动态规划 算法

动态规划 算法
动态规划 算法

动态规划算法介绍——概念、意义及应用、例题(2012-05-14 21:54:37)转载▼标签:杂谈

动态规划(dynamic programming)是运筹学的一个分支,是求解决策过程(decision process)最优化的数学方法。20世纪50年代初美国数学家R.E.Bellman等人在研究多阶段决策过程(multistep decision process)的优化问题时,提出了著名的最优化原理(principle of optimality),把多阶段过程转化为一系列单阶段问题,逐个求解,创立了解决这类过程优化问题的新方法——动态规划。1957年出版了他的名著Dynamic Programming,这是该领域的第一本著作。

动态规划问世以来,在经济管理、生产调度、工程技术和最优控制等方面得到了广泛的应用。例如最短路线、库存管理、资源分配、设备更新、排序、装载等问题,用动态规划方法比用其它方法求解更为方便。

虽然动态规划主要用于求解以时间划分阶段的动态过程的优化问题,但是一些与时间无关的静态规划(如线性规划、非线性规划),只要人为地引进时间因素,把它视为多阶段决策过程,也可以用动态规划方法方便地求解。

动态规划程序设计是对解最优化问题的一种途径、一种方法,而不是一种特殊算法。不象前面所述的那些搜索或数值计算那样,具有一个标准的数学表达式和明确清晰的解题方法。动态规划程序设计往往是针对一种最优化问题,由于各种问题的性质不同,确定最优解的条件也互不相同,因而动态规划的设计方法对不同的问题,有各具特色的解题方法,而不存在一种万能的动态规划算法,可以解决各类最优化问题。因此读者在学习时,除了要对基本概念和方法正确理解外,必须具体问题具体分析处理,以丰富的想象力去建立模型,用创造性的技巧去求解。我们也可以通过对若干有代表性的问题的动态规划算法进行分析、讨论,逐渐学会并掌握这一设计方法。

基本模型

多阶段决策过程的最优化问题。

在现实生活中,有一类活动的过程,由于它的特殊性,可将过程分成若干个互相联系的阶段,在它的每一阶段都需要作出决策,从而使整个过程达到最好的活动效果。当然,各个阶段决策的选取不是任意确定的,它依赖于当前面临的状态,又影响以后的发展,当各个阶段决策确定后,就组成一个决策序列,因而也就确定了整个过程的一条活动路线,如图所示:(看词条图)

这种把一个问题看作是一个前后关联具有链状结构的多阶段过程就称为多阶段决策过程,这种问题就称为多阶段决策问题。

记忆化搜索

给你一个数字三角形, 形式如下:

1

2 3

4 5 6

7 8 9 10

找出从第一层到最后一层的一条路,使得所经过的权值之和最小或者最大.

无论对与新手还是老手,这都是再熟悉不过的题了,很容易地,我们写出状态转移方程:f(i, j)=a[i, j] + min{f(i+1, j),f(i+1, j + 1)}

对于动态规划算法解决这个问题,我们根据状态转移方程和状态转移方向,比较容易地写出动态规划的循环表示方法。但是,当状态和转移非常复杂的时候,也许写出循环式的动态规划就不是那么简单了。

解决方法:

我们尝试从正面的思路去分析问题,如上例,不难得出一个非常简单的递归过程: f1:=f(i-1,j+1); f2:=f(i-1,j);

if f1>f2 then f:=f1+a[i,j] else f:=f2+a[i,j];

显而易见,这个算法就是最简单的搜索算法。时间复杂度为2n,明显是会超时的。分析一下搜索的过程,实际上,很多调用都是不必要的,也就是把产生过的最优状态,又产生了一次。为了避免浪费,很显然,我们存放一个opt数组:Opt[i, j] - 每产生一个f(i, j),将f(i, j)的值放入opt中,以后再次调用到f(i, j)的时候,直接从opt[i, j]来取就可以了。于是动态规划的状态转移方程被直观地表示出来了,这样节省了思维的难度,减少了编程的技巧,而运行时间只是相差常数的复杂度,避免了动态规划状态转移先后的问题,而且在相当多的情况下,递归算法能更好地避免浪费,在比赛中是非常实用的.

状态决策

决策:

当前状态通过决策,回到了以前状态.可见决策其实就是状态之间的桥梁。而以前状态也就决定了当前状态的情况。数字三角形的决策就是选择相邻的两个以前状态的最优值。

状态:

我们一般在动规的时候所用到的一些数组,也就是用来存储每个状态的最优值的。我们就从动态规划的要诀,也就是核心部分“状态”开始,来逐步了解动态规划。有时候当前状态确定后,以前状态就已经确定,则无需枚举.

动态规划算法的应用

一、动态规划的概念

近年来,涉及动态规划的各种竞赛题越来越多,每一年的NOI几乎都至少有一道题目需要用动态规划的方法来解决;而竞赛对选手运用动态规划知识的要求也越来越高,已经不再停留于简单的递推和建模上了。

要了解动态规划的概念,首先要知道什么是多阶段决策问题。

1. 多阶段决策问题

如果一类活动过程可以分为若干个互相联系的阶段,在每一个阶段都需作出决策(采取措施),一个阶段的决策确定以后,常常影响到下一个阶段的决策,从而就完全确定了一个过程的活动路线,则称它为多阶段决策问题。

各个阶段的决策构成一个决策序列,称为一个策略。每一个阶段都有若干个决策可供选择,因而就有许多策略供我们选取,对应于一个策略可以确定活动的效果,这个效果可以用数量来确定。策略不同,效果也不同,多阶段决策问题,就是要在可以选择的那些策略中间,选取一个最优策略,使在预定的标准下达到最好的效果.

2.动态规划问题中的术语

阶段:把所给求解问题的过程恰当地分成若干个相互联系的阶段,以便于求解,过程不同,阶段数就可能不同.描述阶段的变量称为阶段变量。在多数情况下,阶段变量是离散的,用k表示。此外,也有阶段变量是连续的情形。如果过程可以在任何时刻作出决策,且在任意两个不同的时刻之间允许有无穷多个决策时,阶段变量就是连续的。

在前面的例子中,第一个阶段就是点A,而第二个阶段就是点A到点B,第三个阶段是点B到点C,而第四个阶段是点C到点D。

状态:状态表示每个阶段开始面临的自然状况或客观条件,它不以人们的主观意志为转

移,也称为不可控因素。在上面的例子中状态就是某阶段的出发位置,它既是该阶段某路的起点,同时又是前一阶段某支路的终点。

在前面的例子中,第一个阶段有一个状态即A,而第二个阶段有两个状态B1和B2,第三个阶段是三个状态C1,C2和C3,而第四个阶段又是一个状态D。

过程的状态通常可以用一个或一组数来描述,称为状态变量。一般,状态是离散的,但有时为了方便也将状态取成连续的。当然,在现实生活中,由于变量形式的限制,所有的状态都是离散的,但从分析的观点,有时将状态作为连续的处理将会有很大的好处。此外,状态可以有多个分量(多维情形),因而用向量来代表;而且在每个阶段的状态维数可以不同。

当过程按所有可能不同的方式发展时,过程各段的状态变量将在某一确定的范围内取值。状态变量取值的集合称为状态集合。

无后效性:我们要求状态具有下面的性质:如果给定某一阶段的状态,则在这一阶段以后过程的发展不受这阶段以前各段状态的影响,所有各阶段都确定时,整个过程也就确定了。换句话说,过程的每一次实现可以用一个状态序列表示,在前面的例子中每阶段的状态是该线路的始点,确定了这些点的序列,整个线路也就完全确定。从某一阶段以后的线路开始,当这段的始点给定时,不受以前线路(所通过的点)的影响。状态的这个性质意味着过程的历史只能通过当前的状态去影响它的未来的发展,这个性质称为无后效性。

决策:一个阶段的状态给定以后,从该状态演变到下一阶段某个状态的一种选择(行动)称为决策。在最优控制中,也称为控制。在许多间题中,决策可以自然而然地表示为一个数或一组数。不同的决策对应着不同的数值。描述决策的变量称决策变量,因状态满足无后效性,故在每个阶段选择决策时只需考虑当前的状态而无须考虑过程的历史。

决策变量的范围称为允许决策集合。

策略:由每个阶段的决策组成的序列称为策略。对于每一个实际的多阶段决策过程,可供选取的策略有一定的范围限制,这个范围称为允许策略集合。允许策略集合中达到最优效果的策略称为最优策略。

