限行令的意外后果

限行令的意外后果
限行令的意外后果

龙源期刊网 https://www.360docs.net/doc/6f5867875.html,

限行令的意外后果

作者:孟山戎

来源:《中国经济信息》2010年第08期

限行措施未能根除拥堵的痼疾,却成了机动车保有量快速增加的推动力之一。

著名学者梁思成曾在日记中这样写道:“北京城不会得感冒,但总有一天它的交通会得心脏病。”

一语成谶。首都成“首堵”。

限行效果殆尽

北京“每周限行一天”的措施毫无悬念地继续实施。4月6日上午,北京市交通委公布56项

缓堵措施,继续实行尾号轮换限行等措施。

这一措施,有了开始,就很难有结束的一天,而且效果还每况愈下。

一年前,北京交通发展研究中心发布了《实施〈北京市政府关于实施交通管理措施的通

告〉监测评估报告》。报告称自尾号限行措施实施以来,北京市交通拥堵指数从“中度”下降为“轻度”;每日机动车污染物排放量减少了375吨。

一切看起来很美。

然而,政策制定者们似乎忽略了一个现实,尾号限行,只能对私家车的相对数量进行控制,绝对增速却是无法控制的。从机制设计的角度看,限行非但不能降低人们购买私家车的欲望,反而可能起到反向的激励作用。中国人民大学教授毛寿龙等专家就认为,尾号限行长期执行将引发机

动车保有量上升、出行频率增加等结果。

事实恰恰印证了专家们的预测。来自北京亚运村汽车交易市场的数据显示,2009年1月下旬之后,1.6升以下小排量车销量一直居高不下,货源一度不足。2009年北京地区二手车交易量

达到45万辆,与2008年的40万辆相比增长了12.5%;新车交易量达到66万辆以上。北京旧机

动车交易市场相关负责人表示,尾号限行后,消费者对于8万元以下小排量车的需求有所提高,但

蒸汽云爆炸事故后果模拟分析法

蒸汽云爆炸事故后果模拟分析法 超压: 1)TNT 当量 通常,以TNT 当量法来预测蒸气云爆炸的威力。如某次事故造成的破坏状况与kgTNT 炸药爆炸所造成的破坏相当,则称此次爆炸的威力为kgTNT 当量。 蒸气云爆炸的TNT 当量W TNT 计算式如下: W TNT =×α×W f ×Q f /Q TNT 式中,W TNT —蒸气云的TNT 当量(kg) α—蒸气云的TNT 当量系数,正己烷取α=; W f —蒸气云爆炸中烧掉的总质量(kg) Q f —物质的燃烧热值(kJ/kg), 正己烷的燃烧热值按×106J/kg ,参与爆炸的正己烷按最大使用量792kg 计算,则爆炸能量为×109J 将爆炸能量换算成TNT 当量q ,一般取平均爆破能量为×106J/kg ,因此 W TNT = ×α×W f ×Q f /q TNT + =××792××106/×106 =609kg 2)危害半径 为了估计爆炸所造成的人员伤亡情况,一种简单但较为合理的预测程序是将危险源周围划分为死亡区、重伤区、轻伤区和安全区。 死亡区内的人员如缺少防护,则被认为将无例外的蒙受重伤或死亡,其内径为0,外径为R ,表示外周围处人员因冲击波作用导致肺出血而死亡的概率为,它与爆炸量之间的关系为: = m 重伤区的人员如缺少防护,则绝大多数将遭受严重伤害,极少数人可能死亡或受伤。其内径就是死亡半径R 1,外径记为R 2,代表该处 0.37 0.37 1420.4313.613.610001000TNT W R ?? ??== ? ??? ??

人员因冲击波作用耳膜破损的概率为,它要求的冲击波峰值超压为44000Pa 。冲击波超压P ?按下式计算: P ?=++式中: P ?——冲击波超压,Pa ; Z ——中间因子,等于; E ——蒸气云爆炸能量值,J ; P0——大气压,Pa ,取101325 得R 2= 轻伤区的人员如缺少防护,则绝大多数将遭受轻微伤害,少数人将受重伤或者平安无事。轻伤区的内径为重伤区的外径R 2,外径R 3,表示外边界处耳膜因冲击波作用破裂的概率为,它要求的冲击波峰值 超压为17000Pa 。冲击波超压P ?按下式计算: P ?=++P ?——冲击波超压,Pa ; Z ——中间因子,等于; E ——蒸气云爆炸能量值,J ; P0——大气压,Pa ,取101325 得R 3= m 安全区内人员即使无防护,绝大多数也不会受伤,安全区内径为轻伤区的外径R 3,外径无穷大。 财产损失半径,指在冲击波的作用下建筑物发生三级破坏的半径,单位为m 。按照英国建筑物破坏等级的划分标准规定,建筑物的三级破坏是指房屋不能居住、屋基部分或全部破坏、外墙1 ~ 2面部分破损,承重墙破损严重。财产损失半径可由下式确定。 式中: K ——取值为5. 6 6 /121/3TNT 431751??? ???? ?? ?????+= TNT W KW R 0440********.434 101325P P ?===2 1 3 0R Z E P =?? ? ?? 01700017000 0.168101325P P ?===313 0R Z E P =?? ???

