基于多参考系与滑动网格模型的搅拌器流场仿真

基于多参考系与滑动网格模型的搅拌器流场仿真
基于多参考系与滑动网格模型的搅拌器流场仿真

最新几何图形计算公式汇总

小学数学图形计算公式 (C :周长 S :面积 a :边长、长 、底、上底、棱长 b: 宽 、下底 h: 高 d :直径 r :半径 V:体积 ) 1、长方形周长=(长+宽)×2 C=2(a+b) 长方形面积=长×宽 S=ab 2、正方形周长=边长×4 C = 4a 正方形面积=边长×边长 S = a×a = a 2 3、平行四边形面积=底×高 s=ah 4、三角形面积=底×高÷2 s=ah÷2 三角形高=面积 ×2÷底 h = 2s ÷a 三角形底=面积 ×2÷高 5、梯形面积=(上底+下底)×高÷2 s=(a+b)× h÷2 6、圆的周长=直径×圆周率=2×圆周率×半径 C=лd=2лr d=C π r=C 2π 圆的面积=半径×半径×圆周率 S = πr 2 环形的面积=外圆的面积-内圆的面积 S 环=π(R 2-r 2) 7、长方体的棱长总和 = 长×4 + 宽×4 + 高×4 =(长 + 宽 + 高)×4 长方体表面积=(长×宽+长×高+宽×高)×2 S = 2( ab + ah + bh ) 长方体体积=长×宽×高 = 底面积×高 V=abh = sh 8、正方体的棱长总和=棱长×12 正方体表面积=棱长×棱长×6 S 表 = a×a×6 = 6a 2 正方体体积=棱长×棱长×棱长=底面积×高 V = a×a×a = a 3 = sh 9、圆柱的侧面积=底面周长×高 s 侧=ch=πdh=2πrh 圆柱表面积=侧面积+底面积×2 s 表=s 侧+s 底×2 圆柱体积=底面积×高 V 柱 = sh =πr 2h 10、圆锥体体积=底面积×高×13 V 锥 = 13 sh = 1 3 πr 2h 小学数学图形计算公式 (C :周长 S :面积 a :边长、长 、底、上底、棱长 b: 宽 、下底 h: 高 d :直径 r :半径 V:体积 ) 1、长方形周长=(长+宽)×2 C=2(a+b) 长方形面积=长×宽 S=ab 2、正方形周长=边长×4 C = 4a 正方形面积=边长×边长 S = a×a = a 2 3、平行四边形面积=底×高 s=ah 4、三角形面积=底×高÷2 s=ah÷2 三角形高=面积 ×2÷底 h = 2s ÷a 三角形底=面积 ×2÷高 5、梯形面积=(上底+下底)×高÷2 s=(a+b)× h÷2 6、圆的周长=直径×圆周率=2×圆周率×半径 C=лd=2лr d=C π r=C 2π 圆的面积=半径×半径×圆周率 S = πr 2 环形的面积=外圆的面积-内圆的面积 S 环=π(R 2-r 2) 7、长方体的棱长总和 = 长×4 + 宽×4 + 高×4 =(长 + 宽 + 高)×4 长方体表面积=(长×宽+长×高+宽×高)×2 S = 2( ab + ah + bh ) 长方体体积=长×宽×高 = 底面积×高 V=abh = sh 8、正方体的棱长总和=棱长×12 正方体表面积=棱长×棱长×6 S 表 = a×a×6 = 6a 2 正方体体积=棱长×棱长×棱长=底面积×高 V = a×a×a = a 3 = sh 9、圆柱的侧面积=底面周长×高 s 侧=ch=πdh=2πrh 圆柱表面积=侧面积+底面积×2 s 表=s 侧+s 底×2 圆柱体积=底面积×高 V 柱 = sh =πr 2h 10、圆锥体体积=底面积×高×13 V 锥 = 13 sh = 1 3 πr 2h 中小学教师信息技术考试理论试题 一选择题(40分,每一题1分) 1.下面选项是对信息的实质的理解和说明,其中错误的选项是________. A. 信息就是计算机的处理对象 B. 信息就是关于事物运动的状态和规律的知识 C. 信息就是信息,既不是物质,也不是能量 D. 信息就是人类同外部世界进行交换的内容的名称 2. 信息技术在教学中常用作获取学习资源的工具,人们常说,"因特网是知识的海洋".