给定k阶段状态变量x(k)的值后,如果这一阶段的决策变量一经确定,第k+1阶段的状态变量x(k+1)也就完全确定,即x(k+1)的值随x(k)和第k阶段的决策u(k)的值变化而变化,那么可以把这一关系看成(x(k),u(k))与x(k+1)确定的对应关系,用x(k+1)=Tk(x(k),u(k))表示。这是从k阶段到k+1阶段的状态转移规律,称为状态转移方程。

最优性原理:作为整个过程的最优策略,它满足:相对前面决策所形成的状态而言,余下的子策略必然构成“最优子策略”。

最优性原理实际上是要求问题的最优策略的子策略也是最优。让我们通过对前面的例子再分析来具体说明这一点:从A到D,我们知道,最短路径是A B1 C2 D,这些点的选择构成了这个例子的最优策略,根据最优性原理,这个策略的每个子策略应是最优:

A B1 C2是A到C2的最短路径,B1 C2 D也是B1到D的最短路径……──事实正是如此,因此我们认为这个例子满足最优性原理的要求。

动态规划练习题

USACO 2.2 Subset Sums

题目如下:

对于从1到N的连续整集合合,能划分成两个子集合,且保证每个集合的数字和是相等的。

举个例子,如果N=3,对于{1,2,3}能划分成两个子集合,他们每个的所有数字和是相等的:

and {1,2}

这是唯一一种分发(交换集合位置被认为是同一种划分方案,因此不会增加划分方案总数)

如果N=7,有四种方法能划分集合{1,2,3,4,5,6,7},每一种分发的子集合各数字和是相等的:

{1,6,7} and {2,3,4,5} {注1+6+7=2+3+4+5}

{2,5,7} and {1,3,4,6}

{3,4,7} and {1,2,5,6}

{1,2,4,7} and {3,5,6}

给出N,你的程序应该输出划分方案总数,如果不存在这样的划分方案,则输出0。程序不能预存结果直接输出。

PROGRAM NAME: subset

INPUT FORMAT

输入文件只有一行,且只有一个整数N

SAMPLE INPUT (file subset.in)

7

OUTPUT FORMAT

输出划分方案总数,如果不存在则输出0。

SAMPLE OUTPUT (file subset.out)

4

参考程序如下:

#include

using namespace std;

const unsigned int MAX_SUM = 1024;

int n;

unsigned long long int dyn[MAX_SUM];

ifstream fin ("subset.in");

ofstream fout ("subset.out");

int main() {

fin >> n;

fin.close();

int s = n*(n+1);

if (s % 4) {

fout << 0 << endl;

fout.close ();

return ;

}

s /= 4;

int i, j;

dyn [0] = 1;

for (i = 1; i <= n; i++)

for (j = s; j >= i; j--)

dyn[j] += dyn[j-i];

fout << (dyn[s]/2) << endl;

fout.close();

return 0;

}

USACO 2.3 Longest Prefix

题目如下:

在生物学中,一些生物的结构是用包含其要素的大写字母序列来表示的。生物学家对于把长的序列分解成较短的(称之为元素的)序列很感兴趣。

如果一个集合P 中的元素可以通过串联(允许重复;串联,相当于Pascal 中的“+”运算符)组成一个序列S ,那么我们认为序列S 可以分解为P 中的元素。并不是所有的元素都必须出现。举个例子,序列ABABACABAAB 可以分解为下面集合中的元素:{A, AB, BA, CA, BBC}

序列S 的前面K 个字符称作S 中长度为K 的前缀。设计一个程序,输入一个元素集合以及一个大写字母序列,计算这个序列最长的前缀的长度。

PROGRAM NAME: prefix

INPUT FORMAT

输入数据的开头包括1..200 个元素(长度为1..10 )组成的集合,用连续的以空格分开的字符串表示。字母全部是大写,数据可能不止一行。元素集合结束的标志是一个只包含一个“.”的行。集合中的元素没有重复。接着是大写字母序列S ,长度为1..200,000 ,用一行或者多行的字符串来表示,每行不超过76 个字符。换行符并不是序列S 的一部分。

SAMPLE INPUT (file prefix.in)

A A

B BA CA BBC

.

ABABACABAABC

OUTPUT FORMAT

只有一行,输出一个整数,表示S 能够分解成P 中元素的最长前缀的长度。

SAMPLE OUTPUT (file prefix.out)

11

示例程序如下:

#include

#define MAXP 200

#define MAXL 10

char prim[MAXP+1][MAXL+1];

int nump;

int start[200001];

char data[200000];

int ndata;

int main(int argc, char **argv)

{

FILE *fout, *fin;

int best;

int lv, lv2, lv3;

if ((fin = fopen("prim.in", "r")) == NULL)

{

perror ("fopen fin");

exit(1);

}

if ((fout = fopen("prim.out", "w")) == NULL)

{

perror ("fopen fout");

exit(1);

}

while (1)

{

fscanf (fin, "%s", prim[nump]);

if (prim[nump][0] != '.') nump++;

else break;

}

ndata = 0;

while (fscanf (fin, "%s", data+ndata) == 1)

ndata += strlen(data+ndata);

start[0] = 1;

best = 0;

for (lv = 0; lv < ndata; lv++)

if (start[lv])

{

best = lv;

for (lv2 = 0; lv2 < nump; lv2++)

{

for (lv3 = 0; lv + lv3 < ndata && prim[lv2][lv3] && prim[lv2][lv3] == data[lv+lv3]; lv3++)

;

if (!prim[lv2][lv3])

start[lv + lv3] = 1;

}

}

if (start[ndata]) best = ndata;

fprintf (fout, "%i\n", best);

return 0;

}

USACO 3.1 Score Inflation

题目如下:

我们试着设计我们的竞赛以便人们能尽可能的多得分,这需要你的帮助。

我们可以从几个种类中选取竞赛的题目,这里的一个"种类"是指一个竞赛题目的集合,解决集合中的题目需要相同多的时间并且能得到相同的分数。

你的任务是写一个程序来告诉USACO的职员,应该从每一个种类中选取多少题目,使得解决题目的总耗时在竞赛规定的时间里并且总分最大。

输入包括竞赛的时间,M(1 <= M <= 10,000)和N,"种类"的数目1 <= N <= 10,000。

后面的每一行将包括两个整数来描述一个"种类":

第一个整数说明解决这种题目能得的分数(1 <= points <= 10000),第二整数说明解决这种题目所需的时间(1 <= minutes <= 10000)。

你的程序应该确定我们应该从每个"种类"中选多少道题目使得能在竞赛的时间中得到最大的分数。

来自任意的"种类"的题目数目可能任何非负数(0或更多)。

计算可能得到的最大分数。

PROGRAM NAME: inflate

INPUT FORMAT

第1 行: M, N--竞赛的时间和题目"种类"的数目。

第2-N+1 行: 两个整数:每个"种类"题目的分数和耗时。

SAMPLE INPUT (file inflate.in)

300 4

100 60

250 120

120 100

35 20

OUTPUT FORMAT

单独的一行包括那个在给定的限制里可能得到的最大的分数。

SAMPLE OUTPUT (file inflate.out)

605

{从第2个"种类"中选两题,第4个"种类"中选三题}

示例程序如下:

#include

ifstream fin("inflate.in");

ofstream fout("inflate.out");

const short maxm = 10010;

long best[maxm], m, n;

void

main()

{

short i, j, len, pts;

fin >> m >> n;

for (j = 0; j <= m; j++)

best[j] = 0;

for (i = 0; i < n; i++) {

fin >> pts >> len;

for (j = len; j <= m; j++)

if (best[j-len] + pts > best[j])

best[j] = best[j-len] + pts;

}

fout << best[m] << endl; // 由于数组元素不减,末元素最大

}

USACO 3.3 A Game

题目如下:

有如下一个双人游戏:N(2 <= N <= 100)个正整数的序列放在一个游戏平台上,两人轮流从序列的两端取数,取数后该数字被去掉并累加到本玩家的得分中,当数取尽时,游戏结束。以最终得分多者为胜。

编一个执行最优策略的程序,最优策略就是使自己能得到在当前情况下最大的可能的总分的策略。你的程序要始终为第二位玩家执行最优策略。

PROGRAM NAME: game1

INPUT FORMAT

第一行: 正整数N, 表示序列中正整数的个数。

第二行至末尾: 用空格分隔的N个正整数(大小为1-200)。

SAMPLE INPUT (file game1.in)

6

4 7 2 9

5 2

OUTPUT FORMAT

只有一行,用空格分隔的两个整数: 依次为玩家一和玩家二最终的得分。

SAMPLE OUTPUT (file game1.out)

18 11

参考程序如下:

#include

#define NMAX 101

int best[NMAX][2], t[NMAX];

int n;

void

readx () {

int i, aux;

freopen ("game1.in", "r", stdin);

scanf ("%d", &n);

for (i = 1; i <= n; i++) {

scanf ("%d", &aux);

t = t[i - 1] + aux;

}

fclose (stdin);

}

inline int

min (int x, int y) {

return x > y ? y : x;

}

void

solve () {

int i, l;

for (l = 1; l <= n; l++)

for (i = 1; i + l <= n + 1; i++)

best[l%2] = t[i + l - 1] - t[i - 1] - min (best[i + 1][(l - 1) % 2],

best[(l - 1) % 2]);

}

void writex () {

freopen ("game1.out", "w", stdout);

printf ("%d %d\n", best[1][n % 2], t[n] - best[1][n % 2]);

fclose (stdout);

}

int

main () {

readx ();

solve ();

writex ();

return 0;

}

USACO 3.4 Raucous Rockers

题目如下:

你刚刚得到了流行的“破锣摇滚”乐队录制的尚未发表的N(1 <= N <= 20)首歌的版权。你打算从中精选一些歌曲,发行M(1 <= M <= 20)张CD。每一张CD最多可以容纳T(1 <= T <= 20)分钟的音乐,一首歌不能分装在两张CD中。

不巧你是一位古典音乐迷,不懂如何判定这些歌的艺术价值。于是你决定根据以下标准进行选择:

歌曲必须按照创作的时间顺序在CD盘上出现。

选中的歌曲数目尽可能地多。

PROGRAM NAME: rockers

INPUT FORMAT

第一行:三个整数:N, T, M.

第二行:N个整数,分别表示每首歌的长度,按创作时间顺序排列。

SAMPLE INPUT (file rockers.in)

4 5 2

4 3 4 2

OUTPUT FORMAT

一个整数,表示可以装进M张CD盘的乐曲的最大数目。

SAMPLE OUTPUT (file rockers.out)

3

参考程序如下:

#include

#define MAX 25

int dp[MAX][MAX][MAX], length[MAX];

int

main ()

{

FILE *in = fopen ("rockers.in", "r");

FILE *out = fopen ("rockers.out", "w");

int a, b, c, d, best, numsongs, cdlength, numcds;

fscanf (in, "%d%d%d", &numsongs, &cdlength, &numcds);

for (a = 1; a <= numsongs; a++)

fscanf (in, "%d", &length[a]);

best = 0;

for (a = 0; a < numcds; a++)

for (b = 0; b <= cdlength; b++)

for (c = 0; c <= numsongs; c++) {

for (d = c + 1; d <= numsongs; d++) {

if (b + length[d] <= cdlength) {

if (dp[a][c] + 1 > dp[a][b + length[d]][d])

dp[a][b + length[d]][d] = dp[a][c] + 1;

}

else {

if (dp[a][c] + 1 > dp[a + 1][length[d]][d])

dp[a + 1][length[d]][d] = dp[a][c] + 1;

}

}

if (dp[a][c] > best)

best = dp[a][c];

}

fprintf (out, "%d\n", best);

return 0;

}

解决背包问题

动态规划的定义:

动态规划的基本思想是把待求解的问题分解成若干个子问题,先求解子问题,然后再从这些子问题的解得到原问题的解,其中用动态规划分解得到的子问题往往不是互相独立的。动态规划在查找有很多重叠子问题的情况的最优解时有效。它将问题重新组合成子问题。为了避免多次解决这些子问题,它们的结果都逐渐被计算并被保存,从简单的问题直到整个问题都被解决。因此,动态规划保存递归时的结果,因而不会在解决同样的问题时花费时间。动态

规划只能应用于有最优子结构的问题。最优子结构的意思是局部最优解能决定全局最优解(对有些问题这个要求并不能完全满足,故有时需要引入一定的近似)。简单地说,问题能够分解成子问题来解决。求解步骤如下:

1. 找出最优解的性质,并刻画其结构特征;

2. 递归地定义最优值;

3. 以自底向上的方式计算出最优值;

4. 根据计算最优值时得到的信息,构造最优解。

问题描述及实现:

背包问题:解决背包问题的方法有多种,动态规划,贪心算法,回溯法,分支定界法都能解决背包问题。其中动态规划,回溯法,分支定界法都是解决0-1背包问题的方法。背包问题与0-1背包问题的不同点在于在选择物品装入背包时,可以只选择物品的一部分,而不一定是选择物品的全部。在这里,我们组用的有贪心法和动态规划法来对这个问题进行算法的分析设计。用动态规划的方法可以看出如果通过第n次选择得到的是一个最优解的话,那么第n-1次选择的结果一定也是一个最优解。这符合动态规划中最优子问题的性质。动态规划方法是处理分段过程最优化一类问题极其有效的方法。在实际生活中,有一类问题的活动过程可以分成若干个阶段,而且在任一阶段后的行为依赖于该阶段的状态,与该阶段之前的过程是如何达到这种状态的方式无关。这类问题的解决是多阶段的决策过程。考虑用动态规划的方法来解决,这里的:

阶段是:在前n件物品中,选取若干件物品放入背包中;

状态是:在前n件物品中,选取若干件物品放入所剩空间为w的背包中的所最大价值;

决策是:第n件物品放或者不放;由此可以写出动态转移方程:

我们用f[i,j]表示在前i 件物品中选择若干件放在所剩空间为j 的背包里所能获得最大价值是:f[i,j]=max{f[i-1,j-wi]+pi (j>=wi), f[i-1,j]}。这样,我们可以自底向上地得出在前m件物品中取出若干件放进背包能获得的最大价值,也就是f[m,w]令f(i,j)表示用前i个物体装出重量为j的组合时的最大价值

f(i,j)=max{f(i-1,j), f(i-1, j-w[i])+v[i] } ,i>0, j>=w[i];

f(i,j) = f(i-1,j) , i>0, j

f(0,j) = v[0] , i=0, j>=w[0];

f(0,j) = 0, i=0, j

代码实现:

package zyf;

public class bagPro {

public static void main(String[] args) {

// TODO 自动生成方法存根

int w[] = {2,2,6,5,4}; //5个物体各自的重量

int v[] = {6,3,5,4,6}; //5个物体各自的价值

int c = 10; //最大载重

int f[][] = new int [5][c+1]; //前i个物体装出重量为j的组合时的最大价值int maxValue = 0;

for(int j=0 ; j<=c; j++){

if(j>=w[0])

f[0][j] =v[0];

else

f[0][j] = 0;

}

for(int i=1; i

for(int j=0; j<=c;j++){

if(j

f[i][j] = f[i-1][j];

else if(f[i-1][j]>=f[i-1][j-w[i]]+v[i])

f[i][j] = f[i-1][j];

else

f[i][j] = f[i-1][j-w[i]]+v[i];

}

}

System.out.println(f[4][c]);

}

}

topcoder srm 442 d2 背包问题

n个正整数,可能有重复,现在要找出两个不相交的子集A和B,A和B不必覆盖所有元素,使A中元素的和SUM(A)与B中元素的和SUM(B)相等,且SUM(A)和SUM(B)尽可能大。

int MX = 500000;

int[,] c = new int[2,MX*2 + 1];

int T;

int function(int[] d)

{

int i,j;

for(i=0;i <= MX * 2;i++)

c[T,i] = -1;

c[T,MX] = 0;

for(i=0;i

T=1-T;

for(j=0;j

c[T,j] = c[1-T,j];

for(j=0;j

{

if(c[1-T,j] < 0)

continue;

c[T,j+d[i]] = Math.Max(c[T,j+d[i]],c[1-T,j]+d[i]);

c[T,j-d[i]] = Math.Max(c[T,j-d[i]],c[1-T,j]);

}

}

return c[T,MX] != 0 ? c[T,MX] : -1;

}

状态1是前i个元素,状态2是构造的两个子集的差的绝对值为j,保存的是较小的那个子

集的最大sum。这样两个子集的和就分别是dp[i][j]和dp[i][j]+j。然后枚举当前元素放在小集合还是大集合,或者干脆就不放。

设f[i][j]是考虑i个元素时A的和,j是A和B的差。

当考虑i+1时,有三种情况:

1. 跳过a[i+1],有f[i+1][j] = f[i][j];

2. 将a[i+1]加入A,有f[i+1][j+a[i+1]] = f[i][j] + a[i+1];

3. 将a[i+1]加入B,有f[i+1][j-a[i+1]] = f[i][j];

