工程流体力学全套教案

工程流体力学全套教案
工程流体力学全套教案

中国石油大学工程流体力学教案

绪论

主要内容:

●流体力学概述

●工程流体力学概述

●本学期学习任务

●几点要求

一、流体力学概述

1、流体力学:研究流体的运动和平衡的规律以及流体和固体之间相互作用的一门科学。

2、流体力学的应用

(1)航空航天领域——空气动力学、稀薄空气动力学

飞机、火箭、人造地球卫星、宇宙探测器、航天飞机等航空器都是在大气层内活动的飞行器。

例:

飞机为什么能飞?——各种飞机都是靠空气动力克服自身重力实现升空的。

飞机在空中飞行,必然有外力作用。在水平飞行中,飞机上主要作用着4种力,它们是升力(Y)、阻力(X)、推力(P)和重力(G)。飞机的受力直接影响飞机的运动状态,它们相互平衡时,飞机便作水平匀速直线飞行。

尽管有各个部件的配合,但是最主要的是飞机有一对采用特殊剖面形状的机翼。翼剖面又称翼型。大家知道,机翼外形都是采用称流线形设计。根据流体的连续性和伯努利定理可知,相对远前方的空气来说,流经上翼面的气流受挤,流速加快,压力减小,甚至形成吸力(负压力);而流过下翼面的气流流速减慢。于是上下翼面就形成了压力差。这个压力差就是空气动力。按力的分解法则,将其沿飞行方向分解成向上的升力和向后的阻力。阻力由发动机提供的推力克服,升力正好可克服自身的重力,将飞机托向空中。这就是飞机会飞的奥秘。

(2)船舶工业

很显然,船舶工业更是离不开流体力学。船舶、舰艇的外形直接影响到他们的航行速度、稳定性等特性,在设计时必须考虑在流体力学上如何使船体线型达到最佳。

例:

潜艇

现代潜艇按艇体线型的形状可分为三种,即常规型、水滴型和过渡型。常规型适宜于水面航行,但对提高水下航速是不利的。水滴型水下阻力小,有利于提高水下航速,但水滴型潜艇的水面航行性能较差,艇首容易上浪,而且易出现埋首现象。过渡型潜艇是把常规型的直首和水滴型的尖尾相结合的一种潜艇线型,这种潜艇的水面航行性能优于水滴型,而水下航行性能优于常规型潜艇。

船吸现象

1912年秋天,"奥林匹克"号正在大海上航行,在距离这艘当时世界上最大远洋轮的100米处,有一艘比它小得多的铁甲巡洋舰"豪克"号正在向前疾驶,两艘船似乎在比赛,彼此靠得较拢,平行着驶向前方。忽然,正在疾驶中的"豪克"号好像被大船吸引似地,一点也不服从舵手的操纵,竟一头向"奥林匹克"号闯去。最后,"豪克"号的船头撞在"奥林匹克"号的船舷上,撞出个大洞,酿成一件重大海难事故。

根据流体力学的伯努利原理,流体的压强与它的流速有关,流速越大,压强越小;反之亦然。用这个原理来审视这次事故,就不难找出事故的原因了。原来,当两艘船平行着向前航行时,在两艘船中间的水比外侧的水流得快,中间水对两船内侧的压强,也就比外侧对两船外侧的压强要小。于是,在外侧水的压力作用下,两船渐渐靠近,最后相撞。又由于"豪克"号较小,在同样大小压力的作用下,它向两船中间靠拢时速度要快得多,因此,造成了"豪克"号撞击"奥林匹克"号的事故。现在航海上把这种现象称为"船吸现象"。

鉴于这类海难事故不断发生,而且轮船和军舰越造越大,一旦发生撞船事故,它们的危害性也越大,因此,世界海事组织对这种情况下航海规则都作了严格的规定,它们包括两船同向行驶时,彼此必须保持多大的间隔,在通过狭窄地段时,小船与大船彼此应作怎样的规避,等等。

(3)水利工程等关系到国计民生的大工程—理论计算、设计、勘察

例:

三峡工程:五级连续船闸——U形管原理(连通器)

①当轮船从上游驶进船闸的时侯,上游阀门A打开,水通过底下的阀门从上游流进闸

室,根据连通器原理,闸室内水位升高,直至与上游水位相平。

②这时打开上游闸门C,轮船就可以驶入闸室了。

③关上上游闸门C和阀门A,再打开下游阀门B,闸室内的水就通过阀门B流向下游。

④当闸室内的水位降到与下游水位相平的时侯就不再下降了,这时打开下游闸门D,

轮船就可以从闸室驶向下游。

西气东输:

西气东输输气管线西起新疆塔里木轮南油田,经甘肃、宁夏、陕西、山西、河南、安徽、江苏,最后抵达上海。沿途将穿越戈壁沙漠、黄土高原,以及吕梁山、太行山、太岳山,并跨越黄河、长江、淮河等江河,全长4000多公里。预计工程总投资1500亿元,输量最终达到200亿立方米/年。

2000年3月西气东输工程项目正式启动,今年7月4日全线开工建设,2005年将全线贯通投产。

西气东输工程的目标市场是长江三角洲地区的上海市、江苏省、浙江省以及沿线的河南省、安徽省等。

2004年元旦正式对上海供气。

西气东输要解决的关键问题是:管网设计、防腐、安全、环保等,与流体力学紧密相关。

南水北调:

南水北调总体规划推荐东线、中线和西线三条调水线路。通过三条调水线路与长江、黄河、淮河和海河四大江河的联系,构成以“四横三纵”为主体的总体布局。

南水北调需要穿越隧道、黄河、倒吸虹、暗渠、桥等,输水河道、泵站枢纽的设计、工程布置等都要用到流体力学的知识。

(4)石油工业

钻井工程:洗井液、钻头水力学、泵、射流及喷射钻井、钻井浮船及平台设计等。

采油工程:油气渗透,抽油机,注水驱油,振荡解堵,原油集输,油、水、气分离,

清洗炮眼等。

储运工程:管道及泵功率的设计、船舶运输等。

炼油工程:设备流程设计,设备清洗。

(5)医疗:高压水射流手术刀,人工心脏。现在血液在人体内的流动也是研究的一个热点。(6)其它:食品加工,飞机制造,跑道清洗,除尘,水力工程等。

(7)身边典型实例:石大太阳广场喷水池

管路的设计,喷水高度,泵的功率、扬程选择,喷嘴尺寸等都是一系列的流体力学问题。

3、流体力学的发展简况——四个阶段

(1)第一阶段——经验阶段:

十七世纪前,主要是人们在与大自然斗争中的经验总结。例如,我国秦代李冰父子设计建造的四川都江堰工程,隋代大运河,水车,汉代张衡发明的水力浑天仪,古代铜壶滴漏计时等。

(2)第二阶段——理论阶段:

十七世纪~十九世纪一些水力原理论著出现,标志着流体力学的发展进入了理论阶段。

?1643:托里拆利提出孔口泄流定理

?1650:巴斯加提出压强传递定律

?1686:牛顿提出液流内摩擦定理

?1700—1783:D.Bernoulli定理

?1717—1783:d’Alembert达朗贝尔——连续性方程

?1707—1783:Euler理想流体运动方程

?1785—1863:Navier粘性流体运动方程

?1819—1903:Stokes也导出粘性流体运动方程

?1820—1872:兰金(Rankine)发展了源汇理论

?1821—1894:Helmholtz提出速度势,建立了旋涡运动和间断运动理论

?1824—1887:客希霍夫继续研究间断运动及阻力

?1842—1912:O.Reynolds层、紊流

?1847—1921:茹可夫斯基研究机翼获得成功

?1868—1945:兰彻斯特(Lanchester)研究了升力原因的环量概念

?1875—1953:Prandtl在1904年提出边界层理论,从而使粘性流体和无粘性流体的概念协调起来

(3)第三阶段

20世纪初至中叶,流体力学理论、实验全面展开,航空航天迅速发展,湍流,稳定性等。

(4)第四阶段——多学科互相渗透。

工业流体力学,实验流体力学,地球流体力学,非牛顿流体力学,多相流体力学,生物流体力学,物理—化学流体力学,渗流力学等,都已形成相对独立的学科。

4、流体力学的分类

流体力学是一门基础性很强和应用性很广的学科,它的研究对象随着生产的需要与科学的发展在不断的更新、深化和扩大。

从学科上看属于这一范畴的有理论流体力学、工程流体力学、水力学。

理论流体力学:侧重于用数学分析方法进行理论探讨

工程流体力学:从实用角度,对工程中涉及的问题建立相应的理论基础,并进行计算。

水力学:侧重于用物理分析和实验方法进行实用计算

二、工程流体力学概述

1、特点:以物理为基础、以力学为依据、以数学为工具

2、研究方法

(1)实验模拟:

在流体力学的发展过程中,实验方法是最先使用的的一种,其他两种方法出现一已做出过巨大贡献,即使到现在,若不使用这种方法,航空,航天事业和大型水利枢纽等复杂系统的顺利实现,将仍然是不可能的。

利用相似原理,在风洞,水洞,水池,激波管进行模型试验,采用光、电手段,清晰显示流动图象,精确测量流场中的诸物理量与物体受力特性.这是实验流体力学的任务。

主要步骤:

①所给定的问题,选择适当的无量纲相似参数,并确定其大小范围;

②据①准备试验条件,其中包括模型的设计制造与设备仪器的选择使用等;

③订实验方案并进行试验;

④理和分析实验结果,并与其他方法或著者所得的结果进行比较等。

优点:能直接解决生产中的复杂问题,能发现流动中的新现象;它的结果,可以作为检验其他方法是否正确的依据。

缺点:对不同情况,需作不同的实验,即所得结果的普适性较差。

(2)理论分析

继实验方法之后出现的是分析方法。

主要步骤:

①建立简化的数学模型,即根据所给问题的特点,作出一定的假设,并用以简化一般的流体力学运动方程组和初始条件与边界条件;

②用分析方法求简化后的初始问题或边值问题的解析解;

③选择适当的算例,利用解析解进行具体的数值计算;

④将所得算例结果与用其他所得的相应结果进行比较,以检验简化模型的合理性。优点:解析解明确给出各种物理量与流动参量之间的变化关系,有较好的普适性

缺点:数学上的难度很大,能获得的分析解的数量有限。如N-S方程

(3)数值计算:

依靠计算机,精确、高效地求解大规模离散化的流体力学方程组,是计算流体力学的研究任务,20世纪中叶才出现的一种方法。

主要步骤:

①对一般的流体运动方程,初始或边界条件,进行必要的简化或改写;

②选用适当的数值方法,对简化或改写的初始问题或边值问题进行离散化;

③编制程序,选取算例进行具体计算,并将所得结果绘制成图表;

④将算例结果与实验或其他计算方法结果,进行比较。

优点:许多用分析法无法求解的问题,用此法可以求得它们的数值解。如果计算机的速度和容量继续提高,计算方法不断改进,它所起的作用,将愈来愈大,但应注意,它仍是一种近似方法,它的结果仍应与实验或其他精确结果进行比较。

缺点:对复杂而又缺乏完善数学模型的问题,仍无能为力。

3、研究对象——流体

(1)压缩性大小:液体(水)、气体

(2)剪切变形特性:牛顿流体、非牛顿流体

4、研究内容

(1)流体平衡和运动规律

(2)流体与固体相互作用的基本理论

(3)解决工程设计和使用问题,比如管路设计

三、本课程的学习任务

1、教材:《工程流体力学》袁恩熙主编,石油工业出版社

2、基本理论

(1)牛顿内摩擦定律

(2)静力学基本方程

(3)连续性方程——质量守恒

(4)伯努利方程——能量守恒

(5)动量方程——动量守恒

3、应用部分

静压强计算、管路的水力计算、液体(静止或运动)对固体的作用力,等等4、四个实验(8学时)

(1)水静压强实验

(2)流量计实验

(3)流态实验

(4)沿程阻力实验

四、几点要求

认真听讲,记笔记,下课复习——强调平时努力的重要性

作业:避免眼高手低,独立完成,每周收一次

积极参与教学活动

点名,不旷课

第一章流体及其主要物理性质主要内容:

?预备知识:单位制及其换算关系

?流体的概念

?流体的主要物理性质

?作用在流体上的力

预备知识

1、单位制

CGS=Centimeter-Gram-Second(units) 厘米-克-秒(单位制)

MKFS=Meter-Kilogram-Force-Second(units) 米-千克力-秒(单位制) MKS =Meter-Kilogram-Second(units) 米-千克-秒(单位制)

2、换算关系

力:1公斤力=9.8牛顿=9.8×105达因

1克力=980达因

1公斤力=1000克力

质量:1公斤力·秒2/米=9.8×103克

1千克=0.102公斤力·秒2/米

第一节流体的概念

一、流体的概念

自然界的物质有三态:固体、液体、气体

从外观上看,液体和气体很不相同,但是从某些性能方面来看,却很相似。流体与固体相比,分子排列松散,分子引力较小,运动较强烈,无一定形状,易流动,只能抗压,不能抗拉和切。

流体:是一种受任何微小剪切力都能连续变形的物质。它是气体和液体的通称。

二、流体的特点

温度对粘性的影响:产生粘性的主要因素不同

(1)气体:T升高,μ变大分子间动量交换为主

(2)液体:T升高,μ变小内聚力为主

三、连续介质假设——连续性说明(稠密性假设)

1、假设的内容:1753年欧拉(数学家)

从微观上讲,流体由分子组成,分子间有间隙,是不连续的,但流体力学是研究流体的宏观机械运动,通常不考虑流体分子的存在,而是把真实流体看成由无数连续分布的流体微团(或流体质点)所组成的连续介质,流体质点紧密接触,彼此间无任何间隙。这就是连续介质假设。

流体微团(或流体质点):基本单位

宏观上足够小(无穷小),以致于可以将其看成一个几何上没有维度的点;

微观上足够大(无穷大),它里面包含着许许多多的分子,其行为已经表现出大量分子的统

计学性质。

2、引入意义:第一个根本性的假设

将真实流体看成为连续介质,意味着流体的一切宏观物理量,如密度、压力、速度等,都可作为时间和空间位置的连续函数,使我们有可能用数学分析来讨论和解决流体力学中的问题。

3、假设的局限性:

对稀薄气体,不能适用,必须考虑为不连续流体。

流体在各种不同水力现象中的表现,取决于: 内因:流体本身的物理性质——第二节 外因:作用在流体上的力——第三节

第二节 流体的主要物理性质

一、密度和重度

1、密度:单位体积流体的质量,ρ(density )

均质: V M =

ρ

非均质:

)(),,(r z y x

ρρ=

V

M

dV dM V ??==

→?0lim ρ

M ——流体质量(kg ) V ——流体体积(m 3) 单位:千克/米3 (kg/m 3) 水的密度:1000kg/m 3=1g/cm 3

2、重度:单位体积流体的重量,γ(specific weight )

均质:

V G =

γ

非均质:

V G

dV dG V ??==

→?0lim

γ

单位:牛顿/米3 (N/m 3)

3、密度与重度的关系 牛顿第二定律:Mg G =→ V Mg

V

G

= → g ργ= g =9.8m/s 2

水的重度:9800N/m 3

4 、相对密度(比重):δ或d (specific gravity )

(1)液体的相对密度:液体的重量与同体积4oC 蒸馏水重量之比。

水水=γγρρδ=

因为:蒸馏水在4oC 密度最大,为1000kg/m 3 例:3

/980085.085.0m N ?=?=γδ

(2)气体的相对密度:气体的重度与同温同压下的空气重度之比。 (3)相对密度的单位:1(无量纲) 水银的相对密度:

6.13=Hg δ

5、气体的比容(v):单位重量气体的体积 ,在热力学中,用的较多。

二、压缩性和膨胀性

1、压缩性(Compressibility ):

(1)定义:温度不变时,流体在压力作用下体积缩小的性质。 (2)体积压缩系数

p β:

(coefficient of volume compressibility )温度不变时,压强增加一个

单位,体积的相对变化量。

或 dV ——体积改变量 V ——原有体积 dp ——压强改变量 负号说明:保证

p β永远为正,Δp 与ΔV 符号相反。

(3)单位:1/Pa 或1/大气压

(4)说明:表1-2表明液体压缩性很小

ΔV 很小→Const V M

==

ρ→液体常数=ρ

2、膨胀性 (expansibility ):

(1)定义:压力不变时,温度升高,流体体积增大的性质。

(2)体积膨胀系数t β:(Coefficient of volumetric expansion )压力不变时,温度增加一个单位,体积的相对变化量。

dt ——温度改变量 (3)单位:1/oC 或 1/K

(4)说明:表1-3表明液体膨胀性很小——在实际计算中,一般不考虑液体的膨胀性。

3、体积弹性系数

单位:帕(Pa ) 例题:

当压强增加5×104Pa 时,某种液体的密度增长0.02%,求该液体的弹性系数。 解:0=+=?=dV Vd dM V M ρρρ

ρρ

d dV V -=

Pa dp d dp V dV E p

84105.2105%02.01

111

?=??==-

=

=

ρρβ

三、粘性(viscosity ):μ

粘性是流体所特有的性质,自然界中的任何流体都具有粘性,只是有大有小。 1、定义:流体微团发生相对运动时所产生的抵抗变形、阻碍流动的性质。 2、产生粘性的原因 (1)流体内聚力 (2)动量交换

(3)流体分子和固体壁面之间的附着力 3、 产生条件:流体发生相对运动 4、 产生的实质:微观分子作用的宏观表现

5、内摩擦力的计算—牛顿内摩擦定律(Newton’s law of internal friction )1686

怎样确定流体运动时的粘滞力呢?它与哪些因素有关?牛顿经过大量实验研究于1686年提出了确定流体内摩擦力的所谓“牛顿内摩擦定律”。

如图,A 、B 为长宽都是足够大的平板,互相平行,设B 板以u 0运动,A 板不动。由于粘性流体将粘附于它所接触的表面上(流体的边界无滑移条件),u 上=u 0, u 下=0。 (1)两平板间流体流层:速度自上而下递减,按直线分布; (2)取出两层

快层:u +du 慢层:u 相邻流层发生相对运动时:

T :快层对慢层产生一个切力T ,使慢层加速,方向与流向相同。

T’:慢层对快层有一个反作用力T’,使快层减速,方向与流向相反,这种阻止运动的力,称为阻力。

(3)T 与 T’:大小相等,方向相反的一对力,分别作用在两个流体层的接触面上,这对力是在流体内部产生的,叫内摩擦力。

(4)牛顿内摩擦定律的内容:

流体相对运动时,层间内摩擦力T 的大小与接触面积、速度梯度成正比,与流体种类及温度有关,而与接触面上的压力无关,即:

dy du

A

T μ±=

T ——内摩擦力,单位:牛顿(N )

μ——动力粘性系数,与流体性质、温度有关 A ——接触面积

dy du

——速度梯度Velocity gradient

(5)粘性切应力τ:单位面积上的内摩擦力

dy du A T μτ±==

图 速度分布规律

单位:N/m 2

(6)公式说明:

① “±”是为使T 、τ永远为正值而设

当dy du

>0时,T 、τ取“+”号

当dy du

=0时,T 、τ=0

当dy du

<0时,T 、τ

取“-”号(①拖下板②y 轴向下③管流)

② 符合

dy du

μ

τ±=的流体——牛顿流体 不符合

dy du

μ

τ±=的流体——非牛顿流体

③公式适用条件:牛顿流体做层流运动

7、粘性系数(粘度)coefficient of viscosity :表征流体粘性大小,通常用实验方法确定。 (1)动力粘度μ:coefficient of dynamic viscosity

① 定义:由公式

dy du A T μτ±==

dy du

τ

μ±

=

② 物理意义:表示速度梯度为1时,单位面积上的摩擦力的大小。 ③ 国际单位: 牛顿?秒/米2 或 Pa? S

)(2

2s m kg m s s m kg s Pa ?=

??=

? 1Pa? S =1000 mPa? S (在程序中常用mPa? S ) 物理单位: 泊(poise )= 达因?秒/厘米2

(1N =105dyn =1kg ·m/s 2)

1 泊poise = 100厘泊 cen tipoise = 0.1 pa ?s 1cP =1 mPa? S

注:P295.附1:水的粘度数量级 1 mPa? S (2)运动粘度ν:coefficient of kinematic viscosity

① 定义:

ρμ

ν=

——在方程中经常出现

② 国际单位:米2/秒;

物理单位:厘米2/秒,叫做沱(或斯stokes) 1沱=100厘沱

cst st s m 6

421010/1==

8、理想流体与实际流体

(1)理想流体:假想没有粘性的流体μ=0 ,能量损失=0 (2)实际流体:又称为粘性流体,即真实流体 μ≠0 ,能量损失 ≠ 0

流体在运动中因克服摩擦力必然要做功,所以粘性也是流体中发生机械能量损失的根源。 例题:

已知:A =1200cm 2,V =0.5m/s

μ1=0.142Pa.s ,h 1=1.0mm μ2=0.235Pa.s ,h 2=1.4mm 求:平板上所受的内摩擦力F

绘制:平板间流体的流速分布图及应力分布图 解:(前提条件:牛顿流体、层流运动)

dy du μ

τ= ???

????

-=-=?2221110

h u h u V μτμτ 因为 τ1=τ2

所以

s

m h h V

h u h u

h u V /23.02

112212

2

11

=+=

?=-μμμμμ

N h u

V A F 6.41

1=-==μ

τ

四、表面张力 σ

1、定义:使液体表面处于拉伸状态的力为表面张力

2、表面张力系数σ:单位长度上的表面张力

3、表面张力的产生:液、气接触自由表面

5、 表面张力产生的原因:由于内聚力的不同而导致(分子受力不平衡)。

在气液自由表面上,由于液体分子的内聚力显著的大,因此在液体表面的分子有向液体内部收缩的倾向,使得自由表面有一拉紧作用的力产生,即表面张力。在液固交界面上,也会产生附着力。液体内聚力的大小决定其是否产生湿润管壁。

水与玻璃管相互作用计算及分析

管壁圆周上总表面张力在垂直方向上的分力: π?D ?σ?cosθ (1)

上升液柱重:

h

D 24

γ (2)

h

D D 24

c o s π

γ

θσπ=

可得毛细管内液柱上升高度

D h γθ

σcos 4=

(3)

其中:θ为液面与壁面的接触角 γ为液体的重度 N/m 2 D 为毛细管内径 m σ为表面张力 N/m

第三节 作用在流体上的力

本书:按力的表现形式

一、质量力 (体积力)(长程力)(非接触力)

1、定义:作用于流体的每一个质点上,与流体的质量成正比。

2、分类: (1)重力G =mg (2)惯性力: 直线惯性力I =ma

离心惯性力R =mw 2r =m r v 2

3、单位质量力:流体质量为M ,总质量力为

k F j F i F F z y x

++=

单位质量力

M F f =

, 设

k Z j Y i f

++=X

M F X x = M F Y y = M F Z z

=(包含了各种质量力:重力、惯性力等) 二、表面力(近程力)(接触力)

1、定义:作用于流体表面上,与作用面的表面积成正比。

2、分类:

(1)法向力(压力): P =p ·A ——垂直于作用面 (2)切向力(内摩擦力):T =τ·A ——平行于作用面 三、说明:

1、 在一定的情况下,这些力有的存在,有的不存在;

2、 内力和外力是相对而言的,不是固定不变的。

第二章 流体静力学

1o 研究任务:流体在静止状态下的平衡规律及其应用。根据平衡条件研究静止状态下压力的分布规律,进而确定静止流体作用在各种表面的总压力大小、方向、作用点。 2o 静止:是一个相对的概念,流体质点对建立的坐标系没有相对运动。 ① 绝对静止:流体整体相对于地球没有相对运动。

② 相对静止:流体整体(如装在容器中)对地球有相对运动,但液体各部分之间没有相对运动。

共同点:不体现粘性,无切应力 3o 适用范围:理想流体、实际流体 4o 主要内容:

流体平衡微分方程式 静力学基本方程式(重点) 等压面方程(测压计)

作用于平面和曲面上的力(难点)

重力 压力

重力 压力

重力 直线惯性力 压力

重力 离心惯性力 压力

质量力

质量力

工程流体力学(一)试题库

2009 年 秋季学期 工 程 流 体 力 学 题号 一 二 三 四 五 六 总分 分数 班号 学号 姓名 一、解释下列概念:(20分) 1. 连续性介质模型、粘性、表面力、质量力 2. 等压面、压力体、流线、迹线 简述“流体”的定义及特点。 3. 恒定流动、非恒定流动、牛顿流体、正压流体 简述 Euler “连续介质模型”的内容及引入的意义。 4.动能修正因数、动量修正因数、水力半径、当量直径 简述“压力体”的概念及应用意义。 5. 有旋运动、无旋运动、缓变流动、急变流动 .简述研究“理想流体动力学”的意义。