液体火灾(池火)事故后果评价

液体火灾事故后果(池火)分析 (孙自涛整理) 一、池火半径r 的计算 池火半径(多用于罐区)r=(S/π)1/2 (单位m ) 池火半径(多用在船舱或其他不规则形态)r=(3s/π) 1/2/2 式中:S 为防火堤内面积或其他不规则形面积。 π取3.14(以下略) 二、池火燃烧速度(Mf )计算 1、可燃液体沸点高于周围环境温度时。单位面积燃烧速度Mf 值计算公式为:(有些物质可查表) H T Tb Cp Hc dt dm Mf +-= = )0(001.0 式中: MF 为单位面积燃烧速度,(Kg/m 2s ) H C 为液体燃烧热;(J/Kg )(也可查表) Cp 为定亚比热;(J/Kg.K) (可查表) T b 为物质沸点;(K )(可查表) T 0为环境温度;(K )(可查表) H 为物质气化热;(J/Kg )(可查表) 2、可燃液体沸点低于周围环境温度时。单位面积燃烧速度Mf 值计算公式为:

H Hc dt dm Mf 001.0= = 式中:各符号表示内容同上。 三、计算燃烧时间(即池火持续时间) SMf W t = 式中: t 为池火持续时间 , (s ) W 为液池液体的总质量,(Kg ) S 为液体的面积,m 2 Mf 为液体单位面积燃烧速度,(Kg/m 2s ) 四、计算燃烧火焰高度 1、计算公式 根据托马斯池火火焰高度经验公式,计算池火的火焰高度h : h = 84r{Mf/[ρo (2gr )0.5] }0.6 式中: h 为池火火焰高度m; r 为液池半径或等效半径,(单位m ) p 0为周围空气密度。(取1.29 Kg/m 3) g 为重力加速度,(9.8m/S 2) Mf 即dm/dt 为液体单位面积燃烧速度,(Kg/m 2s ) 或使用池火焰高度的经验公式转换如下: 61.00)]/([42gD m D L h f ρ?== 式中:L 为火焰高度(m ), D 为液池直径(m ), m f 为燃烧速率(kg/m 2s ), ρ0为空气密度(kg/m 3),g 为引力常数。

(完整版)小说阅读中结尾的分析

小说阅读中结尾的分析 出题格式 1、这篇小说的结尾令人印象深刻,请赏析它的妙处。 2、谈谈你对这篇小说结尾的看法。 3、有人说这篇小说的结尾很震撼人心,有人说还是去掉结尾好。你认为怎样更好?为什么?答题角度 1、情节角度 ①陡生波澜,出人意料又合乎情理,震撼人心。 ②与前文的内容/伏笔照应,使情节连贯/ 基调一致 2、主题角度 深化主题+结合内容具体分析(讽刺,揭露……) 3、读者角度 戛然而止,给人以极大的想象空间,耐人寻味。 4、情感角度 悲剧性结尾,(与……形成强烈的对比)震撼人心,有极大的感染力。 喜剧性结尾,符合主人公的意愿,给人以愉悦、和谐之感。 小说结局 1、分析出人意料的结局。 ①从结构安排上看,它使平淡的故事情节陡然生出波澜,如石破天惊,猛烈撞击读者的心灵,产生震撼人心的力量。 ·如《项链》,《界河》 ②从表现手法上看,与前文的伏笔相照应,使人觉得又在情理之中。 ·如《项链》,《父爱无价》。《项链》直到结尾才点出是假的,但前面以作了埋伏。如借项链时主人一口答应,还项链时主人没有打开盒子检查等,暗示了项链是不值钱的。 ③从主题上看,能更好地深化主题。 ·如《界河》:主人公意外被打死,凸显出战争对美好人性的摧残,有力地控诉了战争的罪恶,深化了人类呼唤和平幸福生活的主题。 2、分析令人伤感的悲剧结局。 ①从主题上看,能更好地深化主题。 ·如:《界河》:主人公意外被打死的悲剧性结局凸显出战争对美好人性的摧残,有力地控诉了战争的罪恶,深化了人类呼唤和平幸福生活的主题。 ·再如《药》华小栓、夏瑜的死(悲剧)揭示了辛亥革命的不彻底性-----没有发动群众。 ②从表现人物性格看,能更好地塑造人物性格。 ·如《药》写华小栓吃了人血馒头后的死,突现了群众(华老栓)的愚昧性格。 ③这种结局令人感动,令人回味,引人思考。 ·如《杜十娘怒沉百宝箱》,杜十娘的死,引起读者思考死的原因。 3、分析令人喜悦的大团圆结局。 这种结局符合人们的阅读心理。人们阅读小说,目的是要得到快乐;因为真实的人生,如同月亮一样缺多圆少,所以才希望文学的梦境结局是圆满的,以寄托对美好生活的向往之情。如《柳毅传》。 ·如《界河》:如果去掉结尾有什么作用? ①从表达效果上看,小说喜剧结局给读者留下了广阔的想象空间,耐人寻味。 ②从阅读者的情感体验看,喜剧性的结尾与主人公、作者的意愿构成和谐的一体,给人以欣慰、

有毒化学品燃烧爆炸事故对人员和环境的危害分析实用版

YF-ED-J7399 可按资料类型定义编号 有毒化学品燃烧爆炸事故对人员和环境的危害分析 实用版 In Order To Ensure The Effective And Safe Operation Of The Department Work Or Production, Relevant Personnel Shall Follow The Procedures In Handling Business Or Operating Equipment. (示范文稿) 二零XX年XX月XX日

有毒化学品燃烧爆炸事故对人员和环境的危害分析实用版 提示:该解决方案文档适合使用于从目的、要求、方式、方法、进度等都部署具体、周密,并有很强可操作性的计划,在进行中紧扣进度,实现最大程度完成与接近最初目标。下载后可以对文件进行定制修改,请根据实际需要调整使用。 火灾与爆炸都会带来生产设施的重大破坏 和人员伤亡,但两者的发展过程显著不同。火 灾是在起火后火场逐渐蔓延扩大,随着时间的 延续,损失数量迅速增长,损失约与时间的平 方成比例;火灾时间延长1倍,损失可能增加4 倍。爆炸则是猝不及防,可能仅在一秒钟内爆 炸过程已经结束,设备损坏、厂房倒塌、人员 伤亡等巨大损失也将在瞬间发生。 1.爆炸特点

(1)爆炸性气体混合物的爆炸。在石化、化工生产过程中,发生的爆炸事故大多是爆炸性气体混合物的爆炸。可燃性物质从工艺装置、设备管线、阀门等处泄漏出来,或者是空气进入可燃气体存在的设备管线内,遇到火源即可发生爆炸事故。 (2)粉尘爆炸。粉尘本身的理化性质(燃烧热、氧化反应速度等)以及粉尘的颗粒大小、粉尘浓度都是粉尘爆炸的影响因素。水能抑制粉尘的悬浮性,因而降低了粉尘的爆炸性。 (3)蒸气爆炸。处于过热状态的水、有机液体、液化气体等,瞬间气化而产生的爆炸现