填完这个表格后,f[n][0]即为所求。

动态规划算法原理与的应用

动态规划算法原理及其应用研究 系别:x x x 姓名:x x x 指导教员: x x x 2012年5月20日

摘要:动态规划是解决最优化问题的基本方法,本文介绍了动态规划的基本思想和基本步骤,并通过几个实例的分析,研究了利用动态规划设计算法的具体途径。关键词:动态规划多阶段决策 1.引言 规划问题的最终目的就是确定各决策变量的取值,以使目标函数达到极大或极小。在线性规划和非线性规划中,决策变量都是以集合的形式被一次性处理的;然而,有时我们也会面对决策变量需分期、分批处理的多阶段决策问题。所谓多阶段决策问题是指这样一类活动过程:它可以分解为若干个互相联系的阶段,在每一阶段分别对应着一组可供选取的决策集合;即构成过程的每个阶段都需要进行一次决策的决策问题。将各个阶段的决策综合起来构成一个决策序列,称为一个策略。显然,由于各个阶段选取的决策不同,对应整个过程可以有一系列不同的策略。当过程采取某个具体策略时,相应可以得到一个确定的效果,采取不同的策略,就会得到不同的效果。多阶段的决策问题,就是要在所有可能采取的策略中选取一个最优的策略,以便得到最佳的效果。动态规划是一种求解多阶段决策问题的系统技术,可以说它横跨整个规划领域(线性规划和非线性规划)。在多阶段决策问题中,有些问题对阶段的划分具有明显的时序性,动态规划的“动态”二字也由此而得名。动态规划的主要创始人是美国数学家贝尔曼(Bellman)。20世纪40年代末50年代初,当时在兰德公司(Rand Corporation)从事研究工作的贝尔曼首先提出了动态规划的概念。1957年贝尔曼发表了数篇研究论文,并出版了他的第一部著作《动态规划》。该著作成为了当时唯一的进一步研究和应用动态规划的理论源泉。在贝尔曼及其助手们致力于发展和推广这一技术的同时,其他一些学者也对动态规划的发展做出了重大的贡献,其中最值得一提的是爱尔思(Aris)和梅特顿(Mitten)。爱尔思先后于1961年和1964年出版了两部关于动态规划的著作,并于1964年同尼母霍思尔(Nemhauser)、威尔德(Wild)一道创建了处理分枝、循环性多阶段决策系统的一般性理论。梅特顿提出了许多对动态规划后来发展有着重要意义的基础性观点,并且对明晰动态规划路径的数

经典算法——动态规划教程

动态规划是对最优化问题的一种新的算法设计方法。由于各种问题的性质不同,确定最优解的条件也互不相同,因而动态规划的没计法对不同的问题,有各具特色的表示方式。不存在一种万能的动态规划算法。但是可以通过对若干有代表性的问题的动态规划算法进行讨论,学会这一设计方法。 多阶段决策过程最优化问题 ——动态规划的基本模型 在现实生活中,有一类活动的过程,由于它的特殊性,可将过程分成若干个互相联系的阶段,在它的每一阶段都需要作出决策,从而使整个过程达到最好的活动效果。因此各个阶段决策的选取不能任意确定,它依赖于当前面临的状态,又影响以后的发展。当各个阶段决策确定后,就组成一个决策序列,因而也就确定了整个过程的一条活动路线。这种把一个问题看做是一个前后关联具有链状结构的多阶段过程就称为多阶段决策过程,这种问题称为多阶段决策最优化问题。 【例题1】最短路径问题。图中给出了一个地图,地图中每个顶点代表一个城市,两个城市间的连线代表道路,连线上的数值代表道路的长度。现在,想从城市A到达城市E,怎样走路程最短,最短路程的长度是多少? 【分析】把从A到E的全过程分成四个阶段,用k表示阶段变量,第1阶段有一个初始状态A,两条可供选择的支路ABl、AB2;第2阶段有两个初始状态B1、 B2,B1有三条可供选择的支路,B2有两条可供选择的支路……。用dk(x k,x k+1)表示在第k阶段由初始状态x k到下阶段的初始状态x k+1的路径距离,Fk(x k)表示从第k阶段的x k到终点E的最短距离,利用倒推方法求解A到E的最短距离。具体计算过程如下: S1:K=4,有:F4(D1)=3,F4(D2)=4,F4(D3)=3 S2: K=3,有: F3(C1)=min{d3(C1,D1)+F4(D1),d3(C1,D2)+F4(d2)}=min{8,10}=8 F3(C2)=d3(C2,D1)+f4(D1)=5+3=8 F3(C3)=d3(C3,D3)+f4(D3)=8+3=11 F3(C4)=d3(C4,D3)+f4(D3)=3+3=6

动态规划讲解大全(含例题及答案)

动态规划讲解大全 动态规划(dynamic programming)是运筹学的一个分支,是求解决策过程(decision process)最优化的数学方法。20世纪50年代初美国数学家R.E.Bellman等人在研究多阶段决策过程(multistep decision process)的优化问题时,提出了著名的最优化原理(principle of optimality),把多阶段过程转化为一系列单阶段问题,逐个求解,创立了解决这类过程优化问题的新方法——动态规划。1957年出版了他的名著Dynamic Programming,这是该领域的第一本著作。 动态规划问世以来,在经济管理、生产调度、工程技术和最优控制等方面得到了广泛的应用。例如最短路线、库存管理、资源分配、设备更新、排序、装载等问题,用动态规划方法比用其它方法求解更为方便。 虽然动态规划主要用于求解以时间划分阶段的动态过程的优化问题,但是一些与时间无关的静态规划(如线性规划、非线性规划),只要人为地引进时间因素,把它视为多阶段决策过程,也可以用动态规划方法方便地求解。 动态规划程序设计是对解最优化问题的一种途径、一种方法,而不是一种特殊算法。不象前面所述的那些搜索或数值计算那样,具有一个标准的数学表达式和明确清晰的解题方法。动态规划程序设计往往是针对一种最优化问题,由于各种问题的性质不同,确定最优解的条件也互不相同,因而动态规划的设计方法对不同的问题,有各具特色的解题方法,而不存在一种万能的动态规划算法,可以解决各类最优化问题。因此读者在学习时,除了要对基本概念和方法正确理解外,必须具体问题具体分析处理,以丰富的想象力去建立模型,用创造性的技巧去求解。我们也可以通过对若干有代表性的问题的动态规划算法进行分析、讨论,逐渐学会并掌握这一设计方法。 基本模型 多阶段决策过程的最优化问题。 在现实生活中,有一类活动的过程,由于它的特殊性,可将过程分成若干个互相联系的阶段,在它的每一阶段都需要作出决策,从而使整个过程达到最好的活动效果。当然,各个阶段决策的选取不是任意确定的,它依赖于当前面临的状态,又影响以后的发展,当各个阶段决策确定后,就组成一个决策序列,因而也就确定了整个过程的一条活动路线,如图所示:(看词条图) 这种把一个问题看作是一个前后关联具有链状结构的多阶段过程就称为多阶段决策过程,这种问题就称为多阶段决策问题。 记忆化搜索 给你一个数字三角形, 形式如下: 1 2 3 4 5 6 7 8 9 10 找出从第一层到最后一层的一条路,使得所经过的权值之和最小或者最大. 无论对与新手还是老手,这都是再熟悉不过的题了,很容易地,我们写出状态转移方程:f(i, j)=a[i, j] + min{f(i+1, j),f(i+1, j + 1)} 对于动态规划算法解决这个问题,我们根据状态转移方程和状态转移方向,比较容易地写出动态规划的循环表示方法。但是,当状态和转移非常复杂的时候,也许写出循环式的动态规划就不是那么

南京邮电大学算法设计实验报告——动态规划法

实验报告 (2009/2010学年第一学期) 课程名称算法分析与设计A 实验名称动态规划法 实验时间2009 年11 月20 日指导单位计算机学院软件工程系 指导教师张怡婷 学生姓名丁力琪班级学号B07030907 学院(系) 计算机学院专业软件工程

实验报告 实验名称动态规划法指导教师张怡婷实验类型验证实验学时2×2实验时间2009-11-20一、实验目的和任务 目的:加深对动态规划法的算法原理及实现过程的理解,学习用动态规划法解决实际应用中的最长公共子序列问题。 任务:用动态规划法实现求两序列的最长公共子序列,其比较结果可用于基因比较、文章比较等多个领域。 要求:掌握动态规划法的思想,及动态规划法在实际中的应用;分析最长公共子序列的问题特征,选择算法策略并设计具体算法,编程实现两输入序列的比较,并输出它们的最长公共子序列。 二、实验环境(实验设备) 硬件:计算机 软件:Visual C++

