基于单片机的冰箱温度智能控制系统的设计

基于单片机的冰箱温度智能控制系统的设计
基于单片机的冰箱温度智能控制系统的设计

基于单片机的冰箱温度智能控制系

统的设计

摘要:

近年来随着计算机在社会领域的渗透, 单片机的应用正在不断地走向深入,同时带动传统控制检测日新月益更新。在实时检测和自动控制的单片机应用系统中,单片机往往是作为一个核心部件来使用,仅单片机方面知识是不够的,还应根据具体硬件结构,以及针对具体应用对象特点的软件结合,以作完善。

电冰箱温度控制系统是利用温度传感器DS18B20采集电冰箱冷藏室和冷冻室的温度,通过INTEL公司的高效微控制器MCS-C51单片机进行数字信号处理,从而达到智能控制的目的。本系统可实现电冰箱冷藏室和冷冻室的温度设置、电冰箱自动除霜、开门报警等功能。

本文在第一章介绍了电冰箱的系统组成及工作原理,第二章论述了本控制系统的硬件设计部分。第三章论述了系统的软件设计部分。

通过对直冷式电冰箱制冷系统的改进和采用模糊控制技术,实现了电冰箱的双温双控,使电冰箱能根据使用条件的变化迅速合理地调节制冷量,且节能效果良好。

目录

第一章概论 (3)

一.电冰箱的系统组成 (3)

二.工作原理: (5)

三.本系统采用单片机控制的电冰箱主要功能及要求: (5)

第二章硬件部分 (6)

一.系统结构图 (6)

二.微处理器(单片机) (6)

三.温度传感器 (11)

四.电压检测装置 (15)

五.功能按键 (15)

六.压缩机,风机、电磁阀控制 (16)

七.故障报警电路 (16)

第三章软件部分 (16)

一、主程序:MAIN (17)

二、初始化子程序:INTI1 (21)

三、键盘扫描子程序:KEY (22)

四.打开压缩机子程序:OPEN (25)

五.关闭压缩机:CLOSE (26)

六.定时器0中断程序:用于压缩机延时 (27)

七.延时子程序 (28)

第四章分析与结论 (28)

致谢 (29)

参考文献: (30)

电冰箱温度测控系统设计

第一章概论

随着集成电路技术的发展,单片微型计算机的功能也不断增强,许多高性能的新型机种不断涌现出来。单片机以其功能强、体积小、可靠性高、造价低和开发周期短等优点,称为自动化和各个测控领域中广泛应用的器件,在工业生产中称为必不可少的器件,尤其在日常生活中发挥的作用也越来越大。人们对家用电冰箱的控制功能越来越高,这对电冰箱控制器提出了更高的要求。多功能,智能化是其发展方向之一,传统的机器控制,简单的电子控制已经难以满足发展的要求。而采用基于单片机温度控制系统,不仅可大大缩短设计新产品的时间,同时只要增加少许外围器件在软件设计方面就能实现功能的扩展,以及智能化方面的提高,因此可最大限度地节约成本。本文即为基于单片机的电冰箱温度控制系统。

目前市场销售的双门直冷式电冰箱,含有冷冻室和冷藏室,冷冻室通常用于冷冻的温度为-6~-18℃;冷藏室用于在相对冷冻室较高的温度下存放食品,要求有一定的保鲜作用,不能冻伤食品,室温一般为0~10℃.

传统的电冰箱温度一般是由冷藏室控制,冷藏室、冷冻室的不同温度是通过调节蒸发器在两室的面积大小来实现的,温度调节完全依靠压缩机的开停来控制.但是冰箱内的温度受诸多因素的影响,如放入冰箱物品初始温度的高低、存放品的散热特性及热容量、物品在冰箱的充满率、环境温度的高低、开门的频繁程度等.因此对这种受控参数及随机因素很多的温度控制,既难以建立一个标准的数学模型,也无法用传统的PID调节来实现.一台品质优良的电冰箱应该具有较高的温度控制精度,同时又有最优的节能效果,而为了达到这一设计要求采用模糊控制技术无疑是最佳的选择.

一.电冰箱的系统组成

液体由液态变为气态时,会吸收很多热量,简称为“液体汽化吸热”,电冰箱就是利用了液体汽化的过程中需要吸热的原理来制冷的。

蒸气压缩式电冰箱制冷系统原理图如图1-1所示,主要由压缩机、冷凝器、干燥过滤器、毛细管、蒸发器等部件组成,其动力均来自压缩机,干燥过滤器用来过滤赃物和干燥水分,毛细管用来节流降压,热交换器为冷凝器和蒸发器。制冷压缩机吸入来自蒸发器的低温低压的气体制冷剂,经压缩后成为高温高压的过热蒸气,排入冷凝器中,向周围的空气散热成为高压过冷液体,高压过冷液体经干燥过滤器流入毛细管节流降压,成为低温低压液体状态,进入蒸发器中汽化,吸收周围被冷却物品的热量,使温度降低到所需值,汽化后的气体制冷剂又被压缩机吸入,至此,完成一个循环。压缩机冷循环周而复始的运行,保证了制冷过程的连续性。

图1-1 电冰箱制冷系统原理图

直冷式电冰箱的控制原理是根据蒸发器的温度控制制冷压缩机的启、停,使冰箱内的温度保持在设定温度范围内。冷冻室用于冷冻食品通常用于冷冻的温度为-3?C~-15?C,冷藏室用于相对于冷冻室较高的温度下存放食品,要求有一定的保鲜作用,不能冻伤食品,温度一般为0?C~10?C,当测得冷冷冻室温度高

至-3?C ~0?C时或者是冷冻室温度高至10?C~13?C是启动压缩机制冷,当冷冻室温度低于-15?C~-18?C或都冷藏室温度低于0?C~-3?C时停止制冷,关断压缩机。采用单片机控制,可以使控制更为准确、灵活。

二.工作原理:

根据冷藏室和冷冻室的温度情况决定是否开压缩机,若冷藏室的温度过高,则打开电磁冷门V1,关闭阀门V2,V3,同时打开压缩机,产生高温高压过热蒸气,经过冷凝器冷凝,干燥过滤器干燥,毛细节流管降压后,在蒸发器汽化制冷,产生低温低压的干燥气体。经过电磁阀门V1 流入冷藏室,使冷藏的温度迅速降低,当温度达到要求时关闭压缩机,同时关闭电磁阀门V1 。若是冷冻室的温度过高,则应打开V2关闭V1, V3 。电磁阀门V3主要用于冷冻室的化霜。需要化箱时打开V3,从压缩机流出的高温高压气体流经冷冻室可匀速将冷冻室霜层汽化。达到化霜的效果。一般化霜的时间要短,不然会伤存放的食品。

三.本系统采用单片机控制的电冰箱主要功能及要求:

1、设定2个测温点,测量范围:-26?C~+26?C,精度±0.5?C;

2、利用功能键分别控制温度设定、冷藏室及冷冻室温度设定等;

3、制冷压缩机停机后自动延时3分钟后方能再启动;

4、电冰箱具有自动除霜功能;

5、开门延时超过20秒发声报警;

6、工作电压为180~240V,当欠压或过压时,禁止启动压缩机并用指示灯显

示。

第二章硬件部分

一.系统结构图

控制系统结构如图2-1 所示,主要由电源开关,电压检测装置,温度传感器,功能按键,单片机,延时电路,显示电路,指示灯电路,除霜装置和故障报警装

置等够成。

图2-1 控制系统结构图

二.微处理器(单片机)

微处理器是本系统的核心,其性能的好坏直接影响系统的稳定,鉴于本系统为实时控制系统,系统运行时需要进行大量的运算,所以单片机采用INTEL公司的高效微控制器AT89C51。

AT89C51是一种带4K字节闪烁可编程可擦除只读存储器(FPEROM—Falsh Programmable and Erasable Read Only Memory)的低电压,高性能CMOS8位微处理器,俗称单片机。该器件采用ATMEL高密度非易失存储器制造技术制造,与工业标准的MCS-51 ? 指令集和输出管脚相兼容。由于将多功能8位CPU和闪烁

存储器组合在单个芯片中,ATMEL的AT89C51是一种高效微控制器,为很多嵌入式控制系统提供了一种灵活性高且价廉的方案。

1.主要特性:

·与MCS-51 兼容

·4K字节可编程闪烁存储器

寿命:1000写/擦循环

数据保留时间:10年

·全静态工作:0Hz-24Hz

·三级程序存储器锁定

·128*8位内部RAM

·32可编程I/O线

·两个16位定时器/计数器

·5个中断源

·可编程串行通道

·低功耗的闲置和掉电模式

·片内振荡器和时钟电路

2.管脚说明

VCC:供电电压。

GND:接地。

P0口:P0口为一个8位漏级开路双向I/O口,每脚可吸收8TTL门电流。当P1口的管脚第一次写1时,被定义为高阻输入。P0能够用于外部程序数据存储器,它可以被定义为数据/地址的第八位。在FIASH编程时,P0 口作为原码输入口,当FIASH进行校验时,P0输出原码,此时P0外部必须被拉高。

P1口:P1口是一个内部提供上拉电阻的8位双向I/O口,P1口缓冲器能接收输出4TTL门电流。P1口管脚写入1后,被内部上拉为高,可用作输入,P1口被外部下拉为低电平时,将输出电流,这是由于内部上拉的缘故。在FLASH编程和校验时,P1口作为第八位地址接收。

P2口:P2口为一个内部上拉电阻的8位双向I/O口,P2口缓冲器可接收,输出4个TTL门电流,当P2口被写“1”时,其管脚被内部上拉电阻拉高,且作为输入。并因此作为输入时,P2口的管脚被外部拉低,将输出电流。这是由于内部上拉的缘故。P2口当用于外部程序存储器或16位地址外部数据存储器进行存取时,P2口输出地址的高八位。在给出地址“1”时,它利用内部上拉优势,当对外部八位地址数据存储器进行读写时,P2口输出其特殊功能寄存器的内容。P2口在FLASH编程和校验时接收高八位地址信号和控制信号。

P3口:P3口管脚是8个带内部上拉电阻的双向I/O口,可接收输出4个TTL门电流。当P3口写入“1”后,它们被内部上拉为高电平,并用作输入。作为输入,由于外部下拉为低电平,P3口将输出电流(ILL)这是由于上拉的缘故。

P3口也可作为AT89C51的一些特殊功能口,如下表所示:

口管脚备选功能

P3.0 RXD(串行输入口)

P3.1 TXD(串行输出口)

P3.2 /INT0(外部中断0)

P3.3 /INT1(外部中断1)

P3.4 T0(记时器0外部输入)

P3.5 T1(记时器1外部输入)

P3.6 /WR(外部数据存储器写选通)

P3.7 /RD(外部数据存储器读选通)

P3口同时为闪烁编程和编程校验接收一些控制信号。

RST:复位输入。当振荡器复位器件时,要保持RST脚两个机器周期的高电平时间。ALE/PROG:当访问外部存储器时,地址锁存允许的输出电平用于锁存地址的地位字节。在FLASH编程期间,此引脚用于输入编程脉冲。在平时,ALE端以不变的频率周期输出正脉冲信号,此频率为振荡器频率的1/6。因此它可用作对外部输出的脉冲或用于定时目的。然而要注意的是:每当用作外部数据存储器时,将跳过一个ALE脉冲。如想禁止ALE的输出可在SFR8EH地址上置0。此时, ALE 只有在执行MOVX,MOVC指令是ALE才起作用。另外,该引脚被略微拉高。如果微处理器在外部执行状态ALE禁止,置位无效。

/PSEN:外部程序存储器的选通信号。在由外部程序存储器取指期间,每个机器周期两次/PSEN有效。但在访问外部数据存储器时,这两次有效的/PSEN信号将不出现。

3.振荡特性

/EA/VPP:当/EA保持低电平时,则在此期间外部程序存储器(0000H-FFFFH),不管是否有内部程序存储器。注意加密方式1时,/EA将内部锁定为RESET;当/EA端保持高电平时,此间内部程序存储器。在FLASH编程期间,此引脚也用于施加12V编程电源(VPP)

XTAL1:反向振荡放大器的输入及内部时钟工作电路的输入。

XTAL2:来自反向振荡器的输出。

4.芯片擦除:

整个PEROM阵列和三个锁定位的电擦除可通过正确的控制信号组合,并保持ALE 管脚处于低电平10ms 来完成。在芯片擦操作中,代码阵列全被写“1”且在任何非空存储字节被重复编程以前,该操作必须被执行。

此外,AT89C51设有稳态逻辑,可以在低到零频率的条件下静态逻辑,支持两种软件可选的掉电模式。在闲置模式下,CPU停止工作。但RAM,定时器,计数器,串口和中断系统仍在工作。在掉电模式下,保存RAM的内容并且冻结振荡器,禁止所用其他芯片功能,直到下一个硬件复位为止。

5.运算器

(1)算术/逻辑部件ALU:用以完成+、-、*、/ 的算术运算及布尔代数的逻辑运算,并通过运算结果影响程序状态寄存器PSW的某些位,从而为判断、转移、十进制修正和出错等提供依据。

(2)累加器A:在算术/逻辑运算中存放一个操作数或结果,在与外部存储器和I/O接口打交道时,进行数据传送都要经过A来完成。

(3)寄存器B:在 *、/ 运算中要使用寄存器B 。乘法时,B用来存放乘数以及积的高字节;除法时,B用来存放除数及余数。不作乘除时,B可作通用寄存器使用。

(4)程序状态标志寄存器PSW:用来存放当前指令执行后操作结果的某些特征,以便为下一条指令的执行提供依据。

6.中断系统:

8051单片机的中断系统简单实用,其基本特点是:有5个固定的可屏蔽中断源,3个在片内,2个在片外,它们在程序存储器中各有固定的中断入口地址,由此进入中断服务程序;5个中断源有两级中断优先级,可形成中断嵌套;2个特殊功能寄存器用于中断控制和条件设置的编程。5个中断源的符号、名称及产生的条件如下:

INT0:外部中断0,由P3.2端口线引入,低电平或下跳沿引起。

INT1:外部中断1,由P3.3端口线引入,低电平或下跳沿引起。

T0:定时器/计数器0中断,由T0计满回零引起。

T1:定时器/计数器l中断,由T1计满回零引起。

TI/RI:串行I/O中断,串行端口完成一帧字符发送/接收后引起。三.温度传感器

在传统的模拟信号远距离温度测量系统中,需要很好的解决引线误差补偿问题、多点测量切换误差问题和放大电路零点漂移误差问题等技术问题,才能够达到较高的测量精度。我们在为冰箱测温系统中,为了克服上面提到的三个问题,采用了新型数字温度传感器DS1820,在对其测温原理进行详细分析的基础上,提出了提高DS1820测量精度的方法,使DS1820的测量精度由0.5℃提高到0.1℃以上,取得了良好的测温效果。

1 DS1820简介

DS1820是美国DALLAS半导体公司生产的可组网数字式温度传感器,在其内部使用了在板(ON-B0ARD)专利技术。全部传感元件及转换电路集成在形如一只三极管的集成电路内。与其它温度传感器相比,DS1820具有以下特性。

(1)独特的单线接口方式,DS1820在与微处理器连接时仅需要一条口线即可实现微处理器与DS1820的双向通讯。

2)DS1820支持多点组网功能,多个DS1820可以并联在唯一的三线上,实现多点测温。

(3)DS1820在使用中不需要任何外围元件。

4)温范围-55℃~+125℃,固有测温分辨率0.5℃。

(5)测量结果以9位数字量方式串行传送

DS1820内部结构框图如图1所示。

DS1820测温原理如图2所示。图中低温度系数晶振的振荡频率受温度影响很小,用于产生固定频率的脉冲信号送给计数器1。高温度系数晶振随温度变化其振荡率明显改变,所产生的信号作为计数器2的脉冲输入。计数器1和温度寄存器被预置在-55℃所对应的一个基数值。计数器1对低温度系数晶振产生的脉冲信号进行减法计数,当计数器1的预置值减到0时,温度寄存器的值将加1 ,计数器1的预置将重新被装入,计数器1重新开始对低温度系数晶振产生的脉冲信号进行计数,如此循环直到计数器2计数到0时,停止温度寄存器值的累加,此时温度寄存器中的数值即为所测温度。图2中的斜率累加器用于补偿和修正测温过程中的非线性,其输出用于修正计数器1的预置值。

在正常测温情况下,DS1820的测温分辩率为0.5℃以9位数据格式表示,其中最低有效位(LSB)由比较器进行0.25℃比较,当计数器1中的余值转化成温度后低于0.25℃时,清除温度寄存器的最低位(LSB),当计数器1中的余值

转化成温度后高于0.25℃,置位温度寄存器的最低位(LSB),如-25.5℃对应的9位数据格式如下:

2提高DS1820测温精度的途径

2.1DS1820高精度测温的理论依据

DS1820正常使用时的测温分辨率为0.5℃,这对于水轮发电机组轴瓦温度监测来讲略显不足,在对DS1820测温原理详细分析的基础上,我们采取直接读取DS1820内部暂存寄存器的方法,将DS1820的测温分辨率提高到0.1℃~0.01℃.

