黄飞鹤 柱芳烃综述

黄飞鹤 柱芳烃综述
黄飞鹤 柱芳烃综述

Pillararenes,A New Class of Macrocycles for

Supramolecular Chemistry

MIN XUE,?YONG YANG,?XIAODONG CHI,?ZIBIN ZHANG,?

AND FEIHE HUANG*,?

?Department of Chemistry,Zhejiang University,Hangzhou310027,

People's Republic of China,and?Department of Chemistry,

Zhejiang Sci-Tech University,Hangzhou310018,People's Republic of China

RECEIVED ON DECEMBER31,2011

C O N S P E C T U S

B ecause of the importance of novel macrocycles in supramolecular science,interest in the preparation of these substances has

grown considerably.However,the discovery of a new class of macrocycles presents challenges because of the need for routes to further functionalization of these molecules and good hostàguest complexation.Furthermore,useful macrocylic hosts must be easily synthesized in large quantities.With these issues in mind,the recently discovered pillararenes attracted our attention.These macrocycles contain hydroquinone units linked by methylene bridges at para positions.Although the composition of pillararenes is similar to that of calixarenes,they have different structural characteristics.One conformationally stable member of this family is pillar[5]arene,which consists of five hydroquinone units.The symmetrical pillar architecture and electron-donating cavities of these macrocycles are particularly intriguing and afford them with some special and interesting physical,chemical,and hostàguest properties.Due to these features and their easy accessibility,pillararenes,especially pillar[5]arenes,have been actively studied and rapidly developed within the last4years.

In this Account,we provide a comprehensive overview of pillararene chemistry,summarizing our results along with related studies from other researchers.We describe strategies for the synthesis,isomerization,and functionalization of pillararenes.We also discuss their macrocyclic cavity sizes,their hostàguest properties,and their self-assembly into supramolecular polymers.The hydroxyl groups of the pillararenes can be modified at all positions or selectively on one or two positions.Through a variety of functionalizations,researchers have developed many pillararene derivatives that exhibit very interesting hostàguest properties both in organic solvents and in aqueous media.Guest molecules include electron acceptors such as viologen derivatives and (bis)imidazolium cations and alkyl chain derivatives such as n-hexane,alkanediamines,n-octyltrimethyl ammonium,and neutral bis(imidazole)derivatives.These hostàguest studies have led to the fabrication of(pseudo)rotaxanes or poly(pseudo)rotaxanes, supramolecular dimers or polymers,artificial transmembrane proton channels,fluorescent sensors,and other functional materials.

Introduction

It is of continuing interest to design and synthesize novel macrocyclic host molecules because of their important roles in supramolecular chemistry.The successful examples include crown ethers,1à3cyclodextrins,4cucurbiturils,5 calixarenes,6à8and their structurally similar scaffolds.9à11 Currently a new class of[1n]paracyclophanes12,13is grow-ing with similar composition but different structural features compared with calixarenes.This new class of macrocyclic molecules are made up of hydroquinone units linked by methylene bridges at para positions.Their descriptive name “pillararene”was coined by Tomoki Ogoshi in2008.14

Pillar[n]arenes(n=5,6,7)have some advantages compared with traditional hosts.First,they are

highly

https://www.360docs.net/doc/6f2013620.html,/accounts Vol.XXX,No.XX’XXXX’000–000’ACCOUNTS OF CHEMICAL RESEARCH’A 10.1021/ar2003418&XXXX American Chemical Society

B ’ACCOUNTS OF CHEMICAL RESEARCH

000–000

XXXX

Vol.XXX,No.XX

Pillararenes Xue et al.

symmetrical and rigid compared with crown ethers and calixarenes,and this affords their selective binding to guests.Second,they are easier to functionalize with different sub-stituents on all of the benzene rings or selectively on one or two positions than cucurbiturils,which enables tuning of their host àguest binding properties.Third,they are easily soluble in organic solvents,which makes them good and necessary supplements to water-soluble cucurbiturils and cyclodextrins with similar cavity sizes.These features and their rigid electron-rich cavity make them good candidates as host molecules for various electron-deficient guests or other neutral molecules such as viologen derivatives,(bis)-imidazolium cations,n -hexane,alkanediamines,n -octyl-trimethyl ammonium,and neutral bis(imidazole)deriva-tives.Pillararenes with good host àguest properties can further self-assemble and be applied in the fabrication of (pseudo)rotaxanes or poly(pseudo)rotaxanes,supramole-cular dimers or polymers,artificial transmembrane proton channels,fluorescent sensors,or other functional materials.Therefore,soon after their invention,this new type of host has attracted great attention and been reviewed recently.15

Now mainly based on our own work on pillararenes,as well as the work from other groups,we provide an Account of the growth of pillararene-based chemistry,which will highlight recent advances in the synthetic strategies,conformational characteristics,host àguest binding properties,and self-assembly of pillararenes.

Synthesis

For the synthesis of pillararenes,three strategies have thus far been employed (Scheme 1).The first is the Lewis acid catalyzed condensation of 1,4-dialkoxybenzene and paraformaldehyde.The second is the condensation of 1,4-dialkoxy-2,5-bis(alkoxymethyl)benzene catalyzed by p -toluenesulfonic acid.The third is cyclooligomerization of 2,5-dialkoxybenzyl alcohols or 2,5-dialkoxybenzyl bro-mides with an appropriate Lewis acid as the catalyst.With these methodologies,pillar[5]arenes,pillar[6]arenes and pillar[7]arenes can be obtained.In the word “pillar[n ]arene ”,the letter “n ”means the number of the hydroquinone units.For example,pillar[5]arene means a cyclopentamer with five hydroquinone units.

SCHEME 1.Three Synthetic

Strategies for Pillararenes

SCHEME 2.Synthesis of DMpillar[5]arene (2)and Pillar[5]arene (1)

Pillararenes Xue et al.

The synthesis of pillar[5]arene,1,was reported by Ogoshi et al.in2008.14By condensation of1,4-dimethoxybenzene with paraformaldehyde and an appropriate Lewis acid as a catalyst,the symmetrical1,4-dimethoxypillar[5]arene (DMpillar[5]arene),2,was selectively obtained(Scheme2). Various Lewis acids were used for this reaction,and with BF33O(C2H5)2,the cyclic pentamer was selectively obtained in22%yield.Then pillar[5]arene,1,was obtained by depro-tection of the methoxy groups of DMpillar[5]arene with a total yield of7%.Subsequently,to reveal the conformational characteristics of pillar[5]arene,the same research group synthesized a series of pillar[5]arene derivatives3à9with different alkyl groups and found that long alkyl substituents tended to suppress the cyclization reaction(Scheme3).16,17 Recently,our group invested effort in synthesis of copillar[5]arenes containing different repeating units.By using the above reaction conditions,three copillar[5]arenes 10à12were successfully prepared by co-oligomerization of different monomers(Scheme4).18From a mixture of4equiv of1,4-dimethoxybenzene(DMB)per equiv of1,4-dibutoxy-benzene(DBB),copillar[5]arene10was obtained in16%yield.By changing the ratio or the composition of the two comonomers,other copillar[5]arenes11and12were isolated.

By co-oligomerization of4equiv of DMB and1equiv of 1-methoxy-4-(octyloxy)benzene,copillar[5]arene13was obtained in9%yield(Scheme5).19This macrocycle was designed as a monomer for the fabrication of supramole-cular https://www.360docs.net/doc/6f2013620.html,ter,for the investigation of self-assembly behavior of pillararenes,copillar[5]arenes14and15were also designed and synthesized.20During this time period,a similar synthetic approach was conceived to prepare copillar[5]arene16,which was substituted with an azide group and functionalized through copper-catalyzed azideàalkyne cycloaddition(CuAAC;Scheme6).21à23More recently,more copillar[5]arenes were synthesized in high yields by Cao et al.via strategy1in Scheme1using FeCl3as the catalyst.24

Recently Ogoshi et al.improved the preparation of DMpillar-[5]arene2by using excess paraformaldehyde(3equiv of paraformaldehyde per equiv of1,4-dimethoxybenzene).As a result,they successfully obtained DMpillar[5]arene,2,in a

SCHEME3.Synthesis of Alkyl-Substituted Pillar[5]arenes

SCHEME4.Preparation of Copillar[5]arenes by Oligomerization of Different Hydroquinone

Diethers

Vol.XXX,No.XX’XXXX’000–000’ACCOUNTS OF CHEMICAL RESEARCH’C

D ’ACCOUNTS OF CHEMICAL RESEARCH

000–000

XXXX

Vol.XXX,No.XX

Pillararenes Xue et al.

short time (3min)and in high yield (71%)and pillar[5]arene,1,almost in quantitative yield.25Via this improved prepara-tion method,pillar[5]arenes carrying chiral substituents at both rims were synthesized to investigate their molecular chirality.26

On the other hand,Cao et al.changed the synthetic methodology and found a surprising reaction involving 1,4-diethoxy-2,5-bis(benzyloxymethyl)benzene with cataly-tic amounts of p -toluenesulfonic acid.27,28The yields of pillar[5]arenes were improved to 75%à95%.Furthermore,pillar[6]arenes 21and 22were prepared in 8%à11%(Scheme 7).

Most recently,another facile and efficient preparation of pillar[n ]arenes (n =5or 6)was achieved in our group via cyclooligomerization of 2,5-dialkoxybenzyl alcohols or 2,5-dialkoxybenzyl bromides with an appropriate Lewis acid as the catalyst at room temperature (Scheme 8).29The mechanism for this cyclooligomerization is presumed to be a Friedel àCrafts alkylation.30Using this method,pillar-[n ]arenes (n =5,6)having different alkoxy substituents were prepared successfully.

Functionalization

Functionalized pillararenes are necessary for molecular re-cognition and self-assembly.Pillararenes containing func-tional groups,such as alkyl-substituted pillar[5]arenes 16,17

SCHEME 6.Synthesis of Copillar[5]arenes 16à20

SCHEME 5.Synthesis of Copillar[5]arene 13and Chemical Structures of Copillar[5]arenes 14and

15

Vol.XXX,No.XX

XXXX

000–000

ACCOUNTS OF CHEMICAL RESEARCH ’E

Pillararenes Xue et al.

and copillar[5]arenes,18à24were synthesized directly from reactants with various substituents.In fact,the other method for the construction of functionalized pillararenes is based on chemical modification of the parent macrocyclic rings.31à38Take copillar[5]arene 16,for example (Scheme 6),the bromo group is reactive for chemical manipulations and was sub-stituted with an azide group to obtain compound 17and then functionalized through CuAAC to get copillar[5]arenes 18à20.

For parent macrocyclic pillar[n ]arenes,reactive and trans-formable hydroxyl groups,which provide a unique platform for further chemical modification and functionalization,ex-ist.Ogoshi et al.synthesized a new fluorescent pillar[5]arene 26modified with phenylethynyl groups (Scheme 9),which showed temperature-and solvent-responsive blue-green emission.31

By introduction of carboxylate anions at both rims,pillar-arenes can be made soluble in aqueous media.32By hydro-lysis of ethoxycarbonyl-substituted pillar[5]arene 27under basic conditions and neutralization to the ammounium salt,water-soluble pillar[5]arene 29was obtained (Scheme 10);its interesting host àguest properties in aqueous media will be described in the following section.