三、实验原理及内容(包括操作过程、结果分析等) 1、最长公共子序列(LCS)问题是:给定两个字符序列X={x1,x2,……,x m}和Y={y1,y2,……,y n},要求找出X和Y的一个最长公共子序列。 例如:X={a,b,c,b,d,a,b},Y={b,d,c,a,b,a}。它们的最长公共子序列LSC={b,c,d,a}。 通过“穷举法”列出所有X的所有子序列,检查其是否为Y的子序列并记录最长公共子序列并记录最长公共子序列的长度这种方法,求解时间为指数级别的,因此不可取。 2、分析LCS问题特征可知,如果Z={z1,z2,……,z k}为它们的最长公共子序列,则它们一定具有以下性质: (1)若x m=y n,则z k=x m=y n,且Z k-1是X m-1和Y n-1的最长公共子序列; (2)若x m≠y n且x m≠z k,则Z是X m-1和Y的最长公共子序列; (3)若x m≠y n且z k≠y n,则Z是X和Y的最长公共子序列。 这样就将求X和Y的最长公共子序列问题,分解为求解较小规模的问题: 若x m=y m,则进一步分解为求解两个(前缀)子字符序列X m-1和Y n-1的最长公共子序列问题; 如果x m≠y n,则原问题转化为求解两个子问题,即找出X m-1和Y的最长公共子序列与找出X 和Y n-1的最长公共子序列,取两者中较长者作为X和Y的最长公共子序列。 由此可见,两个序列的最长公共子序列包含了这两个序列的前缀的最长公共子序列,具有最优子结构性质。 3、令c[i][j]保存字符序列X i={x1,x2,……,x i}和Y j={y1,y2,……,y j}的最长公共子序列的长度,由上述分析可得如下递推式: 0 i=0或j=0 c[i][j]= c[i-1][j-1]+1 i,j>0且x i=y j max{c[i][j-1],c[i-1][j]} i,j>0且x i≠y j 由此可见,最长公共子序列的求解具有重叠子问题性质,如果采用递归算法实现,会得到一个指数时间算法,因此需要采用动态规划法自底向上求解,并保存子问题的解,这样可以避免重复计算子问题,在多项式时间内完成计算。 4、为了能由最优解值进一步得到最优解(即最长公共子序列),还需要一个二维数组s[][],数组中的元素s[i][j]记录c[i][j]的值是由三个子问题c[i-1][j-1]+1,c[i][j-1]和c[i-1][j]中的哪一个计算得到,从而可以得到最优解的当前解分量(即最长公共子序列中的当前字符),最终构造出最长公共子序列自身。

解0-1背包问题的动态规划算法

关于求解0/1背包问题的动态规划算法 摘要:本文通过研究动态规划原理,提出了根据该原理解决0/1背包问题的方法与算法实现, 并对算法的正确性作了验证.观察程序运行结果,发现基于动态规划的算法能够得到正确的决策方案且比穷举法有效. 关键字:动态规划;0/1背包;约束条件;序偶;决策序列;支配规则 1、引 言 科学研究与工程实践中,常常会遇到许多优化问题,而有这么一类问题,它们的活动过程可以分为若干个阶段,但整个过程受到某一条件的限制。这若干个阶段的不同决策的组合就构成一个完整的决策。0/1背包问题就是一个典型的在资源有限的条件下,追求总的收益最大的资源有效分配的优化问题。 对于0/1背包问题,我们可以这样描述:设有一确定容量为C 的包及两个向量C ’=(S 1,S 2,……,S n )和P=(P 1,P 2,……,P N ),再设X 为一整数集合,即X=1,2,3,……,N ,X 为SI 、PI 的下标集,T 为X 的子集,那么问题就是找出满足约束条件∑S i 〈=C ,使∑PI 获得最大的子集T 。在实际运用中,S 的元素可以是N 个经营项目各自所消耗的资源,C 可以是所能提供的资源总量,P 的元素可是人们从各项项目中得到的利润。 0/1背包问题是工程问题的典型概括,怎么样高效求出最优决策,是人们关心的问题。 2、求解问题的动态规划原理与算法 2.1动态规划原理的描述 求解问题的动态规划有向前处理法向后处理法两种,这里使用向前处理法求解0/1背包问题。对于0/1背包问题,可以通过作出变量X 1,X 2,……,X N 的一个决策序列来得到它的解。而对于变量X 的决策就是决定它是取0值还是取1值。假定决策这些X 的次序为X n ,X N-1,……,X 0。在对X 0做出决策之后,问题处于下列两种状态之一:包的剩余容量是M ,没任何效益;剩余容量是M-w ,效益值增长了P 。显然,之后对X n-1,Xn-2,……,X 1的决策相对于决策X 所产生的问题状态应该是最优的,否则X n ,……,X 1就不可能是最优决策序列。如果设F j (X )是KNAP (1,j ,X )最优解的值,那么F n (M )就可表示为 F N (M )=max(f n (M),f n-1(M-w n )+p n )} (1) 对于任意的f i (X),这里i>0,则有 f i (X)=max{f i-1(X),f i-1(X-w i )+p i } (2) 为了能由前向后推而最后求解出F N (M ),需从F 0(X )开始。对于所有的X>=0,有F 0(X )=0,当X<0时,有F 0(X )等于负无穷。根据(2),可求出0〈X 〈W 1和X 〉=W 1情况下F 1(X )的值。接着由(2)不断求出F 2,F 3,……,F N 在X 相应取值范围内的值。 2.2 0/1背包问题算法的抽象描述 (1)初始化各个元素的重量W[i]、效益值P[i]、包的最大容量M ; (2)初始化S0; (3)生成S i ;

2设计动态规划算法的主要步骤为

2设计动态规划算法的主要步骤为: (1)找出最优解的性质,并刻划其结构特征。(2)递归地定义最优值。(3)以自底向上的方式计算出最优值。(4)根据计算最优值时得到的信息,构造最优解。 3. 分治法与动态规划法的相同点是:将待求解的问题分解成若干个子问题,先求解子问题,然后从这些子问题的解得到原问题的解。 两者的不同点是:适合于用动态规划法求解的问题,经分解得到的子问题往往不是互相独立的。而用分治法求解的问题,经分解得到的子问题往往是互相独立的。 贪心选择算法与动态规划算法的异同点:同:都要求问题具有最优子结构性质;异:动态规划算法为自底向上的方式解各子问题,贪心算法为自顶向下的方式进行,以迭代的方式作出相继的贪心选择,每做一次贪心选择问题就转换为规模更小的字问题。 6. 分治法所能解决的问题一般具有的几个特征是:(1)该问题的规模缩小到一定的程度就可以容易地解决; (2)该问题可以分解为若干个规模较小的相同问题,即该问题具有最优子结构性质; (3)利用该问题分解出的子问题的解可以合并为该问题的解; (4)原问题所分解出的各个子问题是相互独立的,即子问题之间不包含公共的子问题。 P:也即是多项式复杂程度的问题。 NP就是多项式复杂程度的非确定性问题。 NPC(NP Complete)问题 ADT 抽象数据类型 分析问题→设计算法→编写程序→上机运行和测试 算法特性1. 确定性、可实现性、输入、输出、有穷性 算法分析目的2. 分析算法占用计算机资源的 情况,对算法做出比较和评价,设计出额更好 的算法。 3. 算法的时间复杂性与问题的规模相关,是 问题大小n的函数。 算法的渐进时间复杂性的含义:当问题的规模 n趋向无穷大时,影响算法效率的重要因素是 T(n)的数量级,而其他因素仅是使时间复杂度 相差常数倍,因此可以用T(n)的数量级(阶) 评价算法。时间复杂度T(n)的数量级(阶)称为 渐进时间复杂性。 最坏情况下的时间复杂性和平均时间复杂性有什么不同? 最坏情况下的时间复杂性和平均时间复杂性 考察的是n固定时,不同输入实例下的算法所 耗时间。最坏情况下的时间复杂性取的输入实 例中最大的时间复杂度: W(n) = max{ T(n,I) } , I∈Dn 平均时间复杂性是所有输入实例的处理时间 与各自概率的乘积和: A(n) =∑P(I)T(n,I) I∈Dn 为什么要分析最坏情况下的算法时间复杂 性?最坏情况下的时间复杂性决定算法的优 劣,并且最坏情况下的时间复杂性较平均时间 复杂性游可操作性。 1.贪心算法的基本思想? 是一种依据最优化量度依次选择输入的分级处理方法。基本思路是:首先根据题意,选取一种量度标准;然后按这种量度标准对这n个输入排序,依次选择输入量加入部分解中。如果当前这个输入量的加入,不满足约束条件,则不把此输入加到这部分解中。 贪心选择算法与动态规划算法的异同点:同:都要求问题具有最优子结构性质;异:动态规划算法为自底向上的方式解各子问题,贪心算法为自顶向下的方式进行,以迭代的方式作出相继的贪心选择,每做一次贪心选择问题就转换为规模更小的字问题。