1事故类型和危害程度分析

1事故类型和危害程度分析 在进行机组检修、设备改造、消缺维护等工作时,由于安全生产管理出现漏洞,安全技术措施不完备,危险点分析和控制措施执行不到位,员工安全意识不强,自我保护不够,违章作业,劳动保护设施不完善,设备存在装置性违章等原因,均可能导致人身伤害事故的发生,一般有以下类型: (1)被火焰、化学品等干热烧伤; 被沸水、沸汤、蒸汽烫伤; (2)因缺氧导致窒息; (3)高空作业时坠落; (4)运输机械翻车、撞击等交通事故; (5)落水淹溺; (6)建筑物坍塌砸伤或掩埋窒息; (7)高空落物、机械起吊重物砸伤。 2应急处置基本原则 救治原则是及时报告、现场抢救、专业救治、严防感染。 3应急组织机构及其职责 3.1应急组织机构的组成

3.1.1最初应急救援小组 组长:当值值长2500 副组长:当班班长 成员:当班值班人员 3.1.2职责: 3.1.2.1在发生人身伤害事件后,值长或班长根据伤害程度、原因及时切断事故源,了解受伤程度后汇报运行处领导,同时采取现场急救措施,由运行处领导安排成立现场应急指挥部,批准现场救援方案,组织现场抢救。 3.1.2.2立即按本预案规定程序,组织力量对现场进行事故处理,根据现场人员受伤程度确定预案级别。 3.1.2.3负责向公司报告事故及处理的进展情况。 3.1.2.4应急状态消除,宣告应急行动结束。 3.2 指挥机构及职责 见《山西鲁能河曲发电公司突发事件总体应急预案》。 4人身伤害事故的预防和预警 4.1预防

4.1.1 严格执行《电业安全工作规程》、《消防规程》、《运行 规程》、《检修规程》 ; 认真执行“两措”计划, 落实资金、责任部门和完成日期。 4.2 预警 4.2.1 应急预案的启动 (1) 事故发生后由当值值长立即向运行处长汇报,由运行处长根 据情 况, 发布命令启动执行本应急预案。 运行处长向主管的二级单位 运行应急组首先下达应急预案启动令, 运行应急组应立即在运行范围 内,紧急启动本预案,各就各位,组织事故的应急处理。 (2) 运行处长汇报公司领导,通知并组织所辖部门紧急启动本预 案,各 单位人员接到命令后,迅速安排本部门人员各就各位。 (3) 车辆值班调度接到报警电话后,综合处应立即安排驾驶员紧 急出 车,驾驶员接到调度命令后,必须立即将救护车开至事发现场。 4.2.2 应对 4.2.2.1 烧伤及烫伤的应对 4.1.2 认真执行工作票制度及危险点分析和预控措施 4.1.3 认真落实作业安全技术措施 ; 4.1.4 作业人员应穿合适的工作服和使用合格的劳保防护用品 4.1.5 认真开展安全大检查,及时消除安全隐患 4.1.6

氯气泄漏重大事故后果模拟分汇总

国内外统计资料显示,因防爆装置不作用而造成焊缝爆裂或大裂纹泄漏的重大事故概率仅约为6.9×10-7~6.9×10-8/年左右,一般发生的泄漏事故多为进出料管道连接处的泄漏。据我国不完全统计,设备容器一般破裂泄漏的事故概率在1×10-5/年。此外,据储罐事故分析报道,储存系统发生火灾爆炸等重大事故概率小于1×10-6,随着近年来防灾技术水平的提高,呈下降趋势。 第七章氯气泄漏重大事故后果模拟分析 7.1危险区域的确定 概述: 泄漏类型分为连续泄漏(小量泄漏)和瞬间泄漏(大量泄漏),前者是指容器或管道破裂、阀门损坏、单个包装的单处泄漏,特点是连续释放但流速不变,使连续少量泄漏形成有毒气体呈扇形向下风扩散;后者是指化学容器爆炸解体瞬间、大包装容器的泄漏、许多小包装的多处泄漏,使大量泄漏物形成一定高度的毒气云团呈扇形向下风扩散。 氯泄漏后虽不燃烧,但是会造成大面积的毒害区域,会在较大范围內对环境造成破坏,致人中毒,甚至死亡。根据不同的事故类型、氯气泄漏扩散模型,危害区域会有所不同。氯设备泄漏、爆炸事故概率低,一旦发生可造成严重的后果。 以下液氯钢瓶中的液氯泄漏作为事故模型进行危险区域分析。 毒害区域的计算方法: (1)设液氯重量为W(kg),破裂前液氯温度为t(℃),液氯比热为C(kj/kg .℃),当钢瓶破裂时瓶内压力降至大气压,处于过热状态的液氯迅速降至标准沸点t0(℃),此时全部液氯放出的热量为:

Q=WC(t-t0) 设这些热量全部用于液氯蒸发,如汽化热为q(kj/kg),则其蒸发量W为: W=Q/q=WC(t-t0)/q 氯的相对分子质量为M r,则在沸点下蒸发的液氯体积V g(m3)为: V g =22.4W/M r273+t0/273 V g =22.4WC(t-t0)/ M r q273+t0 /273 氯的有关理化数据和有毒气体的危险浓度如下: 相对分子质量:71 沸点: -34℃ 液体平均此热:0.98kj/kg.℃ 汽化热: 2.89×102kj/kg 吸入5-10mim致死浓度:0.09% 吸入0.5-1h致死浓度: 0.0035-0.005% 吸入0.5-1h致重病浓度:0.0014-0.0021% 已知氯的危险浓度,则可求出其危险浓度下的有毒空气体积: 氯在空气中的浓度达到0.09%时,人吸入5~10min即致死。则V g(m3)的液氯可以产生令人致死的有毒空气体积为: V1 = V g×100/0.09 = 1111V g(m3) 氯在空气中的浓度达到0.00425(0.0035~0.005)%时,人吸入0.5~1h,则V g(m3)的液氯可以产生令人致死的有毒空气体积为: V2=V g×100/0.00425=23529V g(m3) 氯在空气中的浓度达到0.00175(0.0014~0.0021)%时,人吸入0.5~1 h,则