DS1820内部暂存寄存器的分布如表1所示,其中第7字节存放的是当温度寄存器停止增值时计数器1的计数剩余值,第8字节存放的是每度所对应的计数值,这样,我们就可以通过下面的方法获得高分辨率的温度测量结果。首先用DS1820提供的读暂存寄存器指令(BEH)读出以0.5℃为分辨率的温度测量结果,然后切去测量结果中的最低有效位(LSB),得到所测实际温度整数部分T整数,然后再用BEH指令读取计数器1的计数剩余值M剩余和每度计数值M每度,考虑到DS1820测量温度的整数部分以0.25℃、0.75℃为进位界限的关系,实际温度T实际可用下式计算得到:

T实际=(T整数-0.25℃)+(M每度-M剩余)/M每度

2.2 测量数据比较

表2为采用直接读取测温结果方法和采用计算方法得到的测温数据比较,通过比较可以看出,计算方法在DS1820测温中不仅是可行的,也可以大大的提高DS1820的测温分辨率。

3DS1820使用中注意事项

DS1820虽然具有测温系统简单、测温精度高、连接方便、占用口线少等优点,但在实际应用中也应注意以下几方面的问题:

(1)较小的硬件开销需要相对复杂的软件进行补偿,由于DS1820与微处理器间采用串行数据传送,因此,在对DS1820进行读写编程时,必须严格的保证读写时序,否则将无法读取测温结果。在使用PL/M、C等高级语言进行系统程序设计时,对DS1820操作部分最好采用汇编语言实现。

(2)在DS1820的有关资料中均未提及单总线上所挂DS1820数量问题,容易使人误认为可以挂任意多个DS1820,在实际应用中并非如此。当单总线上所挂DS1820超过8个时,就需要解决微处理器的总线驱动问题,这一点在进行多点测温系统设计时要加以注意。

(3)连接DS1820的总线电缆是有长度限制的。试验中,当采用普通信号电缆传输长度超过50m时,读取的测温数据将发生错误。当将总线电缆改为双绞线带屏蔽电缆时,正常通讯距离可达150m,当采用每米绞合次数更多的双绞线带屏蔽电缆时,正常通讯距离进一步加长。这种情况主要是由总线分布电容使信号波形产生畸变造成的。因此,在用DS1820进行长距离测温系统设计时要充分考虑总线分布电容和阻抗匹配问题。

(4)在DS1820测温程序设计中,向DS1820发出温度转换命令后,程序总要等待DS1820的返回信号,一旦某个DS1820接触不好或断线,当程序读该DS1820

时,将没有返回信号,程序进入死循环。这一点在进行DS1820硬件连接和软件设计时也要给予一定的重视。

四.电压检测装置

电压检测装置是为了保护系统的稳定运行,采用WB系列电压越限报警传感器WB系列电压越限报警传感器以电压隔离传感器为基础,增配比较器电路、基准电压设定电路、输出驱动电路组成,用来隔离监测主回路中的交流或直流电压,当被监测的电压超过预先设定的上限值,或低于预先设定的下限值时,给出开关量控制信号。

本系列产品测控一体化、体积小、精度高、使用方便,报警界限值可以由用户根据需要随时进行调整,具有很高的性能/价格比。

主要特点:

1.测控一体化,体积小、精度高、反应快;

2.具有瞬态干扰抑制功能,防止误动作;

3.报警界限值可在设定值(±20%)内连续可调;

4.密封式继电器触点输出,触点寿命>30万次;

5.隔离电压:交流监测>2.5kVDC,1分钟;直流监测>1.5kVDC,1分钟

6.输入过载能力:10倍阈值,持续5秒;

7.额定环境温度:商业级0~+50℃,工业级-25℃~+70℃;

8.平均无故障工作时间>5万小时;

9.20%回差设置,确保动作稳定;

五.功能按键

因本系统使用的按键数目少,故按键采用硬件去抖。按键电路如图2-6 所示。用两个与非门构成一个RS触发器。当按键未按下时输出为1;刚键按下时输出为0。此时即使用按键的机器性能,使按键因弹性抖动而产生瞬时断开(抖动跳开B),只要按键不返回原来状态A,双稳态电路的状态不会改变,输出保持为0,不会产生抖动的波形。也就是说,即使B点的电压波形是抖动的,但经双稳态电路之后,其输出为正规的矩形波。

图2-6按键电路

六.压缩机,风机、电磁阀控制

压缩机,风机工作原理是制冷系统内制冷剂的低压蒸汽被压缩机吸入并压缩为高压蒸汽后排至冷凝器。同时轴流风扇吸入的室外空气流经冷凝器,带走制冷剂放出的热量,使高压制冷剂蒸汽凝结为高压液体。高压液体经过过滤器、节流机构后喷入蒸发器,并在相应的低压下蒸发,吸取周围的热量。同时贯流风扇使空气不断进入蒸发器的肋片间进行热交换,并将放热后变冷的空气送向室内。如此室内空气不断循环流动,达到降低温度的目的。而冰箱没有风扇靠自然对流来进行热量交换。电磁阀的工作原理非常简单,阻流板就象一个闸门,一个弹簧让它处于关闭状态,上面一个电磁铁芯,铁芯(低部橡胶)压在阻流板中间(凸起)的一个小眼儿上,外面一个电磁线圈,接通电源后铁芯别吸上去,小眼儿开始进气,压力达到顶开弹簧后电磁阀打开。

七.故障报警电路

报警电路主要用示电冰箱使用过程中出现的故障,包括系统自身故障,外界故障,和误操作,如:冰箱内温度太高,外界电压波动大,未关好冰箱门或是开门时间太长等等。

四个指示灯作用:

L1:设置冷藏室温度时亮

L2:设置冷冻室温度时亮

L3:压缩机运行时亮

L4:电源过压或欠压时亮

第三章软件部分

本系统软件主要由主流程、功能子程序、中断服务程序组成。采用主程序调用功能子程序,子程序尽可能少的调用其它子程序,以保证系统的稳定运行。本系统温度在-64?C~64?C,用七位即可存放,因此温度值用一个字节存放, 最高位存放符号位。

各温度值均用全程变量形式存放,如下:

60H冷藏室温度设定值

61H冷冻室温度设定值

62H冰箱运行时冷藏室温度实际值

63H冰箱运行时冷冻室温度实际值

64H用于存放压缩机,电源状态和压缩机关机延时状态值

其中:

最低0位COMP存放压缩机状态标志:1 压缩机开启0压缩机关闭

第1位TIME_OUT离上次关闭压缩机是否已有5S:1 否0是

第2 位UP电压过欠压标志:1过欠压0正常

65H,66H用于存放化霜时间计数

67H用于压缩机关闭延时计数

一、主程序:MAIN

主程序由初始化,键盘扫描,显示,温度采集,温度控制和定时化霜子程序组成,为系统软件的主干部分,化霜采用定时化霜,每三十分钟化霜一次,化霜原理见概论电冰箱式作原理部分,其流程图如图3-1所示:

程序如下:

图3-1 主程序流程图ORG 0000H

AJMP MAIN

ORG 0003H

LJMP DY_INT

ORG 000B

LJMP TIME0_INT

ORG 0030H

DA TA EQUP1.0

V1 EQU P1.3

V2 EQU P1.4

V3 EQU P1.5

SET_KEY EQU P1.5

V3 EQU P1.5

V3 EQU P1.5

SET_KEY EQU P1.5

ADD_KEY EQU P1.6

SUB_KEY EQU P1.7

L1 EQU P0.6

L2 EQU P0.7

L3 EQU P2.5

L4 EQU P2.6

MAIN:CLR A

START:LCALL INIT1 ; 初始化

LCALL KEY ; 键盘扫描

LCALL GETWD ; 获得冷藏室温度

MOV 62H , R0

INC DATA

LCALL GETWD ; 获得冷冻室温度

MOV 63H , R0

DEC DATA

MOV R3 , 62H ; 显示两室温度值

MOV R4 , 63H

LCALL DISP

MOV A , 60H

CLR C

HIGH:CJNE A , 62H , HIGH1 ; 冷藏室温度等于高于设定值时AJMP HIGH2

HIGH1:JC HIGH3

HIGH2:SETB V1 ; 开启压缩机

LCALL OPEN

AJMP LOW

HIGH3:MOV A , 61H

CLR C

CJNE A , 63H , HIGH4 ; 冷冻室温度等于高于设定值时

AJMP HIGH5

HIGH4:JC LOW

HIGH5:SETB V2 ; 开启压缩机

LCALL OPEN

LOW:MOV A , 61H

CLR C

CJNE A , 63H , LOW1 ; 冷冻室温度等于低于最低值时

AJMP LOW2

LOW1:JNC LOW3

LOW2:CLR V2 ; 关闭压缩机

LCALL CLOSE

AJMP LS

LOW3:MOV A , 60H

CLR C

CJNE A , 62H , LOW4 ; 冷冻室温度等于低于最低值时

AJMP LOW5

LOW4:JNC LS

LOW5:CLR V1 ; 关闭压缩机

LCALL CLOSE

LS:MOV R1 , #10H ;延时1S

LS1:LCALL DLY_100MS

DJNZ R1 , LS1

INC 65H ; 化霜时间计数加1

MOV A , 65H

CJNE A , #00H , LS2

INC 66H

基于单片机的冰箱温度智能控制系统的设计

编号:_______________ 商丘工学院 毕业论文(设计) 题目冰箱温度控制系统设计 系别机电工程学院 专业电气自动化 学生姓名梁子鹏 成绩 指导教师吴德刚 2012年04月