算法分析复习题目及答案

一、选择题 1、二分搜索算法是利用 (A)实现的算法。 A、分治策略 B、动态规划法 C、贪心法 D、回溯法 2、下列不是动态规划算法基本步骤的是(A)。 A、找出最优解的性 质B、构造最优解C、算出最优解D、定义最优解3、最大效益优先是 ( A )的一搜索方式。 A、分支界限法 B、动态规划法 C、贪心法 D、回溯法 4、在下列算法中有时找不到问题解的是(B)。 A、蒙特卡罗算 法B、拉斯维加斯算法C、舍伍德算法D、数值概率算法5.回溯法解旅行售货员问题时的解空间树是( A )。 A、子集树 B、排列树 C、深度优先生成树 D、广度优先生成树 6.下列算法中通常以自底向上的方式求解最优解的 是(B)。 A、备忘录法 B、动态规划法 C、贪心法 D、回溯法 7、衡量一个算法好坏的标准是(C)。 A运行速度快B 占用空间少C时间复杂度低D代码短 8、以下不可以使用分治法求解的是 ( D )。 A棋盘覆盖问题 B 选择问题C归并排序D0/1背包问题 9.实现循环赛日程表利用的算法是(A)。 A、分治策略 B、动态规划法 C、贪心法 D、回溯法 10、下列随机算法中运行时有时候成功有时候失败的是(C) A数值概率算法B舍伍德算法C拉斯维加斯算法D蒙特卡罗算法 11.下面不是分支界限法搜索方式的是(D)。 A、广度优先 B、最小耗费优先 C、最大效益优先 D、深度优先 12.下列算法中通常以深度优先方式系统搜索问题解的是(D)。 A、备忘录法 B、动态规划法 C、贪心法 D、回溯法 13.备忘录方法是那种算法的变形。(B) A、分治法 B、动态规划法 C、贪心法 D、回溯法14.哈弗曼编码的贪心算法所需的计算时间为 (B)。 A、O(n2n) B、O(nlogn) C、O(2n) D、O(n)15.分支限界法解最大团问题时,活结点表的组织形式是(B)。 A、最小堆 B、最大堆 C、栈 D、数组16.最长公共子序列算法利用的算法是 (B)。 A、分支界限法 B、动态规划法 C、贪心法 D、回溯法17.实现棋盘覆盖算法利用的算法是(A)。 A、分治法 B、动态规划法 C、贪心法 D、回溯法 18.下面是贪心算法的基本要素的是(C)。 A、重叠子问题 B、构造最优解 C、贪心选择性质 D、定义最优解 19.回溯法的效率不依赖于下列哪些因素 (D) A.满足显约束的值的个 数 B. 计算约束函数的时间C.计算限界函数的时间 D. 确定解空间的时间

算法合集之《动态规划算法的优化技巧》

动态规划算法的优化技巧 福州第三中学毛子青 [关键词] 动态规划、时间复杂度、优化、状态 [摘要] 动态规划是信息学竞赛中一种常用的程序设计方法,本文着重讨论了运用动态规划思想解题时时间效率的优化。全文分为四个部分,首先讨论了动态规划时间效率优化的可行性和必要性,接着给出了动态规划时间复杂度的决定因素,然后分别阐述了对各个决定因素的优化方法,最后总结全文 [正文] 一、引言 动态规划是一种重要的程序设计方法,在信息学竞赛中具有广泛的应用。 使用动态规划方法解题,对于不少问题具有空间耗费大、时间效率高的特点,因此人们在研究动态规划解题时更多的注意空间复杂度的优化,运用各种技巧将空间需求控制在软硬件可以承受的范围之内。但是,也有一部分问题在使用动态规划思想解题时,时间效率并不能满足要求,而且算法仍然存在优化的余地,这时,就需要考虑时间效率的优化。 本文讨论的是在确定使用动态规划思想解题的情况下,对原有的动态规划解法的优化,以求降低算法的时间复杂度,使其能够适用于更大的规模。 二、动态规划时间复杂度的分析 使用动态规划方法解题,对于不少问题之所以具有较高的时间效率,关键在于它减少了“冗余”。所谓“冗余”,就是指不必要的计算或重复计算部分,算法的冗余程度是决定算法效率的关键。动态规划在将问题规模不断缩小的同时,记录已经求解过的子问题的解,充分利用求解结果,避免了反复求解同一子问题的现象,从而减少了冗余。 但是,动态规划求解问题时,仍然存在冗余。它主要包括:求解无用的子问题,对结果无意义的引用等等。 下面给出动态规划时间复杂度的决定因素: 时间复杂度=状态总数*每个状态转移的状态数*每次状态转移的时间[1] 下文就将分别讨论对这三个因素的优化。这里需要指出的是:这三者之间不是相互独立的,而是相互联系,矛盾而统一的。有时,实现了某个因素的优化,另外两个因素也随之得到了优化;有时,实现某个因素的优化却要以增大另一因素为代价。因此,这就要求我们在优化时,坚持“全局观”,实现三者的平衡。 三、动态规划时间效率的优化 3.1 减少状态总数 我们知道,动态规划的求解过程实际上就是计算所有状态值的过程,因此状态的规模直接影响到算法的时间效率。所以,减少状态总数是动态规划优化的重要部分,本节将讨论减少状态总数的一些方法。

动 态 规 划 算 法 ( 2 0 2 0 )

01背包问题的动态规划算法、蛮力法和空间优化算法 算法思想: (1)【导师实战恋爱教-程】、动态规划算法:解决背包物品价值最大化问题的最优解,是建立在每一个子问题的最优解的前提下完成的。设Valu【扣扣】e[i,j]表示的是i个物品放进背包容量为j的背包的价值,令i从0【⒈】增至n(物品总数量),j从0增至c(背包总容量)。Value[n,c]就是我【О】们要的背包价值最大化的解。为了得到这个解必须要把之前的都解【1】决,每一个问题的最优解的算法又根据以下确定:当物品重【6】量w小于背包体积j时,此物品不放进背包,价值与上一次【⒐】价值相同;当物品重量w不小于背包体积j时,此物品是否放进背【5】包,取决于Value[i-1,j]和Value[i-1,j-w]+v的大小。写成表达式【2】则为以下内容: ? Va【б】lue[i-1,j]? weight[i]j Value[i,j] ? Max(Value[i-1,j],Value[i-1,j-w[i]]+v[i])? weight[i]=j 而这个表达式的约束条件就是当物品数量为0(i=0)时和背包容量为0(j=0)时,最大价值为0。 (2)、空间优化算法:动态规划法的空间复杂度为O(nw),现将空间复杂度优化到O(w)。我使用的方法为建立一个新的一维数组V[w+1],此数组与上述动态规划的Value数组不同的是只用于记录上一行的价值,如

当我需要求第i行的价值的时候,v数组中存放的是第i-1行的价值。然后从后往前(背包容量从c到0)计算价值、覆盖数组,因为每一次计算背包容量j大小的价值可能会用到j-w的价值,如果从前往后计算的话则数组已被更新,所以要从后往前计算。计算价值的方法也是和上面大致相同:如果物品体积w小于背包容量j,则判断V [j]和V[j-w]+v的大小;如果大于背包容量,则放不进去,V[j]价值不变。 写成表达式如下: ? V[j]? weight[i]j ? Max(V[j],V[j-w[i]]+value[i])? weight[i]=j 由于使用一维数组的方法,内容还一直被覆盖,所以无法得出背包中具体有哪些物品。 (3)、穷举法:用于验证动态规划方法是否正确。以n=4为例,创建一个v[4]的数组,用0和1表示第i个物品是否放进背包,如0001表示只有第四个物品放进背包。然后数组从0000~1111,计算每次摆放的重量以及价值。如果重量小于背包重量,且价值大于当前最大价值,则记录当前的最大价值以及数组。原理是这样在实施的时候为了记录背包的解,将0000和1111看成0和15的二进制形式,所以让i从0到15进行增长,每次将i转换成二进制格式放进数组中,这样做就可以记录最大价值时的i,转换成二进制则可获得具体物品。 伪代码如下: For i 0~2n-1

算法设计动态规划(编辑距离)