立体几何中的向量公式

向量法解立体几何 用传统的方法解立体几何需要烦琐的分析、复杂的计算。而用向量法解题思路清晰、过程简洁。对立体几何的常见问题都可以起到化繁为简,化难为易的效果。 一. 证明两直线平行 已知两直线a 和b , b D C a B A ∈∈,,,,则?b a //存在唯一的实数λ使CD AB λ= 二. 证明直线和平面平行 1.已知直线αα∈∈?E D C a B A a ,,,,,且三点不共线,则a ∥?α存在有序实数 对μλ,使CE CD AB μλ+= 2.已知直线,,,a B A a ∈?α和平面 α的法向量n ,则a ∥n AB ⊥?α 三.证明两个平面平行 已知两个不重合平面βα,,法向量分别为n m ,,则α∥n m //?β 四.证明两直线垂直 已知直线b a ,。b D C a B A ∈∈,,,,则0=??⊥CD AB b a 五.证明直线和平面垂直 已知直线α和平面a ,且A 、B a ∈,面α的法向量为m ,则m AB a //?⊥α 六.证明两个平面垂直 已知两个平面βα,,两个平面的法向量分别为n m ,,则n m ⊥?⊥βα 七.求两异面直线所成的角 已知两异面直线b a ,,b D C a B A ∈∈,,,,则异面直线所成的角θ 为:CD AB ?=θcos 八.求直线和平面所成的角 A B

已知A,B 为直线a 上任意两点,n 为平面α的法向量,则a 和平面α所成的角θ为: 1. 当??? ? ??2, 0π 时?-=2πθ 2. 当??? ??∈?ππ,2 时2πθ-?= 九.求二面角 1.已知二面角βα--l ,且l CD l AB D C B A ⊥⊥∈∈,,,,且βα,则二面角的平面角θ 的大小为:=θ 2.已知二面角,βα--l n m ,分别为面βα,的法向量,则二面角的平面角θ的 大小与两个法向量所成的角相等或互补。即-=πθ 注:如何判断二面角的平面角和法向量所成的角的关系。 (1)通过观察二面角锐角还是钝角,再由法向量的成的角求之。 (2)通过观察法向量的方向,判断法向量所成的角与二面角的平面角相等还是互补。 十.求两条异面直线的距离 已知两条异面直线b a ,,m 是与两直线都垂直的向量,b B a A ∈∈,则两条 异面直线的距离d = 十一.求点到面的距离 已知平面α和点A,B 且αα∈?B A ,,m 为平面α的法向量,则点A 到平面 α 的距离d =

常见的几何体计算公式

常见几何体的面积、体积求法与应用 要计算某材料的密度、重量,研究某物体性能及其物质结构等,特别对于机械专业的学生,必须要求工件的面积、体积等,若按课本上公式来计算,而课本上公式不统一,不好记住,并且很繁杂,应用时要找公式,对号入座很麻烦。笔者在教学与实践中总结出一种计算常见几何体的面积、体积方法。其公式统一,容易记住,且计算简单。对技校学生来说,排除大部分繁琐的概念、定理,以及公式的推导应用等。 由统计学中的用加权平均数对估计未来很准确。比如,估计某商品下个月销售量,若去年平均销售量为y ,设本月权为4,上月权数为1,下月权数为1,各月权数分别乘销售量相加后除以6等于y 。这样能准确地确定下个月销售量。能不能以这种思想方法用到求几何体的面积、体积呢?通过推导与实践,对于常见的几何体确实可用这种方法来求得其面积、体积。下面分别说明求常见几何体的面积、体积统一公式的正确性与可用性。 常见几何体的面积、体积统一公式: ) 4(6 )4(621002100S S S h V C C C h A ++= ++= (其中A 为几何体侧面积,C 0为上底面周长,C 1为中间横截面周长,C 2 为下底面周长,V 为几何体体积,S 0为上底面面积,S 1为中间横截面面积,S 2为下底面面积,h 为高,h 0为斜高或母线长。注:中间横截面为上、下底等距离的截面。) 一、棱柱、棱锥、棱台、圆柱、圆锥、圆台的面积 、体积用统一公式的正确性 1、棱柱: ⑴据棱柱上底周长、下底周长、中间横截面周长相等,即2 1 C C C ==, 可得: 2020210066 )4(6 C h C h C C C h =?= ++,这与课本中的棱柱侧面积公式等同。 以下每个几何体都能推得与课本中相应公式等同,说明这统一公式的正确性。 ⑵据棱柱上底面、下底面、中间横截面相等,可知:2 1 S S S ==,即: h S S S S h S S S h V 2222210)4(6 )4(6 =++= ++= 。 2、棱锥 ⑴设底边长为a 2,边数为n ,斜高为h 0,侧面三角形中位线为a 1,则