冰箱温度控制系统设计 摘要 单片机即单片微型计算机,是集CPU,RAM,ROM,定时,计数和多种接口于一体的微控制器。其中51单片机是各种单片机中最为典型和最有代表性的一种,广泛应用于各个领域。 本课题设计的电冰箱的电控系统主要应用AT89C51单片机作为核心控制元件进行分析和设计,对各部分的软件编程、硬件电路设计、及调试进行了介绍。电冰箱温度控制系统是利用温度传感器DS18B20采集电冰箱冷藏室和冷冻室的温度,通过INTEL公司的高效微控制器MCS-C51单片机进行数字信号处理,从而达到智能控制的目的。本系统可实现电冰箱冷藏室和冷冻室的温度设置、电冰箱自动除霜、开门报警等功能。 本文在第一章介绍了电冰箱的系统组成及工作原理,第二章论述了本控制系统的硬件设计部分。第三章论述了系统的软件设计部分。 通过对直冷式电冰箱制冷系统的改进和采用模糊控制技术,实现了电冰箱的双温双控,使电冰箱能根据使用条件的变化迅速合理地调节制冷量,且节能效应明显。 关键词:AT89C51单片机A/DC0809智能仪器

目录 前言 (3) 第一章电冰箱的系统概述 (2) 1.1电冰箱的设计原理 (2) 1.2工作过程的设计.............................................................................错误!未定义书签。 1.3冷冻室冷藏室温度检测采样电路.................................................错误!未定义书签。第二章硬件部分设计 (4) 2.1系统结构 (4) 2.2冷冻室冷藏室温度检测采样原理 (4) 2.2.1主要特性 (4) 2.2.2管脚说明 (5) 2.2.3振荡特性 (6) 2.2.4计算器 (6) 2.3过欠压保护电路 (6) 2.4电压检测装置的设计....................................................................错误!未定义书签。 2.5功能按键的设计 (7) 2.6开门报警点路 (8) 第三章软件部分的设计 (9) 3.1主程序的设计 (9) 3.2始化程序的设计 (9) 3.3关闭压缩机的设计 (10) 结论 (11) 参考文献 (12)

智能窗控制系统的设计

课程设计报告 课程名称微机控制技术 设计题目智能窗自动控制系统设计 专业班级 姓名 学号 指导教师 起止时间 2013.12.23~2013.12.31 电气与信息学院

课程设计考核和成绩评定办法 1.课程设计的考核由指导教师根据设计表现、设计报告、设计成果、答辩等几个方面,给出各项权重,综合评定。该设计考核教研室主任审核,主管院长审批备案。 2.成绩评定采用五级分制,即优、良、中、及格、不及格。 3.参加本次设计时间不足三分之二或旷课四天以上者,不得参加本次考核,按不及格处理。 4.课程设计结束一周内,指导教师提交成绩和设计总结。 5.设计过程考核和成绩在教师手册中有记载。 课程设计报告内容 课程设计报告内容、格式各专业根据专业不同统一规范,经教研室主任审核、主管院长审批备案。 注: 1.课程设计任务书和指导书在课程设计前发给学生,设计任务书放置在设计报告封面后和正文目录前。 2.为了节省纸张,保护环境,便于保管实习报告,统一采用A4纸打印(正文采用宋体五号字)或手写。

13/14学年第一学期 微机控制技术课程设计任务书 指导教师:蔡长青刘文洲班级:自动1041.2 地点:PLC 实验室 课程设计题目:窗帘自动控制系统 一、课程设计目的 本课程设计的目的在于培养学生运用已学的微机控制技术的基础知识和基本理论,加以综合运用,进行微机控制系统设计的初等训练,掌握运用微机控制技术的原理、设计内容和设计步骤,为从事相关的毕业设计或今后的工作需要打下良好的基础。 二、课程设计内容(包括技术指标) 设计并制作一个窗自动控制系统,可以根据各种条件手动或自动控制窗及窗帘的开度。 1.系统包括遥控器,自选电光源、窗开闭机构。 遥控器由键盘和液晶显示器(显示窗和窗帘状态以及其它必要的信息)组成。 自制电光源由3个发光二极管组成,具有4种发光强度:灭、暗、较亮、亮。 窗帘高0.5米,宽1米,开闭用电机驱动,可以实现“全关、位置1、位置2及全开”四种开度。窗帘由电机、帘架、帘布组成。用1个发光二极管模拟窗的状态,亮代表开,灭代表关。 2.可以使用直流电机、异步电机或步进电机,定位传感器自选。 三、课程设计原则 1、尽可能地满足被控对象的控制要求; 2、在满足控制的前提下,力求使控制系统简单、经济; 3、保证控制系统安全可靠; 四、课程设计步骤 1、对控制系统任务和要求作深入的调查研究,明确控制任务; 2、对多个可行方案进行比较,选出最佳方案 3、进行详细的设计与论证 4、给出理论分析与计算, 5、给出系统总体框图、 6、给出核心电路原理图、 7、给出主要流程图、 8、给出程序清单及有关设计文件 9、撰写设计说明书 五、时间安排 时间内容备注 PLC实验室 12月23日集中讲解课程设计要求,分配设 计题目,明确任务和具体安排 12月24日检查任务书、检查设计方案PLC实验室 12月26日检查设计PLC实验室

单片机课程设计(温度控制系统)

温度控制系统设计 题目: 基于51单片机的温度控制系统设计姓名: 学院: 电气工程与自动化学院 专业: 电气工程及其自动化 班级: 学号: 指导教师:

2015年5月31日 摘要: (3) 一、系统设计 (3) 1.1 项目概要 (3) 1.2设计任务和要求: (4) 二、硬件设计 (4) 2.1 硬件设计概要 (4) 2.2 信息处理模块 (4) 2.3 温度采集模块 (5) 2.3.1传感器DS18b20简介 (5) 2.3.2实验模拟电路图 (7) 2.3.3程序流程图 (6) 2.4控制调节模块 (9) 2.4.1升温调节系统 (9) 2.4.2温度上下限调节系统 (8) 2.43报警电路系统 (9) 2.5显示模块 (12) 三、两周实习总结 (13) 四、参考文献 (13) 五、附录 (15)

5.1原理图 (15) 摘要: 在现代工业生产中,温度是常用的测量被控因素。本设计是基于51单片机控制,将DS18B20温度传感器实时温度转化,并通过1602液晶对温度实行实时显示,并通过加热片(PWM波,改变其占空比)加热与步进电机降温逐次逼近的方式,将温度保持在设定温度,通过按键调节温度报警区域,实现对温度在0℃-99℃控制的自动化。实验结果表明此结构完全可行,温度偏差可达0.1℃以内。 关键字:AT89C51单片机;温控;DS18b20 一、系统设计 1.1 项目概要 温度控制系统无论是工业生产过程,还是日常生活都起着非常重要的作用,过低或过高的温度环境不仅是一种资源的浪费,同时也会对机器和工作人员的寿命产生严重影响,极有可能造成严重的经济财产损失,给生活生产带来许多利的因素,基于AT89C51的单片机温度控制系统与传统的温度控制相比具有操作方便、价价格便宜、精确度高和开展容易等优点,因此市场前景好。