Other water-soluble pillar[5]arenes were investi-gated by the Hou group 33and our group.34An amine-substituted pillar[5]arene 33and a trimethylammonium-substituted pillar[5]arene 34have been synthesized through modification of pillar[5]arene 31,which was afforded by derivation from ethoxycarbonyl-substituted pillar[5]arene 27through several steps,or simply by con-densation of 1,4-dialkoxybenzene and paraformalde-hyde (Scheme 11).

SCHEME 7.Synthesis of

Pillar[5]arenes and

Pillar[6]arenes from 1,4-Diethoxy-2,5-bis(alkoxymethyl)benzene

SCHEME 8.Synthesis of Pillar[n ]arenes from the Condensation of 2,5-Dialkoxybenzyl Alcohols

SCHEME 9.Synthesis of DPhEpillar[5]arene,26

F ’ACCOUNTS OF CHEMICAL RESEARCH

000–000

XXXX

Vol.XXX,No.XX

Pillararenes Xue et al.

Functionalization of pillar[5]arene using “click ”chemistry provides an extremely simple method to prepare various functional group-modified pillar[5]arenes.21à23,35To attach functional groups via the click reaction,an intermediate alkynylated pillar[5]arene 35was prepared by etherification (Scheme 12).Then the coupling reactions between 35and azide compounds were examined to obtain the target products 36à38.

In addition to the mono-macrocyclic pillararene mole-cules,functionalization can also afford a pillararene dimer,which is composed of two pillararene units linked by a chain.36à38For this purpose,we have successfully synthe-sized pillar[5]arene dimer 39linked by a single aliphatic chain (Scheme 13).36It is a necessary supplement to the pillararene family and opens a way for studies of pillararene dimers.With a different methodology,other pillar[5]arene dimers were synthesized by linking monodeprotected pillar-[5]arene 39,40with different dihalide derivatives.37,38

Besides the functionalization of pillararenes,other reac-tions of pillararenes have been examined,for example,the

SCHEME

12.Synthesis of Pillar[5]arenes 36à38by Click Reactions

SCHEME 10.Synthesis of Water-Soluble Pillar[5]arene 29

SCHEME 11.Synthesis of Water-Soluble Pillar[5]arenes 33and 34

Vol.XXX,No.XX

XXXX

000–000

ACCOUNTS OF CHEMICAL RESEARCH ’G

Pillararenes Xue et al.

oxidation of pillar[5]arene 4.27When compound 4was treated with (NH 4)2[Ce(NO 3)6],the pillarquinone was pro-duced,representing the first cyclooligomeric quinone.41Another example is the reaction of DMpillar[5]arene,2,with N -bromosuccinimide (NBS)in acetone to afford bis(4-bromo-2,5-dimethoxyphenyl)-methane.Nitration of 2with nitric acid gave bis(4-nitro-2,5-dimethoxyphenyl)methane.42

Structures

Investigation of the structural features of novel hosts is extremely important because their structural features influence their host àguest binding properties.Being differ-ent from the basket-shaped structures of the meta -bridged

calixarenes,pillar[5]arenes have unique,symmetrical archi-tectures.43X-ray crystal structure of 1,4-dipropoxypillar-[5]arene (DPpillar[5]arene)40confirmed that 40was a pentagon from the upper view and a pillar structure from the side view (Figure 1).44The average angle between the two bridging carbon àcarbon bonds is 108°,which is very close to the normal bond angle of the sp 3carbon atom,109°280.Therefore,DPpillar[5]arene is conformationally stable.The diameter of the internal cavity of DPpillar-[5]arene was ~4.7?(Table 1),which is close

SCHEME 13.Synthesis of

Pillar[5]arene

Dimer

39

FIGURE 1.Crystal structures of P5(a,b)and P6(c,d)and the minimized energy structure of P7(e,f).Hydrogens were omitted for clarity.

TABLE 1.Calculated Structural Parameters for 40,41,and 42Based on van der Waals Radii of the Atoms

A c (?)

B c (?)H (?)d V (?3)e P5(40)a 4.713.57.8152P6(41)a 6.715.27.8302P7(42)b

8.7

16.9

7.8

493

Based on X-ray crystal structures reported here.Based on the minimized energy model of P7.c Based on the diameter of the inscribed circle or the circumcircle of the regular pentagon,the regular hexagon,or the regular heptagon.d Based on the distance between the two oxygen atoms on the same benzene ring.e Based on the volume of the regular pentagonal pillar,hexagonal pillar,or heptagonal pillar.

Pillararenes Xue et al.

to that of cucurbit[6]uril(~5.8?)45and R-cyclodextrin

(~4.7?).46

As shown by the crystal structure of DPpillar[6]arene41 reported by our group,44it has a hexagon-like cyclic struc-ture and the diameter of its internal cavity is~6.7?, analogous to cucurbit[7]uril(~7.3?)45andβ-cyclodextrin (~6.0?).46We also obtained the DPpillar[7]arene42.44With the minimized energy structure of42,it is found that DPpillar[7]arene has a heptagonal pillar structure and the diameter of its internal cavity is~8.7?,analogous to cucurbit[8]uril(~8.8?)45andγ-cyclodextrin(~7.5?).46 Cucurbiturils and cyclodextrins are usually insoluble in or-ganic solvents.Thus the organic solvent soluble pillararenes are good and necessary supplements to the corresponding cucurbiturils and cyclodextrins with similar cavity sizes.

Calixarenes have separable conformers due to the rota-tion of the phenolic unit.For pillararenes,which are also made up of phenolic units,conformational freedom still remains in their cavity.Up to now,all of the symmetric pillar[5]arenes have two equivalent most stable conforma-tions(pS and pR)in their crystal structures(Figure2).If they are conformationally fixed,the two conformers should be enantiomers.Therefore,investigation of the factors that affect the rotation of phenolic unit is not only helpful for understanding the interconversion between pS and pR forms26but also affords the route to control the rotational motion and subsequently obtain the isolation of the enantiomers.47On the other hand,if the hydroquinone unit was etherified with two different substituents,the pillarar-ene should not only have conformational isomers but also constitutional isomers.This is another aspect to investigate.

The rotational behavior of pillar[5]arenes largely de-pends on the intramolecular H-bonding interactions,substit-uents,temperature,solvent,and addition of the guest.Being different from the conformation of DMpillar[5]arene2,14 the flipping of two phenolic units in pillar[5]arene1was observed both in the solid state and in solution at low temperatures due to the intramolecular hydrogen bonds between OH groups and other interactions(Figure3).25,48A similar phenomenon involving intramolecular hydrogen bond effects on the conformational characteristics is ob-served in cyclodextrins.49

Furthermore,when pillar[5]arene,1,interacted with dioc-tylviologen salt and formed the hostàguest complex,the rotational movement was slow on the NMR time scale under à30°C and almost prohibited underà60°C.48In other words,the dioctylviologen salt acted as a“braking agent”for the rotation.

Modification of pillar[5]arene can also affect the con-formations.The conformational characteristics of the pillar[5]arene derivatives with alkyl groups of different lengths were investigated by variable-temperature1H NMR measurements.17As their length increased,the alkyl substituents packed at the upper and lower rims and thus lowered the conformational freedom of the pillar[5]arenes.17,18,32,35

As stated above,there may exist constitutional isomers if the pillar[5]arenes have different substituents at the two rims.It was demonstrated by us that the four constitu-tional isomers43à46of an non-symmetric pillar[5]arene (BMpillar[5]arene)can be prepared and successfully sepa-rated by column chromatography(Scheme14).28,50

HostàGuest Binding Properties

Pillar[n]arenes(n=5,6,7)have some advantages compared with traditional hosts.First,they are highly symmetrical and rigid compared with crown ethers and calixarenes,and this affords their selective binding to guests.Second,they are easier to functionalize with different substituents on the benzene rings than cucurbiturils,which enables tuning of their hostàguest binding properties.

Pillar[5]arene,1,without any modifications is composed of the electron-donor hydroquinone and has ionophores at both ends.Thus,it exhibits interesting hostàguest properties

FIGURE2.The pS-and pR-conformations of pillar[n]arenes.FIGURE3.Conformations of DMpillar[5]arene,2,and pillar[5]arene,1, in the crystalline state.Blue dashed lines denote the intramolecular

OàH333O hydrogen

bonds.

H’ACCOUNTS OF CHEMICAL RESEARCH’000–000’XXXX’Vol.XXX,No.XX

Vol.XXX,No.XX

XXXX

000–000

ACCOUNTS OF CHEMICAL RESEARCH

I

Pillararenes Xue et

al.

with electron-accepting molecules such as viologen and pyridinium derivatives,14,51,52imidazolium cations,53and bis(imidazolium)dications 54in organic media (Figure 4).The Ogoshi and Li groups have presented the binding behavior of paraquats and bis(pyridinium)derivatives by pillar[5]arene 1.14,51Li et al.have investigated the bind-ing modes and complexation stoichiometry for the two types of guests in detail and found that pillar[5]arene,1,formed 2:1external host àguest complexes with N ,N 0-dialkyl-4,40-bipyridiniums,while it forms 1:1pseudorotaxane-type inclusion complexes with methylene [à(CH 2)n à]-linked bis(pyridinium)derivatives possessing appropriate chain lengths.

Some alkyl-substituted pillar[5]arenes exhibit host àguest properties similar to pillar[5]arene,1.Take BMpillar[5]arene,for example;four constitutional isomers of BMpillar[5]arene 43à46were prepared by our group.50It is interesting that although the four isomers have the same equilateral penta-gonal pillar cavity,they have different arrangements of substituents,which determine their different binding abilities with n -octyltrimethyl ammonium hexafluoro-phosphate to form a [2]pseudorotaxane.Ogoshi et https://www.360docs.net/doc/6f2013620.html,ed the similar trimethyl ammonium moiety to prepare the monofunctionalized pillar[5]arene 47,which formed a

self-inclusion complex in CDCl 3,whereas in acetone-d 6dethreading of the guest moiety took place (Figure 5).39

Along with charge transfer interactions occurring be-tween the electron-rich cavities of the pillar[5]arenes and the encircled electron-deficient guest molecules,C àH 333πinteractions provide main driving forces for the formation of inclusion complexes,as confirmed by us during the

FIGURE 4.Structures of pillar[5]arene,1,and guest molecules.

FIGURE 5.Solvent-dependent supramolecular structural change of 47.

J ’ACCOUNTS OF CHEMICAL RESEARCH

000–000

XXXX

Vol.XXX,No.XX

Pillararenes Xue et al.

preparation of copillar[5]arenes.18We found interestingly that an n -hexane molecule was symmetrically included in the cavity of homopillar[5]arene 6or the copillar[5]arene 12to form a pseudorotaxane,driven by multiple C àH 333πinteractions (Figure 6).