立体几何与平面几何计算公式

立体几何与平面几何计算公式 初中数学几何中,不论是平面几何还是立体几何,他们的计算公式是我们进行数学试题计算的基础,因此,希望中考考生积极的做好几何计算公式的复习。下面是初中数学几何计算公式,一起了解一下: 1 、正方形 C:周长S:面积:a:边长 周长=边长×4 C=4a 正方形面积=边长×边长S= a a 2 、长方形C:周长S:面积a:边长 周长=(长+宽)×2 C = 2(a+b) 长方形面积=长×宽S = a b 3 、三角形s:面积a:底h:高 三角形面积=底×高÷2 s = ah÷2 4 、平行四边形s:面积a:底h:高 平行四边形面积=底×高s = ah 5、梯形s面积a上底b下底h高 梯形面积=(上底+下底)×高÷2 s = (a+b) h÷2 6 、圆形r:半径d:直径c:周长s:面积 半径=直径÷2 r = d/2 半径=周长÷圆周率÷2 r = c/2π 直径=半径×2 d = 2r 直径=周长÷圆周率d = c/π

周长=圆周率×直径 c = πd 周长=圆周率×半径×2 c = 2πr 圆面积=圆周率×半径×半径s = πr r 圆环面积=圆周率×(大圆半径×大圆半径-小圆半径×小圆半径) s=π(R R-r r) 7 、长方体V:体积s:面积a:长b: 宽h:高 体积=长×宽×高V = abh 8、正方体V:体积a:棱长 总棱长=棱长×12 C = 12a 表面积=棱长×棱长×6 S表= a a6 体积=棱长×棱长×棱长V = a a a 9、圆柱体V:体积s:底面积h:高 圆柱体侧面积=底面周长×高s= c h 圆柱体体积=底面积×高V= sh 圆柱体体积=圆周率×半径×半径×高V =πr r h 圆柱体体积=1/2×侧面积×半径V =1/2s侧r 10、圆锥体V:体积s:底面积h:高 圆锥体体积=1/3×底面积×高V = 1/3sh 圆锥体体积=1/3×圆周率×半径×半径×高V = 1/3×πr r h

空间几何中的角和距离的计算

空间角和距离的计算(1) 一 线线角 1.直三棱柱A 1B 1C 1-ABC ,∠BCA=900,点D 1,F 1分别是A 1B 1和A 1C 1的中点,若BC=CA=CC 1,求BD 1与AF 1所成角的余弦值. 2.在四棱锥P-ABCD 中,底面ABCD 是直角梯形,∠BAD=900,AD ∥BC ,AB=BC=a ,AD=2a ,且PA ⊥面ABCD ,PD 与底面成300角. (1)若AE ⊥PD ,E 为垂足,求证:BE ⊥PD ; (2)若AE ⊥PD ,求异面直线AE 与CD 所成角的大小. 二.线面角 1.正方体ABCD-A 1B 1C 1D 1中,E ,F 分别为BB 1、CD 的中点,且正方体的棱长为2. (1)求直线D 1F 和AB 和所成的角; (2)求D 1F 与平面AED 所成的角. F 1D 1B 1 C 1A 1 B A C A B C D P E C D E F D 1 C 1 B 1 A 1 A B