《算法设计与分析》课程报告 课题名称:动态规划——编辑距离问题 课题负责人名(学号): 同组成员名单(角色):无 指导教师:左劼 评阅成绩: 评阅意见: 提交报告时间:2010年 6 月 23 日

动态规划——编辑距离问题 计算机科学与技术专业 学生指导老师左劼 [摘要]动态规划的基本思想与分治法类似,也是将待求解的问题分解成若干份的子问题,先分别解决好子问题,然后从子问题中得到最终解。但动态规划中的子问题往往不是相互独立的,而是彼此之间有影响,因为有些子问题可能要重复计算多次,所以利用动态规划使这些子问题只计算一次。将字符串A变换为字符串所用的最少字符操作数称为字符串A到B的编辑距离。 关键词:动态规划矩阵字符串操作数编辑距离

一、问题描述 1、基本概念:设A和B是2个字符串。要用最少的字符操作将字符串A转换为字符串B。字符串操作包括: (1) 删除一个字符; (2) 插入一个字符; (3) 将一个字符改为另一个字符。 将字符串A变换为字符串B所用的最少字符操作数称为字符串A 到B的编辑距离,记为d(A,B)。 2、算法设计:设计一个有效算法,对于给定的任意两个字符串A 和B,计算其编辑距离d(A,B)。 3、数据输入:输入数据由文件名为input.txt的文本文件提供。文件的第1行为字符串A,第二行为字符串B。 4、结果输出:将编辑距离d(A,B)输出到文件ouput.txt的第一行。 输入文件示例输出文件示例 input.txt output.txt fxpimu 5 xwrs 二、分析 对于本问题,大体思路为:把求解编辑距离分为字符串A从0个字符逐渐增加到全部字符分别想要变为字符串B该如何变化以及变化的最短距离。 具体来说,首先选用数组a1存储字符串A(设长度为n),a2存储字符串B(设长度为m),d矩阵来进行具体的运算;这里有两个特殊情况比较简单可以单独考虑,即A的长度为0而B不为0还有A不为0B为0,这两种情况最后的编辑距离分别为m和n;讨论一般情况,d矩阵为d[n][m],假定我们从d[0][0]开始一直进行以下操作到了d[i][j]的位置,其中删除操作肯定是A比B长,同理,插入字符操作一定是A比B短,更改字符操作说明一样长,我们所要做的是对d[i][j-1]

浅谈我国动态规划算法研究与应用

动态规划算法研究与应用 1.引言 动态规划被认为是组成运筹学其中的一部分,也被当成为进行运算决定时最好的一种数学方式。在1950年左右,美国相关方面的几位数学家,对阶段决策期间关于优化的问题做了大量的研究,并发布著名的最优化理论,将众多的阶段变成了一个一个单一的问题,并分别进行解答,最后,发明了能够处理这种相关优化方面事情新的解决措施——动态规划。到了1957年,创造出了Dynamic Programming这一名著,被称为该领域创作第一人[1]。 在数学和计算机科学领域,动态规划算法对于求解最优解的问题方便快捷。动态规划方法经常用来解决生活中的实际问题,这些问题往往可以分解为很多个子问题,每个子问题都有一个对应解,其中的临界值就是我们所要求得的最优解。动态规划并非一种数学算法,而是用于最优化解题的一种技巧和方法。它非但不具有一个标准的数学方程式,不能够推导出清晰明确的解题步骤,更不具备万能性。对于要解决的若干问题,一定要建立在正确理解的基础上具体问题具体分析,用我们现有的数学知识和丰富的想象力创建模型,结合日常的技巧分析求解。客观人为的介入时间和空间因素,只要可以分为若干子问题的多状态过程,就可以用此方法快速求解。 2.动态规划算法简介 动态规划诞生之后,很快就在在工业生产、金融管理、工程技术、和资源最大化利用等领域得到了好评。在处理路线规划、物品进出库管理、资源最优化利用、更换设备、顺序、装载等问题,动态规划算法相比于其他算法更有优势而且更加便捷。 2.1基本原理 其主要的理论可以被理解成是将求解的划分成若干个子问题,并将其称作为N,然后这些子问题又有N个解的情况,其中这些可行解之中一定会有一个最优解,研究动态规划也就是希望能够找到最优解[2]。 如何能够合理的推导出基本的最优化方程式和找出唯一的临界值是研究动

常见动态规划算法问题策略分析

常见动态规划算法问题 策略分析

目录 一、动态规划策略 (1) 1.动态规划介绍 (1) 2.求解动态规划问题步骤 (1) 二、几种动态规划算法的策略分析 (1) 1.装配线调度问题 (1) 2.矩阵链乘问题 (2) 3.最长公共子序列(LCS) (3) 4.最大字段和 (4) 5.0-1背包问题 (4) 三、两种解决策略 (5) 1.自底向上策略 (5) 2.自顶向上(备忘录)策略 (5) 3.优缺点分析 (5) 四、总结 (6)

一、动态规划策略 1.动态规划介绍 动态规划过程是:每次决策依赖于当前状态,又随即引起状态的转移。一个决策序列就是在变化的状态中产生出来的,所以,这种多 阶段最优化决策解决问题的过程就称为动态规划。 基本思想与分治法类似,也是将待求解的问题分解为若干个子问题(阶段),按顺序求解子阶段,前一子问题的解,为后一子问题的 求解提供了有用的信息。在求解任一子问题时,列出各种可能的局部 解,通过决策保留那些有可能达到最优的局部解,丢弃其他局部解。 依次解决各子问题,最后一个子问题就是初始问题的解。 由于动态规划解决的问题多数有重叠子问题这个特点,为减少重复计算,对每一个子问题只解一次,将其不同阶段的不同状态保存在 一个二维数组中。 与分治法最大的差别是:适合于用动态规划法求解的问题,经分解后得到的子问题往往不是互相独立的(即下一个子阶段的求解是建 立在上一个子阶段的解的基础上,进行进一步的求解)。 2.求解动态规划问题步骤 (1)确定最优解结构 (2)递归定义最优解的值 (3)自底向上计算最优解的值 (4)重构最优解 二、几种动态规划算法的策略分析 1.装配线调度问题 分析:首先确定最优解结构,分析问题可知大致分为两种情况:

动态规划算法

动态规划算法: 引言: 动态规划算法是求解最有问题的一种高效率的算法。其使用的原则是优化原则,即整体的最优解可以通过局部的最优解获得。问题求解的过程可以概括成两句话:自顶向下的分析,自下向上的计算。 典型例题 例1、数塔问题:设有一个三角形数塔,顶点节点称为根结点,每个节点有一个数值。从顶点出发,可以想左走也可以向右走。搜索从顶点出发向下走至塔底的所有路径中节点和最大的路径及最大和值。 问题分析: 1 选择最佳算法: 贪心算法----不能求最优解; 穷举算法----当塔层数很大时,计算量过大。 其它算法? 2 选择最佳数据结构表示数据: g[I,j,1]:表示为置[I,j]结点本身数值; g[I,j,2]:能取得的最大值; g[I,j,3]:前进方向,0---向下;1—向右下。 源程序: program d1; const n=5; var i,j:integer; g:array[1..n,1..n,1..3] of integer; begin for i:=1 to n do begin for j:=1 to i do begin read(g[i,j,1]); g[i,j,2]:=g[i,j,1];g[i,j,3]:=0; end; readln; end; for i:=n-1 downto 1 do for j:=1 to i do if g[i+1,j,2]>g[i+1,j+1,2] then g[i,j,2]:=g[i,j,2]+g[i+1,j,2] else begin g[i,j,2]:=g[i,j,2]+g[i+1,j+1,2]; g[i,j,3]:=1 end;