工程质量安全事故报告调查和处理制度

质量事故报告、调查和处理制度(一)质量信息 项目部及时传递可靠的工程质量信息到公司工程质量部。 (二)凡在工程建设过程中由于责任过失造成工程质量不符合设计文件要求或达不到本工程所采用的质量标准,一般需作返工、加固处理的均构成工程质量事故。 (三)由于工程质量事故具有复杂性、严重性、可变性和多发性的特点,所以建设工程质量事故的分类有多种方法,但一般可按以下条件进行分类: (1)按事故造成损失严重程度划分 1)一般质量事故指经济损失在5000元(含5000元)以上,不满5万元的;或影响使用功能或工程结构安全,造成永久质量缺陷的。 2)严重质量事故指直接经济损失在50000元(含50000元)以上,不满10万元的;或严重影响使用功能或工程结构安全,存在重大质量隐患的;或事故性质恶劣或造成2人以下重伤的。 3)重大质量事故指工程倒塌或报废;或由于质量事故,造成人员死亡或重伤3人以上;或直接经济损失10万元以上。 4)特别重大事故凡具备国务院发布的《特别重大事故调查程序暂行规定》所列发生一次死亡30人及其以上,或直接经济损失达500万元及其以上,或其他性质特别严重的情况之一均属特别重大事故。 (2)按事故责任分类

1)指导责任事故指由于在工程实施指导或领导失误而造成的质量事故。例如,由于工程负责人片面追求施工进度,放松或不按质量标准进行控制和检验,降低施工质量标准等。 2)操作责任事故指在施工过程中,由于实施操作者不按规程和标准实施操作,而造成的质量事故。例如,浇筑混凝土时随意加水;混凝土拌合物产生离析现象仍浇筑入模等。 (3)按质量事故产生的原因分类 1)技术原因引发的质量事故是指在工程项目实施中由于设计、施工作技术上的失误而造成的质量事故。例如,结构设计计算错误;地质情况估计错误;采用了不适宜的施工方法或施工工艺等。 2)管理原因引发的质量事故是指管理上的不完善或失误引发的质量 事故。例如,施工单位或监理单位的质量体系不完善;检验制度不严密;质量控制不严格;质量管理措施落实不力;检测仪器设备管理不善而失准;进料检验不严等原因引起的质量问题。 3)社会、经济原因引发的质量事故是指由于经济因素及社会上存在的弊端和不正之风引起建设中的错误行为,而导致出现质量事故。例如,某些施工企业盲目追求利润而不顾工程质量,在投标报价中随意压低标价,中标后则依靠违法的手段或修改方案追加工程款,或偷工减料等等.这些因素往往会导致出现重大工程质量事故,必须予以重视。 (四)工程质量事故发生后,采取逐级上报的制度。必须在2小时内向项目部安质部报告,并通知有关领导及质量安全领导小组。安质部必须在事故发生后24小时内向集团公司、建设单位、当地建设

工作危害分析(JHA)

安全标准化文件 工作危害分析(JHA)作业指导书 版次:第A版 编制: 审核: 批准: 2018年1月1日发布2018年2月1日实施 XXXXXXXX公司发布

工作危害分析(JHA)作业指导书 一、目的 为保证安全标准化风险评价程序有效实施,特制定本作业指导书。 二、范围 本作业指导书适用于本公司所有生产岗位及作业活动风险评价工作。 三、职责 1.安全科负责本作业指导书的编制与宣贯; 2?培训师负责本作业指导书的审核; 3.总经理负责批准本作业指导书,并督促基层单位认真执行。 四、基本概念 危害:可能造成人员伤亡、疾病、财产损失、工作环境破坏的根源或状态; 危害辨识:认知危害的存在并确定其特征的过程; 风险:发生特定的危害事件的可能性及后果的结合; 风险评价:评价风险程度并确定其是否在可接受范围的全过程; 可承受风险:根据用人单位的法律义务和职业安全健康方针,用人单位可接受的风险。 五、风险分级准则 1.基本准则 风险(R)=事件发生的可能性(L)X后果严重性(S) 2.后果严重性分级原则

3. 事件发生的可能性分级原则 表2事件发生的可能性(L )判断准则 4. 风险等级判定准则 表3风险等级( R )判断准则及控制措施 六、工作危害分析(JHA )步骤

1.划分作业活动 风险评价过程中为减少遗漏环节,应对所有生产经营活动进行划分,并收集和登记必要的信息。作业活动除了包括日常的生产经营活动外,还必须包括不常 见的、临时性的活动,例如:维修、异常处理等活动。作业活动可从以下几个方面进行分类: ⑴厂房内外的各作业地点(场所); (2)生产过程或所提供服务的各个阶段; ⑶有计划的工作和临时性的工作; (4)确定的任务。 作业活动划分的总要求是:所划分出的每种作业活动既不能太粗,如包含多达几十个作业步骤或作业内容也不能太细,如每个作业步骤都作为单个作业活动。任务类似、设备类似、工艺基本相同,且在同一车间内的作业活动可以统一考虑。各评价小组人员应在仔细分析研究本部门(车间)实际情况的基础上,列出本部门(车间)的作业活动类型。 各项作业活动所需信息可能包括以下几方面: (1)作业场所; ⑵通常(偶然)执行此任务的人员; (3)受到此项工作影响的其他人员(如访问者、承包方人员、公众); ⑷已接受此任务的人员的培训; (5)为此任务准备好的书面工作制度和(或)持证上岗程序; (6)可能使用的装置和机械; (7)可能使用的电手动工具; (8)原材料须用手移动的距离和高度; (9)所用的服务(如压缩空气); (10)工作期间所用到或所遇到的物质; (11)所用到或所遇到的物理形态的物质(如烟气、气体、蒸汽、液体、粉尘、粉末、固