2.在三棱柱A 1B 1C 1-ABC 中,四边形AA 1B 1B 是菱形,四边形BCC 1B 1是矩形,C 1B 1⊥AB ,AB=4,C 1B 1=3,∠ABB 1=600,求AC 1与平面BCC 1B 1所成角的大小. 三.二面角 1.已知A 1B 1C 1-ABC 是正三棱柱,D 是AC 中点. (1)证明AB 1∥平面DBC 1; (2)设AB 1⊥BC 1,求以BC 1为棱,DBC 1与CBC 1为面的二面角的大小. 2.ABCD 是直角梯形,∠ABC=900,SA ⊥面ABCD ,SA=AB=BC=1,AD=0.5. (1)求面SCD 与面SBA 所成的二面角的大小; (2)求SC 与面ABCD 所成的角. 3.已知A 1B 1C 1-ABC 是三棱柱,底面是正三角形,∠A 1AC=600,∠A 1AB=450,求二面角B —AA 1—C 的大小. B 1 C 1 A 1 B A C D B 1 C 1 A 1B A C B A D C S B 1 C 1 B C A 1

各种几何图形计算公式.

不四 s = —+ 爲Mu = =££sin B 2 2 边形 不四 平边 行形 a. b. c. d —各边长險、爲rsi s -面积右、必一对角线 [H^hY^bh + cH 2 H, 曰-面枳 € _ a£K abc % 4」戸(尹_&)〔戸 _&)(尹_亡) P-三边和之半 s-三角形囲积 艮-三角形外接圆半径 外 切 角 形 直 角 角 形 尸=匚石一刁 ■S _ 血 P V F P-三边和之半 2 -三角形面积 r -三角形内切圆半径 以=胪亠阱弘b -直角边 c = 3十戸? _斜边 1 , "尹占-面积 c -J/ ■n?十2&曰a'b^ -各边长

隅 角 0 ]073t a s - 面积 d -短轴D - 长轴匸-短 半轴 R -长半轴 扇 形 ISO* -°01745^ 亠二喫 2 360 半径 圆心角= 0.008727r^* 弓-面积

正 六 E 体 正 十 _____ L 面 体 正 多 边 形 (六个正方形 ) 口 -边 数 a - 一边之长 R -外接圆半径 r 内切圆半径 e-巒 财之 1D 心角 顶 用 官-面 积 D -周良 tzFhj u 〔教目) F=6a 2 棱顶点 12 3 丁 = / C 数 目) 稜腆点 30 20 正 立 方 体 截 头 直 锥 (十二个五甬形)爲 柱 卩二 20.6457^ r= 7.663 la 5 F = 6a 2 C L □ -边 长 d-对角线长 = 7^" = 1732^1 。=扌心1 +比) 尸=#餉+宀) + s i 十巧 衍“2 —两端周 围的长 £ L-S 2 —两端的 面积 $二gk 十邑+ J 远”叼) C* P -宜截断面周长 F = ^/ + 2s h - 高 V = sh 目-底面积

N维空间几何体质心的计算方法.

N维空间几何体质心的计算方法 摘要:本文主要是求一个图形或物体的质心坐标的问题,通过微积分方面的知识来求解,从平面推广到空间,问题也由易到难。首先提出质心或形心问题,然后给出重心的定义,再由具体的例子来求解相关问题。 关键字:质心重心坐标平面薄板二重积分三重积分 一.质心或形心问题: 这类问题的核心是静力矩的计算原理。 1.均匀线密度为M的曲线形体的静力矩与质心: 静力矩的微元关系为 , dMx yudl dMy xudl ==. 其中形如曲线L( (, y f x a x b =≤≤的形状体对x轴与y轴的静力矩分别 为( b

a y f x S = ? , ( b y a M u f x =? 设曲线AB L 的质心坐标为( ,x y,则,, y x M M x y

M M == 其 中( b a M u x d x u l == ? 为AB L 的质量,L为曲线弧长。若在式 y M x M

= 与式 x M y M = 两端同乘以2π,则可得 到22( b a y xl f x S ππ == ? ,

22( b a x yl f x S ππ == ? ,其中x S 与y S 分别表示曲线AB L 绕x轴与y轴旋转而成的旋转体的侧面积。 2.均匀密度平面薄板的静力矩与质心: 设f(x为 [],a b 上的连续非负函数,考虑形如区域 {} (,,0(