二.简答题(10分) 1.流体粘性产生的原因是什么?影响流体粘性的因素有哪些? 2.粘性的表示方法有几种?影响流体粘性的因素有哪些? 3.举例说明等压面在静力学计算中的应用 4. 举例说明压力体在静力学计算中的应用 说明静止流体对曲面壁总作用力的计算方法 三.推导题(30分) 1试推导:流体在直角坐标系中非恒定可压缩流体连续性微分方程式为: 2.试推导粘性流体应力形式的运动微分方程 2.试从粘性流体应力形式出发推导粘性流体的运动微分方程(N-S 方程) 4. 由恒定流动、不可压缩流体流体微小流束的伯努利方程出发,推求粘性流体总流的伯努利方程,并指出其使用条件。 5.推求粘性不可压缩流体作恒定流动时的动量方程式 试证明在不可压缩流体的缓变过流断面上有: z+p/ρg=c 1.试证明:粘性流体的动压强为 四、已知某流速场速度分布为 ,,x y z v yz t v xz t v xy =+=+= 10 d V dt ρ ρ+?=u v g ()1 3 xx yy zz p σσσ=- ++

工程流体力学试题及答案1

一\选择题部分 (1)在水力学中,单位质量力是指(答案:c ) a、单位面积液体受到的质量力; b、单位体积液体受到的质量力; c、单位质量液体受到的质量力; d、单位重量液体受到的质量力。 (2)在平衡液体中,质量力与等压面(答案:d) a、重合; b、平行 c、相交; d、正交。 (3)液体中某点的绝对压强为100kN/m2,则该点的相对压强为 a、1 kN/m2 b、2 kN/m2 c、5 kN/m2 d、10 kN/m2 答案:b (4)水力学中的一维流动是指(答案:d ) a、恒定流动; b、均匀流动; c、层流运动; d、运动要素只与一个坐标有关的流动。 (5)有压管道的管径d与管流水力半径的比值d /R=(答案:b) a、8; b、4; c、2; d、1。 (6)已知液体流动的沿程水力摩擦系数 与边壁相对粗糙度和雷诺数Re都有关,即可以判断该液体流动属于答案:c a、层流区; b、紊流光滑区; c、紊流过渡粗糙区; d、紊流粗糙区(7)突然完全关闭管道末端的阀门,产生直接水击。已知水击波速c=1000m/s,水击压强水头H = 250m,则管道中原来的流速v0为答案:c a、1.54m b 、2.0m c 、2.45m d、3.22m (8)在明渠中不可以发生的流动是(答案:c ) a、恒定均匀流; b、恒定非均匀流; c、非恒定均匀流; d、非恒定非均匀流。 (9)在缓坡明渠中不可以发生的流动是(答案:b)。 a、均匀缓流; b、均匀急流; c、非均匀缓流; d、非均匀急流。 (10)底宽b=1.5m的矩形明渠,通过的流量Q =1.5m3/s,已知渠中某处水深h = 0.4m,则该处水流的流态为答案:b a、缓流; b、急流; c、临界流; (11)闸孔出流的流量Q与闸前水头的H(答案:d )成正比。 a、1次方 b、2次方 c、3/2次方 d、1/2次方 (12)渗流研究的对象是(答案:a )的运动规律。 a、重力水; b、毛细水; c、气态水; d、薄膜水。 (13)测量水槽中某点水流流速的仪器有答案:b a、文丘里计 b、毕托管 c、测压管 d、薄壁堰 (14)按重力相似准则设计的水力学模型,长度比尺λL=100,模型中水深为0.1米,则原型中对应点水深为和流量比尺为答案:d a、1米,λQ =1000; b、10米,λQ =100;

《工程流体力学》考试试卷及答案解析

《工程流体力学》复习题及参考答案 整理人:郭冠中内蒙古科技大学能源与环境学院热能与动力工程09级1班 使用专业:热能与动力工程 一、名词解释。 1、雷诺数 2、流线 3、压力体 4、牛顿流体 5、欧拉法 6、拉格朗日法 7、湿周 8、恒定流动 9、附面层 10、卡门涡街11、自由紊流射流 12、流场 13、无旋流动14、贴附现象15、有旋流动16、自由射流 17、浓差或温差射流 18、音速19、稳定流动20、不可压缩流体21、驻点22、 自动模型区 二、就是非题。 1.流体静止或相对静止状态的等压面一定就是水平面。 ( ) 2.平面无旋流动既存在流函数又存在势函数。 ( ) 3.附面层分离只能发生在增压减速区。 ( ) 4.等温管流摩阻随管长增加而增加,速度与压力都减少。 ( ) 5.相对静止状态的等压面一定也就是水平面。 ( ) 6.平面流只存在流函数,无旋流动存在势函数。 ( ) 7.流体的静压就是指流体的点静压。 ( ) 8.流线与等势线一定正交。 ( ) 9.附面层内的流体流动就是粘性有旋流动。 ( ) 10.亚音速绝热管流摩阻随管长增加而增加,速度增加,压力减小。( ) 11.相对静止状态的等压面可以就是斜面或曲面。 ( ) 12.超音速绝热管流摩阻随管长增加而增加,速度减小,压力增加。( ) 13.壁面静压力的压力中心总就是低于受压壁面的形心。 ( ) 14.相邻两流线的函数值之差,就是此两流线间的单宽流量。 ( ) 15.附面层外的流体流动时理想无旋流动。 ( ) 16.处于静止或相对平衡液体的水平面就是等压面。 ( ) 17.流体的粘滞性随温度变化而变化,温度升高粘滞性减少;温度降低粘滞性增大。 ( ) 18.流体流动时切应力与流体的粘性有关,与其她无关。 ( ) 三、填空题。 1、1mmH2O= Pa 2、描述流体运动的方法有与。 3、流体的主要力学模型就是指、与不可压缩性。 4、雷诺数就是反映流体流动状态的准数,它反映了流体流动时 与的对比关系。 5、流量Q1与Q2,阻抗为S1与S2的两管路并联,则并联后总管路的流量Q

工程流体力学试题

一、选择题:从给出的四个选项中选择出一个正确的选项 (本大题60分,每小题3分) 1、温度的升高时液体粘度()。 A、变化不大 B、不变 C、减小 D、增大 2、密度为1000kg/m3,运动粘度为10m2/s的流体的动力粘度为()Pas。 A、1 B、0.1 C、0.01 D、0.001 3、做水平等加速度运动容器中液体的等压面是()簇。 A、斜面 B、垂直面 C、水平面 D、曲面 4、1mmH2O等于()。 A、9800Pa B、980Pa C、98Pa D、9.8Pa 5、压强与液标高度的关系是()。 A、h=p/g B、p=ρg C、h=p/ρg D、h=p/ρ 6、流体静力学基本方程式z+p/ρg=C中,p/ρg的物理意义是() A、比位能 B、比压能 C、比势能 D、比动能 7、根据液流中运动参数是否随()变化,可以把液流分为均匀和非均匀流。 A、时间 B、空间位置坐标 C、压力 D、温度

8、连续性方程是()定律在流体力学中的数学表达式。 A、动量守恒 B、牛顿内摩擦 C、能量守恒 D、质量守恒。 9、平均流速是过留断面上各点速度的()。 A、最大值的一半 B、面积平均值 C、统计平均值 D、体积平均值 10、泵加给单位重量液体的机械能称为泵的()。 A、功率 B、排量; C、扬程 D、效率 11、水力坡度是指单位管长上()的降低值。 A、总水头 B、总能量 C、轴线位置 D、测压管水头 12、总水头线与测压管水头线间的铅直高差反映的是()的大小。 A、压力的头 B、位置水头 C、流速水头 D、位置水头。 13、雷诺数Re反映的是流体流动过程中()之比。 A、惯性力与粘性力 B、粘性力与惯性力 C、重力与惯性力 D、惯性力与重力 14、直径为d的圆形截面管道的水力半径为() A、2d B、d C、d/2; D、d/4。 15、过流断面的水力要素不包括()。 A、断面面积 B、断面湿周 C、管壁粗糙度 D、速度梯度 16、圆管层流中的速度剖面是()。

工程流体力学历年试卷及答案[精.选]

