ( )

三、单项选择题 (每小题仅有一个正确答案,将正确答案题号填入括号内。每小题2 分,共10分) 1. 设A 为n 阶矩阵,且2=A ,则=T A A ( )。 ① n 2 ② 12-n ③ 12+n ④ 4 2. n 维向量组 s ααα,, , 21(3 s n )线性无关的充要条件是( )。 ① s ααα,, , 21中任意两个向量都线性无关 ② s ααα,, , 21中存在一个向量不能用其余向量线性表示 ③ s ααα,, , 21中任一个向量都不能用其余向量线性表示 ④ s ααα,, , 21中不含零向量 3. 下列命题中正确的是( )。 ① 任意n 个1+n 维向量线性相关 ② 任意n 个1+n 维向量线性无关 ③ 任意1+n 个n 维向量线性相关 ④ 任意1+n 个n 维向量线性无关 4. 设A ,B 均为n 阶方阵,下面结论正确的是( )。 ① 若A ,B 均可逆,则B A +可逆 ② 若A ,B 均可逆,则 A B 可逆 ③ 若B A +可逆,则 B A -可逆 ④ 若B A +可逆, 则 A ,B 均可逆 5. 若4321νννν,,,是线性方程组0=X A 的基础解系,则4321νννν+++是0=X A 的( ) ① 解向量 ② 基础解系 ③ 通解 ④ A 的行向量 四、计算题 ( 每小题9分,共63分) 1. 计算行列式 x a b c d a x b c d a b x c d a b c x d ++++。

线性代数期末复习提纲解析

★ 线性代数基本内容、方法及要求 第一部分 行列式 【主要内容】 1、行列式的定义、性质、展开定理、及其应用——克莱姆法则 2、排列与逆序 3、方阵的行列式 4、几个重要公式:(1)T A A =; (2)A A 11=-; (3)A k kA n =; (4)1*-=n A A ; (5) B A AB =; (6)B A B A B A ==0* *0 ; (7)???≠==∑=j i j i A A a n i ij ij ,,01 ; (8)???≠==∑=j i j i A A a n j ij ij ,,01 (其中B A ,为n 阶方阵,k 为常数) 5、行列式的常见计算方法:(1)利用性质化行列式为上(下)三角形; (2)利用行列式的展开定理降阶; (3)根据行列式的特点借助特殊行列式的值 【要求】 1、了解行列式的定义,熟记几个特殊行列式的值。 2、掌握排列与逆序的定义,会求一个排列的逆序数。 3、能熟练应用行列式的性质、展开法则准确计算3-5阶行列式的值。

4、会计算简单的n 阶行列式。 5、知道并会用克莱姆法则。 第二部分 矩阵 【主要内容】 1、矩阵的概念、运算性质、特殊矩阵及其性质。 2、方阵的行列式 3、可逆矩阵的定义、性质、求法(公式法、初等变换法、分块对角阵求逆)。 4、n 阶矩阵A 可逆?0≠A ?A 为非奇异(非退化)的矩阵。 ?n A R =)(?A 为满秩矩阵。 ?0=AX 只有零解 ?b AX =有唯一解 ?A 的行(列)向量组线性无关 ?A 的特征值全不为零。 ?A 可以经过初等变换化为单位矩阵。 ?A 可以表示成一系列初等矩阵的乘积。 5、矩阵的初等变换与初等矩阵的定义、性质及其二者之间的关系。 6、矩阵秩的概念及其求法((1)定义法;(2)初等变换法)。

线性代数模试题试题库

第一套线性代数模拟试题解答 一、填空题(每小题4分,共24分) 1、 若12335544i j a a a a a 是五阶行列式中带正号的一项,则,12 i j = =。 令1,2i j ==,(12354)(13524)134τπ+=+=,取正号。 2、 若将n 阶行列式D 的每一个元素添上负号得到新行列式D ,则D = (1)n D - 。 即行列式D 的每一行都有一个(-1)的公因子,所以D =(1)n D -。 3、设1101A ??= ? ?? , 则100A =110001?? ???。 2 3 111112121113,,010*********A A ????????????==== ??? ? ??? ????????????? L 可得 4、设A 为5 阶方阵,5A =,则5A =1 5n +。 由矩阵的行列式运算法则可知:1555n n A A +==。 5、A 为n 阶方阵,T AA E =且=+

