烷烃和环烷烃的化学性质及制备

烷烃和环烷烃的化学性质及制备
烷烃和环烷烃的化学性质及制备

烷烃和环烷烃的化学性质及制备

一、烷烃的主要化学性质

总体:稳定,自由基型反应居多。 (一)燃烧和氧化

一般条件下不与普通氧化剂反应,剧烈可燃烧,C →CO 2,H →H 2O ,(杂→氧化物)

有机化学中:氧化=加氧or 去氢,还原=加氢or 去氧

(二)卤代反应(实质:取代反应)

取代反应(substitution reaction )是指有机化合物受到某类试剂的进攻,致使分子中一个原子(或基团)被这个试剂所取代的反应。分为亲电取代、亲核取代、自由基取代三类。

探讨一类有机反应主要从以下四个方面展开:反应产物、反应类型、反应历程、反应活性(反应活性又可从试剂和底物两个方面讨论)。

烷烃的取代属于自由基取代反应。 反应产物:一~多卤代烷

反应类型:自由基型(反应条件:光照 or 高温) 反应历程:链引发、增长、终止 反应活性:试剂角度考虑:氟 〉〉氯 〉溴 〉〉碘

底物角度考虑:叔氢 〉仲氢 〉伯氢

二、烷烃的来源和制备

1、烷烃是其他有机物的母体,一般不经人工合成,而是从天然气和石油中获得。

2、天然来源烷烃是相当复杂的混合物,难以分离。若需纯粹烷烃,可人工合成来制备。

3、工业生产采用柯尔伯电解羧酸盐来制取

4、实验室通过武兹、科瑞-郝思合成法以及还原反应来获得。 (1)武慈反应(制备对称烷烃)

2RX (乙醚) + Na → R-R + 2NaX ( X = Br 、I )

(2)科瑞-郝思反应

R 2CuLi (二烷基铜锂) + R ’X → R-R ’ + RCu (烷基铜) + LiX

(3)还原

卤代烃、醇、醛、酮、酸等还原制得(见以后章节)

三、环烷烃的主要化学性质

总体:大环像烷,小环像烯。 (一)取代反应(卤代,自由基型)

+ Br + HBr

Br

日光

环己烷

溴代环己烷

(二)氧化反应

1、可燃 → CO 2 + H 2O

2、特殊条件 → 开链二元羧酸

+ O

2

Co HOOC(CH 2 )4 COOH 己二酸

(合成尼龙66之主要原料)

3、常温、常压、普通氧化剂 → 不反应

应用:环烷烃常温下不能使酸性高锰酸钾褪色(开链烷烃也不能),可用于鉴别(见以后章节)。

(三)加成反应(开环)

加成反应:受试剂进攻,旧键打开后,两端原子各连接上一个新原子(或基团)的反应,常在不饱和键和低级环化物中发生,最常见的是烯烃的亲电加成和羰基的亲核加成。

环烷烃中,小环的结构特点决定了其内能高、不稳定,更易开环发生加成反应(本章节中不讨论此反应的类型及历程)。

1、催化加氢 → 烷烃

+ H

2Ni

CH 3CH 2CH 3

+ H 2Ni 120~180

℃ CH 3CH 2CH 2CH 3+ H 2

Pt >300

CH 3CH 2CH 2CH 2CH 3

由反应条件知:不同底物中小环活性高,更易反应。

2、加卤素 → 卤代烷烃(只适用于小环)

+ Br

2室温4

BrCH 2CH 2CH 2 Br

+ Br 2

4

BrCH 2 CH 2CH 2CH 2 Br

(红棕)(无色)CH 3+ Br 2

CCl 4

Br

CH 2CH 2CHCH 3

对于取代环烷烃,断键发生在H 最多和H 最少间。

应用:鉴别:小环能使Br 2/H 2O 或

Br 2/CCl

4褪色,而大环不能(开链烷烃亦不能)。 例如:

or Br

2 / H 2O

Br / CCl (-)褪色

可见:大环似烷,小环似烯(烯也能使溴水褪色)

3、加卤化氢 卤代烷烃(只适用于小环和活泼卤化氢如HBr 、HI )

+ HBr

CH 3

+ HBr (马氏规律)

Br

3CH 2CHCH 3

BrCHCH 2CH 3

对于取代环烷,反应产物遵循“马氏规律”:断于H

最多和H 最少间,H 加在H 多上。

四、环烷烃的制备(不要求,略)

五、鉴别题举例

要求:鉴别(和分离)题均按以下表达方式进行解题。 1、环丙烷和丙烷

解:CH 3CH 2CH 3

24

褪色(——)

2、1,2-二甲基环丙烷, 环戊烷

解:CH 3

H 3C 24

褪色(——)

高二化学-烷烃和烯烃知识点总结复习及习题操练

学员编号:年级:高二课时数: 2 学员姓名:辅导科目:化学学科教师:授课类型T C烷烃和烯烃T 分析推理能力授课日期及时段 教学内容 引导回顾 知识点解题方法 1.烷烃和烯烃 1. 熟悉并掌握简单脂肪烃 2.烯烃的顺反异构 2. 简单同分异构体 同步讲解 1.了解烷烃和烯烃同系物熔、沸点的变化规律。 2.掌握烷烃取代、烯烃加成及加聚等重要的有机反应类型,并能灵活地加以运用。 3.进一步理解同分异构现象、同分异构体等概念,并能书写简单烯烃的顺、反异构体,了解烯烃的顺、反异构体在物理性质上的差异性。 1.根据教材中列举的部分烷烃与烯烃的沸点和相对密度的数据,以分子中碳原子数为横坐标,以沸点或相对密度为纵坐标,制作分子中碳原子数与沸点或相对密度变化的曲线图。通过所绘制的曲线图你能得到什么信息? 提示:如图1和图2所示。

通过曲线图可知,随着烷烃分子中碳原子数的增加,烷烃的沸点依次升高,相对密度依次增大,烯烃的曲线图同烷烃的类似。 2.由于烷烃和烯烃的结构不同,使其化学性质也存在着较大的差异,请完成下表的空白,并加以对比总结。提示:如下表所示。 烃的类别分子结构特点代表物质主要化学性质 烷烃 ①都是单键 ②链状结构 ③锯齿状排列 丙烷 ①性质较稳定 ②氧化反应 ③取代反应 ④分解反应 烯烃 ①含C=C键 ②其余键为单键 乙烯 ①氧化反应 ②加成反应 ③加聚反应 1.物理性质 烷烃和烯烃的物理性质随着分子中碳原子数的递增,呈现出规律性的变化:熔沸点逐渐增大,相对密