一、判断题 1、 根据牛顿内摩擦定律,当流体流动时,流体内部内摩擦力大小与该处的流速大小成正比。 2、 一个接触液体的平面壁上形心处的水静压强正好等于整个受压壁面上所有各点水静压强的平均 值。 3、 流体流动时,只有当流速大小发生改变的情况下才有动量的变化。 4、 在相同条件下,管嘴出流流量系数大于孔口出流流量系数。 5、 稳定(定常)流一定是缓变流动。 6、 水击产生的根本原因是液体具有粘性。 7、 长管是指运算过程中流速水头不能略去的流动管路。 8、 所谓水力光滑管是指内壁面粗糙度很小的管道。 9、 外径为D ,内径为d 的环形过流有效断面,其水力半径为4 d D -。 10、 凡是满管流流动,任何断面上的压强均大于大气的压强。 二、填空题 1、某输水安装的文丘利管流量计,当其汞-水压差计上读数cm h 4=?,通过的流量为s L /2,分析 当汞水压差计读数cm h 9=?,通过流量为 L/s 。 2、运动粘度与动力粘度的关系是 ,其国际单位是 。 3、因次分析的基本原理是: ;具体计算方法分为两种 。 4、断面平均流速V 与实际流速u 的区别是 。 5、实际流体总流的伯诺利方程表达式为 , 其适用条件是 。 6、泵的扬程H 是指 。 7、稳定流的动量方程表达式为 。 8、计算水头损失的公式为 与 。 9、牛顿内摩擦定律的表达式 ,其适用范围是 。 10、压力中心是指 。 一、判断题 ×√×√× ×××√× 二、填空题 1、 3 L/s 2、 ρμν=,斯(s m /2 ) 3、 因次和谐的原理,п定理 4、 过流断面上各点的实际流速是不相同的,而平均流速在过流断面上是相等的 5、 22222212111 122z g v a p h g v a p z +++=++-γγ,稳定流,不可压缩流体,作用于流体上的质量力只有重力,所取断面为缓变流动 6、 单位重量液体所增加的机械能 7、 ∑?=F dA uu cs n ρ

工程流体力学试卷答案样本

资料内容仅供您学习参考,如有不当或者侵权,请联系改正或者删除。 工程流体力学考试试卷 解答下列概念或问题(15分) 填空(10分) 粘度。 加速度为a y =( )。 已知平面不可压缩流体流动的流速为x x 2 2x 4y , 2xy 2y ( 20 分) 3. 求流场驻点位置; 4. 求流函数。 1. 恒定流动 2. 水力粗糙管 3. 压强的表示方法 4. 两流动力学相似条件 5. 减弱水击强度的措施 1. 流体粘度的表示方法有( )粘度、( )粘度和( ) 2. 断面平均流速表示式V =( );时均流速表示式 =( )。 3.—两维流动y 方向的速度为 y f (t,x, y ), 在欧拉法中y 方向的 4. 动量修正因数(系数)的定义式。=( 5. 雷诺数R e =( ),其物理意义为( 试推求直角坐标系下流体的连续性微分方程。 (15 分) 四. 1. 检查流动是否连续;

五.水射流以20m/s的速度从直径d 100mm的喷口射出,冲击 对称叶片,叶片角度45 ,求:(20分) 1. 当叶片不动时射流对叶片的冲击力; 2. 当叶片以12m/s的速度后退而喷口固定不动时,射流对叶片的冲击 力。 第(五)题

六.求如图所示管路系统中的输水流量q v ,已知H =24, l112丨3 l4100m , d1 d2 d4100mm , d3200mm , 第(六)题图 参考答案 一.1.流动参数不随时间变化的流动; 2. 粘性底层小于壁面的绝对粗糙度(); 3. 绝对压强、计示压强(相对压强、表压强)、真空度; 4. 几何相似、运动相似、动力相似; 5. a)在水击发生处安放蓄能器;b)原管中速度V。设计的尽量小些;c)缓慢关闭;d)采用弹性管。 1 .动力粘度,运动粘度,相对粘度;

《工程流体力学》考试试卷及答案解析

《工程流体力学》复习题及参考答案 整理人:郭冠中内蒙古科技大学能源与环境学院热能与动力工程09级1班 使用专业:热能与动力工程 一、名词解释。 1、雷诺数 2、流线 3、压力体 4、牛顿流体 5、欧拉法 6、拉格朗日法 7、湿周 8、恒定流动 9、附面层 10、卡门涡街11、自由紊流射流 12、流场 13、无旋流动14、贴附现象15、有旋流动16、自由射流 17、浓差或温差射流 18、音速19、稳定流动20、不可压缩流体21、驻点22、 自动模型区 二、是非题。 1.流体静止或相对静止状态的等压面一定是水平面。() 2.平面无旋流动既存在流函数又存在势函数。() 3.附面层分离只能发生在增压减速区。() 4.等温管流摩阻随管长增加而增加,速度和压力都减少。() 5.相对静止状态的等压面一定也是水平面。() 6.平面流只存在流函数,无旋流动存在势函数。() 7.流体的静压是指流体的点静压。() 8.流线和等势线一定正交。() 9.附面层内的流体流动是粘性有旋流动。() 10.亚音速绝热管流摩阻随管长增加而增加,速度增加,压力减小。() 11.相对静止状态的等压面可以是斜面或曲面。() 12.超音速绝热管流摩阻随管长增加而增加,速度减小,压力增加。() 13.壁面静压力的压力中心总是低于受压壁面的形心。() 14.相邻两流线的函数值之差,是此两流线间的单宽流量。() 15.附面层外的流体流动时理想无旋流动。() 16.处于静止或相对平衡液体的水平面是等压面。() 17.流体的粘滞性随温度变化而变化,温度升高粘滞性减少;温度降低粘滞性增大。 () 18.流体流动时切应力与流体的粘性有关,与其他无关。() 三、填空题。 1、1mmH2O= Pa 2、描述流体运动的方法有和。 3、流体的主要力学模型是指、和不可压缩性。 4、雷诺数是反映流体流动状态的准数,它反映了流体流动时 与的对比关系。

工程流体力学-单元5

重 庆 能 源 职 业 学 院 教 案 课程名称:流体力学 授课时间 2013 年 3 月 授课教师: 年 月 日 授课对象 系 别 油气储运系 本次课学时 年级班次 章节题目 第三章 压力管路和孔口、管嘴的水力计算 目的要求(含技能要求) 掌握压力管路的分类、水力计算,掌握薄壁小孔出流的特征 本节重点 压力管路的水力计算及薄壁小孔出流 本节难点 压力管路的水力计算及薄壁小孔出流 教学方法 理论教学与实例举例相结合。 教学用具 PPT 。 问题引入 以实例引入。 如何突出重点 多次重复及字体区别。 难点与重点讲解方法 实例与课程内容相结合,加深印象。 内容与步骤 简单长管的水力计算 复杂长管的水力计算 沿程均匀泄流管路 短管的水力计算 定水头孔口和管嘴泄流 变水头泄流 压力管路中的水击 本次课小 节 课程小结 本章着重讨论运用流体运动的基本规律和水头损失的计算方法对实际工程管路进行水力计算,总结出实用的计算方法。 教后札记 讨论、思考题、 作业(含实训作业) 1、何为管路特性曲线,有何用途? 2、串并联管路各有何特点?在输油管上有哪些应用? 3、分支管路应如何进行水力计算?

重庆能源职业学院教案 教学内容 压力管路 介绍压力管路在工程实际中的主要应用。(10分钟) 压力管路的分类(10分钟) 长管的水力计算(20分钟) 复杂管路的水力计算(50分钟) 复杂管路的水力计算(60分钟) 短管的水力计算(30分钟) 孔口出流 介绍孔口出流在工程实际中的主要应用和研究方法。(10分钟) 孔口出流的分类 本节主要讨论孔口出流的一些基本概念:薄壁孔口、厚壁孔口、大孔口、小孔口、自由出流、淹没出流。重点介绍薄壁孔口和厚壁孔口的主要技术特征。(20分钟) 薄壁小孔口自由出流 分析推导薄壁小孔口自由出流时的各个特征参数计算公式。(60分钟) 水击现象 日常生活中,快速开关阀门、停泵或突然断电 一、水击的产生 1、水击现象(水锤) 在有压管路内,由于流速急剧变化,引起管内压强突然变化,并在整个管长范围传播的现象,称水击。 当急剧升降的压力波波阵面通过管路时,产生一种声音,犹如冲击钻工作时产生的声音或用锤子敲击管路时发出的噪音,称之谓水击,亦称水锤。 2、水击压力:突然变化的压力称为水击压力(管路中出现水击现象时所增加或降低的压力 ) 值p 3、发生水击现象的物理原因: (1)外因:管路中流速突然变化 (2)内因:液体具有惯性和压缩性。

工程流体力学试卷答案

工程流体力学考试试卷 一. 解答下列概念或问题 (15分) 1. 恒定流动 2. 水力粗糙管 3. 压强的表示方法 4. 两流动力学相似条件 5. 减弱水击强度的措施 二. 填空 (10分) 1.流体粘度的表示方法有( )粘度、( )粘度和( )粘度。 2.断面平均流速表达式V =( );时均流速表达式υ=( )。 3.一两维流动y 方向的速度为),,(y x t f y =υ,在欧拉法中y 方向的加速度为y a =( )。 4.动量修正因数(系数)的定义式0α=( )。 5.雷诺数e R =( ),其物理意义为( )。 三. 试推求直角坐标系下流体的连续性微分方程。 (15分) 四. 已知平面不可压缩流体流动的流速为y x x x 422-+=υ, y xy y 22--=υ (20分) 1. 检查流动是否连续; 2. 检查流动是否有旋;