模电课设—温度控制系统的设计

目录 1.原理电路的设计 (1) 1.1总体方案设计 (1) 1.1.1简单原理叙述 (1) 1.1.2设计方案选择 (1) 1.2单元电路的设计 (3) 1.2.1温度信号的采集与转化单元——温度传感器 (3) 1.2.2电压信号的处理单元——运算放大器 (4) 1.2.3电压表征温度单元 (5) 1.2.4电压控制单元——迟滞比较器 (6) 1.2.5驱动单元——继电器 (7) 1.2.6 制冷部分——Tec半导体制冷片 (8) 1.3完整电路图 (10) 2.仿真结果分析 (11) 3 实物展示 (13) 3.1 实物焊接效果图 (13) 3.2 实物性能测试数据 (14) 3.2.1制冷测试 (14) 3.2.2制热测试 (18) 3.3.3性能测试数据分析 (20) 4总结、收获与体会 (21) 附录一元件清单 (22) 附录二参考文献. (23)

摘要 本课程设计以温度传感器LM35、运算放大器UA741、NE5532P及电压比较器LM339N 为电路系统的主要组成元件,扩展适当的接口电路,制作一个温度控制系统,通过室温的变化和改变设定的温度,来改变电压传感器上两个输入端电压的大小,通过三极管开关电路控制继电器的通断,来控制Tec制冷片的工作。这样循环往复执行这样一个周期性的动作,从而把温度控制在一定范围内。学会查询文献资料,撰写论文的方法,并提交课程设计报告和实验成品。 关键词:温度;测量;控制。

Abstract This course is designed to a temperature sensor LM35, an operational amplifier UA741, NE5532P and a voltage comparator LM339N circuit system of the main components. Extending the appropriate interface circuit, make a temperature control system. By changing the temperature changes and set the temperature to change the size of the two input ends of the voltage on the voltage sensor, an audion tube switch circuit to control the on-off relay to control Tec cooling piece work. This cycle of performing such a periodic motion, thus controlling the temperature in a certain range. Learn to query the literature, writing papers, and submitted to the curriculum design report and experimental products. Key words: temperature ; measure ;control

冰箱温度控制器的设计

冰箱温度控制器的设计

冰箱温度控制器的设计 1 引言 家用电冰箱一般有冷冻室和冷藏室,冷冻室的温度为-6℃~-18℃左右;冷藏室的温度为0℃~10℃。在该温度范围内,食品保鲜效果较好,因此,对控制器的要求是将冷冻室和冷藏室的温度自动控制在各自的范围内。在电冰箱的控制中,温度是主要的控制对象,控制的好就有显著的节能效果。但冰箱内要受诸如环境温度的高低、冰箱本身的容积、冰箱中食物的多少、以及食物的种类和性质、存放物品的初始温度、散热特性及其热容量、物品的充满率及开门的频繁程度等控制。冰箱内的温度场分布极不均匀,要想建立电冰箱温度变化的精确数学模型是很困难的,因此采用模糊控制技术才能达到最佳的控制效果。 2 模糊控制系统概述

2.1 普通电冰箱的结构 普通电冰箱的箱体是用隔热材料分割成几个空间,可有单门冷藏式、单门冷冻式、双门冷藏、冷冻式和三门冷冻、冷藏式。 (1)冷冻室和冷藏室 冰箱是利用冷却剂周期性循环的物态变化吸热而致冷。用于吸热的蒸发器就设在冷冻室,蒸发器冷却的冷气循环到冷藏室,使之降温。由于这种结构的安排,冷冻室的温度降得较快,而冷藏室的温度降得较慢。 (2)除霜加热器 因为在冰箱降温过程中,空气和食物中所含的水分会凝聚到蒸发器和食物上而结成霜,当蒸发器表面结霜后,其热交换能力下降,而影响致冷效果;当霜层过厚时,还可能引起压缩机故障。除霜加热器包括门框加热器和蒸发器上的化霜加热器。 2.2 模糊控制电冰箱系统结构 家用电冰箱的发展,除了无氟、大容量外,主要是多门分体结构,一套制冷装置、多通道风冷式。为了适应这一情况,达到高精度、智能化

控制的目的,本系统主要实现温度控制和智能化霜。温度控制就是要把握冰箱内存放的食物的温度和热容量,控制压缩机的开停、风扇转速和风门开启度等,使食物达到最佳保存状态。这就需要用传感器来检测环境温度和各室温度,并运用模糊推理来确定食物温度和热容量。智能除霜就是要根据霜层厚度,选择门开启次数最少的时间段,即温度变化率最小时快速除霜,这样对食物影响最小,有益于保鲜。运用模糊推理来确定着霜量和考虑门开启状况,经模糊推理确定除霜指令。此外,本系统还具有故障自诊及运行状态的显示等功能。控制电路框图如图1所示。 2.2.1 系统硬件组成 该系统采用8位87C552单片机为控制器8KROM,256字节的RAM为传感器,主要有冷冻室、冷藏室、冰温室及环温等传感器,采用价格低廉的热敏电阻。在门状态检测电路中,为了减少输入线数,简化装配工艺,多个状态开关共用一根输入线。通过输入线状态变化和箱内温度变化来决策时冷冻室箱门打开,还是冷藏室箱门打开。显示电路由LED显示和数码显示两部分组成。LED显示电冰箱运行状态,数码显示

电冰箱自动控制系统的设计

目录 1.引言 (2) 2 设计要求及分析 (3) 2.1电冰箱温度自动调节功能 (3) 2.3电源过欠压保护功能 (3) 2.4压缩机开启延时功能 (3) 2.5故障报警功能 (3) 3. 自动控制系统硬件结构设计 (4) 3.1主要部件选择与功能实现 (4) 3.1.1 单片机选型及功能介绍 (4) 3.1.2 A/D转换器选型及功能介绍 (5) 3.1.3 74LS373简介 (5) 3.2检测及控制电路 (6) 3.2.1 传感器的选择与温度自动调节功能的实现 (6) 3.2.2 电冰箱的过欠压保护电路及功能实现 (8) 3.2.3 电冰箱的开启延时电路及功能的实现 (9) 3.2.4 自动除霜功能的实现 (10) 3.2.5 报警器 (11) 总结 (13) 参考文献 (14)

电冰箱自动控制系统的设计 1.引言 冰箱自动控制系统在正常工况下工作,当运行过程中需要进行自动调节时,系统能通过预设程序进行调节,要求控制系统应有一定的应变能力。 对于冰箱性能的主要调节指标是箱体温度由此实现的功能有自动温度调节,自动除霜等。 要求维持冰箱的冷藏冷冻室温度维持在预先设定的数值,当箱内温度高于或低于这一值时判断启动或关闭压缩机,使温度回归。 系统还要求累计压缩机运行时间和检测环境温度,来判断是否满足化霜条件,当满足化霜条件时,接通化霜加热丝,同时断开压缩机和风机,当完成化霜工作后恢复压缩机风机的工作。 另外当运行达到安全极限时,要求系统能采取一些相应的保护措施,促使运行离开安全极限,返回到正常情况,以防事故。 属于生产保护性措施的有两类:一类是硬保护措施;一类是软保护措施。 例如电源的过欠压保护,压缩机开启延时,故障自检报警等. 本系统通过监控环境温度,冰箱的冷冻,冷藏室温度,电源电压等数据,通过处理判断调整冰箱的运行以达到预期的运行效果。使冰箱在节能,储藏效果,安全方面都能进行自动有效的控制。

温度控制器课程设计要点

郑州科技学院 《模拟电子技术》课程设计 题目温度控制器 学生姓名 专业班级 学号 院(系)信息工程学院 指导教师 完成时间 2015年12月31日

郑州科技学院 模拟电子技术课程设计任务书 专业 14级通信工程班级 2班学号姓名 一、设计题目温度控制器 二、设计任务与要求 1、当温度低于设定温度时,两个加热丝同时通电加热,指示灯发光; 2、当水温高于设定温度时,两根加热丝都不通电,指示灯熄灭; 3、根据上述要求选定设计方案,画出系统框图,并写出详细的设计过程; 4、利用Multisim软件画出一套完整的设计电路图,并列出所有的元件清单; 5、安装调试并按规定格式写出课程设计报告书. 三、参考文献 [1]吴友宇.模拟电子技术基础[M]. 清华大学出版社,2009.52~55. [2]孙梅生.电子技术基础课程设计[M]. 高等教育出版社,2005.25~28. [3]徐国华.电子技能实训教程[M]. 北京航空航天大学出版社,2006.13 ~15. [4]陈杰,黄鸿.传感器与检测技术[M].北京:高等教育出版社,2008.22~25. [5]翟玉文等.电子设计与实践[M].北京:北京中国电力出版社,2005.11~13. [6]万嘉若,林康运.电子线路基础[M]. 高等教育出版社,2006.27 ~29. 四、设计时间 2015 年12月21 日至2015 年12 月31 日 指导教师签名: 年月日