Mainly based on C àH 333πinteractions,uncharged ali-phatic amines were encapsulated in the cavity of DMpillar-[5]arene 2recently.This binding motif was further explored in the preparation of a [2]rotaxane (Figure 7).21Furthermore,utilizing multiple C àH 333πinteractions and C àH 333O(N)hydrogen bonds,simple alkyl-substituted pillar[5]arenes

also form stable interpenetrated complexes with neutral bis(imidazole)guests (Figure 8).55

All of the above host àguest complexes are formed in organic media,which results from the poor solubility of pillar[5]arene in aqueous media and limits the develop-ment of host àguest chemistry of pillar[5]arene.In order to solve this problem,water-soluble pillar[5]arenes were prepared.32à34,56In 2010,Ogoshi et al.synthesized the water-soluble pillar[5]arene 29containing 10negatively charged carboxylate groups,which binds cationic viologen salts in water.Subsequently,the water-soluble pillar[5]arene 33containing neutral amino groups was prepared by Hou et al.;it encapsulates linear diacids in neutral,alkaline,and acidic conditions.

Recently a cationic pillar[5]arene 34bearing trimethy-lammonium groups on both two rims has been synthesized by us and revealed to bind sodium 1-octanesulfonate in aqueous media,forming a [2]pseudorataxane mainly driven by hydrophobic and electrostatic interactions (Figure 9).34With the negatively charged carboxylatopillar[5]arene 28,the binding behavior of substituted 1,4-bis(pyridinium)-butane derivatives has been investigated in aqueous phos-phate buffer solution,and in some cases [2]pseudoro-taxanes with large association constants (>105M à1)were formed.56

The association constants,K a (M à1),of pillar[5]arene derivatives and their typical guests are listed in Table 2.It is shown that the K a values of the pillar[5]arene hosts and the surveyed guests changed from 102to 106L/mol.Different driving forces between pillar[5]arenes and different guests such as charge transfer interactions,C àH 333πinteractions,hydrogen bonding interactions,and hydrophobic and

FIGURE 6.Views of the crystal structures of 6?n -C 6H 14(a,c),and 12?n -C 6H 14(b,d).Hydrogens on 6and 12were omitted for clarity;6and 12are red,oxygen atoms are green,and n -hexane molecules are blue.The purple dotted lines indicate C àH 333πinteractions.

FIGURE 7.Formation of a [2]rotaxane with DMpillar[5]arene 2as the ring

component.

Vol.XXX,No.XX

XXXX

000–000

ACCOUNTS OF CHEMICAL RESEARCH ’K

Pillararenes Xue et al.

electrostatic interactions,affect the association affinity.In addition,the K a values are also dependent on solvent,experimental method,and substituent groups on host or guest molecules.On the other hand,host àguest complexes with lower K a values might not limit their potential applications.57For example,the supramolecular polymer and mirror image cyclic dimer can be self-assembled driven by C àH 333πinteractions,which will be described in the following section.

Although many guest molecules have been investigated for pillar[5]arenes,the host àguest chemistry of pillar-[6]arenes and pillar[7]arenes has rarely been explored.We investigated the complexing properties of DIBpillar-[6]arene 43and DPpillar[6]arene 44with n -octyltrimethylam-monium hexafluorophosphate and found that both formed 1:1complexes in chloroform,while DIBpillar[5]arene,DPpillar[5]arene,and DPpillar[7]arene showed no or weak

complexation with the same guest due to their smaller or bigger cavity sizes.

Self-Assembly

The host àguest chemistry of pillar[5]arene with n -hexane can be used in the preparation of supramolecular poly-mers.19We designed and constructed linear supramolecu-lar polymers based on easily available copillararene mono-mers 13,driven by quadruple C àH 333πinteractions (Figure 10).It was demonstrated by a combination of various techniques that the formation of the supramole-cular polymer is highly dependent on the temperature and monomer concentration.After this work,two new copillar-[5]arenes,14and 15,were prepared.We found that 14forms a mirror image cyclic dimer in the solid state,while 15forms linear supramolecular structures,pS and pR separated arrays,in the solid state (Figure 11).This research

FIGURE 8.Representation of interpenetrated complexes between pillar[5]arenes and neutral guests.

FIGURE 9.The formation of a host àguest complex from pillar[5]arene 34and sodium 1-octanesulfonate in

water.

L ’ACCOUNTS OF CHEMICAL RESEARCH

000–000

XXXX

Vol.XXX,No.XX

Pillararenes Xue et al.

provides a facile approach to control the self-assembly mode of self-complementary copillar[5]arene monomers between cyclic dimers and linear supramolecular poly-mers.In addition,a self-complexing copillar[5]arene 20was reported recently.23

Based on the interactions between pillar[5]arene,1,and viologen units,new polypseudorotaxanes and poly-rotaxanes composed of pillar[5]arene,1,and viologen polymer were successfully prepared with extremely high yields by capping the chain ends with adamantyl moieties (Figure 12).58,59Besides its electron-donating property,pillar[5]arene 1also possesses reducing abil-ity,which was used to fabricate polyaniline-based poly-pseudorotaxanes.60

A new type of organic nanotubes has been assembled from pillar[5]arenes 1and 27in the solid state.61The water in the nanotubes of 27offer selective proton conductance.Subsequently,a new class of artificial transmembrane pro-ton channels from mono-and dimeric pillar[5]arene deriva-tives 27and 48have been developed by Hou and co-workers.62The new channels conduct protons through water in the pillar[5]arene backbones,the first examples of synthetic water-wire-based proton channels (Figure 13).Recently,based on monofunctionalized pillar[5]arene 19,a polymacrocycle that can self-assemble into a dy-namic,smart clicked surface was prepared.22This assem-bly can switch between vesicles and solid particles through exposure to visible and UV light.This means

TABLE 2.Association Constants (K a )for 1:1Inclusion Complexation of Pillar[5]arenes with Guests G1àG8

host àguest K a (M à1)solvent

method

1àG151(4.5(0.4)?102DMSO

UV/vis experiments 1àG254(3.1(0.5)?1031:1(CD 3)2CO/CDCl 31

H NMR experiments 2àG32170(10

CDCl 3

1

H NMR titration

2àG321(3.6(0.3)?1041:1MeCN/H 2O fluorescence experiments 4àG455(2.0(0.4)?104CDCl 31

H NMR experiments 43àG550(6.3(0.3)?103CDCl 31

H NMR titration

29àG632(8.2(1.7)?104H 2O fluorescence experiments 33àG733 1.5?104

D 2O 1

H NMR titration 34àG834(1.3(0.9)?104D 2O

1

H NMR titration

28àG156

(1.1(0.2)?106

aqueous phosphate buffer solution

fluorescence experiments

FIGURE 10.Structure of copillar[5]arene 13and two views of the linear supramolecular polymers in the solid

state.

Vol.XXX,No.XX

XXXX

000–000

ACCOUNTS OF CHEMICAL RESEARCH

M

Pillararenes Xue et al.

that photoresponsive pillararenes have potential applica-tions in UV sensors and functional materials.

Conclusions and Perspectives

As novel macrocyclic host molecules in supramolecular chemistry,pillararenes have attracted a remarkable level

of attention during the past few years.Since the discovery of convenient and practical methods for the syntheses of pillar[5]arenes,studies on their modification and develop-ment of the functions have been expanded.Thus a large number of diverse pillararenes are now readily available.The studies of pillararenes have focused not only on the

FIGURE 11.Ball-and-stick views of a mirror image cyclic dimer (a)from 14and a pS -supramolecular polymer (b)from 15in the solid state.Hydrogen atoms related to the C àH 333πinteractions and C àH 333O interactions are included.

FIGURE 12.A pillar[5]arene-based polyrotaxane.

FIGURE 13.Structure of 48and the artificial transmembrane proton

channel.

Pillararenes Xue et al.

shape and cavity sizes of the macrocycles but also on the rotation of the repeating units,which results in conforma-tional isomers and also sometimes constitutional isomers. Furthermore,the applications of pillararenes in hostàguest complexation with electron-deficient or neutral molecules and their self-assembly properties have been explored. These studies have not only afforded the basis and evidence for understanding this new generation of macrocycles but also provided new opportunities and challenges for further investigation as the chemistry of pillararenes is just in its infancy.For pillar[5]arenes,facile synthetic strategies pro-vide powerful tools to prepare numerous diverse functiona-lized pillar[5]arene derivatives and develop their potential applications in fabrication of molecular machines and de-vices and more sophisticated supramolecular architectures. On the other hand,discovery of new synthetic methodo-logies for pillar[6]arenes and pillar[7]arenes to improve their yields and thus development of their hostàguest chemistry and self-assembly properties can also be anticipated in the https://www.360docs.net/doc/6f2013620.html,st but not least,exploration of new members of pillararenes family such as pillar[8]arenes and expansion of their potential applications in supramolecular chemistry are also required in further investigation.

This work was supported by the National Natural Science Foun-dation of China(Grants20834004,91027006,and21125417), the Fundamental Research Funds for the Central Universities (Grant2012QNA3013),the National Basic Research Program (Grant2009CB930104),the China Postdoctoral Science Founda-tion(Grant2011M500988),and Zhejiang Provincial Natural Science Foundation of China(Grant R4100009).

BIOGRAPHICAL INFORMATION

Min Xue was born in China in1982.She obtained her B.S.in applied chemistry at Xi'an Jiaotong University in2005.Then she got her Ph.D.in chemistry from the Institute of Chemistry of the Chinese Academy of Sciences under the supervision of Prof.Chuan-Feng Chen in2010.After that she moved to the group of Prof.Javier de Mendoza at the Institute of Chemical Research of Catalonia(ICIQ)in Spain as a postdoctoral associate.In2011,she joined the laboratory of Prof.Feihe Huang at Zhejiang University as a postdoctoral associate.Her current research interests are synthesis and assembly of pillararenes,molecular recognition,and hostàguest chemistry. Yong Yang was born in China in1979.He obtained his B.S.in chemistry at Hunan University in2002.He then joined Prof. Chuan-Feng Chen's group at the Institute of Chemistry of the Chinese Academy of Sciences(ICCAS)to pursue his Ph.D.After obtaining his Ph.D.in2007,he continued his research at ICCAS as a research assistant professor.In2009,he moved to Prof.Javier de Mendoza's group at the Institute of Chemical Research of Catalonia (ICIQ)in Tarragona(Spain)as a postdoctoral associate.Since2011, he has worked as an independent PI at Zhejiang Sci-Tech Uni-versity.His current interest is the development and functionaliza-tion of hydrogen-bonding mediated self-assembly systems. Xiaodong Chi was born in China in1987.He obtained his B.S. degree in chemistry from Zhejiang Sci-Tech University in2010. Then he joined the laboratory of Prof.Feihe Huang at Zhejiang University to pursue his Ph.D.in supramolecular chemistry.His current research interests are focused on templated syntheses and water-soluble supramolecular polymers.

Zibin Zhang was born in China in1984.He received his B.S.and M.S.degrees in organic chemistry from Shanxi University.Then he joined the laboratory of Prof.Feihe Huang at Zhejiang University to pursue his Ph.D.in supramolecular chemistry in2009.His current research interests are pillararenes,supramolecular polymers,and related smart materials.