3.求流场驻点位置; 4.求流函数。 五.水射流以20s m/的速度从直径mm d100 =的喷口射出,冲击一对称叶片,叶片角度 θ,求:(20分) 45 = 1.当叶片不动时射流对叶片的冲击力; 2.当叶片以12s m/的速度后退而喷口固定不动时,射流对叶片的冲击力。 第(五)题图

六. 求如图所示管路系统中的输水流量V q ,已知H =24, m l l l l 1004321====, mm d d d 100421===, mm d 2003=, 025.0421===λλλ,02.03=λ,30=阀ξ。(20分) 第(六)题图 参考答案 一.1.流动参数不随时间变化的流动; 2.粘性底层小于壁面的绝对粗糙度(?<δ); 3.绝对压强、计示压强(相对压强、表压强)、真空度; 4.几何相似、运动相似、动力相似; 5.a)在水击发生处安放蓄能器;b)原管中速度0V 设计的尽量小些;c)缓慢关闭;d)采用弹性管。 二.1.动力粘度,运动粘度,相对粘度; 第2 页 共2 页

工程流体力学考试重点

1. 质量力:质量力是作用于每一流体质点(或微团)上的力,与体积或质量成正比。 2. 表面力:表面力是作用在所考虑的流体表面上的力,且与流体的表面积大小成正比。外 界通过接触传递,与表面积成正比的力。 3. 当不计温度效应,压强的变化引起流体体积和密度的变化,称为流体的压缩性。当流体 受热时,体积膨胀,密度减小的性质,称为流体的热胀性。 4. 单位压强所引起的体积变化率(压缩系数dp dV V p 1- =α)。↑p α越容易压缩。 ↓↑?=-==E d dp dV dp V E P P αρ ρα,。 5. 单位温度所引起的体积变化率(体积热胀系数dT dV V V 1= α)。 6. 黏性是流体抵抗剪切变形的一种属性。当流体内部的质点间或流层间发生相对运动时, 产生切向阻力(摩擦力)抵抗其相对运动的特性,称作流体的黏性。流体的黏性是流体产生流动阻力的根源。 7. dy du A F μ= 其中F ——内摩擦力,N ;dy du ——法向速度梯度,即在与流体方向相互垂直的y 方向流体速度的变化率,1/s ;μ——比例系数,称为流体的黏度或动力黏度, s Pa ?。 8. dy du μ τ= 表明流体层间的内摩擦力或切应力与法向速度梯度成正比。 9. 液体的黏度随温度升高而减小,气体的黏度则随温度升高而增大。液体主要是内聚力, 气体主要是热运动。温度↑: 液体的分子间距↑ 内聚力↓; 气体的分子热运动↑ 分子间距↓ 内聚力↑。 10. 三大模型:1)连续介质模型;2)不可压缩流体模型;3)理想流体模型。 11. 当把流体看作是连续介质后,表征流体性质的密度、速度、压强和温度等物理量在流体 中也应该是连续分布的。优点:可将流体的各物理量看作是空间坐标和时间的连续函数,从而可以引用连续函数的解析方法等数学工具来研究流体的平衡和运动规律。 12. 流体静压强的特性:1)流体静压强的方向垂直指向受压面或沿作用面的内法线方向;2) 平衡流体中任意一点流体静压强的大小与作用面的方位无关,只与点的空间位置有关。

工程流体力学试题与答案3

一、判断题( 对的打“√”,错的打“×”,每题1分,共12分) 1.无黏性流体的特征是黏度为常数。 2.流体的“连续介质模型”使流体的分布在时间上和空间上都是连续的。 3.静止流场中的压强分布规律仅适用于不可压缩流体。 4.连通管中的任一水平面都是等压面。 5. 实际流体圆管湍流的断面流速分布符合对数曲线规律。 6. 湍流附加切应力是由于湍流元脉动速度引起的动量交换。 7. 尼古拉茨试验的水力粗糙管区阻力系数λ与雷诺数Re 和管长l 有关。 8. 并联管路中总流量等于各支管流量之和。 9. 声速的大小是声音传播速度大小的标志。 10.在平行平面缝隙流动中,使泄漏量最小的缝隙叫最佳缝隙。 11.力学相似包括几何相似、运动相似和动力相似三个方面。 12.亚声速加速管也是超声速扩压管。 二、选择题(每题2分,共18分) 1.如图所示,一平板在油面上作水平运动。已知平板运动速度V=1m/s ,平板与固定边界的距离δ=5mm ,油的动力粘度μ=0.1Pa ·s ,则作用在平板单位面积上的粘滞阻力 为( ) A .10Pa ; B .15Pa ; C .20Pa ; D .25Pa ; 2. 在同一瞬时,位于流线上各个流体质点的速度方向 总是在该点与此流线( ) A .相切; B .重合; C .平行; D .相交。 3. 实际流体总水头线的沿程变化是: A .保持水平; B .沿程上升; C .沿程下降; D .前三种情况都有可能。 4.圆管层流,实测管轴上流速为0.4m/s ,则断面平均流速为( ) A .0.4m/s B .0.32m/s C .0.2m/s D .0.1m/s 5.绝对压强abs p ,相对压强p ,真空度v p ,当地大气压a p 之间的关系是: A .v abs p p p +=; B .abs a v p p p -=; C .a abs p p p +=; D .a v p p p +=。 6.下列说法正确的是: A .水一定从高处向低处流动; B .水一定从压强大的地方向压强小的地方流动;

工程流体力学历年试卷及标准答案

一、判断题 1、根据牛顿内摩擦左律,当流体流动时,流体内部内摩擦力大小与该处的流速大小成正比。 2、一个接触液体的平而壁上形心处的水静压强正好等于整个受压壁而上所有各点水静压强的平均 值。 3、流体流动时,只有当流速大小发生改变的情况下才有动量的变化。 4、在相同条件下,管嘴岀流流量系数大于孔口岀流流量系数。 5、稳定(定常)流一定是缓变流动。 6、水击产生的根本原因是液体具有粘性。 7、长管是指运算过程中流速水头不能略去的流动管路。 8、所谓水力光滑管是指内壁而粗糙度很小的管道。 D-J 9、外径为D,内径为d的环形过流有效断而,英水力半径为——。 10、凡是满管流流动,任何断面上的压强均大于大气的压强。 二、填空题 1、某输水安装的文丘利管流疑计,当英汞-水压差计上读数ΔΛ=4

浙大工程流体力学试卷及答案

2002-2003学年工程流体力学期末试卷 一、单选题(每小题2分,共20分) 1、一密闭容器内下部为水,上部为空气,液面下 4.2米处的测压管高度为2.2m,设当地压强为 98KPa,则容器内液面的绝对压强为水柱。 (a) 2m (b)1m (c) 8m (d)-2m 2、断面平均流速υ与断面上每一点的实际流速u 的关系是。 (a)υ =u (b)υ >u (c)υ

(a) 2300 (b)3300 (c)13000 (d) 575 9、已知流速势函数,求点(1,2)的速度分量为。 (a) 2 (b) 3 (c) -3 (d) 以上都不是 10、按与之比可将堰分为三种类型:薄壁堰、实用堰、宽顶堰 (a)堰厚堰前水头 (b) 堰厚堰顶水头 (c) 堰高堰前水头 (d) 堰高堰顶水头 二、简答题(共24分) 1.静水压强的特性(6分) 2.渐变流的定义及水力特性(6分) 3.边界层的定义及边界层中的压强特性(6分) 4.渗流模型简化的原则及条件(6分) 三、计算题(共56分) 1、(本小题14分) 有一圆滚门,长度L=10m,直径D=4m,上游水深H1=4m,下游水深H2=2m,求作用在圆滚门上的水平和铅直分压力。 题1图题2图 2、(本小题12分) 设导叶将水平射流作的转弯后仍水平射出,如图所示。若已知最大可能的支撑力为F,射流直径为d,流体密度为 ,能量损失不计,试求最大射流速度V1。 3、(本小题16分) 由水箱经变直径管道输水,H=16m,直径 d =d3=50mm,d2=70mm,各管段长度见图,沿程阻 1 力系数,突然缩小局部阻力系数