度逐渐增大,但不超过水的密度。 注意:烷烃、烯烃、炔烃的同系物中,随着碳原子数的增多,物理性质呈现规律性的变化。 ①状态:常温下,碳原子数小于5个的烃呈气态,含5~16个碳原子的烃呈液态,16个碳原子以上的烃呈固态。 ②熔沸点:随着碳原子数的增多,烃的熔沸点逐渐升高,相同碳原子数的同类烃的熔沸点随着支链的增多而降低。 ③密度:随着碳原子数的增多,烃的密度逐渐增大,但是常温常压下的密度均比水的密度小。 ④溶解性:烃都难溶于水,易溶于有机溶剂。 2.有机化学反应类型 (1)取代反应。 ①定义:有机化合物分子中的某些原子或原子团被其他原子或原子团所代替的反应。 ②特点:“有上有下,取而代之”。 ③常见的取代反应。 a .烷烃、芳香烃中的氢原子可以 被—X 、—NO 2、—SO 3H 取代。 CH 4+Cl 2――→光照 CH 3Cl +HCl(卤 代)

烷烃烯烃炔烃知识点汇总

烷烃烯烃炔烃知识点汇总

————————————————————————————————作者:————————————————————————————————日期:

第一节 脂肪烃 什么样的烃是烷烃呢?请大家回忆一下。 一、烷烃 1、结构特点和通式:仅含C —C 键和C —H 键的饱和链烃,又叫烷烃。(若C —C 连成环状,称为环烷烃。) 烷烃的通式:C n H 2n+2 (n ≥1) 接下来大家通过下表中给出的数据,仔细观察、思考、总结,看自己能得到什么信息? 表2—1 部分烷烃的沸点和相对密度 名称 结构简式 沸点/oC 相对密度 甲烷 CH 4 -164 0.466 乙烷 CH 3CH 3 -88.6 0.572 丁烷 CH 3(CH 2) 2CH 3 -0.5 0.578 (根据上表总结出烷烃的物理性质的递变规律) 2、物理性质 烷烃的物理性质随着分子中碳原子数的递增,呈规律性变化,沸点逐渐升高,相对密度逐渐增大;常温下的存在状态,也由气态(n ≤4)逐渐过渡到液态、固态。还有,烷烃的密度比水小,不溶于水,易溶于有 我们知道同系物的结构相似,相似的结构决定了其他烷烃具有与甲烷相似的化学性质。 3、化学性质(与甲烷相似) (1)取代反应 如:CH 3CH 3 + Cl 2 → CH 3CH 2Cl + HCl (2)氧化反应 C n H 2n+2 + — O 2 → nCO 2 +(n+1)H 2O 烷烃不能使酸性高锰酸钾溶液褪色 接下来大家回忆一下乙烯的结构和性质,便于进一步学习烯烃。 二、烯烃 1、概念:分子里含有碳碳双键的不饱和链烃叫做烯烃。 通式:C n H 2n (n ≥2) 例: 乙烯 丙烯 1-丁烯 2-丁烯 师:请大家根据下表总结出烯烃的物理性质的递变规律。 表2—1 部分烯烃的沸点和相对密度 名称 结构简式 沸点/oC 相对密度 乙烯 CH 2=CH 2 -103.7 0.566 丙烯 CH 2=CHCH 3 -47.4 0.519 (根据上表总结出烯烃的物理性质的递变规律) 2、物理性质(变化规律与烷烃相似) 烯烃结构上的相似性决定了它们具有与乙烯相似的化学性质。 3、化学性质(与乙烯相似) (1)烯烃的加成反应:(要求学生练习) ;1,2 一二溴丙烷 ;丙烷 2——卤丙烷 (简单介绍不对称加称规则) (2) (3)加聚反应: 光照 3n 点燃

烷烃 习题及答案剖析

甲烷烷烃 1 .复习重点1.甲烷的结构、化学性质; 2.烷烃的定义、命名、同系物、同分异构体及典型的取代反应。 2.难点聚焦 1.有机物:含碳化合物叫做有机化合物,简称有机物。....(除CO、CO、碳酸盐、碳化物、硫氰化物、氰化物等外) 2它们虽然含碳,但性质和组成与无机物很相近,所以把它们看作为无机物。也就是说,有机物一定含碳元素,但含碳元素的物质不一定是有机物。而且有机物都是化合物,没有单质。 那么究竟哪些物质是有机物,哪些物质是无机物,有什么判断依据呢?我们可以通过有机物与无机物的主要区别加以判断。 有机物的组成3.C、H、O、N、S、P、卤素等元素。 构成有机物的元素只有少数几种,但有机物的种类确达三千多种? 几种元素能构几千万种有机物质?(学生自学后概括) 有机物种类之所以繁多主要有以下几个原因: ①碳原子最外电子层上有4个电子,可形成4个共价键; ②有机化合物中,碳原子不仅可以与其他原子成键,而且碳碳原子之间也可以成键; ③碳与碳原子之间结合方式多种多样,可形成单键、双键或叁键,可以形成链状化合1) —5结构图(物,也可形成环状化合物; ④相同组成的分子,结构可能多种多样。(举几个同分异构体) 在有机物中,有一类只含C、H两种元素的有机物。 4.烃:仅含碳和氢两种元素的有机物称为碳氢化合物,又叫烃 在烃中最简单的是甲烷,所以我们就先从甲烷开始学起。

甲烷 一、甲烷的物理性质 (学生回答)无色、无味,难溶于水的,比空气轻的,能燃烧的气体,天然气、坑气、沼气等的主要成分均为甲烷。 收集甲烷时可以用什么方法?(1.向下排空气法,2.排水法) 二、甲烷的分子结构 已知甲烷的气体密度在标准状况下为0.717 g/L,其中含碳的质量分数为75%,含氢质量分数为25%,求甲烷的分子式。(平行班提示:M=ρV) m a.计算甲烷的摩尔质量 因为摩尔质量=气体摩尔体积×密度 =22.4L/mol×O.7179/L =16 g/mol 所以甲烷的分子量为16。 b.按分子量和质量分数计算一个甲烷分子中C、H原子的个数 C原子数:16×75%÷12=1 H原子数:16×25%÷1=4 所以甲烷的分子式为CH。4甲烷的分子式:CH 电子式:结构式:4用短线表示一对共用电子对的图式叫结构式。 上述结构式都不能表明甲烷分子的真实构型 [模型展示]甲烷分子的球棍模型和比例模型。 得出结论:以碳原子为中心,四个氢原子为顶点的正四面体结构。. 甲烷是非极性分子,所以甲烷极难溶于水,这体现了相似相溶原理。:三角锥形 NH :正四面体CH 34 三、甲烷的化学性质 1.甲烷的氧化反应 点燃 O +2H+2OCO CH2242,(等号)”(箭头)而不是“====”a.方程式的中间用的是“ 主要是因为有机物参加的反应往往比较复杂,常有副反应发生。SCO、Hb.火焰呈淡蓝色:CH、