线性代数模拟试题

模拟试题一 一、判断题:(正确:√,错误:×)(每小题2分,共10分) 1、若B A ,为n 阶方阵,则 B A B A +=+. ……………………( × ) 2、可逆方阵A 的转置矩阵T A 必可逆. ……………………………( √ ) 3、n 元非齐次线性方程组b Ax =有解的充分必要条件n A R =)(.…( ) 4、A 为正交矩阵的充分必要条件1-=A A T .…………………………( ) 5、设A 是n 阶方阵,且0=A ,则矩阵A 中必有一列向量是其余列向量的线性组合. …………………………………………………………( ) 二、填空题:(每空2分,共20分) 1、,A B 为 3 阶方阵,如果 ||3,||2A B ==,那么 1|2|AB -= 12 . 2、行列式中元素ij a 的余子式和代数余子式,ij ij M A 的关系是 . 3、在5阶行列式中,项5541243213a a a a a 所带的正负号是 . 4、已知()?? ?? ? ??-==256, 102B A 则=AB 10 . 5、若? ?? ? ??--=1225A ,则=-1 A . 6、设矩阵???? ? ??--2100013011080101是4元非齐次线性方程组b Ax =的增广矩阵,则b Ax =的通解为 . 7、()B A R + 《 ()()B R A R +. 8、若*A 是A 的伴随矩阵,则=*AA E . 9、设=A ??? ? ? ??-50021 011 1t ,则当t 5 时,A 的行向量组线性无关. 10、方阵A 的特征值为λ,方阵E A A B 342+-=,则B 的特征值为 . 三、计算:(每小题8分,共16分)

大学线性代数必过复习资料

复习重点: 第一部分 行列式 1. 排列的逆序数(P .5例4;P .26第2、4题) 2. 行列式按行(列)展开法则(P .21例13;P .28第9题) 3. 行列式的性质及行列式的计算(P.27第8题) 第二部分 矩阵 1. 矩阵的运算性质 2. 矩阵求逆及矩阵方程的求解(P .56第17、18题;P .78第5题) 3. 伴随阵的性质(P .41例9;P .56第23、24题;P.109第25题)、正交阵的性质(P .116) 4. 矩阵的秩的性质(P .69至71;P .100例13、14、15) 第三部分 线性方程组 1. 线性方程组的解的判定(P .71定理3;P.77定理4、5、6、7),带参数的方程组的解的 判定(P.75例13;P .80第16、17、18题) 2. 齐次线性方程组的解的结构(基础解系与通解的关系) 3. 非齐次线性方程组的解的结构(通解) 第四部分 向量组(矩阵、方程组、向量组三者之间可以相互转换) 1.向量组的线性表示 2.向量组的线性相关性 3.向量组的秩 第五部分 方阵的特征值及特征向量 1.施密特正交化过程 2.特征值、特征向量的性质及计算(P.120例8、9、10;P.135第7至13题) 3.矩阵的相似对角化,尤其是对称阵的相似对角化(P .135第15、16、19、23题) 要注意的知识点: 线性代数 1、行列式 1. n 行列式共有2n 个元素,展开后有!n 项,可分解为2n 行列式; 2. 代数余子式的性质: ①、ij A 和ij a 的大小无关; ②、某行(列)的元素乘以其它行(列)元素的代数余子式为0; ③、某行(列)的元素乘以该行(列)元素的代数余子式为A ; 3. 代数余子式和余子式的关系:(1)(1)i j i j ij ij ij ij M A A M ++=-=- 4. 行列式的重要公式: ①、主对角行列式:主对角元素的乘积;

线性代数试题3

一、判断题。在每小题后面的小括号内打“√”号或“×”号 1.任何实对称矩阵都可以表成一系列初等矩阵的乘积。 ( ) 2.方阵A 与其转置阵 T A 有相同的特征值,因此有相同的特征向量。( ) 3.设ij A 为n 阶行列式||ij a D =中元素ij a 的代数余子式,若ij ij A a -=),,2,1,(n j i =, 则0≠D 。 ( ) 4.若r ηηη,,,21 为线性方程组0=AX 的基础解系,则与r ηηη,,,21 等价的向量组 也为此方程组的基础解系。 ( ) 5. 设c b a ,,是互不相等的数,则向量组 ),,,1(32a a a ,),,,1(32b b b ,),,,1(32c c c 是线性无关的。 ( ) 二、单项选择题 1. 设n 阶方阵C B A ,, 满足关系式E ABC =,则 成立。 A. E ACB =; B. E CBA =; C. E BAC =; D. E BCA =. 2. 设n 维向量)(,,,21n m m <ααα 线性无关,则n 维向量m βββ,,,21 线性无关的 充要条件为 。 A. 向量组m ααα,,,21 可由向量组m βββ,,,21 线性表示; B. 向量组m βββ,,,21 可由向量组m ααα,,,21 线性表示; C. 向量组m ααα,,,21 与向量组m βββ,,,21 等价; D. 矩阵=A (m ααα,,,21 )与矩阵=B (m βββ,,,21 )等价。 3.设非齐次线性方程组b AX =的两个不同解为21,ββ,它的导出组的一个基础解 系为21,αα,则线性方程组b AX =的通解X = (其中21,k k 为任意常数)。 A. )(2 1)(2121211ββααα-+ ++k k ;