爆炸后果分析资料

重大事故后果分析方法:爆炸 爆炸是物质的一种非常急剧的物理、化学变化,也是大量能量在短时间内迅速释放或急剧转化成机械功的现象。它通常借助于气体的膨胀来实现。 从物质运动的表现形式来看,爆炸就是物质剧烈运动的一种表现。物质运动急剧增速,由一种状态迅速地转变成另一种状态,并在瞬间内释放出大量的能。 一般说来,爆炸现象具有以下特征: (1)爆炸过程进行得很快; (2)爆炸点附近压力急剧升高,产生冲击波; (3)发出或大或小的响声; (4)周围介质发生震动或邻近物质遭受破坏。 一般将爆炸过程分为两个阶段:第一阶段是物质的能量以一定的形式(定容、绝热)转变为强压缩能;第二阶段强压缩能急剧绝热膨胀对外做功,引起作用介质变形、移动和破坏。

按爆炸性质可分为物理爆炸和化学爆炸。物理爆炸就是物质状态参数(温度、压力、体积)迅速发生变化,在瞬间放出大量能量并对外做功的现象。物理爆炸的特点是:在爆炸现象发生过程中,造成爆炸发生的介质的化学性质不发生变化,发生变化的仅是介质的状态参数。例如锅炉、压力容器和各种气体或液化气体钢瓶的超压爆炸。化学爆炸就是物质由一种化学结构迅速转变为另一种化学结构,在瞬间放出大量能量并对外做功的现象。例如可燃气体、蒸气或粉尘与空气混合形成爆炸性混合物的爆炸。化学爆炸的特点是:爆炸发生过程中介质的化学性质发生了变化,形成爆炸的能源来自物质迅速发生化学变化时所释放的能量。化学爆炸有3个要素:反应的放热性、反应的快速性和生成气体产物。 从工厂爆炸事故来看,有以下几种化学爆炸类型: (1)蒸气云团的可燃混合气体遇火源突然燃烧,是在无限空间中的气体爆炸; (2)受限空间内可燃混合气体的爆炸; (3)化学反应失控或工艺异常造成压力容器爆炸; (4)不稳定的固体或液体爆炸。 总之,发生化学爆炸时会释放出大量的化学能,爆炸影响范围较大,而物理爆炸仅释放出机械能,其影

事故后果模拟分析举例

压力容器物理爆炸 本节按照安全评价事故最大化原则,对该项目可能发生的重大事故进行模拟计算对可能发生的事故作出如下模拟评价。 介质为压缩空气的实验压力容器基本数据: 体积:V=250L=0.25m 3,绝对压力:P=8.1 Mpa 1. 计算发生爆炸时释放的爆破能量:E g =C g ·V ; 32857 .010]1013.01[5.2?? ?? ? ??-=p pV C g 式中:E g —气体的爆破能,kJ ; C g ——压缩气体爆破能量系数,kJ/m 3; V ——容器的容积,m 3; p-容器内气体的绝对压力,MPa ; 根据公式:代入数据得:C g =14458.73 kJ/m 3, E g =3614.68 kJ 2.将爆破能量E g 换成TNT 当量q ,代入数据: q=E g /q TNT =E g /4500则:q=0.80 3.爆炸的模拟比a ,即: a=(q/q 0)1/3=(q/1000)1/3=0.1q 1/3则: a=0.0928 4.在1000kgTNT 爆炸试验中相当的距离R 0,则 R 0 = R/a 或R = R 0·a 式中,R —目标与爆炸中心的距离,m ;

R0—目标与基准爆炸中心的相当距离,m。 △p(R)=△p0(R/α) 或△p(R0·a)=△p0(R0) 附表1 1000kgTNT爆炸时的冲击波超压 5.根据附表1给出的相关数据,在距离爆炸中心不同半径处的超压,见附表2。 附表2距离爆炸中心不同半径处的超压 6.离爆炸中心不同半径处冲击波超压对建筑物的破坏作用 附表3 冲击波超压对建筑物的破坏作用

由附表2和见附表3可知,离爆炸中心不同半径处冲击波超压对建筑物的破坏作用见附表4。 附表3-4 不同半径处冲击波超压对建筑物的破坏作用 7. 不同半径处冲击波超压对人体的伤害作用 附表5 冲击波超压对人体的伤害作用

建筑施工生产安全事故报告调查处理与案例分析

案例:物料提升机坠落事故 某公司热轧薄板厂的 2 号加热炉工程由某钢铁设计院设计,某冶金建设集团公司中标为工程的总承包方。冶金建设集团公司又将该工程中烟囱的施工(该烟囱为钢筋混凝土结构,高度110m)分包给其下属的第八建筑公司施工,工地总人数约180 人,施工人员主要来自南方某县劳务公司,工程由某监理公司进行监理: 施工中由第八建筑公司项目部编制了烟囱施工方案,方案中使用的物料提升机为井字架,作为解决烟囱上下料的运输工具,提升机选用了摩擦式卷扬机为动力。第八建筑公司项目部在搭设前未编制专项施工方案,由施工人员凭经验搭设钢管井架,搭设后未按规范要求设置安全防护装置。另外,考虑人员上下,虽设置了钢直梯,但既没按规定设置护圈,也没有设合理的休息平台,施工中作业人员为了节省时间基本上乘坐井架吊篮上下。以上情况建没单位、监理单位以及施工单位在检查中都已发现,对吊篮载人一事没有予以制止,对井架无安全防护装置、直梯无护圈及休息平台的设置等问题也没有提出解决办法。 当烟囱施工高度达106m时。烟囱顶部有13名工人完成绑扎钢筋和支模板作业后等待验收,这其间有 5 人乘吊篮下去,第八建筑公司的一名质检员又乘吊篮上到烟囱顶部准备进行验收检查。此时地面的卷扬机司机以为还要等待一段时间,所以拉上制动器后便离机去找人。后因天下雨,烟囱顶部的9人准备下到地面。于是全部乘上吊篮。由于人员过多,质量超过卷扬机制动器的制动力,而吊篮又没安装停靠装置,吊篮开始下滑,又因无断绳保护装置,致使吊篮无任何保护直落地面,地面也没按规定装设缓冲装置,过大的冲击及振动造成7 人死亡。2人重伤。 单项选择题 1.使用物料提升机提升应做到()。 A. 严禁人员攀登、穿越提升机架体和乘吊篮上下 B. 在有人员乘吊篮上下时必须由专业司机操作 C. 未经技术人员许可,一般不允许乘吊篮上下 D. 严禁人员攀登、穿越提升机架体,但可以乘吊篮上下 答案:A2.上述案例事故的性质为()。 A. 机械事故 B. 意外事故 C. 责任事故 D. 多人事故