最新高一化学必修二烷烃烯烃练习题

高一化学必修二烷烃烯烃练习题 班级姓名学号编辑高一、一科 1.若1mol某气态烃C X H Y完全燃烧,需用3mol氧气,则() A、X=2,Y=2 B、X=2,Y=4 C、X=3,Y=6 D、X=3,Y=8 2.等质量的下列烃完全燃烧时,消耗氧气最多的是() A、CH4 B、C2H6 C、C3H6 D、C6H6 3.乙烷中混有少量乙烯气体, 欲除去乙烯可选用的试剂是 ( ) A.氢氧化钠溶液 B.酸性高锰酸钾溶液 C.溴水 D.碳酸钠溶液 4.能够证明甲烷构型是四面体的事实是() A.甲烷的四个键键能相同 B.甲烷的四个键键长相等 C.甲烷的所有C-H键键角相等 D.二氯甲烷没有同分异构体 5.下列有关说法不正确的是() A.由乙烯分子组成和结构推测含一个碳碳双键的单烯烃通式为C n H2n B.乙烯的电子式为: C.从乙烯与溴发生加成反应生成1,2—二溴乙烷可知乙烯分子的碳碳双键中有一个键不稳定,易发生断裂 D.乙烯空气中燃烧的现象与甲烷不同的原因是乙烯中含碳量高 6.下列化学性质中,烷烃不具备的是() A.一定条件下发生分解反应 B.可以在空气中燃烧 C.与氯气发生取代反应 D.能使高锰酸钾溶液褪色 7.乙烯发生的下列反应中,不属于加成反应的是() A.与氢气反应生成乙烷B.与水反应生成乙醇 C.与溴水反应使之褪色D.与氧气反应生成二氧化碳和水 8.甲烷和乙烯的混合气体100 mL ,能催化加成氢气30 mL ,则混合气体中含有甲烷()

A .50 mL B .70 mL C .30 mL D .15 mL 9.下列一定属于不饱和烃的是 ( ) A .C 2H 4 B . C 4H 8 C .C 3H 8 D .C 5H 12 10.下列叙述错误的是( ) A.通常情况下,甲烷跟强酸、强碱、酸性4KMnO 溶液都不起反应 B.甲烷化学性质比较稳定,不能被任何氧化剂氧化 C.甲烷跟氯气反应无论生成3CH Cl 、22CH Cl 、3CHCl ,还是4CCl ,都属于取代反应 D.甲烷的四种有机取代物都难溶于水 11.如下图所示,集气瓶内充满某混合气体,置于光亮处,将滴管内的 水挤入集气瓶后,烧杯中的水会进入集气瓶,集气瓶内气体可能是 ( ) ①CO 、2O ②2Cl 、4CH ③2NO 、2O ④2N 、2H A.①② B.②④ C.③④ D.②③ 12.下列物质属于烷烃的是( ) A.816C H B.322CH CH CH OH 13.根据下表中烃的分子式排列规律,判断空格中烃的同分异构体数目是( )

烷烃烯烃炔烃的化学性质练习题(附答案)

2020年03月12日烷烃烯烃炔烃的化学性质练习题 学校: __________ 姓名: _________ 班级: _________ 考号: 注意事项: 注意事项: 1、答题前填写好自己的姓名、班级、考号等信息 正确填写在答题卡上 第1卷 1. 下列五种烃 : ①2-甲基丁烷; ②2,2 -二甲基丙烷 ; ③正戊烷; ④丙烷; ⑤丁烷 ,按沸点由高到低的顺 序排列的是 ( ) A. ①>②>③>④>⑤ B. ②>③>⑤>④>① C. ③>①>②>⑤>④ D. ④>⑤>②>①>③ 2. 下列说法正确的是 ( ) A. 通式相同的不同物质一定属于同系物 B. 完全燃烧某有机物 ,生成 CO 2和 H 2O 的物质的量之比为 1:1, 该有机物只可能是烯烃或环烷烃 C. 分子式相同而结构不同的化合物一定互为同分异构体 D. 符合通式 C n H 2n -2 的有机物一定是炔烃 3. 两分子乙炔反应得到乙烯基乙炔 (CH 2=CH-C ≡CH),该物质是合成橡胶的重要原料 , 下列关于该物质 的判断错误的是 ( ) A. 该物质既是 CH 2=CH 2 的同系物 , 又是 HC ≡CH 的同系物 B. 该物质既能使酸性 KMnO 4溶液褪色 , 又能使溴水褪色 C. 该物质与足量的 H 2加成后 ,只能生成一种物质 D. 该物质经加成、加聚反应后的产物是氯丁橡胶 ( ) 的主要成分 4. 以乙炔为原料制取 CHClBr —CH 2Br, 下列方法中 ,最可行的是 ( ) A. 先与 HBr 加成后 ,再与 HCl 加成 B. 先 H 2与完全加成后 ,再与 Cl 2、Br 2取代 C. 先与 HCl 加成后 , 再与 Br 2加成 2、请将答案

烷烃、烯烃和炔烃的物理性质和化学性质

烷烃烯烃(重点)炔烃 通式C n H 2n+2 全部单键C n H 2n 只有一个双键C n H 2n-2 只有一个三键 代表物CH 4CH 2 =CH 2 CH≡CH 电子式 熔沸点变化规律与烯炔烃类似。 常温下C1~C4为气态, C5~C16为液态。C17以上 为固态。碳原子数越多,熔沸点越 高;相同碳原子数,支链越 多,熔沸点越低。 碳原子数越多,熔沸点越 高;相同碳原子数,支链 越多,熔沸点越低。 溶解性不溶于水,易溶于有机溶 剂不溶于水,易溶于有机溶剂不溶于水,易溶于有机溶 剂 密度碳原子数越多,密度越大, 但始终小于水的密度。碳原子数越多,密度越大, 但始终小于水的密度。 碳原子数越多,密度越大, 但始终小于水的密度。 化学性质概述较稳定,不与高锰酸钾或 者溴水发生反应,也不和 酸碱发生反应。 较活泼,易被酸性高锰酸钾 氧化并使其褪色;也可以和 溴水发生加成反应使其褪 色。 较活泼,易被酸性高锰酸 钾氧化并使其褪色;也可 以和溴水发生加成反应使 其褪色。 氧化反应C n H 2n+2 +(3n+1/2)O 2 →nCO 2 + (n+1)H 2 O C n H 2n +(3n/2)O 2 →nCO 2 +nH 2 O C n H 2n-2 +(3n-1/2)O 2 →nCO 2 +( n-1)H 2 O 燃烧现 象 火焰呈淡蓝色,安静燃烧。有黑烟产生,火焰明亮。有浓烟产生,火焰明亮。 取代反应或加成反 常温下与溴水或者溴的 CCl 4 溶液 常温下与溴水或者溴的 CCl 4 溶液 反应条件是光照,且要求CH≡CH+H 2 O