D x y a x b y f x =≤≤≤≤ 的薄板质心,设M为其密度,利用微元法,小曲边梯形MNPQ的形心坐标为1 (,(, 2 y f y x y x x ≤≤+? ,当分割无限细化时,可当小曲边梯形MNPQ的质量视为集中于点 1 (,( 2 x f x 处的一个质点,将它对x轴与y轴分别取静力矩微元可有 1 (( 2 x dM u f x f x dx

立体几何的计算

教案 教师姓名授课班级授课形式 授课日期年月日第周授课时数 授课章节名称立体几何的计算 教学目的计算立体几何中的有关角度和距离以及一些体积问题教学重点二面角和几何体的体积 教学难点二面角的计算 更新、补充、 删节内容 使用教具三角板 课外作业补充 课后体会注意立体图形与平面图形的转化

授课主要内容或板书设计

一、复习知识点 1. 有关角的计算 ⑴异面直线所成的角 a . 定义:设,a b 是异面直线,过空间任一点o 引'',a a b b ,则'a 与'b 所成的锐角(或直角)叫异面直线,a b 所成的角。 b .范围(0,90] c . 求法:作平行线,将异面转化成相交 ⑵线面所成的角 a . 定义:平面的一条斜线和它在平面上的射影所成的锐角,叫这条斜线和这个平面所成的角。 b .范围:[0,90] c . 求法:作垂线,找射影 ⑶二面角 a . 定义:从一条直线出发的两个半平面所组成的图形叫二面角,其大小通过二面角的平面角来度量。 b .二面角的平面角:以二面角的棱上任意一点为端点,在两个面内分别作垂直于棱的两条射线所成的角叫二面角的平面角。 c . 范围:[0,]π d .作法: 1定义法:过棱上任一点o 在两个半平面内分别引棱的两条垂线,OA OB ,则 AOB ∠为二面角的平面角 2三垂线定理法:过二面角的一个半平面内一点A ,作棱l 的垂线,垂足为O , 作另一个面的垂线,垂足为B ,连接OB ,则AOB ∠为二面角的平面角。 β α O B A 3作棱的垂面法:过二面角内任意一点O ,分别向两个平面作垂线,垂足为,A B 则,AO BO 所确定的平面与棱l 交于P ,则APB ∠为二面角的平面角。

文科立体几何知识点、方法总结高三复习

立体几何知识点整理(文科) 一.直线和平面的三种位置关系: 1. 线面平行 l 符号表示: 2. 线面相交 符号表示: 3. 线在面内 符号表示: 二.平行关系: 1.线线平行: 方法一:用线面平行实现。 m l m l l // // ? ? ? ? ? ? = ? ? β α β α 方法二:用面面平行实现。 m l m l// // ? ? ? ? ? ? = ? = ? β γ α γ β α 方法三:用线面垂直实现。 若α α⊥ ⊥m l,,则m l//。 方法四:用向量方法: 若向量和向量共线且l、m不重合,则m l//。 2.线面平行: 方法一:用线线平行实现。 α α α// // l l m m l ? ? ? ? ? ? ? ? 方法二:用面面平行实现。 α β β α // // l l ? ? ? ? ? 方法三:用平面法向量实现。 若为平面α的一个法向 量,⊥且α ? l,则 α // l。 3.面面平行: 方法一:用线线平行实现。 β α α β // ' ,' , ' // ' // ? ? ? ? ? ? ? ? ? ? 且相交 且相交 m l m l m m l l 方法二:用线面平行实现。 β α β α α // , // // ? ? ? ? ? ? ?且相交 m l m l 三.垂直关系: 1. 线面垂直: 方法一:用线线垂直实现。 α α ⊥ ? ? ? ? ? ? ? ? ? = ? ⊥ ⊥ l AB AC A AB AC AB l AC l , 方法二:用面面垂直实现。 l