Feihe Huang was born in China in1973.He obtained his Ph.D.in Chemistry from Virginia Polytechnic Institute and State University (VT)under the guidance of Prof.Harry W.Gibson in March2005. Then he joined Prof.Peter J.Stang's group at the University of Utah as a postdoctoral associate.He became a Professor of Chemistry at Zhejiang University in December2005.His current research is focused on self-assemblies based on hostàguest molecular recognition.The awards he received up to now include the Chinese Government Award for Outstanding Self-Financed Students Abroad,Outstanding Ph.D.Dissertation Award from VT, the Thieme Chemistry Journals Award,the Outstanding Recent Graduate Alumnus Award from VT,and Humboldt Fellowship for Experienced Researchers.

FOOTNOTES

*To whom correspondence should be addressed.E-mail address:fhuang@https://www.360docs.net/doc/6f2013620.html,. The authors declare no competing financial interest.

REFERENCES

1Krakowiak,K.E.;Bradshaw,J.S.;Zamecka-Krakowiak,D.J.Synthesis of aza-crown ethers.Chem.Rev.1989,89,929–972.

2Bradshaw,J.S.;Izatt,R.M.Crown ethers:The search for selective ion ligating agents.Acc.

Chem.Res.1997,30,338–345.

3Gokel,G.W.;Leevy,W.M.;Weber,M.E.Crown ethers:Sensors for ions and molecular scaffolds for materials and biological models.Chem.Rev.2004,104,2723–2750.

4Harada,A.;Hashidzume,A.;Yamaguchi,H.;Takashima,Y.Polymeric rotaxanes.Chem.

Rev.2009,109,5974–6023.

5Bhasikuttan,A.C.;Pal,H.;Mohanty,J.Cucurbit[n]uril based supramolecular assemblies: Tunable physico-chemical properties and their https://www.360docs.net/doc/6f2013620.html,mun.2011,47, 9959–9971.

6Asfari,Z.;B€o hmer,V.;Harrowfield,J.;Vicens,J.;Saadioui,M.Presented at Calixarenes 2001,The Netherlands,2001.

7Gutsche,C.D.Calixarenes,An Introduction,2nd ed.;The Royal Society of Chemistry: Cambridge,U.K.,2008.

8Botana,E.;Da Silva,E.;Benet-Buchholz,J.;Ballester,P.;de Mendoza,J.Inclusion of cavitands and calix[4]arenes into a metallobridged para-(1H-imidazo[4,5-f][3,8]phenanthrolin-2-yl)-expanded calix[4]arene.Angew.Chem.,Int.Ed.2007,46,198–201.

9Morohashi,N.;Narumi,F.;Iki,N.;Hattori,T.;Miyano,S.Thiacalixarenes.Chem.Rev.2006, 106,5291–5316.

10Maes,W.;Dehaen,W.Oxacalix[n](het)arenes.Chem.Soc.Rev.2008,37,2393–2402. 11Wang,M.-X.Nitrogen and oxygen bridged calixaromatics:synthesis,structure,functio-nalization,and molecular recognition.Acc.Chem.Res.2012,45,182–195.

12Gribble,G.W.;Nutaitis,C.F.[1.1.1.1.1]Paracyclophane and[1.1.1.1.1.1]paracyclophane.

Tetrahedron Lett.1985,26,6023–6026.

N’ACCOUNTS OF CHEMICAL RESEARCH’000–000’XXXX’Vol.XXX,No.XX

Pillararenes Xue et al.

13Takemura,H.[1n]https://www.360docs.net/doc/6f2013620.html,.Chem.2009,13,1633–1653.

14Ogoshi,T.;Kanai,S.;Fujinami,S.;Yamagishi,T.A.;Nakamoto,Y.para-Bridged symmetrical pillar[5]arenes:Their Lewis acid catalyzed synthesis and hostàguest property.

J.Am.Chem.Soc.2008,130,5022–5023.

15Cragg,P.J.;Sharma,K.Pillar[5]arenes:Fascinating cyclophanes with a bright future.

Chem.Soc.Rev.2012,41,597–607.

16Ogoshi,T.;Kitajima,K.;Yamagishi,T.-a.;Nakamoto,Y.Synthesis and conformational characteristics of nonsymmetric pillar[5]https://www.360docs.net/doc/6f2013620.html,.Lett.2010,12,636–638.

17Ogoshi,T.;Kitajima,K.;Aoki,T.;Fujinami,S.;Yamagishi,T.-a.;Nakamoto,Y.Synthesis and conformational characteristics of alkyl-substituted pillar[5]https://www.360docs.net/doc/6f2013620.html,.Chem.2010,75, 3268–3273.

18Zhang,Z.;Xia,B.;Han,C.;Yu,Y.;Huang,F.Syntheses of copillar[5]arenes by co-oligomerization of different https://www.360docs.net/doc/6f2013620.html,.Lett.2010,12,3285–3287.

19Zhang,Z.;Luo,Y.;Chen,J.;Dong,S.;Yu,Y.;Ma,Z.;Huang,F.Formation of linear supramolecular polymers that is driven by CàH333πinteractions in solution and in the solid state.Angew.Chem.,Int.Ed.2011,50,1397–1401.

20Zhang,Z.;Yu,G.;Han,C.;Liu,J.;Ding,X.;Yu,Y.;Huang,F.Formation of a cyclic dimer containing two mirror image monomers in the solid state controlled by van der Waals forces.

Org.Lett.2011,13,4818–4821.

21Strutt,N.L.;Forgan,R.S.;Spruell,J.M.;Botros,Y.Y.;Stoddart,J.F.Monofunctionalized pillar[5]arene as a host for alkanediamines.J.Am.Chem.Soc.2011,133,5668–5671. 22Zhang,H.;Strutt,N.L.;Stoll,R.S.;Li,H.;Zhu,Z.;Stoddart,J.F.Dynamic clicked surfaces based on functionalised pillar[5]https://www.360docs.net/doc/6f2013620.html,mun.2011,47,11420–11422.

23Strutt,N.L.;Zhang,H.;Giesener,M.A.;Lei,J.;Stoddart,J.F.A self-complexing and self-assembling pillar[5]https://www.360docs.net/doc/6f2013620.html,mun.2012,48,1647–1649.

24Liu,L.;Cao,D.;Jin,Y.;Tao,H.;Kou,Y.;Meier,H.Efficient synthesis of copillar[5]arenes and their hostàguest properties with https://www.360docs.net/doc/6f2013620.html,.Biomol.Chem.2011,9,7007–7010.

25Ogoshi,T.;Aoki,T.;Kitajima,K.;Fujinami,S.;Yamagishi,T.-a.;Nakamoto,Y.Facile,rapid, and high-yield synthesis of pillar[5]arene from commercially available reagents and its X-ray crystal https://www.360docs.net/doc/6f2013620.html,.Chem.2011,76,328–331.

26Ogoshi,T.;Shiga,R.;Yamagishi,T.-a.;Nakamoto,Y.Planar-chiral pillar[5]arene:Chiral switches induced by multiexternal stimulus of temperature,solvents,and addition of achiral guest https://www.360docs.net/doc/6f2013620.html,.Chem.2011,76,618–622.

27Cao,D.;Kou,Y.;Liang,J.;Chen,Z.;Wang,L.;Meier,H.A facile and efficient preparation of pillararenes and a pillarquinone.Angew.Chem.,Int.Ed.2009,48,9721–9723.

28Kou,Y.;Tao,H.;Cao,D.;Fu,Z.;Schollmeyer,D.;Meier,H.Synthesis and conformational properties of nonsymmetric pillar[5]arenes and their acetonitrile inclusion compounds.Eur.

https://www.360docs.net/doc/6f2013620.html,.Chem.2010,75,6464–6470.

29Ma,Y.;Zhang,Z.;Ji,X.;Han,C.;He,J.;Zeper,A.;Chen,W.;Huang,F.Preparation of pillar[n]arenes(n=5or6)by cyclooligomerization of2,5-dialkoxybenzyl alcohols or 2,5-dialkoxybenzyl https://www.360docs.net/doc/6f2013620.html,.Chem.2011,27,5331–5335.

30Holler,M.;Allenbach,N.;Sonet,J.;Nierengarten,J.-F.The high yielding synthesis of pillar[5]arene under FriedelàCrafts conditions explained by dynamic covalent bond

https://www.360docs.net/doc/6f2013620.html,mun.2012,48,2576–2578.

31Ogoshi,T.;Umeda,K.;Yamagishi,T.-a.;Nakamoto,Y.Through-spaceπ-delocalized pillar[5]https://www.360docs.net/doc/6f2013620.html,mun.2009,4874–4876.

32Ogoshi,T.;Hashizume,M.;Yamagishi,T.-a.;Nakamoto,Y.Synthesis,conformational and host-guest properties of water-soluble pillar[5]https://www.360docs.net/doc/6f2013620.html,mun.2010,46, 3708–3710.

33Hu,X.-B.;Chen,L.;Si,W.;Yu,Y.;Hou,J.-L.Pillar[5]arene decaamine:Synthesis, encapsulation of very long linear diacids and formation of ion pair-stopped[2]rotaxanes.

https://www.360docs.net/doc/6f2013620.html,mun.2011,47,4694–4696.

34Ma,Y.;Ji,X.;Xiang,F.;Chi,X.;Han,C.;He,J.;Abliz,Z.;Chen,W.;Huang,F.A cationic water-soluble pillar[5]arene:Synthesis and hostàguest complexation with sodium

https://www.360docs.net/doc/6f2013620.html,mun.2011,47,12340–12342.

35Ogoshi,T.;Shiga,R.;Hashizume,M.;Yamagishi,T.-a.“Clickable”pillar[5]arenes.Chem.

Commun.2011,47,6927–6929.

36Xia,B.;He,J.;Zeper,A.;Yu,Y.;Huang,F.Synthesis of a pillar[5]arene dimer by co-oligomerization and its complexation with n-octyltrimethylammonium

hexafluorophosphate.Tetrahedron Lett.2011,52,4433–4436.

37Ogoshi,T.;Demachi,K.;Kitajima,K.;Yamagishi,T.-a.Selective complexation of n-alkanes with pillar[5]arene dimers in organic https://www.360docs.net/doc/6f2013620.html,mun.2011,47,10290–10292. 38Li,C.;Han,K.;Li,J.;Zhang,H.;Ma,J.;Shu,X.;Chen,Z.;Weng,L.;Jia,X.Synthesis of pillar[5]arene dimers and their cooperative binding toward some neutral https://www.360docs.net/doc/6f2013620.html,.Lett.

2012,14,42–45.39Ogoshi,T.;Demachi,K.;Kitajima,K.;Yamagishi,T.-a.Monofunctionalized pillar[5]arenes: Synthesis and supramolecular https://www.360docs.net/doc/6f2013620.html,mun.2011,47,7164–7166.

40Ogoshi,T.;Kitajima,K.;Fujinami,S.;Yamagishi,T.-a.Synthesis and X-ray crystal structure of a difunctionalized pillar[5]arene at A1/B2positions by in situ cyclization and deprotection.

https://www.360docs.net/doc/6f2013620.html,mun.2011,47,10106–10108.

41Lao,K.-U.;Yu,C.-H.A computational study of unique properties of pillar[n]quinones:Self-assembly to tubular structures and potential applications as electron acceptors and anion https://www.360docs.net/doc/6f2013620.html,put.Chem.2011,32,2716–2626.