应卤族元素都必须是气态纯净物。这与烯烃炔烃的加 成反应条件不同。CH 2 =CH 2 OH(不稳定)→ CH 3 CHO (最后生成乙醛) 加聚反 应 无 实验室制法CaC 2 +2H 2 O→C 2 H 2 ↑+ Ca(OH) 2 特殊性质 或 用途CH 4? ?→ ? 高温C+2H2 C 16 H 34? ?→ ? 高温C8H18+ C8H16 一个大烷烃分子裂解成一 个小烷烃分子和一个烯烃 分子。 顺反异构,同侧为顺,异侧 为反。 乙炔俗名电石气,用于焊 接金属;乙烯用作催熟剂 和有机化工基本原料,甲 烷俗名天然气,用于燃料。 相同的物质发生有机反应,反应条件不同,生成的产物也不相同。以为例,铁的催化下,与液溴发生反应,生成、或;在光照条件下,与溴蒸气发生反应,生成;在有Ni做催化剂加热的条件下,与溴蒸气反应生成。

人卫有机化学5-2第二章--烷烃和环烷烃

第二章 烷烃和环烷烃 有机化合物(简称有机物)中有一类数量众多,组成上只含碳、氢两种元素的化合物,称为碳氢化合物,简称烃(hydrocarbon )。烃分子中的氢原子被其他种类原子或原子团替代后,衍生出许多其他类别的有机物。因此,烃可看成是有机物的母体,是最简单的一类有机物。根据结构的不同,烃可分为如下若干种类。 烃在自然界中主要存在于天然气、石油和煤炭中,是古老生物埋藏于地下经历特殊地质作用形成的,是不可再生的宝贵资源,是社会经济发展的主要能源物质,也是合成各类生活用品和临床药物的基础原料。本章讨论两类饱和烃——烷烃和环烷烃。 第一节 烷烃 分子中碳原子彼此连接成开放的链状结构的烃称为开链烃,因其结构与人不饱和开链烃 烃 饱和开链烃—烷烃 脂环烃(环烷烃、环烯烃等) 闭链烃 (环烃) 开链烃 (脂肪烃) 芳香烃 烯烃 炔烃

体脂肪酸链状结构相似又称脂肪烃,具有这种结构特点的有机物统称脂肪族化合物。分子中原子间均以单键连接的开链烃称为饱和开链烃,简称烷烃(alkane)。 一、烷烃的结构、分类和命名 (一)烷烃的结构 1.甲烷分子结构甲烷是家用天然气的主要成分,也是农村沼气和煤矿瓦斯的主要成分,广泛存在于自然界中,是最简单的烷烃。 甲烷分子式是CH ,由一个碳原子与四个氢原子分别共用一对电子,以四个 4 共价单键结合而成。如下图2-1(a)所示。 图2-1 甲烷分子结构示意图 结构式并不能反映甲烷分子中的五个原子在空间的位置关系。原子的空间位置关系属于分子结构的一部分,因而也是决定该物质性质的重要因素。化学学科常借助球棍模型来形象地表示有机物分子的空间结构(不同颜色和大小的球表示不同原子,小棍表示共价键)。根据现代物理方法研究结果表明,甲烷分子空间结构如图2-1(b)所示。但是球棍模型这种表示书写起来极不方便,要将甲烷的立体结构在纸平面上表示出来,常通过实线和虚线来实现。如图2-1(c)所示,虚线表示在纸平面后方,远离观察者,粗实线(楔形)表示在纸平面前方,靠近观察者,实线表示在纸平面上,这种表示方式称透视式。 将甲烷透视式中的每两个原子用线连接起来,甲烷在空间形成四面体。根据现代物理方法测定,甲烷分子为正四面体结构,碳原子处于四面体中心,四个氢原子位于四面体四个顶点。四个碳氢键的键长都为0.109 nm,键能为414.9kJ?mol-1,所有H-C-H的键角都是109.5o。 碳原子核外价电子层结构为2s22p2,按照经典价键理论,共价键的形成是电子配对的过程。碳原子价电子层上只有两个单电子,因而碳原子应该只能形

烷烃的化学性质综合练习题(附答案)

烷烃的化学性质综合练习题 一、单选题 1.如图是常见的四种有机物的比例模型示意图。下列说法正确的是( ) A.甲能使酸性高锰酸钾溶液褪色 B.乙可与稀溴水发生取代反应使溴水褪色 C.丙在铁作催化剂条件下与溴水发生取代反应 D.丁在浓硫酸、加热条件下可与乙酸发生取代反应(酯化反应) 2.下列有关甲烷的说法中错误的是( ) A.采煤矿井中的甲烷气体是植物残体经微生物发酵而来的 B.天然气的主要成分是甲烷 C.甲烷燃料电池、硅太阳能电池都利用了原电池原理 D.甲烷与氯气发生取代反应所生成的产物四氯甲烷是一种效率较高的灭火剂 3.在光照的条件下,将1mol甲烷与一定量的氯气充分混合,经过一段时间,甲烷和氯气均无剩余,生成一氯甲烷、二氯甲烷、三氯甲烷、四氯化碳和氯化氢,若已知生成的二氯甲烷、三氯甲烷、四氯化碳的物质的量分别为X mol,Y mol,Z mol,该反应中生成HCl的物质的量是( ) A.(1+X+2Y+3Z)mol B.(X+Y+Z)mol C.(2X+3Y+4Z)mol D.(1-X-Y-Z)mol 4.甲烷是天然气的主要成分,是一种高效、低耗、污染小的清洁能源。下列有关甲烷的说法正确的是( ) ①甲烷是一种正四面体结构的分子 ②物质的量1:1的甲烷与氯气发生取代反应时,生成物只有CH3Cl和HCl ③0.5 mol甲烷完全燃烧时消耗氧气最多为1 mol ④甲烷分子中的所有原子均满足最外层8电子结构 A.①② B.③④ C.①③ D.②④ 5.甲烷是天然气的主要成分,下列有关甲烷的说法不正确的是( ) A.甲烷是无色、无味,密度比空气小,极难溶于水的气体 B.甲烷化学性质比较稳定,不能被酸性高锰酸钾氧化 C.甲烷与氯气生成四种氯代甲烷的反应都是取代反应 D.燃烧相同体积的天然气和管道煤气(主要成分是CO、H2,体积比为1:1),后者消耗氧气多 6、下列关于甲烷结构的说法中正确的是( ) A.甲烷的分子式是CH4,5个原子共面 B.甲烷分子中,碳原子和氢原子形成了4个不完全相同的碳氢共价键 C.甲烷分子的空间构型属于正四面体结构 D.甲烷中的任意三个原子都不共面 7.一氯代物的同分异体有两种,二氯代物的同分异构体四种的烷烃是() A.甲烷 B.丙烷 C.丁烷 D.环丁烷 8.下列叙述不正确的是( )