αββαβα⊥??? ? ?? ?⊥=?⊥l l m l m , 2. 面面垂直: 方法一:用线面垂直实现。 βαβα⊥?? ?? ?⊥l l 方法二:计算所成二面角为直角。 3. 线线垂直: 方法一:用线面垂直实现。 m l m l ⊥?? ?? ?⊥αα 方法二:三垂线定理及其逆定理。 PO l OA l PA l αα⊥? ? ⊥?⊥???? 方法三:用向量方法: 若向量和向量的数量积为0,则m l ⊥。 三.夹角问题。 (一) 异面直线所成的角: (1) 范围:]90,0(?? (2)求法: 方法一:定义法。 步骤1:平移,使它们相交,找到夹角。 步骤2:解三角形求出角。(常用到余弦定理) 余弦定理: ab c b a 2cos 2 22-+= θ (计算结果可能是其补角) 方法二:向量法。转化为向量的夹角 (计算结果可能是其补角): = θcos (二) 线面角 (1)定义:直线l 上任取一点P (交点除外),作PO ⊥ α于O,连结AO , 则AO 为斜线PA 在面α内的射影,PAO ∠(图中θ)为直线l 与面α所成的角。 (2)范围:]90,0[?? 当?=0θ时,α?l 或α//l 当?=90θ时,α⊥l (3)求法: 方法一:定义法。 步骤1:作出线面角,并证明。 步骤2:解三角形,求出线面角。 (三) 二面角及其平面角 (1)定义:在棱l 上取一点P ,两个半平面内分别作l 的垂线(射线)m 、n ,则射线m 和n 的夹角θ为二面角 α—l —β的平面角。 θ c b a

立体几何平面公式大全

立体几何平面公式大全 最早的几何学当属平面几何。平面几何就是研究平面上的直线和二次曲线(即圆锥曲线,就是椭圆、双曲线和抛物线)的几何结构和度量性质(面积、长度、角度)。为了计算体积和面积问题,人们实际上已经开始涉及微积分的最初概念。 名称符号周长C和面积S 1、长方形a和b-边长C=2(a+b)S=ab 2、正方形a—边长C=4aS=a2 3、三角形a,b,c-三边长;h-a边上的高;s-周长的一半;A,B,C-内角 其中s=(a+b+c)/2 S=ah/2=ab/2·sinC =[s(s-a)(s-b)(s-c)]1/2 =a2sinBsinC/(2sinA) 4、四边形d,D-对角线长;α-对角线夹角 S=dD/2·sinα 5、平行四边形a,b-边长;h-a边的高;α-两边夹角 S=ah=absinα 6、菱形a-边长;α-夹角;D-长对角线长;d-短对角线长 S=Dd/2=a2sinα 7、梯形a和b-上、下底长;h-高;m-中位线长 S=(a+b)h/2=mh

8、圆r-半径;d-直径; C=πd=2πrS=πr2=πd2/4 9、扇形r—扇形半径a—圆心角度数 C=2r+2πr×(a/360) S=πr2×(a/360) 10、弓形l-弧长;b-弦长;h-矢高;r-半径;α-圆心角的度数S=r2/2·(πα/180-sinα) =r2arccos[(r-h)/r]-(r-h)(2rh-h2)1/2 =παr2/360-b/2·[r2-(b/2)2]1/2 =r(l-b)/2+bh/2 ≈2bh/3 11、圆环R-外圆半径;r-内圆半径;D-外圆直径;d-内圆直径S=π(R2-r2)=π(D2-d2)/4 12、椭圆D-长轴;d-短轴;S=πDd/4

各种几何图形面积和周长公式

正方形 面积:边长×边长 周长:边长×4 长方形 面积:长×宽 周长:(长+宽)*2 平行四边形 面积=底边*高/2 周长=(底+高)×2 三角形 面积S=√p(p-a)(p-b)(p-c), p=(a+b+c)/2,为三角形三边 周长c=a+b+c 梯形 面积={(上底+下底)×高}÷2周长=四边之和 圆形 面积=πR2 周长=2πR (R为半径) 椭圆形 面积=A = PI * 半长轴长 * 半短轴长