本设计是一种结构简单、性能稳定、使用方便、价格低廉、使用寿命长、具有一定的实用性等优点的温度控制电路。本文设计了一种温度控制器电路,该系统采用模拟技术进行温度的采集与控制。主要由电源模块,温度采集模块,继电器模块组成。 现代社会科学技术的发展可以说是突飞猛进,很多传统的东西都被成本更低、功能更多、使用更方便的电子产品所替代,本课程设计是一个以温度传感器采用LM35的环境温度简易测控系统,用于替代传统的低精度、不易读数的温度计。但系统预留了足够的扩展空间,并提供了简单的扩展方式供参考,实际使用中可根据需要改成多路转换,既可以增加湿度等测控对象,也能减少外界因素对系统的干扰。 首先温度传感器把温度信号转换为电流信号,通过放大器变成电压信号,然后送入两个反向输入的运算放大器组成的比较器电路,让电位器来改变温度范围的取值,最后信号送入比较器电路,通过比较来判断控制电路是否需要工作。此方案是采用传统的模拟控制方法,选用模拟电路,用电位器设定给定值,反馈的温度值与给定的温度值比较后,决定是否加热。 关键词:温度传感器比较器继电器

温度控制系统毕业设计

摘要 在日常生活及工农业生产中,对温度的检测及控制时常显得极其重要。因此,对数字显示温度计的设计有着实际意义和广泛的应用。本文介绍一种利用单片机实现对温度只能控制及显示方案。本毕业设计主要研究的是对高精度的数字温度计的设计,继而实现对对象的测温。测温系数主要包括供电电源,数字温度传感器的数据采集电路,LED显示电路,蜂鸣报警电路,继电器控制,按键电路,单片机主板电路。高精度数字温度计的测温过程,由数字温度传感器采集所测对象的温度,并将温度传输到单片机,最终由液晶显示器显示温度值。该数字温度计测温范围在-55℃~+125℃,精度误差在±0.5℃以内,然后通过LED数码管直接显示出温度值。数字温度计完全可代替传统的水银温度计,可以在家庭以及工业中都可以应用,实用价值很高。 关键词:单片机:ds18b20:LED显示:数字温度. Abstract In our daily life and industrial and agricultural production, the detection and control of the temperature, the digital thermometer has practical significance and a wide range of applications .This article describes a programmer which use a microcontroller to achieve and display the right temperature by intelligent control .This programmer mainly consists by temperature control sensors, MCU, LED display modules circuit. The main aim of this thesis is to design high-precision digital thermometer and then realize the object temperature measurement. Temperature measurement system includes power supply, data acquisition circuit, buzzer alarm circuit, keypad circuit, board with a microcontroller circuit is the key to the whole system. The temperature process of high-precision digital thermometer, from collecting the temperature of the object by the digital temperature sensor and the temperature transmit ted to the microcontroller, and ultimately display temperature by the LED. The digital thermometer requires the high degree is positive 125and the low degree is negative 55, the error is less than 0.5, LED can read the number. This digital thermometer could

电冰箱温度控制系统设计样本

电冰箱温度控制系统设计 一、引言 电冰箱是每个家庭现代化厨房必备的家用电器之一, 它是利用电能在箱体内形成低温环境,用于冷藏冷冻各种食品和其它物品的家用电器设备。它的主要任务就是控制压缩机、化霜加热等来保持箱内食品的最佳温度达到食品保鲜的目的, 即保证所储存的食品在经过冷冻或冷藏之后保持色、味、水分、营养基本不变。从19 世界上第一台电机压缩式电冰箱研制成功, 随着科学技术的飞速发展电冰箱也在不断的演变和更新特别是近年来高新技术的迅猛崛起更使得电冰箱的发展日新月异。现代社会每一个家庭都处在快节奏的生活中人们大多已无闲暇的时间和精力花费在经常性的采购日常生活用品上。因此集中时间大量采购的新型生活方式已为越来越多的人所接受从而决定了大容量电冰箱将是一种国际化的发展趋势。传统的机械式直冷式电冰箱的控制原理是根据蒸发器的温度控制制冷压缩机的启、停,使电冰箱内的温度保持在设定温度范围内。一般,当蒸发器温度升至3~5℃时启动压缩机制冷;当温度低于-10 ~ -20℃时停止制冷,关断压缩机。 随着微机技术的飞速发展,单片机以其体积小、价格低、应用灵活等优点在家用电器、仪器仪表等领域中得到了广泛的应用。

采用单片机进行控制,能够使电冰箱的控制更准确、灵活、直观。 本次所设计的就是基于51单片机的电冰箱温度控制系统, 以AT89C51单片机为核心控制压缩机的启动和停止, 解决了传统电冰箱控制系统存在的不足, 能够使控制更准确、更灵活。 本次设计的目的是设计一个温度控制系统, 要求: 1.利用键盘分别控制冷藏室、冷冻室温度( 0~5℃, -7 ~ -18℃) ; 2.显示各室的温度值; 3.制冷压缩机运行后若突然断电要有30秒延时; 4.各个门开后超过2分钟要报警。 本次设计的意义是经过此次设计加深对测控系统原理与设计课程的理解, 掌握微机化测控系统设计的思路, 了解一般设计过程。 二、电冰箱温度控制系统硬件电路设计 1. 总体设计方案 以AT89S51单片机为核心, 来实现各个模块的功能。温度传感器模块、键盘输入模块作为系统的输入模块, 液晶显示模块、温度控制器模块、报警模块作为系统的输出模块, 构成基本电路, 原

(完整word版)基于51单片机的温度控制系统设计

基于51单片机的水温自动控制系统 0 引言 在现代的各种工业生产中 ,很多地方都需要用到温度控制系统。而智能化的控制系统成为一种发展的趋势。本文所阐述的就是一种基于89C51单片机的温度控制系统。本温控系统可应用于温度范围30℃到96℃。 1 设计任务、要求和技术指标 1.1任务 设计并制作一水温自动控制系统,可以在一定范围(30℃到96℃)内自动调节温度,使水温保持在一定的范围(30℃到96℃)内。 1.2要求 (1)利用模拟温度传感器检测温度,要求检测电路尽可能简单。 (2)当液位低于某一值时,停止加热。 (3)用AD转换器把采集到的模拟温度值送入单片机。 (4)无竞争-冒险,无抖动。 1.3技术指标 (1)温度显示误差不超过1℃。 (2)温度显示范围为0℃—99℃。 (3)程序部分用PID算法实现温度自动控制。 (4)检测信号为电压信号。 2 方案分析与论证 2.1主控系统分析与论证 根据设计要求和所学的专业知识,采用AT89C51为本系统的核心控制器件。AT89C51是一种带4K字节闪存可编程可擦除只读存储器的低电压,高性能CMOS 8位微处理器。其引脚图如图1所示。 2.2显示系统分析与论证 显示模块主要用于显示时间,由于显示范围为0~99℃,因此可采用两个共阴的数码管作为显示元件。在显示驱动电路中拟订了两种设计方案: 方案一:采用静态显示的方案 采用三片移位寄存器74LS164作为显示电路,其优点在于占用主控系统的I/O口少,编程简单且静态显示的内容无闪烁,但电路消耗的电流较大。 方案二:采用动态显示的方案 由单片机的I/O口直接带数码管实现动态显示,占用资源少,动态控制节省了驱动芯片的成本,节省了电 ,但编程比较复杂,亮度不如静态的好。 由于对电路的功耗要求不大,因此就在尽量节省I/O口线的前提下选用方案一的静态显示。