烷烃的命名

第二节烷烃 第二课时 永昌四中化学教研组 王作宏 教学目标: 知识与技能: 1.分析烷烃中碳原子和氢原子等的立体位置关系 2.了解烷烃的简单命名法; 3.掌握烷烃的系统命名法。 过程与方法: 学会由名称判断命名正误的技巧。 情感、态度、价值观: 通过安排学生先看书、后练习、再讲评的教学方法,培养学生的自学能力,突出学生的主体地位,鼓励学生发现问题,磨炼学生的意志。 教学重点、难点 烷烃的系统命名法。 烷烃系统命名法—先看书、后练习(增加感性认识)、再讲评并归纳(建立理性认识)。练习分层设计,分类要求。讲评针对实际,归纳突出重点。 教学过程 【引言】前边我们把含有一个碳原子的烷烃分子叫甲烷,含二个和三个碳原子的烷烃分子称为乙烷和丙烷,又把四个碳原子的两种烷烃分子分别叫做正丁烷和异丁烷等,这些就像有些同学除了学名之外还曾有过小名一样,下面就来讨论有关烷烃分子的命名。 板书:三、烷烃的命名 [设疑]什么叫烷烃的习惯命名法? [生](以学习小组为单位自学、讨论、总结后由一名学生代表回答):根据分子里所含碳原子数目来进行的命名,就叫习惯命名法。 [板书]1.习惯命名法 [问]习惯命名法的基本原则有哪些? [生]碳原子数后加一个“烷”字,就是简单烷烃的名称,碳原子的表示方法:①碳原子在1~10之间,用甲、乙、丙、丁、戊、己、庚、辛、壬、癸表示;②碳原子数大于10时,用实际碳原子数表示,如C6H14叫己烷,C17H36叫十七烷。 [问]若存在同分异构体时如何解决? [生]为了区别同分异构体的名称,可以根据分子中支链数目的多少以“正”“异”“新”等来区别,如戊烷的三种同分异构体分别叫做正戊烷、异戊烷、新戊烷。

桥环 螺环烷烃的命名

桥环、螺环烷烃的命名 桥环烷烃的命名 桥环烷烃(bridged hydrocarbon)是指共用两个或两个以上碳原子的多环烷烃,共用的碳原子称为桥头碳(bridgehead carbon),两个桥头碳之间可以是碳链,也可以是一个键,称为桥。将桥环烃变为链形化合物时,要断裂碳链,如需断两次的桥环烃称为二环(bicyclo),断三次的称三环(tricyclo)等等,然后将桥头碳之间的碳原子数(不包括桥头碳)由多到少顺序列在方括弧内,数字之间在右下角用圆点隔开,最后写上包括桥头碳在内的桥环烃碳原子总数的烷烃的名称。如桥环烃上有取代基,则列在整个名称的前面,桥环烃的编号是从第一个桥头碳开始,从最长的桥编到第二个桥头碳,再沿次长的桥回到第一个桥头碳,再按桥渐短的次序将其余的桥编号,如编号可以选择,则使取代基的位号尽可能最小: 如上式三环烃中,在2,6位中间无碳原子,因此用零表示,在零的右上角标明位号,位号中间用逗号隔开。

对于一些结构复杂的桥环烷烃,常用俗名。 螺环烷烃的命名 螺环烷烃(spirocyclic hydrocarbon)是指单环之间共用一个碳原子的多环烃,共用的碳原子称为螺原子(spiro atom)。螺环的编号是从螺原子上的小环开始顺序编号,由第一个环顺序编到第二个环,命名时先写词头螺,再在方括弧内按编号顺序写出除螺原子外的环碳原子数,数字之间用圆点隔开,最后写出包括螺原子在内的碳原子数的烷烃名称,如有取代基,在编号时应使取代基位号最小,取代基位号及名称列在整个名称的最前面: 螺[5.5]十一烷分子对称,可合并命名,称为螺[二环己烷](spirobicyclohexane)。

环烷烃命名

2.3.2 环烷烃的命名

单环烷烃的命名 A. 当支链不复杂时,以环烷烃为母体 1,2-dimethylcyclopentane 1,2-二甲基环戊烷 1-ethyl-3-methylcyclopentane 1-甲基-3-乙基环戊烷

单环烷烃的命名methylcyclopentane 2-ethyl-4-methyl-1-propylcycloheptane 甲基环戊烷 4-甲基-2-乙基-1-丙基环己烷A. 当支链不复杂时,以环烷烃为母体 1-ethyl-3-methylcyclopentane 1,2-dimethylcyclopentane 1,2-二甲基环戊烷1-甲基-3-乙基环戊烷

B. 当支链较复杂或不易命名时,以环烷基为取代基 3-cyclohexylhexane 3-环己基己烷 C. 两环相连时 Cyclopropylcyclohexane 环丙基环己烷Cyclopropylcyclopropane 环丙基环丙烷

多环烷烃的命名 A. Spiro cycloalkanes 螺环烃 1)选母体:根据成环的总碳原子数,称为“螺某烷”。 2)编号:从小环开始;从第一个非螺原子开始。3)书写:先写词头“螺”方括号内沿着编号方向写出每个环中除螺原子外的每个环的碳原子数数字之间用圆点隔开最后写出包括螺原子在内碳原子数的烷烃名称12 345678910螺[4.5]癸烷

“小原则”:在不违背螺环烃命名的“大”原则基础上,在编号时应尽可能令取代基的位号最小。 1 2 3 45 67 8 9 10 1-甲基螺[4.5]癸烷思考!

烷烃、烯烃、炔烃及苯知识点汇总

甲烷 、烷烃知识点 烃:仅含碳和氢两种元素的有机物称为碳氢化合物,又叫烃,在烃中最简单的是甲烷 一、甲烷的物理性质 无色、无味,难溶于水的,比空气轻的,能燃烧的气体,天然气、坑气、沼气等的主要成分均为甲烷。 收集甲烷时可以用排水法 二、甲烷的分子结构 甲烷的分子式:CH 4 电子式: 结构式: (用短线表示一对共用电子对的图式叫结构式) [模型展示]甲烷分子的球棍模型和比例模型。 得出结论:以碳原子为中心,四个氢原子为顶点的正四面体结构。甲烷是非极性分子,所以甲烷极难溶于水,这体现了相似相溶原理。 CH 4:正四面体 NH 3:三角锥形 三、甲烷的化学性质 1.甲烷的氧化反应 CH 4+2O 2??→?点燃 CO 2+2H 2O a.方程式的中间用的是“ ”(箭头)而不是“====”(等号), 主要是因为有机物参加的反应往往比较复杂,常有副反应发生。 b.火焰呈淡蓝色:CH 4、H 2、CO 、H 2S 在通常条件下,甲烷气体不能被酸性KMnO 4溶液氧化而且与强酸、强碱也不反应,所以可以说甲烷的化学性质是比较稳定的。但稳定是相对的,在一定条件下也可以与一些物质如Cl 2发生某些反应。 2.甲烷的取代反应 现象:①量筒内Cl 2的黄绿色逐渐变浅,最后消失。 ②量筒内壁出现了油状液滴。 ③量筒内水面上升。 ④量筒内产生白雾 [说明]在反应中CH 4分子里的1个H 原子被Cl 2分子里的1个Cl 原子所代替.. ,但是反应并没有停止,生成的一氯甲烷仍继续跟氯气作用,依次生成二氯甲烷、三氯甲烷和四氯