工程流体力学-单元4解析

重庆能源职业学院教案 课程名称:流体力学授课时间2013 年 3 月 日

重 庆 能 源 职 业 学 院 教 案 教学内容 第四章 流动阻力和水头损失 主要内容 阻力产生的原因及分类 两种流态 实际流体运动微分方程式(N -S 方程) 因次分析方法、相似原理 水头损失的计算方法 第一节 流动阻力产生的原因及分类 一、基本概念 1、 湿周:管子断面上流体与固体壁接触的边界周长。以 χ 表示。 单位:米 2、水力半径:断面面积和湿周之比。 χA R = 单位:米 例: 圆管: 44 2 d d d R = =ππ 正方: 442a a a R == 圆环流: 明渠流: ()() ()4 4 2 2 d D d D d D R -= +-= ππ 42212a a a R = =

3、绝对粗糙度:壁面上粗糙突起的高度。 4、平均粗糙度:壁面上粗糙颗粒的平均高度或突起高度的平均值。以Δ表示。 5、相对粗糙度:Δ/D (D——管径)。 二、阻力产生的原因 1、外因: (a)管子的几何形状与几何尺寸。 面积:A1=a2 A2=a2 A3=3a2/4 湿周: a4 1 = χa5 2 = χa4 3 = χ 水力半径:R1=0.25a > R2=0.2a > R3=0.1875a 实验结论:阻力1 < 阻力2 < 阻力3 水力半径R,与阻力成反比。R↑,阻力↓ (b)管壁的粗糙度。Δ↑,阻力↑ (c)管长。与h f 成正比。L↑,阻力↑ 2、内因: 流体在流动中永远存在质点的摩擦和撞击现象,流体质点由于相互摩擦所表现出的粘性,以及质点撞击引起速度变化所表现出的惯性,才是流动阻力产生的根本原因。 沿程阻力:粘性造成的摩擦阻力和惯性造成的能量消耗。 局部阻力:液流中流速重新分布,旋涡中粘性力做功和质点碰撞产生动量交换。 三、阻力的分类 1、沿程阻力与沿程水头损失 (1)沿程阻力:沿着管路直管段所产生的阻力(管路直径不变,计算公式不变)(2)沿程水头损失:克服沿程阻力所消耗的能量∑h f=h f1+ h f2+ h f3 2、局部阻力与局部阻力损失 (1)局部阻力:液流流经局部装置时所产生的阻力。 (2)局部水头损失:∑h j=h j1+ h j2+ h j3 3、总水头损失:h w=∑h f+∑h j

【免费下载】 土木工程流体力学实验报告答案

实验一 管路沿程阻力系数测定实验1.为什么压差计的水柱差就是沿程水头损失?如实验管道安装成倾斜,是否影 响实验成果?现以倾斜等径管道上装设的水银多管压差计为例说明(图中A —A 为水平线):如图示O—O 为基准面,以1—1和2—2为计算断面,计算点在轴心处,设,,由能量方程可得21v v =∑=0j h ???? ??+-???? ??+=-γγ221121p Z p Z h f 1112222 1 6.136.13H H h h H h h H p p +?-?-?+?+?-?+-=γγ 1 12226.126.12H h h H p +?+?+-=γ ∴()()1 22211216.126.12h h H Z H Z h f ?+?++-+=-) (6.1221h h ?+?=这表明水银压差计的压差值即为沿程水头损失,且和倾角无关。2.据实测m 值判别本实验的流动型态和流区。 ~曲线的斜率m=1.0~1.8,即与成正比,表明流动为层流 f h l g v lg f h 8.10.1-v (m=1.0)、紊流光滑区和紊流过渡区(未达阻力平方区)。接管口处理高中资料试卷电保护进行整核对定值试卷破坏范围,或者对某

3.本次实验结果与莫迪图吻合与否?试分析其原因。 通常试验点所绘得的曲线处于光滑管区,本报告所列的试验值,也是如此。但是,有的实验结果相应点落到了莫迪图中光滑管区的右下方。对此必须认真分析。 如果由于误差所致,那么据下式分析 d和Q的影响最大,Q有2%误差时,就有4%的误差,而d有2% 误差时,可产 生10%的误差。Q的误差可经多次测量消除,而d值是以实验常数提供的,由仪器制作时测量给定,一般< 1%。如果排除这两方面的误差,实验结果仍出现异常,那么只能从细管的水力特性及其光洁度等方面作深入的分析研究。还可以从减阻剂对水流减阻作用上作探讨,因为自动水泵供水时,会渗入少量油脂类高分子物质。总之,这是尚待进一步探讨的问题。

工程流体力学期末考试试题

《流体力学》试题 一、单项选择题(本大题共20小题,每小题1分,共20分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1.流体在叶轮内的流动是轴对称流动,即认为在同一半径的圆周上() A.流体质点有越来越大的速度 B.流体质点有越来越小的速度 C.流体质点有不均匀的速度 D.流体质点有相同大小的速度 2.流体的比容表示() A.单位流体的质量 B.单位质量流体所占据的体积 C.单位温度的压强 D.单位压强的温度 3.对于不可压缩流体,可认为其密度在流场中() A.随压强增加而增加 B.随压强减小而增加 C.随体积增加而减小 D.与压强变化无关 4.流管是在流场里取作管状假想表面,流体流动应是() A.流体能穿过管侧壁由管内向管外流动 B.流体能穿过管侧壁由管外向管内流动 C.不能穿过侧壁流动 D.不确定 5.在同一瞬时,位于流线上各个流体质点的速度方向总是在该点,与此流线()A.相切 B.重合 C.平行 D.相交 6.判定流体流动是有旋流动的关键是看() A.流体微团运动轨迹的形状是圆周曲线 B.流体微团运动轨迹是曲线 C.流体微团运动轨迹是直线 D.流体微团自身有旋转运动 7.工程计算流体在圆管内流动时,由层流变为紊流采用的临界雷诺数取为()A.13800 B.2320 C.2000 D.1000 8.动量方程是个矢量方程,要考虑力和速度的方向,与所选坐标方向一致为正,反之为负。如果力的计算结果为负值时() A.说明方程列错了 B.说明力的实际方向与假设方向相反 C.说明力的实际方向与假设方向相同 D.说明计算结果一定是错误的 9.动量方程() A.仅适用于理想流体的流动 B.仅适用于粘性流体的流动 C.理想流体与粘性流体的流动均适用 D.仅适用于紊流 10.如图所示,有一沿垂直设置的等截面弯管,截面积为A,弯头转角为90°,进口截面1-1与出口截面在2-2之间的轴线长度为L,两截面之间的高度差为△Z,水的密度为ρ,则作用在弯管中水流的合外力分别为() A. B. C.

工程流体力学试卷A答案

流体力学试卷 一、名词解释(5×4=20分) 1、黏性 流体在受到外部剪切力作用时发生变形(流动),其内部相应要产生对变形的抵抗,并以内摩擦力的形式表现出来,这种流体的固有物理属性称为流体的粘滞性或粘性。 2、连续介质 由于假定组成流体的最小物理实体是流体质点而不是流体分子,因而也就假定了流体是由无穷多个、无穷小的、紧邻毗邻、连绵不断的流体质点所组成的一种绝无间隙的连续介质。 3、绝对压强 以绝对真空或完全真空为基准计算的压强成为绝对压强。 4、流管 在流场中任意取一非流线的封闭曲线,通过该曲线上的每一点作流线,这些流线所构成的封闭管状曲面称为流管。 5、局部阻力(局部损失) 发生在流动边界有急变的流域中,能量的损失主要集中在该流域及其附近的流域,这种集中发生的能量损失称为局部阻力或局部损失。 二、选择题(10×2=20分) 1、理想流体是指 C 的流体。 A. 所需要;B. 水;C.无粘性;D.不可压缩 2、在伯努利方程P/ρ+Hg+V2/2= const 中,P/ρ的物理意义是 B 。A. 单位重量流体的重力压力能; B.单位质量流体的压力能; C. 单位重量流体的动能; D.单位质量流体的动能 3、均匀流是指 C 。 A.所有物理量与时间无关;B. 所有物理量与时间有关; C所有物理量与空间位置无关;D. 所有物理量与空间位置有关4、圆管道的层流的动量修正系数β是 C 。 A.64 e R β=;B. 1/4 0.3164 e R β=; C.4 3 β=;D. 2 β=。 5、稳定流动的迹线是 C 。 A.直线;B. 随时间变化的; C.不随时间变化的;D. 总是平行的。 6、表面力是指 A 。 A.与控制体表面有关的力;B. 与控制体表面无关的力; C是正压力;D.是粘性力。 7、流体的静压力是与 C 无关。 A.深度;B.流体的温度;C.方向;D.大气压 8、静止流体的微分方程是 D 。 A.0 1 = -dp gdz ρ B. 0 1 = ? +p f ρ ;C. dt u d p f = ? + ρ 1D. 1 = +dp gdz ρ 9、已知大气压是 a a Mp p1.0 =,流体内某点的真空度为 2 2 50000 m N p c =,试问该点的绝对压 力是 B a Mp。 A.0.10;B.0.05;C.0.15;D.5.10 10、临界雷诺数是用于判断 B 的准数。 A. 稳定流与非稳定流;B. 层流与紊流; C. 均匀流与非均匀流; D. 有势流与非有势流 三、简答题(10×2=20分) 1.拉格朗日坐标系与欧拉坐标系不同之处? 答: 1)拉格朗日坐标系下,着眼于流体质点,先跟踪个别流体质点,研究其运动参数随时间变化特征,然后将流场中所有质点的运动情况综合起来,得到整个流场的运动,简而言之,即观察者位于一个流体质点上,并随流体一起运动时,观察到的流场运动。 2)欧拉坐标系下,着眼于流场中的空间点,研究流体质点经过这些空间点时,运动参数随时间的变化,并用同一时刻所有空间点上的流体运动情况来描述流场运动。简单说来,即观察者位于空间的一个固定点上时,观察到的空间点上的流场运动。 3)在欧拉坐标系中,空间坐标和时间是相互独立的变量,而在拉格朗日坐标系下,空间坐标和时间并非相互独立,