蒸汽云爆炸事故后果模拟分析法

蒸汽云爆炸事故后果模 拟分析法 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

蒸汽云爆炸事故后果模拟分析法 超压: 1)TNT当量 通常,以TNT当量法来预测蒸气云爆炸的威力。如某次事故造成的破坏状况与kgTNT炸药爆炸所造成的破坏相当,则称此次爆炸的威力为kgTNT当量。 蒸气云爆炸的TNT当量W TNT计算式如下: W TNT=×α×W f×Q f/Q TNT 式中,W TNT—蒸气云的TNT当量(kg) α—蒸气云的TNT当量系数,正己烷取α=; W f—蒸气云爆炸中烧掉的总质量(kg) Q f—物质的燃烧热值(kJ/kg), 正己烷的燃烧热值按×106J/kg,参与爆炸的正己烷按最大使用量 792kg计算,则爆炸能量为×109J 将爆炸能量换算成TNT当量q,一般取平均爆破能量为×106J/kg,因此 W TNT= ×α×W f×Q f /q TNT+ =××792××106/×106 =609kg 2)危害半径 为了估计爆炸所造成的人员伤亡情况,一种简单但较为合理的预测程序是将危险源周围划分为死亡区、重伤区、轻伤区和安全区。 死亡区内的人员如缺少防护,则被认为将无例外的蒙受重伤或死亡,其内径为0,外径为R ,表示外周围处人员因冲击波作用导致肺出血而死亡的概率为,它与爆炸量之间的关系为: = m 重伤区的人员如缺少防护,则绝大多数将遭受严重伤害,极少数人可能死亡或受伤。其内径就是死亡半径R1,外径记为R2,代表该处人员

因冲击波作用耳膜破损的概率为,它要求的冲击波峰值超压为44000Pa。 ?按下式计算: 冲击波超压P ?=++式中: P ?——冲击波超压,Pa; P Z——中间因子,等于; E——蒸气云爆炸能量值,J; P0——大气压,Pa,取101325 得R2= 轻伤区的人员如缺少防护,则绝大多数将遭受轻微伤害,少数人将受重伤或者平安无事。轻伤区的内径为重伤区的外径R2,外径R3,表示外边界处耳膜因冲击波作用破裂的概率为,它要求的冲击波峰值超压为17000Pa。冲击波超压P?按下式计算: ?=++P?——冲击波超压,Pa; P Z——中间因子,等于; E——蒸气云爆炸能量值,J; P0——大气压,Pa,取101325 得R3= m 安全区内人员即使无防护,绝大多数也不会受伤,安全区内径为轻伤区的外径R3,外径无穷大。 财产损失半径,指在冲击波的作用下建筑物发生三级破坏的半径,单位为m。按照英国建筑物破坏等级的划分标准规定,建筑物的三级破坏是指房屋不能居住、屋基部分或全部破坏、外墙1 ~ 2面部分破损,承重墙破损严重。财产损失半径可由下式确定。 式中: K——取值为5. 6 正常泄露: 从原料危险性及最大储存使用量两方面综合考虑,选取甲醇的存储为研究对象进行蒸汽云爆炸事故后果模拟分析。

电气事故危害分析(最新版)

When the lives of employees or national property are endangered, production activities are stopped to rectify and eliminate dangerous factors. (安全管理) 单位:___________________ 姓名:___________________ 日期:___________________ 电气事故危害分析(最新版)

电气事故危害分析(最新版)导语:生产有了安全保障,才能持续、稳定发展。生产活动中事故层出不穷,生产势必陷于混乱、甚至瘫痪状态。当生产与安全发生矛盾、危及职工生命或国家财产时,生产活动停下来整治、消除危险因素以后,生产形势会变得更好。"安全第一" 的提法,决非把安全摆到生产之上;忽视安全自然是一种错误。 1.电气危害的主要表现形式 (1)电气火灾危害; (2)电击触电危害。 2.电气危害的主要原因 (1)电器火灾产生原因 a.电器设备设计不合理、安装存在缺陷或运行时短路、过载、接触不良、铁芯短路、散热不良漏电等导致过热; b.电器具和照明灯具形成引燃源; c.电火花和电弧。包括电器设备正常工作或操作过程中产生的电火花、电器设备或电气线路出现故障时产生的事故电火花、雷电放电产生的电弧、静电火花等。 (2)电击危险因素产生的原因 a.电气线路或电气设备在设计、安装上存在缺陷,或在运行中,缺乏必要的检修维护,使设备或线路存在漏电、过热、短路、接头松

脱、短线碰壳、绝缘老化、绝缘击穿、绝缘损坏、PE线短线等隐患; b.没有采取必要的安全技术措施(如保护接地、漏电保护、安全电压、等电位连接等),或安全措施失效; c.电气设备运行管理不当,安全管理制度不完善;没有必要的安全组织措施; d.专业电工或机电设备操作人员的操作失误,或违章作业等。 e.电气设备选型、电气线路设计不合理或安装存在缺陷; f.电火花和电弧:电气设备正常工作或操作过程中以及故障时产生的电火花、雷电产生的电弧、静电火花等; g.电气设备或电气线路短路、过载、过热、漏电、绝缘老化、绝缘损坏、绝缘击穿、接触不良、散热不良等; h.没有设置必要的安全防护与技术措施如漏电保护、接地保护等或安全防护于技术措施失效; i.管理制度及操作规程不健全; j.工人违章作业或操作失误; k.未按设备说明书或规程要求进行必要的检修维护。 l.没有设置警戒警示标志。 3.电气危害的后果