甲烷,反应如下: a.注意CH 4和Cl 2的反应不能用日光或其他强光直射,否则会因为发生如下剧烈的反应:CH 4+2Cl 2??→?强光C+4HCl 而爆炸。 b.在常温下,一氯甲烷为气体,其他三种都是液体,三氯甲烷(氯仿)和四氯甲烷(四氯化碳)是工业重要的溶剂,四氯化碳还是实验室里常用的溶剂、灭火剂,氯仿与四 氯化碳常温常压下的密度均大于1 g·cm -3,即比水重。 c.分析甲烷的四种氯代物的分子极性。但它们均不溶于水。 取代反应 有机物分子里的某些原子或原子团被其他原子或原子团所代替的反应 二、烷烃的结构和性质 1.烷烃的概念 a.分子里碳原子都以单键结合成链状; b.碳原子剩余的价键全部跟氢原子结合. 2. 烷烃的结构式和结构简式 甲烷 乙烷 丙烷 丁烷 结 构 式: 结构简式:CH 4 CH 3CH 3 CH 3CH 2CH 3 CH 3CH 2CH 2CH 3 /CH 3(CH 2)2CH 3 3.烷烃的物理性质 (a )随着分子里含碳原子数的增加,熔点、沸点逐渐升高,相对密度逐渐增大; (b )分子里碳原子数等于或小于4的烷烃。在常温常压下都是气体,其他烷烃在常温常压下都是液体或固体; (c )烷烃的相对密度小于水的密度。 (d )支链越多熔沸点越低。 (2)烷烃分子均为非极性分子,故一般不溶于水,而易溶于有机溶剂,液态烷烃本身就是良好的有机溶剂。

烷烃烯烃和炔烃的物理性质和化学性质原创

烷烃烯烃(重点)炔烃 通式C n H2n+2 全部单键C n H2n只有一个双键C n H2n-2 只有一个三键代表物CH4CH2=CH2C H≡CH 电子式 熔沸点变化规律与烯炔烃类似。常温下 C1~C4为气态,C5~C16为液态。 C17以上为固态。碳原子数越多,熔沸点越高;相同 碳原子数,支链越多,熔沸点越低。 碳原子数越多,熔沸点越高;相 同碳原子数,支链越多,熔沸点 越低。 溶解性不溶于水,易溶于有机溶剂不溶于水,易溶于有机溶剂不溶于水,易溶于有机溶剂 密度碳原子数越多,密度越大,但始 终小于水的密度。碳原子数越多,密度越大,但始终 小于水的密度。 碳原子数越多,密度越大,但始 终小于水的密度。 化学性质概述较稳定,不与高锰酸钾或者溴水 发生反应,也不和酸碱发生反 应。 较活泼,易被酸性高锰酸钾氧化并 使其褪色;也可以和溴水发生加成 反应使其褪色。 较活泼,易被酸性高锰酸钾氧化 并使其褪色;也可以和溴水发生 加成反应使其褪色。 氧化反应C n H2n+2+(3n+1/2)O2→nCO2+(n+ 1)H2O C n H2n+(3n/2)O2→nCO2+nH2O C n H2n-2+(3n-1/2)O2→nCO2+(n-1) H2O 燃烧现象火焰呈淡蓝色,安静燃烧。有黑烟产生,火焰明亮。有浓烟产生,火焰明亮。 取代反应 或 加成反应 常温下与溴水或者溴的CCl4溶液常温下与溴水或者溴的CCl4溶 液 反应条件是光照,且要求卤族元 素都必须是气态纯净物。这与烯 烃炔烃的加成反应条件不同。 CH≡CH+H2O CH2=CH2OH(不稳定)→ CH3CHO(最后生成乙醛) 加聚反应无 实验室制 法 CaC2+2H2O→C2H2↑+Ca(OH)2 特殊性质或 用途CH4? ?→ ? 高温C+2H2 C16H34? ?→ ? 高温C8H18+ C8H16 一个大烷烃分子裂解成一个小 烷烃分子和一个烯烃分子。 顺反异构,同侧为顺,异侧为反。乙炔俗名电石气,用于焊接金 属;乙烯用作催熟剂和有机化工 基本原料,甲烷俗名天然气,用 于燃料。 相同的物质发生有机反应,反应条件不同,生成的产物也不相同。以为例,铁的催化下,与液溴发生反应,生成、或;在光照条件下,与溴蒸气发生反应,生成;在有Ni做催化剂加热的条件下,与溴蒸气反应生成。

环烷烃命名规则及例题

环烷烃命名规则及例题 一、单环烷命名 1.基本与烷同,加前缀“环”称为环某烷 2.环上只有一个取代基时,不必编号 3.多个取代基时,最小取代基所连的C编为1(优先顺序规则),其它取代基位置编号尽可能小(最低系列原则);位号取向需要符合两大规则的要求 4.简单环上连有较复杂C链,或同一C链上连接有几个脂环烃时,可将环当作取代基 二、螺环烷命名 1. 根据环上总碳数称为—螺[ ]某烷 2. 从小环中与螺原子相连的C开始编号,绕经螺原子,再由较大环回到螺原子 3. 尽可能使取代基处在最小位次 4. [ ]内注明各环中除螺原子外的碳原子数,由小到大排列,用圆点隔开 5. 取代基写于前 三、桥环烷命名 1. 根据环上总碳数称为——二环[ ]某烷 2. 从桥头碳起编,沿最长桥到达另一桥头,经次长桥回到第一桥头,最短桥最后编号 3. 尽可能使取代基处在最小的位次 4. [ ]中注明各桥中除桥头碳外的碳原子数,从大到小排列,用圆点分开 5. 取代基写于前 四、环己烷及取代环己烷优势构象的书写规则 1 (1)对位的C-C键相互平行(画Z 字形) (2)每碳各有一个C-H在垂直方向,峰上谷下 (3)每碳各另有一个C-H分别三左三右(左左右右),且上下交替 2、单取代环己烷优势构象 CH3总是取代在e键上。例如:甲基环己烷优势构象:

3、多取代环己烷优势构象 (1)取代基尽量在 e 键上 (2)体积大的取代基尽量在 e 键上(3)同时要满足顺反异构和位置要求 例如:反-1-甲基-3-叔丁基环己烷优势构象: C(CH3)3 CH3 五、例题 1、 1 2 3 4 5 6 1,5-二甲基-2-叔丁基环己烷 2、1 2 3 4 6 1,2-二甲基-3-叔丁基环己烷 3、 1 2 3 4 5 6 1-甲基-2-乙基-6-叔丁基环己烷 4、(CH2)4CH3 环丁基戊烷(戊基环丁烷) 5、H2C CH2 1,2-二环己基乙烷 6、 1 2 3 4 6 5 Cl 7 1,1-二甲基-3-氯环庚烷 7、 1 2 3 4 5 6 7 8螺[3.4]辛烷