线性代数期末考试试卷答案

枣庄学院线性代数期末考试题样卷 一、填空题(将正确答案填在题中横线上。每小题2分,共10分) 1. 若02 2 1 50 1 31 =---x ,则=χ__________。 2.若齐次线性方程组??? ??=++=++=++0 00321 321321x x x x x x x x x λλ只有零解,则λ应满足 。 3.已知矩阵n s ij c C B A ?=)(,,,满足CB AC =,则A 与B 分别是 阶矩阵。 4.矩阵??? ? ? ??=32312221 1211 a a a a a a A 的行向量组线性 。 5.n 阶方阵A 满足032 =--E A A ,则=-1 A 。 二、判断正误(正确的在括号内填“√”,错误的在括号内填“×”。每小题2分,共10分) 1. 若行列式D 中每个元素都大于零,则0?D 。( ) 2. 零向量一定可以表示成任意一组向量的线性组合。( ) 3. 向量组m a a a ,,, 21中,如果1a 与m a 对应的分量成比例,则向量组s a a a ,,, 21线性相关。( ) 4. ????? ???? ???=01 00 10000001 0010 A ,则A A =-1。( ) 5. 若λ为可逆矩阵A 的特征值,则1 -A 的特征值为λ。 ( ) 三、单项选择题 (每小题仅有一个正确答案,将正确答案题号填入括号内。每小题2分,共10分) 1. 设A 为n 阶矩阵,且2=A ,则=T A A ( )。 ① n 2 ② 1 2 -n ③ 1 2 +n ④ 4 2. n 维向量组 s ααα,,, 21(3 ≤ s ≤ n )线性无关的充要条件是( ) 。 ① s ααα,,, 21中任意两个向量都线性无关 ② s ααα,,, 21中存在一个向量不能用其余向量线性表示 ③ s ααα,,, 21中任一个向量都不能用其余向量线性表示

线性代数复习提纲2017

线性代数复习提纲(2017) 第一章行列式 复习重点:第1、3、4、5节. 课本:P2,例2,例3;P11,例2;P15,例1;P22,例2;P26,例5. 练习册:P2,4; P4,一(1,2,3); P6,三(1);P7,三(2,3). 第二章矩阵 复习重点:第3、5节. 课本:P34,例2;P42,例1,例3, 例4;P54,例1;P57,例2;P59,例1,例4. 练习册:P10,1;P11,三,四;P12,2;P14,一(1,4,6);P16,九;P45,三(2); P48,三(2); P51,三(2). 第三章向量组的线性相关性 复习重点:第2、3节. 课本:P72,例2;P72,例3;P80,例4;P86,例9;P88,例1;P90,例2; P92,例2; P93,例4; P95,21. 练习册:P18,四;P19,1,2,3;P22,四(2)(4);P40,三;P45,三(3); P48,三(3). 第四章线性方程组 复习重点: 第2、3节. 课本:P103, 例1;P106, 例1;P107,例2,例3; 练习册:P25,四;P29,三(3)(4);P41,四; P43,三(4);P49,三(5). 第五章矩阵对角化 复习重点: 第1、2节.

课本:P116, 例1,例2;P120,例4;P122,例1;P123, 例2;P128,例6;P130,例7. 练习册:P31,1;P32,2,3;P33,4;P34,一(1),二(1); P44, 一(4);P47,一(4);P52,三(6). 第六章二次型 复习重点: 第2、3节. 课本:P141,例1; P143,例2; P145,例3; P149,例3. 练习册:P37,3;P38,一(1);三(1)(2);P49,三(7);P55,五.

相关文档
最新文档