42Chen,Z.;Cao,D.Synthesis of bis(4-bromo-2,5-dialkoxyphenyl)methane and its analogs.

Youji Huaxue2010,30,1742–1744.

43Han,C.;Ma,F.;Zhang,Z.;Xia,B.;Yu,Y.;Huang,F.DIBpillar[n]arenes(n=5,6): Syntheses,X-ray crystal structures,and complexation with n-octyltriethylammonium https://www.360docs.net/doc/6f2013620.html,.Lett.2010,12,4360–4363.

44Han,C.;Zhang,Z.;Chi,X.;Zhang,M.;Yu,G.;Huang,https://www.360docs.net/doc/6f2013620.html,.Biomol.Chem.2012, Submitted for publication.

45Lee,J.W.;Samal,S.;Selvapalam,N.;Kim,H.-J.;Kim,K.Cucurbituril homologues and derivatives:New opportunities in supramolecular chemistry.Acc.Chem.Res.2003,36, 621–630.

46Hapiot,F.;Tilloy,S.;Monflier,E.Cyclodextrins as supramolecular hosts for organometallic complexes.Chem.Rev.2006,106,767–781.

47Ogoshi,T.;Masaki,K.;Shiga,R.;Kitajima,K.;Yamagishi,T.-a.Planar-chiral macrocyclic host pillar[5]arene:No rotation of units and isolation of enantiomers by introducing bulky https://www.360docs.net/doc/6f2013620.html,.Lett.2011,13,1264–1266.

48Ogoshi,T.;Kitajima,K.;Aoki,T.;Yamagishi,T.-a.;Nakamoto,Y.Effect of an intramolecular hydrogen bond belt and complexation with the guest on the rotation behavior of phenolic units in pillar[5]arenes.J.Phys.Chem.Lett.2010,1,817–821.

49Rekharsky,M.V.;Inoue,https://www.360docs.net/doc/6f2013620.html,plexation thermodynamics of cyclodextrins.Chem.Rev. 1998,98,1875–1918.

50Zhang,Z.;Luo,Y.;Xia,B.;Han,C.;Yu,Y.;Chen,X.;Huang,F.Four constitutional isomers of BMpillar[5]arene:Synthesis,crystal structures and complexation with n-octyltrimethylam-monium https://www.360docs.net/doc/6f2013620.html,mun.2011,47,2417–2419.

51Li,C.;Xu,Q.;Li,J.;Feina,Y.;Jia,https://www.360docs.net/doc/6f2013620.html,plex interactions of pillar[5]arene with paraquats and bis(pyridinium)https://www.360docs.net/doc/6f2013620.html,.Biomol.Chem.2010,8,1568–1576.

52Ogoshi,T.;Yamafuji,D.;Aoki,T.;Yamagishi,T.-a.Photoreversible transformation between several seconds and hours time-scales:Threading of pillar[5]arene onto the azobenzene-end of a viologen https://www.360docs.net/doc/6f2013620.html,.Chem.2011,76,9497–9503.

53Ogoshi,T.;Tanaka,S.;Yamagishi,T.-a.;Nakamoto,Y.Ionic liquid molecules(ILs)as novel guests for pillar[5]arene:1:2host-guest complexes between pillar[5]arene and ILs in organic media.Chem.Lett.2011,40,96–98.

54Li,C.;Zhao,L.;Li,J.;Ding,X.;Chen,S.;Zhang,Q.;Yu,Y.;Jia,X.Self-assembly of

[2]pseudorotaxanes based on pillar[5]arene and bis(imidazolium)https://www.360docs.net/doc/6f2013620.html,mun. 2010,46,9016–9018.

55Li,C.;Chen,S.;Li,J.;Han,K.;Xu,M.;Hu,B.;Yu,Y.;Jia,X.Novel neutral guest recognition and interpenetrated complex formation from pillar[5]https://www.360docs.net/doc/6f2013620.html,mun.2011,47, 11294–11296.

56Li,C.;Shu,X.;Li,J.;Chen,S.;Han,K.;Xu,M.;Hu,B.;Yu,Y.;Jia,https://www.360docs.net/doc/6f2013620.html,plexation of1,4-bis(pyridinium)butanes by negatively charged carboxylatopillar[5]https://www.360docs.net/doc/6f2013620.html,.Chem. 2011,76,8458–8465.

57Ashton,P.R.;Chrystal,E.J.T.;Glink,P.T.;Menzer,S.;Schiavo,C.;Spencer,N.;

Stoddart,J.F.;Tasker,P.A.;White,A.J.P.;Williams,D.J.Pseudorotaxanes formed between secondary dialkylammonium salts and crown ethers.Chem.;Eur.J.1996,2, 709–728.

58Ogoshi,T.;Nishida,Y.;Yamagishi,T.-a.;Nakamoto,Y.Polypseudorotaxane constructed from pillar[5]arene and viologen polymer.Macromolecules2010,43,

3145–3147.

59Ogoshi,T.;Nishida,Y.;Yamagishi,T.-a.;Nakamoto,Y.High yield synthesis of polyrotaxane constructed from pillar[5]arene and viologen polymer and stabilization of its radical cation.

Macromolecules2010,43,7068–7072.

60Ogoshi,T.;Hasegawa,Y.;Takamichi,A.;Ishimori,Y.;Shinsuke,I.;Yamagishi,T.-a.

Reduction of emeraldine base form of polyaniline by pillar[5]arene based on formation of poly(pseudorotaxane)structure.Macromolecules2011,44,7639–7644.

61Si,W.;Hu,X.-B.;Liu,X.-H.;Fan,R.-H.;Chen,Z.-X.;Weng,L.-H.;Hou,J.-L.Self-assembly and proton conductance of organic nanotubes from pillar[5]arenes.Tetrahedron Lett.2011, 52,2484–2487.

62Si,W.;Chen,L.;Hu,X.-B.;Tang,G.-F.;Chen,Z.-X.;Hou,J.-L.;Li,Z.-T.Selective artificial transmembrane channels for protons by formation of water wires.Angew.Chem.,Int.Ed. 2011,50,12564–12568.

Vol.XXX,No.XX’XXXX’000–000’ACCOUNTS OF CHEMICAL RESEARCH’O

本课题国内外研究现状分析

. Word资料●本课题国外研究现状分析 教育科研立项课题如何申报与论证博白县教育局教研室朱汝洪发布时间: 2009 年 4 月 2 日19 时24 分一、课题申报的基本步骤第一步: 阅读各级课题申报通知,明确通知的要求;第二步: 学习研究课题管理方面的文件材料;第三步: 学习研究《课题指南》,确定要申报的课题(可以直接选用《课题指南》中的课题,也可以自己确定课题);第四步:组织课题组,认真阅读关于填表说明的文字,研究清楚课题《申请评审书》各个栏目的填写要求;第五步: 根据《申请评审书》各栏目的要求分工查找材料和论证;第六步: 填写《申请评审书》草表;第七步: 研究确定后,填写《申请评审书》正式表(一律要求打印);第八步: 按要求复印份数;第九步: 按要求签署意见、加盖公章;第十步: 填写好《课题申报材料目录表》;第十一步: 按时将《申请评审书》《课题申报材料目录表》和评审费送交县教研室科研组转送市教科所(也可以直接送市教科报,但必须报县教研室备案)。

二、教育科研课题的选题1、课题的选题方法。 一是从上级颁发的课题指南中选定;二是结合学校的实际对课题指南中的课题作修改;三是完全从学校的实际出发确定课题。 2、课题的选题要依据的原则。 一是符合法规和政策;二是切合当地和学校实际;三是适合教师的水平和能力;四是切中当前教改热点。 3、课题名称的规表述。 ①研究,如小学生学习兴趣培养的研究。 ②实践与研究,如高中学生探究性学习的实践与研究。 ③应用研究,如合作学习理论在初中语文教学中的应用研究。 ④实验与研究,如杜郎口模式的实验与研究。 ⑤探索与研究,如农村寄宿制小学学生管理的探索与研究。 三、立项课题的论证例说(以2009 版市课题申报表的要求为准)1、课题论证的含义。 课题论证,也叫论证与设计、设计与论证,是对所要申报的课题的选题依据、研究目标、研究容、研究重点、研究难点、研究思路、研究步骤、研究条件等进行的阐述与设计。 2、课题论证的包括的容。 不同级别的课题申报表(课题申请、评审书)要求有所不同,但基本上包括两大方面的容: 一是关于本研究课题的论证,二是关于对课题实施的论证。 3、课题论证例说。

混合芳烃的生产技术

混合芳烃的生产技术 摘要:本文主要介绍了国内外芳烃生产技术及其研究进展,并指出芳烃生产技术的发展前景。同时还介绍了产品苯、甲苯、二甲苯的市场价格及市场前景等。 关键词:芳烃生产技术;催化重整;芳烃抽提; Abstract:This paper mainly introduces the aromatic production technologies at home and abroad and its research progress, and points out that the development prospect of aromatic production technologies. It also introduced the product benzene, toluene, xylene market price and the market foreground. Keywords:Aromatic production technologies;Catalytic reforming; Aromatic extraction; 芳烃是石油化工工业的重要基础原料。在总数约八百万种的已知有机化合物中,芳烃化合物占了约30%,其中BTX芳烃(苯、甲苯、二甲苯)被称为一级基本有机原料。随着石油化工及纺织工业的不断发展,世界上对芳烃的需求量不断增长。据统计,2002年全球苯、甲苯、二甲苯的消费量分别为33.6,15.0,23.3Mt,预计2008年将分别达到42.1,19.1,33.5Mt,未来5年全球平均年需求增长率仍维持在4%以上[1]。最初芳烃生产以煤焦化得到的焦油为原料。随着炼油工业和石油化学工业的发展,芳烃生产已转向以催化重整和裂解汽油为主要原料,以石油为原料的芳烃国外约占98%以上,国内约占85%以上。 本文主要介绍芳烃的生产技术,同时综述了其最新的研究进展和产品的市场分析。 一芳烃生产技术 目前,石油芳烃大规模的工业化生产通过现代化的芳烃联合装置来实现。通常芳烃联合装置来实现。通常芳烃联合装置包括催化重整、裂解汽油加氢、芳烃分离等装置。 1.1催化重整 催化重整在芳烃生产中具有十分重要的地位和作用,全世界大约70%的BTX 芳烃来自炼油厂的催化重整装置。催化重整一般都采用含铂的催化剂,因此,通常又称作铂重整。铂重整工艺按催化剂再生方式,主要有半再生重整、连续重整和循环再生重整三种形式。按照加工能力统计,这三种重整的比例大约为6:3:1。 连续重整工艺一般采用铂—锡系催化剂,并以UOP公司的CCRPlaformer工艺(采用叠合床反应器)和IFP公司的Aromizer工艺(采用平移流动的移动床工艺)为代表。与其他两种重整工艺相比较,连续重整增加了一个催化剂连续再生系统,可将因结焦失活的重整催化剂进行连续再生,从而保持重整催化剂活性稳定,并且随着操作周期的延长,催化剂的性能基本保持稳定,因而连续重整具有装置规模大、运转周期长、对原料的适应性好、生产灵活性大、操作苛刻度高、反应压力低、氢油比低、产品的辛烷值高、产物收率高、氢产高等特点。另外,连续重整工艺流程复杂,装置的投资和能耗也比其他两种工艺高。 1.2 芳烃抽提技术 目前应用最广泛的是以环丁砜为溶剂的Sal-folane工艺,苯纯度为99.9%时,苯的回收率可达99.95%,甲苯回收率99.8%,二甲苯回收率超过98%。