第二章 烷烃和环烷烃

第二章烷烃和环烷烃 1.写出只有伯氢原子,分子式为C8H18烷烃的结构式。 2.为什么没有季氢原子? 3.命名下列化合物。 4.写出下列烷烃或环烷烃的结构式 ⑴不含有仲碳原子的4碳烷烃。 ⑵具有12个等性氢原子、分子式为C5H12的烷烃。 ⑶分子中各类氢原子数之比为:1°H:2°H:3°H = 6:1:1,分子式为C7H16的烷烃。 ⑷只有1个伯碳原子、分子式为C7H14的环烷烃。写出所有可能的环烷烃的结构式并加以命名。 5.化合物2,2,4-三甲基己烷分子中的碳原子,各属于哪一类型(伯、仲、叔、季)碳原子? 6.元素分析得知含碳84.2%、含氢15.8%,相对分子质量为114的烷烃分子中,所有的氢原子都是等性的。写出该烷烃的分子式和结构式,并用系统命名法命名。 7.将下列化合物按沸点降低的顺序排列 ⑴丁烷⑵己烷 3 ⑶-甲基戊烷 ⑸-二甲基丁烷⑹环己烷 ⑷-甲基丁烷 2,3 2 8.按稳定性从大到小的次序,用Newman投影式表示丁烷以C2—C3键为轴旋转的4种典型构象式。 9.化合物A的分子式为C6H12,室温下能使溴的四氯化碳溶液褪色,但不能使高锰酸钾溶液褪色。A氢化得2,3-二甲基丁烷,与HBr反应得化合物B(C6H13Br)。写出化合物A 和B的结构式。 10.写出下列化合物的构象异构体,并指出较稳定的构象。 (1)异丙基环己烷(2)1-氯环己烷 11.将下列自由基按稳定性从大到小的次序排列。 12.为什么凡士林在医药上可用作软膏的基质?

13.完成下列反应式 14.写出下列药物的构象。 (1)镇痛药哌替啶(杜冷丁,Dolantin)的主要代谢产物哌替啶酸的结构为: 写出哌替啶酸的构象(—COOH在e键的构象)。 (2)促动力新药西沙必利(Cisapride)的结构为: 写出西沙必利的优势构象。 15.体内的抗坏血酸可使α-生育酚自由基还原再生为α-生育酚,同时抗坏血酸转变为抗坏血酸自由基。完成上述体内的自由基反应。 16.环己烷与氯在光或热的条件下,可生成一氯环己烷的反应是自由基的链反应。写出链引发、链增长、链终止的各步反应式。 17.在C6H14的构造异构体中,哪几种异构体不能用普通命名法命名。 18.试写出下列烷基的名称。 (1)CH3CH2 CH2 CH2― (2)(CH3)2CH―CH2―CH2― 19.试比较(1)丁烷、丙醇和丙胺的沸点;(2)丁烷、甲基乙基醚CH3―O―CH2CH3和丙醇在水中的溶解度。 20.试推测(1)辛烷(2)2,2―二甲基己烷(3)新辛烷和(4)2,2,3,3―四甲基丁烷燃烧热的大小。 21.(1)写出的反应机理。 (2)对于上式反应1940年前人们曾设想过下列机理,但没有被人们普遍认可,试说明可能的原因。 (3)为什么在引发阶段不一定先由乙烷产生CH3·,而是由Cl2产生Cl·? 22.等摩尔的新戊烷和乙烷的混合物进行氯代反应,一氯代反应产生氯代新戊烷[(CH3)3CCH2Cl]和氯乙烷的比例为2.3:1,比较新戊烷和乙烷中1°H的活性。

环烷烃的命名

环烷烃的命名 环烷烃的命名 环烷烃,属于有机化合物,因为仅由氢(H)和碳(C)元素组成,故又属于烃类。又因为其仅由单键连接,构成如环状,故得名。环烷烃的化学通式为 CH,n为碳原子n2(n+1-g)数,g为环的数量。只有单环的环烷烃的命名与其同碳原子数的链状烯烃相似,如:环丙烷、环丁烷、环戊烷、环己烷等,超过20个碳的一般被称为“环石蜡”。 按环的大小,环烷烃可被分为小、中、大三类。环丙烷、环丁烷视作小的。常见的环戊烷、环己烷、环庚烷以及环辛烷至环十三烷是中等大小的,更大的则被视为大的环烷烃。 首先确定其为环烷烃,并观察其有几个碳原子,则命名为环几烃。此后再加上卤素、甲基等取代基进行命名。 多环环烷烃的命名法: 除非有俗名,否则多环环烷烃如桥环烷烃、螺环烷烃的命名较为复杂。名字包括表示环数量的前缀(如“二环”)、各环内碳原子总数的后缀以及表示各端点之间碳原子数的数字前缀,表示于中括号内。多个环公用的碳原子,即桥头碳不计入内。 例一: 二环[3.2.0]庚烷 该环烷烃总碳数为七,由一个五元环及一个四元环,共两个环组成,故词尾为“庚烷”,词头为“二环”。两个被共用的碳原子间有三个连接路线:一为五元环的部分,共三个碳(两个桥头碳不计入内,下同);二为四元环的部分,共二个碳;三为两环之间共用的边线,该物质由两桥头碳直接连结,中间没有碳。由此得出中括号内的数字(以降序表示数字之间用点分隔)。故上图的环烷烃为二环[3.2.0]庚烷,而数字的个数总比环数多一个(在此有两个环及三个数字)。“[3.2.0]二环庚烷”亦可,但环上有取代基时“二环[3.2.0]庚烷”有保留前面的位置的好处,方便加上“2,3-二氯”或“3,3-二甲基”等含数字的前缀,以符合IUPAC命名常规。 例二: 二环[2.2. 1]庚烷(俗名降冰片烷) 上图环烷烃总碳数为七,全为单键,词尾为庚烷;两共用碳间一个碳原子连接着,故词

烷烃烯烃炔烃知识点总结

第一节 脂肪烃 什么样的烃是烷烃呢?请大家回忆一下。 一、烷烃 1、结构特点和通式:仅含C —C 键和C —H 键的饱和链烃,又叫烷烃。(若C —C 连成环状,称为环烷烃。) 烷烃的通式:C n H 2n+2 (n ≥1) 接下来大家通过下表中给出的数据,仔细观察、思考、总结,看自己能得到什么信息? 表2—1 部分烷烃的沸点和相对密度 名称 结构简式 沸点/oC 相对密度 甲烷 CH 4 -164 0.466 乙烷 CH 3CH 3 -88.6 0.572 丁烷 CH 3(CH 2) 2CH 3 -0.5 0.578 (根据上表总结出烷烃的物理性质的递变规律) 2、物理性质 烷烃的物理性质随着分子中碳原子数的递增,呈规律性变化,沸点逐渐升高,相对密度逐渐增大;常温下的存在状态,也由气态(n ≤4)逐渐过渡到液态、固态。还有,烷烃的密度比水小,不溶于水,易溶于有 我们知道同系物的结构相似,相似的结构决定了其他烷烃具有与甲烷相似的化学性质。 3、化学性质(与甲烷相似) (1 )取代反应 如:CH 3CH 3 + Cl 2 → CH 3CH 2Cl + HCl (2)氧化反应 C n H 2n+2 + — O 2 → nCO 2 +(n+1)H 2O 烷烃不能使酸性高锰酸钾溶液褪色 接下来大家回忆一下乙烯的结构和性质,便于进一步学习烯烃。 二、烯烃 1、概念:分子里含有碳碳双键的不饱和链烃叫做烯烃。 通式:C n H 2n (n ≥2) 例: 乙烯 丙烯 1-丁烯 2-丁烯 师:请大家根据下表总结出烯烃的物理性质的递变规律。 表2—1 部分烯烃的沸点和相对密度 名称 结构简式 沸点/oC 相对密度 乙烯 CH 2=CH 2 -103.7 0.566 丙烯 CH 2=CHCH 3 -47.4 0.519 (根据上表总结出烯烃的物理性质的递变规律) 2、物理性质(变化规律与烷烃相似) 烯烃结构上的相似性决定了它们具有与乙烯相似的化学性质。 3、化学性质(与乙烯相似) (1)烯烃的加成反应:(要求学生练习) ;1,2 一二溴丙烷 ;丙烷 2——卤丙烷 (简单介绍不对称加称规则) (2) (3)加聚反应: 聚丙烯 光照 3n+1 2 点燃