贪心算法与动态规划的比较

贪心算法与动态规划的比较 【摘要】介绍了计算机算法设计的两种常用算法思想:贪心算法与动态规划算法。通过介绍两种算法思想的基本原理,比较两种算法的联系和区别。通过背包问题对比了两种算法的使用特点和使用范围。 【关键字】动态规划;贪心算法;背包问题 1、引言 为了满足人们对大数据量信息处理的渴望,为解决各种实际问题,计算机算法学得到了飞速的发展,线性规划、动态规划、贪心策略等一系列运筹学模型纷纷运用到计算机算法学中,产生了解决各种现实问题的有效算法。虽然设计一个好的求解算法更像是一门艺术而不像是技术,但仍然存在一些行之有效的、能够用于解决许多问题的算法设计方法,你可以使用这些方法来设计算法,并观察这些算法是如何工作的。一般情况下,为了获得较好的性能,必须对算法进行细致的调整。但是在某些情况下,算法经过调整之后性能仍无法达到要求,这时就必须寻求另外的方法来求解该问题。本文针对部分背包问题和0/ 1 背包问题进行分析,介绍贪心算法和动态规划算法的区别。 2、背包问题的提出 给定n种物品( 每种物品仅有一件) 和一个背包。物品i的重量是w i,其价值为p i,背包的容量为M。问应如何选择物品装入背包,使得装入背包中的物品的总价值最大,每件物品i的装入情况为x i,得到的效益是p i*x i。 ⑴部分背包问题。在选择物品时,可以将物品分割为部分装入背包,即0≤x i≤1 ( 贪心算法)。 ⑵0/ 1背包问题。和部分背包问题相似,但是在选择物品装入时要么不装,要么全装入,即x i = 1或0。( 动态规划算法) 。 3、贪心算法 3.1 贪心算法的基本要素 能够使用贪心算法的许多例子都是最优化问题,每个最优化问题都包含一组限制条件和一个优化函数,符合限制条件的问题求解方案称为可行解;使优化函数取得最佳值的可行解称为最优解。此类所求问题的整体最优解可以通过一系列局部最优的选择,即贪心选择来达到(这是贪心算法与动态规划的主要区别) 。 3.2贪心策略的定义 贪心策略是指从问题的初始状态出发,通过若干次的贪心选择而得出最优值( 或较优解) 的一种解题方法。贪心策略总是做出在当前看来是最优的选择,也就是说贪心策略并不是从整体上加以考虑,它所做出的选择只是在某种意义上的局部最优解,而许多问题自身的特性决定了该问题运用贪心策略可以得到最优解或较优解。(注:贪心算法不是对所有问题都能

动态规划算法举例分析

动态规划算法 1. 动态规划算法介绍 基本思想是将待求解问题分解成若干子问题,先求解子问题,最后用这些子问题带到原问题,与分治算法的不同是,经分解得到的子问题往往是不是相互独立,若用分治则子问题太多。 2. 适用动态规划算法问题的特征 (1)最优子结构 设计动态规划算法的第一步骤通常是要刻画最优解的结构。当问题的最优解包含了其子问题的最优解时,称该问题具有最优子结构性质。问题的最优子结构性质提供了该问题可用动态规划算法求解的重要线索。 在动态规划算法中,问题的最优子结构性质使我们能够以自底向下的方式递归地从子问题的最优解逐步构造出整个问题的最优解。同时,它也使我们能在相对小的子问题空间中考虑问题。 (2)重叠子问题 可用动态规划算法求解的问题应具备的另一基本要素是子问题的重叠性质。在用递归算法自顶向下解此问题时,每次产生的子问题并不总是新问题,有些子问题被反复计算多次。动态规划算法正是利用了这种子问题的重叠性质,对每一个子问题只解一次,而后将其解保存在一个表格中,当再次需要解此子问题时,只有简单地用常数时间查看一下结果。通常,不同的子问题个数随输入问题的大小呈多项式增长。因此,用动态规划算法通常只需要多项式时间,从而获得较高的解题效率。 (3)备忘录方法

动态规划算法的一个变形是备忘录方法。备忘录方法也是一个表格来保存已解决的子问题的答案,在下次需要解此子问题时,只要简单地查看该子问题的解答,而不必重新计算。与动态规划算法不同的是,备忘录方法的递归方式是自顶向下的,而动态规划算法则是自底向上递归的。因此,备忘录方法的控制结构与直接递归方法的控制结构相同,区别在于备忘录方法为每个解过的子问题建立了备忘录以备需要时查看,避免了相同子问题的重复求解。 备忘录方法为每个子问题建立一个记录项,初始化时,该记录项存入一个特殊的值,表示该子问题尚未求解。在求解过程中,对每个待求的子问题,首先查看其相应的记录项。若记录项中存储的是初始化时存入的特殊值,则表示该子问题是第一次遇到,则此时计算出该子问题的解,并保存在其相应的记录项中。若记录项中存储的已不是初始化时存入的特殊值,则表示该子问题已被计算过,其相应的记录项中存储的是该子问题的解答。此时,只要从记录项中取出该子问题的解答即可。 3. 基本步骤 a 、找出最优解的性质,并刻画其结构特征。 b 、递归地定义最优值。 c 、以自底向上的方式计算出最优值。 d 、根据计算最优值时得到的信息构造一个最优解。(可省) 例1-1 [0/1背包问题] [问题描述] 用贪心算法不能保证求出最优解。在0/1背包问题中,需要对容量为c 的背包进行装载。从n 个物品中选取装入背包的物品,每件物品i 的重量为i w ,价 值为 i v 。对于可行的背包装载,背包中物品的总重量不能超过背包的容量,最佳 装载是指所装入的物品价值最高,即∑=n i i i x v 1 取得最大值。约束条件为 c x w n i i i ≤∑=1 , {}() n i x i ≤≤∈11,0。

动态规划算法的应用

动态规划算法的应用 一、实验目的 1.掌握动态规划算法的基本思想,包括最优子结构性质和基于表格的最优值计算方法。 2.熟练掌握分阶段的和递推的最优子结构分析方法。 3.学会利用动态规划算法解决实际问题。 二、实验内容 题目一:数塔问题 给定一个数塔,其存储形式为如下所示的下三角矩阵。在此数塔中,从顶部出发,在每一节点可以选择向下走还是向右走,一直走到底层。请找出一条路径,使路径上的数值和最大。 输入样例(数塔): 9 15 10 6 8 2 18 9 5 19 7 10 4 16 输出样例(最大路径和): 59 三、实验步骤 (1)需求分析 通过动态规划法解决数塔问题。从顶部出发,在每一节点可以选择向下或者向右走,一直走到底层,以找出一条数值最大的路径。 (2)概要设计 本次实验程序主要用到二维数组,以及通过动态规划法进行比较每个数的大小。主要运用两个for循环语句实现动态规划。

(3)详细设计 第一步,输入给定的二维数组并打印出相应的数组: int array[5][5]={{9}, /* */{12,15}, /* */{10,6,8}, /* */{2,18,9,5}, /* */{19,7,10,4,6}}; int i,j; for(i=0;i<5;i++) { for(j=0;j<5;j++) cout<0;j--) { for(i=0;i<=4;i++) { if(array[j][i]>array[j][i+1]) array[j-1][i]=array[j][i]+array[j-1][i]; else array[j-1][i]=array[j][i+1]+array[j-1][i]; } } 第三步,输出最大路径的值。 cout<

动态规划算法实验报告

实验标题 1、矩阵连乘 2、最长公共子序列 3、最大子段和 4、凸多边形最优三角剖分 5、流水作业调度 6、0-1背包问题 7、最优二叉搜索树 实验目的掌握动态规划法的基本思想和算法设计的基本步骤。 实验内容与源码1、矩阵连乘 #include #include using namespace std; const int size=4; //ra,ca和rb,cb分别表示矩阵A和B的行数和列数 void matriMultiply(int a[][4],int b[][4],int c[][4],int ra ,int ca,int rb ,int cb ) { if(ca!=rb) cerr<<"矩阵不可乘"; for(int i=0;i

动态规划的matlab算法

动态规划的matlab算法,源码来自书上,只作分享用 function [p_opt,fval]=dynprog(x,DecisFun,ObjFun,TransFun) k=length(x(1,:)); x_isnan=~isnan(x); f_vub=inf; f_opt=nan*ones(size(x)); d_opt=f_opt; t_vubm=inf*ones(size(x)); tmp1=find(x_isnan(:,k)); tmp2=length(tmp1); for i=1:tmp2 u=feval(DecisFun,k,x(i,k)); tmp3=length(u); for j=1:tmp3 tmp=feval(ObjFun,k,x(tmp1(i),k),u(j)); if tmp<=f_vub f_opt(i,k)=tmp; d_opt(i,k)=u(j); t_vub=tmp; end end end %??Dò???? for ii=k-1:-1:1 tmp10=find(x_isnan(:,ii)); tmp20=length(tmp10); for i=1:tmp20 u=feval(DecisFun,ii,x(i,ii)); tmp30=length(u); for j=1:tmp30 tmp00=feval(ObjFun,ii,x(tmp10(i),ii),u(j)); tmp40=feval(TransFun,ii,x(tmp10(i),ii),u(j)); tmp50=x(:,ii+1)-tmp40; tmp60=find(tmp50==0); if ~isempty(tmp60) tmp00=tmp00+f_opt(tmp60(1),ii+1); if tmp00<=t_vubm(i,ii) f_opt(i,ii)=tmp00; d_opt(i,ii)=u(j); t_vubm(i,ii)=tmp00; end

相关文档
最新文档