882工程流体力学 (1)

杭州电子科技大学 全国硕士研究生招生考试业务课考试大纲 考试科目名称:工程流体力学科目代码:882 第一章绪论 1-1工程流体力学的学科任务 1-2连续介质假设,流体的主要物理性质 1-3作用在流体上的力 1-4工程流体力学的研究方法 第二章流体静力学 2-1流体静压强特性 2-2流体的平衡微分方程及积分式、等压面方程 2-3流体静力学基本方程及物理意义和几何意义,压强的计算单位和表示方法,静压强的分布图、测压计原理 2-4液体的相对平衡 2-5作用在平面上的液体总压力表示方法 2-6作用在曲面上的液体总压力计算,虚、实压力体区别 2-7阿基米德原理,浮力和潜体及浮体的稳定性 第三章流体运动学 3-1描述流体运动的两种方法及其特点,迹线、流线、脉线的表示 3-2描述流体运动的一些基本概念 3-3流体运动的类型 3-4流体运动的连续性方程的表示 3-5流体微元运动的基本形式及与速度变化的关系 3-6无涡流和有涡流,速度势和速度环量 第四章理想流体动力学和平面势流 4-1理想流体的运动微分方程—欧拉运动微分方程,伯努利方程及其条件 4-2理想流体元流的伯努利方程及其物理、几何意义,皮托管原理 4-3恒定平面势流,速度势和流函数的性质及其两者的关系 第五章实际流体动力学基础 5-l实际流体的运动微分方程——纳维一斯托克斯方程,流体质点的应力状态及压应力的特性 5-2实际流体元流的伯努利方程及其物理、几何意义 5-3实际流体总流的伯努利方程及应用条件,文丘里管工作原理,有能量输入和输出的伯努利方程 5-5总流的动量方程及其应用条件和方法 第六章量纲分析和相似原理

6-l量纲分析,量纲和单位,量纲和谐原理种类和区别 6-2流动相似原理 6-3相似准则 6-5模型试验 第七章流动阻力和能量损失 7-1流体的两种流动形态——层流和湍流,流态的判别准则 7-2恒定均匀流基本方程,沿程损失的普遍表示式 7-3层流沿程损失的分析和计算,圆管层流的沿程损失系数 7-4湍流理论基础,湍流的脉动和时均法,湍流附面层分区的判别标准 7-5湍流沿程损失的分析和计算 7-6局部损失的分析和计算 第八章边界层理论基础和绕流运动 8-1边界层的基本概念 8-3边界层的动量积分方程 8-4平板上的边界层 8-5边界层的分离现象和卡门涡街 8-6绕流运动 参考书目:工程流体力学(水力学)(第2版)(上册),闻德荪,高等学校教材,第三版,2010年。

工程流体力学试题

工程流体力学试题 90下: 1. 写出流线与迹线的定义,说明它们在什么条件下可以重合。[94上] 流线[p58]:在某一瞬时,该曲线上每一点的速度矢量总是在该点与曲线相切。流体质点运动的轨迹称为迹线。如果是定常流动,积分后得到的流线与时间无关,流线的形状不变。任意流体质点必定沿某一确定的流线运动,其流线与迹线重合。 2. 简述流体的连续介质假设(连续性假设)[p4]。 在研究流体的运动时,只要所取的流体微团包含足够的分子,使各物理量的统计平均值有意义,就可以不考虑无数分子的瞬时状态,而只研究描述流体运动的宏观属性。就是说,可以不考虑分子间存在的空隙,而把流体视为由无数连续分布的流体微团所组成的连续介质,这就是***。 [不考虑流体分子间存在的空隙,而把流体视为由无数连续分布的流体微团所组成的连续介质。所谓流体微团,指的是在微观上充分大(和分子运动的尺度相比),在宏观上充分小的和所研究的问题有关的特征尺寸相比,的分子团。] 3. 简述普朗特混合长度概念的引出及其物理意义。 [p110]在粘性流体的层流流动中,除去流层之间相对滑移引起的摩擦切向应力τv 之外,还由于流体质点作复杂的无规律运动,在流层之间必然引起动量交换,增加能量损失,从而出现紊流附加切向应力或脉动切向应力τl 。普朗特认为,与气体分子的运动要经过一段自由行程相类似,某流体微团在和其他流体微团碰撞前也要经过一段路程l 。此长度即为普朗特混合长度。τl 与混合长度和时均速度梯度乘积的平方成正比。它的作用方向始终是在使速度分布更趋均匀的方向上。μl 不是流体的属性,只决定于流体的密度、时均速度梯度和混合长度。 4. 什么叫流函数,在什么条件下存在着流函数?流函数对于不可压缩粘性流体是否存在?[94下] [p223]:不可压缩流体平面流动的连续方程: 平面流动的流线微分方程: 由这两个方程可以引出一个描绘流场的函数ψ,它的微分形式是: 在流线上d ψ=0,即ψ=常数,在每条流线上函数都有它的常数值,所以称为流函数。存在条件:不可压缩流体的平面流动(不管理想或粘性,有旋或无旋)。因为在引出这个概念时,没有涉及流体是粘性的还是非粘性的,也没有涉及流体是有旋的还是无旋的。 物理意义:平面流动中流体间单位厚度通过的体积流量等于在两条流线上的流函数之差。 dy v dx v dy y dx x d x y +-=??+??=ψψψy v x v y x ??-=??0 =-dx v dy v y x

浙大工程流体力学试卷及答案知识分享

浙大工程流体力学试 卷及答案

2002-2003学年工程流体力学期末试卷 一、单选题(每小题2分,共20分) 1、一密闭容器内下部为水,上部为空气,液面 下4.2米处的测压管高度为2.2m,设当地压强 为98KPa,则容器内液面的绝对压强为水 柱。 (a) 2m (b)1m (c) 8m (d)-2m 2、断面平均流速υ与断面上每一点的实际流速u 的关系是。 (a)υ =u (b)υ >u (c)υ

的流量。 (a)等于 (b)大于 (c)小于 (d) 不能判定 8、圆管流中判别液流流态的下临界雷诺数为。 (a) 2300 (b)3300 (c)13000 (d) 575 9、已知流速势函数,求点(1,2)的速度分量为。 (a) 2 (b) 3 (c) -3 (d) 以上都不是 10、按与之比可将堰分为三种类型:薄壁堰、实用堰、宽顶堰 (a)堰厚堰前水头 (b) 堰厚堰顶水头 (c) 堰高堰前水头 (d) 堰高堰顶水头 二、简答题(共24分) 1.静水压强的特性(6分) 2.渐变流的定义及水力特性(6分) 3.边界层的定义及边界层中的压强特性(6分) 4.渗流模型简化的原则及条件(6分) 三、计算题(共56分) 1、(本小题14分) 有一圆滚门,长度L=10m,直径D=4m,上游水深H1=4m,下游水深H2=2m,求作用在圆滚门上的水平和铅直分压力。 题1图题2图 2、(本小题12分) 设导叶将水平射流作的转弯后仍水平射出,如图所示。若已知最大可能的支撑力为F,射流直径为d,流体密度为 ,能量损失不计,试求最大射流速度V1。

相关文档
最新文档