大型油罐火灾爆炸危害性研究参考文本

大型油罐火灾爆炸危害性研究参考文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

大型油罐火灾爆炸危害性研究参考文本使用指引:此安全管理资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 引言 随着我国石油化工工业的发展以及国家原油战略储备 库项目的实施,油罐的大型化将成为发展的必然趋势[1]。 1962年,美国首先建成了10×104m3浮顶罐;1967年, 在委内瑞拉建成了15×104m3浮顶罐;1971年日本建成 了16×104m3浮顶罐;沙特阿拉伯则成功地建造了20× 104m3浮顶罐。目前世界上单罐容量已高达24万m3。 我国于1985年从日本引进10万m3浮顶罐的设计和施工 技术,其后十余年间建造10万m3大型储罐达20多台 [2]。现在10万m3的储罐已经是屡见不鲜了,如此巨大的 油罐一旦发生火灾爆炸,其后果是难以想象的。 油罐的火灾爆炸事故危害极大,不仅严重威胁人民生

命安全,还给国家和企业带来重大经济损失。例如:黄岛油库“八·一二”重大火灾事故,造成直接经济损失3540万元,600吨原油流入海里,使附近海域和沿岸受到一定程度的污染;1994年11月,埃及艾斯龙特市石油基地储油罐发生火灾爆炸,死亡500人[3]。据统计,在油库事故中,火灾爆炸事故占事故总数的42.4%以上。而在油库着火爆炸事故中,油罐着火爆炸事故数占总爆炸事故数的25.6%[4]。对于管理有素的现代石化企业来讲,尽管油罐火灾爆炸事故的发生几率很低,甚至可以说是百年不遇的。然而,此类事故一旦发生,处理起来较为麻烦。稍有不慎,便会使企业遭受重大损失,甚至可能会给企业带来灭顶之灾。因此,做好事故预防,非常重要[5]。 1火灾爆炸危害性评价方法及其发展 火灾爆炸危害性的评价方法有近百种,下面只介绍几

事故后果分析安评教材

4 事故后果分析 对一种可能发生的事故只有知道其后果时,对其危险性分析才算是完整的。后果分析是危险源危险性分析的一个主要组成部分,其目的在于定量地描述一个可能发生的重大事故对工厂、对厂内职工、对厂外居民甚至对环境造成危害的严重程度。后果分析为企业或企业主管部门提供关于重大事故后果的信息,为企业决策者和设计者提供采取何种防护措施的信息。由于事故的发生是一个概率事件,完全杜绝生产过程中的事故是不可能的,因此对事故后果的控制就成为安全工作者必须关注的一个重要课题。 泄漏事故、火灾事故、爆炸事故、中毒事故是可能造成重大恶果的生产事故,也是我们进行后果分析的重点。 4.1 泄漏事故后果分析 火灾和因有毒气体引起的中毒事故都与物质的泄漏有着直接的联系。确定重大事故,尤其是泄漏和火灾事故时的危险区域是在确定有毒物质泄漏后的扩散范围的基础上进行的。因此,要首先从有毒、有害物质泄漏分析开始。 4.1.1 泄漏的主要设备 根据泄漏情况,可以把化工生产中容易发生泄漏的设备归纳为10类,即管道、挠性连接器、过滤器、阀门、压力容器或反应罐、泵、压缩机、储罐、加压或冷冻气体容器和火炬燃烧器或放散管。 (1)管道 包括直管、弯管、法兰管、接头几部分,其典型泄漏情况和裂口尺寸为: ?管道泄漏,裂口尺寸取管径的20-100%; ?法兰泄漏,裂口尺寸取管径的20%; ?接头泄漏,裂口尺寸取管径的20-100%; (2)挠性连接器 包括软管、波纹管、铰接臂等生产挠性变形的连接部件,其典型泄漏情况和裂口尺寸为:?连接器本体破裂泄漏,裂口尺寸取管径的20-100%; ?接头泄漏,裂口尺寸取管径的20%; ?连接装置损坏而泄漏,裂口尺寸取管径的100%; (3)过滤器 由过滤器本体、管道、滤网等组成,其典型泄漏情况和裂口尺寸为: ?过滤器本体泄漏,裂口尺寸取管径的20-100%; ?管道泄漏,与过滤器连接的管道发生的泄漏,裂口尺寸取管径20%; (4)阀 包括化工生产中应用的各种阀门,其典型泄漏情况和裂口尺寸为: ?阀壳体泄漏裂口尺寸取与阀连接管道管径的20-100%; ?阀盖泄漏,裂口尺寸取管径的20%; ?阀杆损坏而泄漏,裂口尺寸取管径的20%; (5)压力容器 包括化工生产中常用的分离、气体洗涤器、反应釜、热交换器、各种罐和容器等,其常见泄漏情况和裂口尺寸为:

核事故后果评价系统的进展与比较

第23卷第1期(总第133期)辐射防护通讯2003年2月 ?进展与评述? 核事故后果评价系统的进展与比较 Com parison and Advance of Consequences A ssessment System for N uclear A ccident 胡二邦 姚仁太 宣义仁 辛存田(中国辐射防护研究院,太原,030006) Hu Er bang Yao Rentai Xuan Yiren Xin Cuntian (China Institute for Radiation Pr otectio n,Taiyuan,030006) 摘 要 对国内外若干主要的核事故后果评价系统,如美国的AR AC、日本的SPEEDI、欧共体的R ODO S、中国的CRO DOS等的性能进行了概述与比较。对核事故后果评价中的主要组成部分,如大气扩散模型、动态食物链模型、防护措施、干预水平及计算防护措施有效性中所需的屏蔽因子、居址因子等的国内外概况与进展进行了评述。 关键词:核事故 后果评价 大气扩散 动态食物链 防护措施 中图分类号:T L73 文献标识码:A 文章编号:1004-6356(2003)01-0006-08 Abstract The quality of several m ain co nsequences assessment systems fo r nuclear accident such as ARAC(U SA)、SPEEDI(Japan)、RODOS(CE)and CRODOS(China)are summarized and com-pared.T he review of sever al m ain com ponents of Accident Co nsequences Assessm ent(ACA) sy stem such as atmospher ic dispersion model、dynam ic food-chain model、protective m easur e and shielding factor and o ccupancy facto r used in calculating effectiv ness o f pr otectiv e measure is de-scribed. Key words: Nuclear accident C onsequence assessment Atmospheric dispersion Dynamic food-chain Protective measure 1 核事故后果评价系统的进展与比较 1.1核事故后果评价系统进展概况 (1)美国ARAC 20世纪80年代国际上的实时剂量评价系统以美国的LLNL[1](劳伦斯?利弗莫尔国立实验所)的ARAC(Atmospheric Release Adv isory Ca-pability)为最先进。LLNL在20世纪70年代中期建立和检验了ARAC的原型操作系统。至今, ARAC系统已为160多个实际的或潜在的事件以及重大的演习作了响应,其中包括1979年3月的三里岛事故以及1986年4月的切尔诺贝利事故。它有能力为100个厂址提供应急响应服务,能够同时执行3个应急设施评价任务,能在接到用户通知后的15min之内给出初步的估算结果,45min之内给出完整的计算结果。现在ARAC已发展到第三代ARA C-3。在新模型中的诊断风场和扩散模型中应用了随地形变化的坐标系,即用连续地形替代了过去的台阶式地形;新模型中采用了新的拉格朗日粒子传输和扩散模型LODI,替代了以往的高斯和梯度扩散混合模型ADPIC,新模型中的天气预报模式产生48h的预报风场,分辨率达15km,每24h更新1次。 (2)日本SPEEDI[2] 1982年3月日本原子力研究所完成了关于SPEEDI(Sy stem fo r Predictio n of Environmental Emergency Dose Inform ation)基本结构的设计和报告的第一版。SPEEDI包括中心计算机设备和自动数据采集网络系统。后者采集全日本14个核 1收稿日期:2002-09-09 作者简介:胡二邦(1940-),男,1964年毕业于清华大学辐射防护专业,研究员。

安全生产事故分析报告

王海林受伤事故报告 一、事故经过 2013年6月8日下午2点半左右,在二厂圆锥破检修时,发生一起安全事故,检修工王海林左手除拇指外的四个手指严重受伤,事故经过如下:13:30上班,加工Φ20mm的圆钢做成S型起吊钩子,经过水冷却,起吊部位为圆锥破挡料斗圈,此部件的重量约1.5T,其只有两个Φ30mm的小孔可作为起吊点,周边只有5mm的间隙。钢丝绳无法插进,只能用钩子作为起吊工具,现场工作人员有:王见(现场指挥)、马振海、王海林(现场具体操作维修工),袁文仓、孟召青(现场检修辅助人员)。下午14:15,王见、马振海、王海林上到圆锥破上部,做好一切吊装准备,并开始起吊。王见拉手拉葫芦,马振海、王海林稳着物件。随着物件慢慢升高,由于挡料斗圈已经磨损,在起吊过程当中物件不平衡,出现了一边高一边低的现象,当提升高度达到0.6m时,挡料斗圈高端已经超过了短头上端约150mm,然后,王海林(站在王见的右手边)在高端观察吊起物件与短头上端距离,看是否可以插入已准备好的木板将物件垫稳,由于物件不平衡,插入木板的间隙不好确定。王海林将高端往下压,由于突然用力造成物件晃动过大,吊钩变形,挡料斗圈滑落。将王海林左手除拇指外的四个手指挤断,事故发生后,王见立即向公司领导打电话汇报情况,公司立即派车送王海林去平泉县西坝骨科医院,因伤势过重,骨科医院建议转承德266医院,并联系266医院修院长做好手术准备,患者到达后做了检查和妥善处理后,医院建议转北京积水潭医院,马上送王海林赶往北京,李华云总经理在积水潭医院等候,患者到后由于医院将手术安排在下半夜,李华云总经理又及时联系空军总医院进行手术,到6

1事故类型和危害程度分析

1事故类型和危害程度分析 铁路企业承运的易燃易爆液体、固体等危险货物,在铁路运输过程中,一旦发生大面积泄漏,造成重大人员伤亡、财产损失、环境污染等严重后果。 危险化学品泄漏存在的危险性有:爆炸危险性、燃烧危险性、毒害危险性、放射危险性、腐蚀危险性等。在生产、经营、储存、运输和使用过程中,存在着发生火灾、爆炸、中毒、污染环境等重大事故的危险性。在铁路运输危险货物过程中,若发生事故,不仅会引发燃烧、爆炸、腐蚀、毒害等灾害,而且会造成行车重大事故,严重危及公共安全和人民群众的生命财产安全,并导致环境污染。 2 应急处置基本原则 危险化学品泄漏事故应急救援工作应在预防为主的前提下,贯彻统一指挥、分级负责、区域为主、单位自救和社会救援相结合的原则。企业一且在运输过程申发生危险化学品泄漏事故,企业应立即根据事故性质及危害程度启用应急预案,当事故超过企业处理能力时,应及时请求支援。 3 组织机构及职责 3,1 应急组织体系 危险化学品泄漏事故应急组织体系主要有应急指挥中心、应急指挥中心办公室、现场应急指挥中心及总部相关的职能部门等。 3,2 指挥机构及职责 3,2,1应急指挥中心 由如下成员组成: 总指挥:(略) 执行副总指挥:(略) 副总指挥:(略) 成员:(略) 应急指挥中心的主要职责是负责事故的应急领导和决策工作。包括落实国家相关危险化学品应急管理政策,审定并批准企业应急管理规和应急预案。统一协调应急状态下的各种资源。确定安全生产应急处置的指导方案。带领或指派现场应急指挥中心人员和专家组成员,赶赴现场处置安全生产事故。 3,2,2 应急指挥中心办公室 危险化学品应急指挥中心下设应急指挥申心办公室,办公室主任全面负责办公室日常工作;各位副主任根据分工,分管应急管理工作。安排刃小时接警。 3,2,3 现场应急指挥中心 现场应急指挥中心是应急指挥申心的派出机构,设正、副总指挥和各专业小组,其成员主要由事故发生单位人员组成。必要时,应急指挥中心另行指派现场总指挥。当现场总指挥不能履行指挥职能时,由现场最高领导接替或应急指挥中心立即指派。

相关文档
最新文档