周长= 4A * SQRT(1-E^SIN^T)的(0 - π/2)积分, 其中A为椭圆长轴,E为离心率精确计算要用到积分或无穷级数的求和 半圆形 周长=2R(丌+1) 面积=(丌R的平方)/2 正多边形 面积: 正多边形内角计算公式与半径无关 要已知正多边形边数为N 内角和=180(N-2) 半径为R 圆的内接三角形面积公式:(3倍根号3)除以4再乘以R方 外切三角形面积公式:3倍根号3 R方 外切正方形:4R方 内接正方形:2R方 五边形以上的就分割成等边三角形再算 内角和公式——(n-2)*180` 我们都知道已知A(x1,y1)、B(x2,y2)、C(x3,y3)三点的面积公式为 |x1 x2 x3| S(A,B,C) = |y1 y2 y3| * = [(x1-x3)*(y2-y3) - (x2-x3)*(y1-y3)]* |1 1 1 | (当三点为逆时针时为正,顺时针则为负的) 对多边形A1A2A3、、、An(顺或逆时针都可以),设平面上有任意的一点P,则有:S(A1,A2,A3,、、、,An) = abs(S(P,A1,A2) + S(P,A2,A3)+、、、+S(P,An,A1))

九章算术中的立体几何

《九章算术》中的立体几何 《九章算术》文字古奥,历代注释者甚多,其中以刘徽的注本最为有名.刘徽是我国魏晋时期著名数学家,他在曹魏末年撰成《九章算术注》九卷。在继承的基础上,又提出了许多自己的创见与发明,刘徽的观点,对现今的数学有很多借鉴的地方。 《九章算术》是一部问题集,全书分为九章,共收有246个问题,每题都有问、答、术三部分组成。内容涉及算术、代数、几何等诸多领域,并与实际生活紧密相连,充分体现了中国人的数学观与生活观。其中卷第五“商功”,主要讲各种几何体体积的计算,包括现阶段高中数学教材中的棱柱、棱锥、棱台,圆柱、圆锥、圆台,或可化为上述几何体的几何体体积的计算。 《九章算术》是东方数学的思想之源,也是我国多年来各级各类考试的重要题库。卷第五“商功”第25题作为2015年全国卷(Ⅰ)(文理)第6题,通过古题新解考查阅读理解能力,通过圆锥体积的计算考查空间想象能力与求解运算能力。 题目是:《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺。问:积及为米几何?” 其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的 四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米 堆的体积和堆放的米各为多少?”已知1斛米的体积约为 1.62立方尺,圆周率约为3,估算出堆放的米约有(解法见 例25) A.14斛 B.22斛 C.36斛 D.66斛 2015年湖北理科19题、文科20题选用《九章算术》“商功”第16题“阳马”与第17题“鳖臑”的组合考查立体几何中线、面间的位置关系与度量关系. 《九章算术》卷第五“商功”共收录28个题目,现将这28个问题整理如下,供参考。 【例1】今有穿地积一万尺.问为坚、壤各几何? 【注释】穿地:挖地取土. 坚:坚实的土. 壤:松软的土. 【译文】现挖地体积为1000立方尺,问换算成坚土、松土各多少? 【解析】本题是各种土方量的换算,有专门的换算比例,这里不赘述. 【说明】从例2到例7都是直四棱柱求体积问题,以例2为例,介绍它们的算法.【例2】今有城下广四丈,上广二丈,高五丈,袤一百二十六丈五尺。问积几何?【注释】广袤:广,东西方向,袤,南北方向. 【译文】现有城,下底长4丈,上底长2丈,高5丈,

立体几何空间几何体的表面积与体积

第2讲空间几何体的表面积与体积 考点 考查柱、锥、台、球的体积和表面积,由原来的简单公式套用渐渐变为与三视图及柱、锥与球的接切问题相结合,难度有所增大. 【复习指导】 本讲复习时,熟记棱柱、棱锥、圆柱、圆锥的表面积和体积公式,运用这些公式解决一些简单的问题. 基础梳理 1.柱、锥、台和球的侧面积和体积