C9芳烃石油树脂生产技术进展

万方数据

万方数据

万方数据

万方数据

万方数据

C9芳烃石油树脂生产技术进展 作者:米多, 刘权益, 刘建华, 宋丕霜, 陈云峰, MI Duo, LIU Quan-yi, LIU Jian-hua , SONG Pi-shuang, CHEN Yun-feng 作者单位:米多,宋丕霜,MI Duo,SONG Pi-shuang(中国石油吉林石化公司,研究院,吉林,吉林,132021), 刘权益,陈云峰,LIU Quan-yi,CHEN Yun-feng(中国石油吉林石化公司,电子商务部,吉林 ,吉林,132021), 刘建华,LIU Jian-hua(中国石油吉林石化公司,吉林,吉林,132021) 刊名: 弹性体 英文刊名:CHINA ELASTOMERICS 年,卷(期):2010,20(3) 被引用次数:3次 参考文献(16条) 1.谭宁梅;庞海舰C9馏分连续压力热聚合生产芳烃石油树脂[期刊论文]-当代化工 2008(05) 2.热聚合法芳烃石油树脂生产新工艺 2003(03) 3.广东省茂名华奥集团有限公司一种以裂解C9为原料制备石油树脂的方法 2007 4.韩颖C9石油树脂的合成[期刊论文]-大庆石油学院学报 1994(03) 5.张艳松;马江权;陆敏浅色C9芳烃石油树脂的合成与改性[期刊论文]-江苏工业学院学报 2007(02) 6.陆徐国;马洪玺;胡国君抽余C9合成石油树脂的研究[期刊论文]-石油化工技术经济 2008(02) 7.杨靖华;许修强;曹祖宾乙烯装置副产C9馏分制备芳烃溶剂油及石油树脂[期刊论文]-石油炼制与化工 2008(02) 8.卞克建;张志炳;丁龙福C9石油树脂的合成研究(Ⅱ)固体酸催化合成法 1996(04) 9.Kenneth Iewtas;Maria Leonor Garcia Petroleum resin and their production with BF3 catalyst 2002 10.卞克建;张志炳;丁龙富C9石油树脂的合成研究--自由基聚合法 1996(03) 11.尹宝华;董慧茹;刘国文C9-丙烯酸共聚石油树脂的合成与表征[期刊论文]-石油化工 2003(03) 12.张旭;王芳;王艳洁C9-AA水溶性石油树脂的制备及其阻垢性能[期刊论文]-化工环保 2005(05) 13.李春生;寿崇崎;顾尧C9石油树脂的改性[期刊论文]-石油化工 1999(02) 14.于翠艳;孙立欣C9-AM水溶性石油树脂的研究[期刊论文]-应用能源技术 2002(01) 15.马江权;周凯;陆敏C5/C9共聚石油树脂的加氢工艺研究[期刊论文]-江苏工业学院学报 2008(04) 16.朱明慧;李军;丛丽茹石油树脂加氢工艺的研究(I)芳烃石油树脂加氢 1993(01) 本文读者也读过(10条) 1.柴忠义.Chai Zhongyi C9石油树脂加氢技术进展[期刊论文]-合成树脂及塑料2009,26(6) 2.黄军左.张仕森C9石油树脂的改性技术及应用[期刊论文]-高分子通报2010(4) 3.刘秀兰.王煜.许翠红.潘广勤.Liu Xiulan.Wang Yu.Xu Cuihong.Pan Guangqin裂解C5石油树脂聚合改性技术进展[期刊论文]-石化技术与应用2007,25(5) 4.马江权.周凯.陆敏.黄荣荣.陆路德.MA Jiang-quan.ZHOU Kai.LU Min.HUANG Rong-rong.LU Lu-de C5/C9共聚石油树脂的加氢工艺研究[期刊论文]-江苏工业学院学报2008,20(4) 5.李爱元.张慧波.孙向东.张永春.王斌.Li Aiyuan.Zhang Huibo.Sun Xiangdong.Zhang Yongchun.Wang Bin C5石油树脂合成工艺的优化研究[期刊论文]-工程塑料应用2009,37(10) 6.李光.Li Guang裂解C9芳烃的应用现状及展望[期刊论文]-化工科技市场2010,33(10) 7.张强.李长波.张洪林.ZHANG Qiang.LI Chang-bo.ZHANG Hong-lin间戊二烯C5石油树脂加氢改质工艺研究[期刊论文]-应用化工2009,38(12) 8.范大武.FAN Da-wu C9石油树脂的研究应用进展[期刊论文]-广州化工2009,37(5) 9.张艳松.马江权.陆敏.杨利民.黄荣荣.ZHANG Yan-song.MA Jiang-quan.LU Min.YANG Li-min.HUANG Rong-rong

中国黄精产业深度调研及未来发展现状

中国黄精产业深度调研及未来发展现状 趋势预测报告(2010-2015年) 2010-8-27 10:36 关键字:黄精黄精报告黄精预测报告 导读:黄精报告,黄精预测报告,《中国黄精产业深度调研及未来发展现状趋势预测报告(2010-2015年)》,本研究报告提供黄精市场规模、企业运营数据分析,行业经营情况、竞争策略、投资与发展前景、竞争格局、发展环境及政策、销售及生产等研究情况,并基于客观情况作出合理的预测,全方位为您解读黄精行业。【报告名称】中国黄精产业深度调研及未来发展现状趋势预测报告(2010-2015年) 【出版日期】 2010年8月 【纸质价格】 : 6500元 [电子版]: 6600元 [纸质+电子]:6800元 【最新目录】 第一章黄精概述 第一节黄精定义 第二节黄精行业发展历程 第三节黄精分类情况 第四节黄精产业链分析 一、产业链模型介绍 二、黄精产业链模型分析 - 1 -

第二章黄精发展环境及政策分析 第一节中国经济发展环境分析 一、中国宏观经济发展现状 二、中国宏观经济走势分析 三、中国宏观经济趋势预测 第二节行业相关政策、法规、标准 第三章中国黄精生产现状分析 第一节黄精行业总体规模 第一节黄精产能概况 一、2008-2010年上半年产能分析 二、2010-2015年产能预测 第三节黄精产量概况 一、 2008-2010年上半年产量分析 二、产能配置与产能利用率调查 三、2010-2015年产量预测 第四节黄精产业的生命周期分析 第五节黄精产业供需情况 第四章黄精国内产品价格走势及影响因素分析 第一节国内产品2008-2009年价格回顾 第二节国内产品当前市场价格及评述 第三节国内产品价格影响因素分析 第四节 2010-2015年国内产品未来价格走势预测 - 2 -

国内外相关研究现状综述知识分享

1.2 国内外相关研究现状综述 1.2.1国外研究综述 1)人力资源外包 Lever觉得外包是一种管理策略,将非核心业务委托给外部专家执行,使公司能专注于本身核心业务发展,以提高竞争优势[3]。而人力资源管理外包,则是一种特殊的外包形式。greer认为,外包是由外部伙伴在重复基础上从事原来由企业内部从事的人力资源任务[4]。 对于人力资源外包,许多国外学者认为,对许多企业来说,外包浪潮的兴起并不意味着一定要实行人力资源管理外包,人力资源管理的实践性很强,往往对适合的企业才最好。 在总结外包优势的基础上,Rodriguez和Carlos指出与专业的雇佣组织签订合同来处理企业的人力资源职能是一个可变的结论,专业雇佣组织可以与他的顾客建立一个雇佣合作关系。Greet认为有五项竞争因素使企业将人力资源部分或是全部外包,分别是企业精简、快速成长或衰退、全球化、竞争增加以及企业再造,而在这些竞争因素背后的根本因素其实就是降低成本与增加人力资源的服务品质。 关于人力资源外包的风险,Quelin认为一个是企业在外包过程中对外包商的过分依赖,他们认为外包后企业就不用再过问这部分工作了,全部由外包商负责就行,很少进行沟通。另外一个是外包商的工作效率及能力不能达到既定目标,影响组织绩效的完成,把工作交给外包商后,企业失去了对这部分工作的控制,至少不能完全控制,于是当外包商的能力及效率不能达到原来期望的时候,就会影响企业的整体绩效。Bahli,Bouchaib等根据交易成本的观点,归纳了外包所具有的风险带来的不确定性有以下两点:交易的不确定性;委托的不确定性和所提供服务的不确定性。 以上研究表明国外的人力资源外包相关研究大多集中在外包决策、外包作用与外包风险上。主要关注的是企业人力资源外包在实际运用中的可行性与实践中的问题。在人力资源外包中引入信任的研究不多。国外学者对信任的研究集中在信任的作用、类型与建立上。这里只摘录其中的一部分。 2)信任 梅耶、戴维斯、斯库尔曼认为:信任是指一方在有能力监控或控制另一方的情况下,宁愿放弃这种能力而使自己处于弱点暴露、利益有可能受到对方损害的状态。Sabel认为:“相互信任就是合作各方坚信,没有一方会利用另一方的脆弱点去获取利益。”胡孔河将信任定义为:在一定情境下,一方凭借自己对对方的

芳烃工艺流程简述

工艺流程简述 1)总工艺流程 直馏石脑油和加氢裂化石脑油混合后在石脑油加氢装置(NHT Unit)通过加氢处理及汽提脱去硫、氮、砷、铅、铜、烯烃和水等杂质。在连续重整装置中把石脑油中的烷烃和环烷烃转化成芳烃,并副产大量的富氢气体。其中一部分产氢用于异构化、歧化和预加氢装置,其余部分则送到炼厂其它加氢装置。 连续重整装置的重整油经过脱戊烷塔脱去C5-馏分进入重整油分离塔。乙烯裂解汽油从边界来后先与重芳烃塔顶物流换热后进入重整油分离塔。塔顶C6/C7送到SED装置把C6/C7馏分中的芳烃和非芳烃分开。混合芳烃和歧化汽提塔底物混合送到苯-甲苯分馏装置的苯塔。苯塔顶产生高纯度的苯产品,塔底物流送到甲苯塔。甲苯塔顶生产C7芳烃,其中一部分C7芳烃与重芳烃塔塔顶物流混合送到歧化装置,其余部分作为汽油调组分送出装置。 甲苯塔底物料与重整油塔底物料、异构化产物混合送到二甲苯塔,二甲苯塔塔顶的混合二甲苯送到吸附分离装置,在这里PX作为产品被分离出来。含有EB、MX 和OX的吸附分离抽余液去异构化装置,PX达到新的平衡。异构化脱庚烷塔底物循环回二甲苯塔。二甲苯塔底的C9+送到重芳烃塔,重芳烃塔顶物料C9组分一部分送到歧化装置,其余部分作为汽油调和组分送出装置。重芳烃塔塔底物料作为燃料油供装置内使用。 2)直馏石脑油加氢装置 直馏石脑油进入原料缓冲罐(1510-D101),由预加氢进料泵(1510-P101A/B)泵送与预加氢循环压缩机(1510-K101A/B)来的循环氢混合后进入预加氢进料换热器(1510-E101A/B/C)和预加氢进料加热炉(1510-F101),加热后进入预加氢反应器(1510-R101)和脱氯反应器(1510-R102)。 已脱除硫、氮、氯的预加氢反应产物与硫化氢、氨及含氢气体一起通过与原料换热,再注入凝结水以溶解因冷却可能在下游设备形成的氨盐。再经预加氢产物空冷器(1510-A101),预加氢产物后冷器(1510-E102)冷却后进入预加氢产物分离罐(1510-D102)。预加氢产物分离罐顶含氢气体和补充氢混合经循环压缩机入口分液罐(1510-D103)进入预加氢循环压缩机(1510-K101A/B)循环使用。 预加氢产物分离罐(1510-D102)底液体通过液位控制进入预加氢汽提塔