第二章 烷烃和环烷烃最终版

第一章 烷烃和环烷烃 一、烷烃 1.烷烃的命名:普通命名法(异构词头用词头“正”、“异”和“新”等区分) 系统命名法:(1)选主链:碳链最长 (2)编号:“最低系列”原则是:逐个比较两种编号法中表示取代基位置的数字,最先遇到取代基位置最小者,定为最低系列. (3)书写表达:次序规则(p19) 小练习:1、用系统命名法命名下列有机物: 2、根据名称写出下列有机物的结构简式,并判断下列有机物命名是否正确,如不 正确,指出错误原因,然后再写出正确命名 (1)2,2,3,3-四甲基戊烷 (2)3,4-二甲基-4-乙基庚烷 (3)2,5-二甲基庚烷 (4)2,3-二甲基-6-乙基辛烷 (5)3,3-二甲基丁烷 (6)3-甲基-2-乙基戊烷 2.烷烃的分子结构 ① 烷烃的构象和构象异构体 ② 交叉式和重叠式构象(最不稳定) ③ 透视式或纽曼投影式 小练习: 以C2与C3的σ键为旋转轴,试分别画出2,3-二甲基丁烷和2,2,3,3-四甲基丁烷的典型构象式,并指出哪一个为其最稳定的构象式。 1)烷烃的物理性质: a. C1~ C4为气态,C5~ C17为液态,C17以上为固态 b. 沸点随相对分子质量增大而增大 CH 3— CH 2 —CH 2 —CH CH 2 —CH 3 —CH 3 CH 3— CH 3 CH 3 —CH 3 C CH 3— C H 2 —CH —CH 3 CH 3

c.相对分子质量相同、支链多、沸点低。 d.基本上随分子量的增加而增加 参阅物理常数表,试推测下列化合物沸点高低的一般顺序。 (1) (A) 正庚烷 (B) 正己烷 (C) 2-甲基戊烷 (D) 2,2-二甲基丁烷 (E) 正癸烷 (2) (A) 丙烷 (B) 环丙烷 (C) 正丁烷 (D) 环丁烷 (E) 环戊烷 (F) 环己烷 (G) 正己烷 (H) 正戊烷 (3) (A) 甲基环戊烷 (B) 甲基环己烷 (C) 环己烷 (D) 环庚烷 2)烷烃的化学性质:(从物质的结构来判断) a.甲烷的卤代反应:(氯代和溴代反应,反应速率:氯代 >溴代)自由基取代 b.其它烷烃的卤代反应(一卤代):反应活性:3o H > 2o H > 1o H > CH4 c.自由基的相对稳定性:3o > 2o > 1o,越是稳定的自由基,越容易形成。 小练习:1.已知烷烃的分子式为C5H12,根据氯化反应产物的不同,试推测各烷烃的构造,并写出其构造式。 (1)一元氯代产物只能有一种 (2)一元氯代产物可以有三种 (3)一元氯代产物可以有四种 (4)二元氯代产物只可能有两种 2.将下列的自由基按稳定性大小排列成序。 ⑴⑵⑶⑷ 二、环烷烃 1、环烷烃的命名和类型 (一)单环烷烃(注意支链、顺反异构) (二)多环烷烃(桥环和螺环的命名) ①桥环:环的数目[桥头间的碳原子数]某烷,例:二环[4. 4. 0]癸烷 ②螺环:螺[除螺C外的碳原子数]某烷,例:螺[4. 5]癸烷 小练习:1、给下列环烃命名 CH3CH3CHCH2CH2 CH3 CH3CCH2CH3 CH3 CH3CHCHCH3 CH3 CH 3 CH 3 H 3 C

[烯烃的化学性质]烯烃的化学性质归纳

[烯烃的化学性质]烯烃的化学性质归纳 3.1.4 烯烃的化学性质 Chemical Properties of Alkenes 烯烃的化学性质和烷烃不同。它的分子中存在碳碳双键,化学活泼性大,烯烃的大部分反应发生在碳碳双键上,所以碳碳双键是烯烃的官能团。和双键碳原子直接相连的碳原子称为α-碳原子,α-碳原子上的α-氢也容易发生取代反应。 (1)加成反应。烯烃的加成反应,实质上是碳碳双键的加成反应,也就是打断一个π键,两个一价原子或基团分别加到双键碳原子上,形成两个新的σ键,从而生成饱和化合物。一般可表示为: Y Z 象这种由一个不饱和化合物和另一个化合物或单质作用,生成一个加成产物的反应,称为加成反应。 烯烃能与一系列加成试剂发生加成反应,例如氢、卤素、卤化氢、次卤酸、硫酸、水等。 a. 加氢。在催化剂铂、钯、镍等存在下,烯烃与氢气加成得到烷烃,这种反应称为催化氢化。

2 + H22 H H 它是一种还原反应。 从烯烃催化加氢生成烷烃的过程中可以看出,发生变化的不仅仅是π键,双键的两个碳原子的全部价键都发生了变化。碳原子的杂化轨道由sp2转变为sp3,分子的构型也从烯烃的平面排布结构变成四面体结构。所以,不要将复杂的化学变化简单地理解为一个价键的改变。 烯烃的催化氢化是一个放热反应。一摩尔烯烃氢化时所放出的热量称为氢化热。不同烯烃的氢化热是不同的。根据氢化热的不同,可以分析不同烯烃的相对稳定性。一般氢化热愈小,则烯烃愈稳定。例如: CHCH

3HHCH3 + H2+ H 2 CH3223 -1 CCH3 22 3 -1 可见,(E)-2-丁烯比(Z)-2-丁烯稳定。 烯烃的加氢反应是定量进行的,一个双键吸收1摩尔氢,常常用它来测定烯烃的双键数。

相关文档
最新文档