基于51单片机的温度控制系统的设计

基于单片机的温度控制系统设计 1.设计要求 要求设计一个温度测量系统,在超过限制值的时候能进行声光报警。具体设计要求如下: ①数码管或液晶显示屏显示室内当前的温度; ②在不超过最高温度的情况下,能够通过按键设置想要的温度并显示;设有四个按键,分别是设置键、加1键、减1键和启动/复位键; ③DS18B20温度采集; ④超过设置值的±5℃时发出超限报警,采用声光报警,上限报警用红灯指示,下限报警用黄灯指示,正常用绿灯指示。 2.方案论证 根据设计要求,本次设计是基于单片机的课程设计,由于实现功能比较简单,我们学习中接触到的51系列单片机完全可以实现上述功能,因此可以选用AT89C51单片机。温度采集直接可以用设计要求中所要求的DS18B20。报警和指示模块中,可以选用3种不同颜色的LED灯作为指示灯,报警鸣笛采用蜂鸣器。显示模块有两种方案可供选择。 方案一:使用LED数码管显示采集温度和设定温度; 方案二:使用LCD液晶显示屏来显示采集温度和设定温度。 LED数码管结构简单,使用方便,但在使用时,若用动态显示则需要不断更改位选和段选信号,且显示时数码管不断闪动,使人眼容易疲劳;若采用静态显示则又需要更多硬件支持。LCD显示屏可识别性较好,背光亮度可调,而且比LED 数码管显示更多字符,但是编程要求比LED数码管要高。综合考虑之后,我选用了LCD显示屏作为温度显示器件,由于显示字符多,在进行上下限警戒值设定时同样可以采集并显示当前温度,可以直观的看到实际温度与警戒温度的对比。LCD 显示模块可以选用RT1602C。

3.硬件设计 根据设计要求,硬件系统主要包含6个部分,即单片机时钟电路、复位电路、键盘接口模块、温度采集模块、LCD 显示模块、报警与指示模块。其相互联系如下图1所示: 图1 硬件电路设计框图 单片机时钟电路 形成单片机时钟信号的方式有内部时钟方式和外部时钟方式。本次设计采用内部时钟方式,如图2所示。 单片机内部有一个用于构成振荡器的高增益反相放大器,引脚XTAL1和XTAL2分别为此放大器的输入端和输出端,其频率范围为~12MHz ,经由片外晶体振荡器或陶瓷振荡器与两个匹配电容一 起形成了一个自激振荡电路,为单片机提供时钟源。 复位电路 复位是单片机的初始化操作,其作用是使CPU 和系统中的其他部件都处于一个确定的初始状态,并从这个状态开始工作,以防止电源系统不稳定造成CPU 工作不正常。在系统中,有时会出现工作不正常的情况,为了从异常状态中恢复,同时也为了系统调试方便,需要设计一个复位电路。 单片机的复位电路有上电复位和按键复位两种形式,因为本次设计要求需要有启动/复位键,因此本次设计采用按键复位,如图3。复位电路主要完成系统 图2 单片机内部时钟方式电路 图3 单片机按键复位电路

冰箱温度智能控制系统的设计

冰箱温度智能控制系统的设计 目录 第一章概论..................................... 错误!未定义书签。 一.电冰箱的系统组成 (2) 二.工作原理: (3) 三.本系统采用单片机控制的电冰箱主要功能及要求 (4) 第二章硬件部分 (4) 一.系统结构图 (4) 二.微处理器(单片机) (5) 三.温度传感器 (8) 四.电压检测装置 (8) 五.功能按键 (9) 六.压缩机,风机、电磁阀控制 (9) 七.故障报警电路 (9) 第三章软件部分 (10) 一、主程序:MAIN (10) 二、初始化子程序:INTI1 ......................... 错误!未定义书签。 三、键盘扫描子程序:KEY ......................... 错误!未定义书签。 四.打开压缩机子程序:OPEN (13) 五.关闭压缩机:CLOSE (15) 六.定时器0中断程序:用于压缩机延时............ 错误!未定义书签。 七.延时子程序.................................. 错误!未定义书签。第四章分析与结论.................................. 错误!未定义书签。

电冰箱温度测控系统设计 目前市场销售的双门直冷式电冰箱,含有冷冻室和冷藏室,冷冻室通常用于冷冻的温度为-6~-18℃;冷藏室用于在相对冷冻室较高的温度下存放食品,要求有一定的保鲜作用,不能冻伤食品,室温一般为0~10℃. 传统的电冰箱温度一般是由冷藏室控制,冷藏室、冷冻室的不同温度是通过调节蒸发器在两室的面积大小来实现的,温度调节完全依靠压缩机的开停来控制.但是冰箱内的温度受诸多因素的影响,如放入冰箱物品初始温度的高低、存放品的散热特性及热容量、物品在冰箱的充满率、环境温度的高低、开门的频繁程度等.因此对这种受控参数及随机因素很多的温度控制,既难以建立一个标准的数学模型,也无法用传统的PID调节来实现.一台品质优良的电冰箱应该具有较高的温度控制精度,同时又有最优的节能效果,而为了达到这一设计要求采用模糊控制技术无疑是最佳的选择. 一.电冰箱的系统组成 液体由液态变为气态时,会吸收很多热量,简称为“液体汽化吸热”,电冰箱就是利用了液体汽化的过程中需要吸热的原理来制冷的。 蒸气压缩式电冰箱制冷系统原理图如图1-1所示,主要由压缩机、冷凝器、干燥过滤器、毛细管、蒸发器等部件组成,其动力均来自压缩机,干燥过滤器用来过滤赃物和干燥水分,毛细管用来节流降压,热交换器为冷凝器和蒸发器。制冷压缩机吸入来自蒸发器的低温低压的气体制冷剂,经压缩后成为高温高压的过热蒸气,排入冷凝器中,向周围的空气散热成为高压过冷液体,高压过冷液体经干燥过滤器流入毛细管节流降压,成为低温低压液体状态,进入蒸发器中汽化,吸收周围被冷却物品的热量,使温度降低到所需值,汽化后的气体制冷剂又被压缩机吸入,至此,完成一个循环。压缩机冷循环周而复始的运行,保证了制冷过程的连续性。

基于51单片机控制的智能窗的设计

基于单片机控制的智能窗的设计 摘要 我们现在使用的窗户大部分采用人工关闭方式,不具有自动防盗、防雨、防煤气中毒等人性化的功能;平时我们外出时经常忘记关闭窗户,遇上下雨时,雨水会进入室内,对室内的电器、摆设等物品造成不必要的损害。晚上睡觉时我们通常把窗户关死,一旦燃气发生泄漏,由于室内不透气造成窒息中毒致残、致死的事件时有发生。为了防盗,我们一般在窗户外面安装防护栏,但如今很多城市为了美化市容通常不允许安装防盗窗。再者,现在使用的窗户大多数是单纯推拉式或平移式的,这给在楼层高的住户擦拭玻璃带来很大困难。本文借助单片机、电子电路及传感器的知识设计了可以实现清晨自动开窗、防雨、智能防盗和可燃性气体泄漏时报警并开窗,从而可解决现实生活中存在的很多问题。本智能窗的设计本着安全、方便、节能、人性化的原则进行,可使现代生活显著提高。 关键词:防风雨防盗 51单片机智能 目录 第1章总体方案的设计 (3) 1.1 本设计的主要任务和内容 (3) 1.2 控制系统架构图 (6) 第2章机械结构的设计 (4) 2.1 自动开关窗机械传动形式设计 (4) 2.1.1自动开关窗任务分析 (4) 2.1.2齿轮齿条参数选择 (4) 第3章自动控制系统主要硬件的设计 (5) 3.1 单片机选型 (5) 3.1.1单片机发展过程 (5) 3.1.2单片机发展趋势 (5) 3.1.3AT89S51单片机简介 (6) 3.2 数据检测传感器的选择 (6) 3.2.1数据检测传感模块组成 (6) 3.2.2传感器选型及电路 (10) 3.3 A/D转换电路的设计.................................................... 11

基于单片机的温度控制系统设计报告

基于单片机的温度控制系统设计报告

智能仪器仪表综合实训 题目基于单片机的温度控制系统设计 学院 专业电子信息工程 班级 (仪器仪表) 学生姓名 学号 指导教师 完成时间:

目录 一、系统设计---------------------------------------------------------第 1 页 (一)系统总体设计方案----------------------------------------------第 1 页 (二)温度信号采集电路选择和数据处理--------------------------------第 3 页 (三)软件设计------------------------------------------------------第 3 页二、单元电路设计-----------------------------------------------------第 5 页 (一)温度信号采集电路----------------------------------------------第 5 页 (二)步进电机电路------------------------------------------------- 第 5 页(三)液晶显示模块---------------------------------------------------------- 第6 页 (四)晶振复位电路--------------------------------------------------第 7 页三、总结体会--------------------------------------------------------------------------------------第 7 页 四、参考文献-------------------------------------------第 8 页 附录:程序清单------------------------------------------第 8 页