轻烃芳构化生产芳烃技术进展_廖宝星

轻烃芳构化生产芳烃技术进展 廖宝星 (中国石油化工股份有限公司广州分公司,广东广州510726) 摘 要:综述了国内外典型的轻烃芳构化工艺技术,介绍了不同分子筛催化剂的金属改性和反应条件对催化剂芳构化性能的影响,着重阐述了轻烃芳构化的反应机理,并提出了沸石分子筛芳构化催化剂进一步的优化方向。 关键词:轻烃;芳烃:芳构化 中图分类号:TQ 203;TQ 241 文献标志码:A 文章编号:0367-6358(2009)06-0373-04 Prog ress of Light H ydrocarbons A romatization T echnology LIAO Bao -xing (D ivision o f Guang z hou B ranch Compan y ,S INOP EC ,Guangd on g Guan gz hou 510725,China ) A bstract :Ty pical processing technologies fo r the arom atization of lig ht hy drocarbo ns are summarized .The effect on aromatizatio n perfo rmance of metal modification on different zeo lite catalysts and reaction conditions is introduced .Reactio n mechanism o f light hydrocarbons aroma tizatio n is discussed .consequently ,the furthen optim izatio n in zeo lite cataly sts is pro po sed .Key words :light hy drocarbo ns ;a ro matics ;arom atizatio n 收稿日期:2009-01-10;修回日期:2009-03-17 作者简介:廖宝星(1962~),男,高级工程师,主要从事乙烯、汽油加氢、芳烃抽提、丁二烯的生产、技术管理工作。E -mail :liaobx @g ncmail .cn 芳烃是产量和规模仅次于乙烯和丙烯的重要有机化工原料。其衍生物广泛用于生产化纤、塑料和橡胶等化工产品和精细化学品。最初芳烃生产以煤焦化得到的焦油为原料。随着炼油工业和石化工业的发展,芳烃生产已转向以催化重整油和裂解汽油为主要原料,以石油为原料的芳烃国外约占98%以上,国内约占85%以上。目前,石油芳烃大规模的工业生产通过现代化的芳烃联合装置来实现。通常芳烃联合装置包括催化重整、裂解汽油加氢、芳烃转换、芳烃分离等装置。 轻烃主要是指以C 5为主的烷烃或单烯烃化合物,是石油开采和炼制过程中的副产品。它与天然气、液化气、汽油、柴油一样,同属石油大家庭,常温常压下是液态。轻烃的来源主要有:(1)各油田、采油厂提取的C 4~C 8的混合物-轻质油(各油田叫法 不一)。(2)石化生产的副产品-塔顶油。(3)天然气田,油田开采中的凝析油,主要成分是链烷烃(占3%),不含烯烃。(4)炼油厂轻烃:原油常压蒸馏的 轻石脑油,石油二次加工如催化重整,加氢裂化的产品中均含一定数量的C 5及C 5以下烷烃组分。(5)石油化工厂轻烃,主要是溶剂油。据不完全统计,国内目前轻烃年产量7000~10000kt ,到2020年可能达到20000kt [1]。近几年来,随着石油资源的日益减少,将丰富廉价的轻烃,转变为高附加值的苯、甲苯、二甲苯(BTX )的研究已成为当今重要的研究课题和热点问题。轻烃芳构化是近年来发展起来的一种生产芳烃的新工艺,用于生产芳烃或高辛烷值汽油的调和组分。该工艺是以HZSM -5沸石分子筛作为催化剂的活性组分,将重整抽余油、重整拔头油、直馏汽油、焦化汽油、热裂解汽油、热裂解C 5馏

黄精

黄精的栽培及病害研究 摘要:黄精作为一种临床常用中药,具有补气养阴、健脾润肺、补肾益精等功能,具有广泛发展前景。本文通过对黄精的栽培、市场以及病虫害方面进行综述,旨在加强对病虫害的防治,提高黄精在栽培方面的产量和质量,增强药性,扩大市场需求,为中药发展奠定基础。 关键词:黄精叶斑病黑斑病炭疽病 1黄精简介 黄精(Polygonatum sibiricum Red)属百合科,又名黄芝、救穷草、九蒸九晒、老虎姜、鸡头姜、野山姜,为多年生草本植物,以根茎入药,性味甘、平,入脾、肾、肺经,具有补气养阴、健脾润肺、补肾益精等功能,为临床常用中药。近年来研究发现黄精具有降血压、降血糖、降血脂、调理人体机能等作用,在临床上可以治疗糖尿病、冠心病、高脂血症等;除药用作用外,其营养价值也十分丰富。随着市场需求量不断增加,黄精已成为一种具有广泛发展前景的药材。 《中国药典》规定本品以干燥品计算,含黄精多糖以无水葡萄糖计,不得少于4.0%。 图1黄精 根据原植物和药材性状的差异,黄精科分为姜形黄精、鸡头黄精和大黄精三种。姜形黄精的原植物多花黄精,鸡头黄精的原植物为黄精,而大黄精(又名碟形黄精)的原植物是滇黄精。三者中以姜形黄精质量最佳。黄精主产于河北、内蒙古、陕西省等省区。多花黄精主产于贵州、湖南、云南、安徽、浙江等省。滇黄精主产于贵州、广西、云南等省区。 黄精的生长习性,喜温暖、湿润的气候,以土层深厚、肥沃、疏松、排水和

保水性能优良的土壤最为适宜。黄精的物候期可以划分为八个时期,分别为:出苗期、伸长期、展叶期、现蕾开花期、果实期、枯死期、秋发期、越冬期等。黄精的种子具有休眠特性,千粒重约为33g,发芽适宜温度为25-27℃。 2采收与产地加工 药材的质量与采收季节有密切的联系。采用根茎繁殖的生长2年、采用种子繁殖的生长4年后可采收,采收时间为10月中、下旬。 采收时将黄精根茎挖出,采挖时尽量深挖,勿用手拔,去掉茎叶,抖去泥沙,用清水洗净,放蒸笼内蒸10-20min,以透心为准,然后取出晾晒,边晒边揉,直至全干。质量以块大、肥润、色黄、质润泽、断面半透明者为佳。装运过程中避免挤压、踩踏,以防止药材受损伤。 3黄精的市场 黄精为野生中药材之一。黄精在我国分布广泛,产区众多,从北边的内蒙到南端的广东、福建,从安徽、浙江到四川、甘肃均有产出。资源蕴藏量颇丰,直至上世纪末供应都不是问题。进入新世纪以来,许多产区野生资源一年比一年减少,如陕西渭南、河南伏牛山区、安徽宣城等地,在以前都是主产区,近两年产量已很小。进入夏季以来,黄精市场行情渐渐平稳下来,统货33~34元(千克价,下同),佳品35~37元不等。过去的几年,黄精的价格步步走高,从2009年的14~15元到2010年的3O多元,已达到几十年来最高价位。夏过秋来,黄精的销售旺季到来后,行情又会如何呢?回顾黄精的过去十年,行情出现三个明显变化的时间段。一是2004-2005年黄精的价格从7~8元升至1 l~12元;二是2007-2008年,从黄精的价格从12~13元涨至l6~17元;三是2010-2011年,价由17-18元涨至现在的30多元。 4黄精病害 4.1叶斑病 症状:主要危害叶片,发病初期由基部开始,叶面出现褪色斑点,后病斑扩大呈椭圆形或不规则形,大小1 cm左右,中间淡白色,边缘褐色,靠健康组织处有明显黄晕,病斑形似眼状。病情严重时,多个病斑愈合引起叶枯死,并可逐渐向上蔓延,最后全株叶片枯死脱落。该病病原Alternaria sp.为一种交链孢菌,属半知菌亚门,丝孢纲,丛梗孢目,链格孢属。分生孢子梗簇生,垂直,较短。

芳烃技术进展及成套技术开发

芳烃技术进展及成套技术开发 吴巍1 (中国石油化工股份有限公司石油化工科学研究院,北京100083) 摘要:概述了以生产BTX芳烃为目标的现代芳烃联合装置的主要工艺单元结构及其作用,介绍了催化重整、芳烃抽提或抽提蒸馏、甲苯歧化与烷基转移、二甲苯异构化、对二甲苯吸附分离各单元技术的最新进展,以及中国石化相关技术的研究开发和应用情况。中国石化采用自主研发的芳烃成套技术,在海南炼化建成一套年产600kt PX 的芳烃联合装置,2013年底投产成功并已完成考核标定,结果表明各项工艺指标均达到设计要求,能耗明显降低,成套技术可靠、先进。 关键词:石油化工;芳烃;生产技术;发展 Advance in Aromatics Production Technologies of Aromatics Complex Wu Wei (Research Institute of Petroleum Processing, SINOPEC, Beijing 100083, China) Abstrct:The typical process scheme stucture and main purpose of a modern aromatics complex for BTX production are summarized. The recent progresses in the five technologies such as catalytic reforming, aromatics extraction or extractive distillation, toluene disproportionation and transalkylation, xylene isomerization, and adsorptive seperation for PX recovery are introduced. The result shows that SINOPEC has developed its proprietary aromatics production technologies and successfully commercialized them in an aromatics complex with 600kt/a PX production capacity in Hainan Refinery. Keywords:petrochemical;aromatics production;technology;advance 1 前言 芳烃是含有苯环结构的碳氢化合物的总称,其中最简单且最重要的是苯、甲苯和二甲苯(包含对二甲苯、邻二甲苯和间二甲苯三种异构体),统称为BTX芳烃或轻质芳烃,也常常被简称为芳烃。芳烃具有较高的辛烷值,除苯之外,其最大用途是作为高辛烷值汽油组分。据统计,在总数约八百万种的已知有机化合物中,含有苯环的化合物占约30%,因而在化学工业中,BTX芳烃属一级基本有机原料,是生产纤维、树脂、橡胶等合成材料以及有机化工中间体和产品的重要基础原料。芳烃在国民经济和石化行业中具有重要的地位和作用。BTX芳烃用作基本有机原料时,不同产品的需求差异很大,其中苯和对二甲苯(PX)是最大的两个品种,2012年全球消费量分别达到43.5Mt、33.0Mt,二者在BTX芳烃消费总量中占比超过了80%,远高于一次生成的比例。因此,芳烃生产主要涉及芳烃生成、芳烃间转化和芳烃分离三类技术。 2 芳烃联合装置 石油芳烃是BTX芳烃的主要来源,生产BTX芳烃的原料已可拓展到液化气(LPG)、重整拔头油、凝析油等轻烃以及催化裂化轻循环油(LCO)等,但迄今仍以石脑油占绝大多数。主要通过石脑油催化重整和蒸汽裂解两个过程分别得到重整生成油及副产得到裂解加氢汽油,再经过一系列芳烃分离和芳烃间转化过程,即可得到各种芳烃产品作为石化原料。通常将生产苯、甲苯及二甲苯各异构体产品的装置称为芳烃联合装置。目前,典型的芳烃联合装置主要包括催化重整、芳烃抽提或抽提蒸馏、甲苯歧化与烷基转移、 1作者简介:吴巍,男,教授级高工,长期从事石油化工、有机化工产品和中间体合成催化剂及工艺技术的研究开发和管理工作。电话:010-********,Email:wuwei.ripp@https://www.360docs.net/doc/6f2013620.html,。

环保芳烃油综述

环保芳烃油综述 使用的传统芳烃油(DAE)含有大量稠环芳烃(也叫多环芳烃),由于芳烃油的带入,轮胎和橡胶制品中或多或少含有稠环芳烃。苯并芘(BaP)是一种典型的稠环芳烃,其已被毒性、生态毒性及环境科学委员会(CSTEE)科学证实具有致癌性、致突变性及生殖系统毒害性。橡胶制品在被使用的过程中,稠环芳烃就不可避免地扩散到环境中并与人类接触,从而危害到人类和环境的健康。 随着人们对稠环芳烃危害的认识和环保意识的提高,西方发达国家纷纷采取一系列措施减少稠环芳烃排放以降低其对人类健康和环境的危害。在此形势下,欧洲轮胎工业贸易组织(BLIC)与国际合成橡胶生产者学会(IISRP)共同宣布将在轮胎中使用无毒性的芳烃油替代油品。并对芳烃油替代油品要求如下: 替代油品稠环芳烃(PCA)含量(二甲基亚砜萃取法IP346)< 3%; 替代油品单个稠环芳烃的含量要求小于10ppm; 替代油品中所有稠环芳烃含量小于50ppm; 油品的诱变指数(ASTM E1687) <1; 与通用橡胶相容,对产品的性能无不良影响; 数量上能够保证(在欧洲每年需要20到25万吨) 价格合理;

可从多种供应渠道获得。 2005年11月16日,欧洲议会及欧盟理事会在法国斯特拉斯堡,在1976年7月27日颁布的76/769/EEC相关指令基础上,签署了2005/69/EC指令并于同年12月9日发布。该指令主要针对轮胎和添加油中的稠环芳烃(PAHs)作出指示。该指令适用范围为橡胶油和轮胎(客车轮胎、轻型和重型货车轮胎、农用车轮胎及摩托车轮胎),指令将对2010年1月1日后生产或翻新的轮胎同样有效。 2005/69/EC指令规定直接投入市场的橡胶油或用于制造轮胎的操作油应符合以下技术条件: 以欧洲轮胎工业贸易组织(BLIC)的要求为基础; 油品中苯并芘(BaP)含量应低于1 mg/kg; 油品中8种关键PAHs(BaP,BeP,BaA,CHR,BbFA,BjFA,BkFA,DBAhA)总含量应低于10 mg/kg。 轮胎橡胶的硫化胶的核磁共振值小于0.35%; 以上可以认为是环保芳烃油的官方要求和定义。 二、国外环保芳烃油的开发情况 目前国内符合欧盟2005/69/EC规定的橡胶填充油完全依赖进口,价格昂贵。国外芳烃油常见的替代品有以下三种: TDAE(经处理的芳烃油):对原芳烃油再精制除去有毒多环芳烃后生产而成,是胎冠胶、胎侧胶和子口耐磨胶中芳烃油的理想替代品;

16种常见多环芳烃的物理性质

16种常见多环芳烃的 物理性质 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

萘英文名称NAP Naphthalene分子量 128.18 物理性质;密度1.162 熔点80.5℃,沸点217.9℃,凝固点,80.5℃,闪点78.89℃,折射率1.58212(100℃)恒压燃烧热:40264.1J/g(标准大气压,298.15K)恒压燃烧热:40205J/g(标准大气压,298.15K)。不溶于水,溶于乙醇和乙醚等。易挥发,易升华溶于乙醇后,将其滴入水中,会出现白色浑浊。化学性质(1)萘的氧化温和氧化剂得醌,强烈氧化剂得酸酐。萘环比侧链更易氧化,所以不能用侧链氧化法制萘甲酸。电子云密度高的环易被氧化。(2)萘的还原(3)萘的加成(4)萘的亲电取代反应萘的a-位比b-位更易发生亲电取代反应。a-位取代两个共振式都有完整的苯环。b-位取代只有一个共振式有完整的苯环。在萘环上主要发生亲电取代,同苯环一样,但活性比苯环强从中间对称的两个C旁边的C开始标,其中1,4,5,8号碳活性完全一样(称为阿尔法碳),2,3,6,7号碳性质完全一样(称为贝塔碳)。一般情况下,阿尔法碳活性大于贝塔碳,取代基在阿尔法位上,这是由动力学控制,温度较高时,阿尔法碳[1]上取代基会转移到贝塔碳上。但在萘的弗瑞德-克来福特酰基化反应,不加热却生成了阿尔法位和贝塔位的混合物。如用硝基甲烷为溶剂,则主要生成贝塔酰化产物。 苊烯ANY Acenaphthylene 分子量:152.200 性质:黄色棱柱状或板状结晶。熔点92-93℃,沸点265-275℃(部分分解),156-160℃(3.73千帕),相对密度0.8988(16/2℃),易溶于乙醇、甲醇、丙醇、乙醚、石油醚、苯,不溶于水。能在强酸中聚合。 苊ANA Acenaphthene 英文别名:1,8-Ethylenenaphthalene 分子量:154.21性状描述:白色或略带黄色斜方针状结晶。物理参数:密 度:1.0242(99/4°C) 熔点:96.2°C 沸点:279°C 闪点:125°C 折射率:1.6048(95°C) 芴FLU Fluorene分子量:166.22 性状描述:白色叶状至小片状结晶物理参数:密度:1.202 g/mL 熔点:116-117°C 沸点:295°C 闪点:151°C

黄精多糖的研究进展

黄精多糖的研究进展 摘要 黄精为百合科植物属滇黄精Polygonatum kingianum Coll. et Hemsl、黄精Polygonatum sibiricum Red. 或多花黄精Polygonatum cyrtonema Hua 的干燥根茎,是药食同源的一种名贵中草药。多糖是黄精中重要的一种化学成分,本文系统地收集并整理了有关黄精多糖研究进展的文献资料,对黄精多糖的化学成分、含量测定方法及其提取工艺和药理临床作用进行了简要的分析和阐述。 关键词:黄精多糖;化学成分;含量测定;提取工艺;药理临床应用。

Research Progress of Polygonatum sibiricum Polysaccharides Abstract:Polygonatum is adry rhizome of Liliaceae.It has Polygonatum kingianum Coll. et Hemsl,Polygonatum sibiricum Red. and Polygonatum cyrtonema Hua.It is a valuable herbal medicine homologous.In this paper the recent research of Chinese scholars on the composition,methods of content determination methods of extraction, main features of Polygonatum sibiricum polysaccharides and other aspects were analyzed and summarized, and the research prospect of Polygonatum sibiricum polysaccharides was also looked forward to. Key words:Polygonatumsibiricum Polysaccharide;Chemical composition;Determination of content;Extraction process; Pharmacological clinical application.

黄飞鹤 柱芳烃综述

Pillararenes,A New Class of Macrocycles for Supramolecular Chemistry MIN XUE,?YONG YANG,?XIAODONG CHI,?ZIBIN ZHANG,? AND FEIHE HUANG*,? ?Department of Chemistry,Zhejiang University,Hangzhou310027, People's Republic of China,and?Department of Chemistry, Zhejiang Sci-Tech University,Hangzhou310018,People's Republic of China RECEIVED ON DECEMBER31,2011 C O N S P E C T U S B ecause of the importance of novel macrocycles in supramolecular science,interest in the preparation of these substances has grown considerably.However,the discovery of a new class of macrocycles presents challenges because of the need for routes to further functionalization of these molecules and good hostàguest complexation.Furthermore,useful macrocylic hosts must be easily synthesized in large quantities.With these issues in mind,the recently discovered pillararenes attracted our attention.These macrocycles contain hydroquinone units linked by methylene bridges at para positions.Although the composition of pillararenes is similar to that of calixarenes,they have different structural characteristics.One conformationally stable member of this family is pillar[5]arene,which consists of five hydroquinone units.The symmetrical pillar architecture and electron-donating cavities of these macrocycles are particularly intriguing and afford them with some special and interesting physical,chemical,and hostàguest properties.Due to these features and their easy accessibility,pillararenes,especially pillar[5]arenes,have been actively studied and rapidly developed within the last4years. In this Account,we provide a comprehensive overview of pillararene chemistry,summarizing our results along with related studies from other researchers.We describe strategies for the synthesis,isomerization,and functionalization of pillararenes.We also discuss their macrocyclic cavity sizes,their hostàguest properties,and their self-assembly into supramolecular polymers.The hydroxyl groups of the pillararenes can be modified at all positions or selectively on one or two positions.Through a variety of functionalizations,researchers have developed many pillararene derivatives that exhibit very interesting hostàguest properties both in organic solvents and in aqueous media.Guest molecules include electron acceptors such as viologen derivatives and (bis)imidazolium cations and alkyl chain derivatives such as n-hexane,alkanediamines,n-octyltrimethyl ammonium,and neutral bis(imidazole)derivatives.These hostàguest studies have led to the fabrication of(pseudo)rotaxanes or poly(pseudo)rotaxanes, supramolecular dimers or polymers,artificial transmembrane proton channels,fluorescent sensors,and other functional materials. Introduction It is of continuing interest to design and synthesize novel macrocyclic host molecules because of their important roles in supramolecular chemistry.The successful examples include crown ethers,1à3cyclodextrins,4cucurbiturils,5 calixarenes,6à8and their structurally similar scaffolds.9à11 Currently a new class of[1n]paracyclophanes12,13is grow-ing with similar composition but different structural features compared with calixarenes.This new class of macrocyclic molecules are made up of hydroquinone units linked by methylene bridges at para positions.Their descriptive name “pillararene”was coined by Tomoki Ogoshi in2008.14 Pillar[n]arenes(n=5,6,7)have some advantages compared with traditional hosts.First,they are highly https://www.360docs.net/doc/6f2013620.html,/accounts Vol.XXX,No.XX’XXXX’000–000’ACCOUNTS OF CHEMICAL RESEARCH’A 10.1021/ar2003418&XXXX American Chemical Society

相关文档
最新文档