温度控制系统设计

温度控制系统设计 目录 第一章系统方案论证错误!未指定书签。 总体方案设计错误!未指定书签。 温度传感系统错误!未指定书签。 温度控制系统及系统电源错误!未指定书签。 单片机处理系统(包括数字部分)及温控箱设计错误!未指定书签。 算法原理错误!未指定书签。 第二章重要电路设计错误!未指定书签。 温度采集错误!未指定书签。 温度控制错误!未指定书签。 第三章软件流程错误!未指定书签。 基本控制错误!未指定书签。 控制错误!未指定书签。 时间最优的控制流程图错误!未指定书签。 第四章系统功能及使用方法错误!未指定书签。 温度控制系统的功能错误!未指定书签。 温度控制系统的使用方法错误!未指定书签。 第五章系统测试及结果分析错误!未指定书签。 硬件测试错误!未指定书签。 软件调试错误!未指定书签。 第六章进一步讨论错误!未指定书签。 参考文献错误!未指定书签。 致谢错误!未指定书签。 摘要:本文介绍了以单片机为核心的温度控制器的设计,文章结合课题《温度控制系统》,从硬件和软件设计两方面做了较为详尽的阐述。 关键词:温度控制系统控制单片机 : . : 引言: 温度控制是工业生产过程中经常遇到的过程控制,有些工艺过程对其温度的控制效果直接影响着产品的质量,因而设计一种较为理想的温度控制系统是非常有价值的。本文设计了以单片机为检测控制中心的温度控制系统。温度控制采用改进的数字控制算法,显示采用静态显示。该系统设计结构简单,按要求有以下功能: ()温度控制范围为°; ()有加热和制冷两种功能 ()指标要求: 超调量小于°;过渡时间小于;静差小于℃;温控精度℃ ()实时显示当前温度值,设定温度值,二者差值和控制量的值。 第一章系统方案论证 总体方案设计 薄膜铂电阻将温度转换成电压,经温度采集电路放大、滤波后,送转换器采样、量化,量化后的数据送单片机做进一步处理;

基于单片机的电冰箱温度控制器设计 韩凯(DOC)

课程设计大纲 学院名称电气工程与自动化学院课程名称传感器原理 开课系(或教研室)测控技术与仪器 执笔人韩凯 审定人孙凯 修(制)订日期2013年1月13日

山东轻工业学院 课程设计任务书 学院电气工程与自动化学院专业测控技术与仪器 姓名韩凯班级10-2 学号201002051071 题目基于单片机的电冰箱温度控制器设计 主要内容、基本要求、主要参考资料等: 一、主要内容 利用51单片机、温度传感器DS18B20、过欠电压检测电路等设计出冰箱温控器 二、基本要求 掌握51单片机的使用,掌握温度传感器与相关电路的工作原理与设计关键点。本系统可实现电冰箱温度设置、电冰箱过欠压检测、开门显示、压缩机开启延时等功能。 三、参考文献 [1] 求是科技.8051系列单片机C程序设计完全手册[M].北京:人民邮电出版社,2006 [2] 张鑫等.单片机原理及应用[M].北京:电子工业出版社,2006 [3] 谭浩强.C程序设计(第三版)[M].北京:清华大学出版社,2005 [4] 周兴华.单片机智能化产品——C语言设计实例详解[M].北京:北京航空航天大学出版社,2007 [5] 张齐等.单片机应用系统设计技术——基本C语言编程[M].北京:电子工业出版社,2004 [6] 王东锋,董冠强.单片机C语言应用100例[M].北京:电子工业出版社,2009 [7] 余瑾,姚燕.基于DS18B20测温的单片机温度控制系统[J].单片机开发与应用,2009,25(3-2):105-106. 完成期限:自2013 年 1 月 6 日至2013 年 1 月10 日指导教师:孙凯系(或教研室)主任:孙涛 2

智能窗户控制系统设计说明书

智能窗户控制系统设计说明书 设计者:徐凯 张猛龙 张凯 指导老师:唐建敏 (常州工学院创新中心 常州213002) 摘要:近年来,随着电子技术的发展和生活水平的不断提高,智能窗已经越来越多的被用到了现代智能化建筑中,提供住户一个安全、方便的环境。据统计,在未来的几年内,安装智能窗的用户不断增加。本次设计的智能窗户系统能通过其雨湿传感器电路不断循环不断检测室外湿度,当室外湿度达到一定时(下雨时)窗户自动关闭,防止潮湿空气或雨水进入房间;另外可设置自动关闭窗户或开启窗户时间,到了设定时间会自动关闭或开启窗户;可设置根据光敏传感器自动开启或者关闭窗户,达到更加智能化的效果。除此之外,我们还将窗户的滚轮装置隐藏于窗户底部夹缝中,更加美观。 关键词:智能窗户;单片机;雨湿传感器;光敏传感器;滚轮 1引言 据了解,智能窗户的应用越来越受广大人民的欢迎,在许多大城市,很多小区都实现智能化管理,其中智能窗户的应用是相当重要的一部分。所以我们这次创新设计选了这个我们比较感兴趣也很有现实意义的题目。 2国内外研究概况 目前,智能化窗户的功能还不是很完善,虽然市场上有下雨时能自动关闭的装置,但在雨过天晴后并不能适时自动开窗。这就会让用户在下班回家后觉得室内空气不流通、不清新等。另外,窗户的动力装置过于暴露,影响美观。因此,我们以这次创新设计为契机,改进了部分功能实现的方法,并增加了适时开窗的新功能,力求整个智能窗户控制系统高效、美观、易用的理念。 3设计目标与实现方案描述 设计目标:目前,考虑到经费及实验室器材,我们可以使智能窗户在控制系统下,由电机驱动来达到下雨

关窗、定时开/关窗、手动开/关窗,实现窗户智能化的目标。最终,我们会改善电机,使用无刷电机直接安装在窗户滚轮内,加入多种传感器模块,并添加物联网的一个节点及加入通讯模块,达到超远距离控制智能家居的目标。 实现方案: ①传感器模块:现在市场上大部分的智能窗户很不完善,其中雨湿传感器裸露在外,据统计现在下的 雨80%都是酸性雨,所以导致传感器的寿命很短。因此我们设计的雨湿传感器是非接触电容式传感器,整个模块的使用寿命长。 ②驱动模块:一般的智能窗户驱动基本上是拉线、电机推杆、滚珠丝杠这三种形式,体积大且裸露 在外。在我们观察下,大部分窗户是由铝合金或塑钢做成,其内部的空隙很大,所以我们充分利用这些空间,用电机直接控制窗户的滚轮,整个驱动模块都将隐藏于窗户底部的空隙内。 ③控制模块:我们选取以单片机为核心,程序简单,便宜易购买,而且将来可以在此基础上添加更多 的传感器以及通讯模块。 4详细设计和制作过程 总体框图设计如下:

自动温度控制系统的设计开题报告

附表1 铜陵学院学生毕业论文(设计)选题审批表院部:专业:

附表2 铜陵学院毕业论文(设计)任务书 同学:你好! 你所预选的毕业论文(设计)题目自动温度控制系统的设计经审定已通过,你可以进入研究(设计)阶段,请你按照以下进程要求完成毕业论文(设计)的研究设计任务。 一、在指导教师的指导下,进一步明确所选课题的目的和意义。 二、根据选题进行广泛调研,并检索主要参考文献。 三、拟定研究(设计)方案(包括内容、方法、预期目标、进度安排等)。 四、毕业论文(设计)的主要内容(或主要技术要求与数据):主要 是设计一个温度自动控制系统,用单片机控制,数字温度传感器采集数据, 并用LCD液晶显示器模块显示。它属于一个恒温系统。通过单片机处理,并 发出指令,使用继电器控制、隔离。 五、编写毕业论文(设计)提纲。 六、将包含上述内容的开题报告于 2015 年 1 月 6 日前送 交指导老师,并于 2015 年 1 月 15 日前完成开题。 七、请你于 2015 年 4 月 20 日前完成毕业论文(设计)的初 稿。 八、请你在 2015 年 4 月 22 日至 5 月 31 日之间反复修改 初稿(要求不少于三次)。 九、请你于 2015 年 6 月 20 日前把符合铜陵学院毕业论文(设 计)撰写格式要求的纸质定稿和相关的附件等材料,按要求装订一式三份, 连同对应的电子文档送交指导老师。 十、你的毕业论文(设计)如果通过了答辩资格审查,请于 2015 年 6月 20 日前准备参加本学院统一组织的毕业论文(设计)答辩(具体答辩

时间另行通知)。 十一、如果你的联系方式发生变动,应及时通知你的指导老师。 指导教师电话: E-mail: 学生电话: E-mail: 指导教师签名:学生签名: 下达任务日期: 2014 年 12 月 23 日接受任务日期: 2014 年 12 月24 日注:本任务书一式两份,一份交给学生,一份指导教师留存。 附表3 铜陵学院毕业论文(设计)开题报告

相关文档
最新文档