球S球面=4πR2V=4 3 πR3 (1)棱柱、棱锥、棱台的表面积就是各面面积之和. (2)圆柱、圆锥、圆台的侧面展开图分别是矩形、扇形、扇环形;它们的表面积等于侧面积与底面面积之和. 两种方法 (1)解与球有关的组合体问题的方法,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.球与旋转体的组合,通常作它们的轴截面进行解题,球与多面体的组合,通过多面体的一条侧棱和球心或“切点”、“接点”作出截面图. (2)等积法:等积法包括等面积法和等体积法.等积法的前提是几何图形(或几何体)的面积(或体积)通过已知条件可以得到,利用等积法可以用来求解几何图形的高或几何体的高,特别是在求三角形的高和三棱锥的高.这一方法回避了具体通过作图得到三角形(或三棱锥)的高,而通过直接计算得到高的数值. 双基自测 1.(人教A版教材习题改编)圆柱的一个底面积为S,侧面展开图是一个正方形,那么这个圆柱的侧面积是( ). A.4πS B.2πS

C.πS D.23 3 πS 解析设圆柱底面圆的半径为r,高为h,则r=S π, 又h=2πr=2πS,∴S圆柱侧=(2πS)2=4πS. 答案 A 2.(2012·东北三校联考)设长方体的长、宽、高分别为2a、a、a,其顶点都在一个球面上,则该球的表面积为( ). A.3πa2B.6πa2C.12πa2D.24πa2 解析由于长方体的长、宽、高分别为2a、a、a,则长方体的体对角线长为2a2+a2+a2=6a.又长方体外接球的直径2R等于长方体的体对角线,∴2R=6a.∴S球=4πR2=6πa2. 答案 B 3.(2011·北京)某四面体的三视图如图所示,该四面体四个面的面积中最大的是 ( ).A.8 B.6 2 C.10 D.8 2 解析由三视图可知,该几何体的四个面都是直角三角形,面积分别为6,62,8,10,所以面积最大的是10,故选择C. 答案 C 4.(2011·湖南)设

(教师版)立体几何专题一:表面积体积计算

立体几何专题复习一:空间几何体的表面积与体积 【高考会这样考】 考查柱、锥、台、球的体积和表面积,由原来的简单公式套用渐渐变为与三视图及柱、锥与球的接切问题相结合,难度有所增大. 【复习指导】 本讲复习时,熟记棱柱、棱锥、圆柱、圆锥的表面积和体积公式,运用这些公式解决一些简单的问题. 基础梳理 1.柱、锥、台和球的侧面积和体积 (1)棱柱、棱锥、棱台的表面积就是各面面积之和. (2)圆柱、圆锥、圆台的侧面展开图分别是矩形、扇形、扇环形;它们的表面积等于侧面积与底面面积之和.

两种方法 (1)解与球有关的组合体问题的方法,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.球与旋转体的组合,通常作它们的轴截面进行解题,球与多面体的组合,通过多面体的一条侧棱和球心或“切点”、“接点”作出截面图. (2)等积法:等积法包括等面积法和等体积法.等积法的前提是几何图形(或几何体)的面积(或体积)通过已知条件可以得到,利用等积法可以用来求解几何图形的高或几何体的高,特别是在求三角形的高和三棱锥的高.这一方法回避了具体通过作图得到三角形(或三棱锥)的高,而通过直接计算得到高的数值. 考向一几何体的表面积 【例1】?(2011·安徽)一个空间几何体的三视图如图所示,则该几何体的表面积为 (). A.48 B.32+817 C.48+817 D.80 [审题视点] 由三视图还原几何体,把图中的数据转化为几何体的尺寸计算表面积. 解析换个视角看问题,该几何体可以看成是底面为等腰梯形,高为4的直棱柱,且等腰梯形的两底分别为2,4,高为4,故腰长为17,所以该几何体的表面积为

各类几何图形计算公式大全

多面体的体积和表面积 心乱方-边长 1高 尸-底面积 □-底面中线的交点 一个组合三角形的面积 jl -iS?Ξ角形的个数 O-锥底各对角线交直 务F 2 -两平行底面的面粧 Ji-底面间距离 闻-一个爼合梯形的面积 相-组合梯老数 7 = ∣^ + ?÷√η?) £ = M +斤4■爲 ^-Cn 厲-对角銭 S-表面耕 加-侧表面积 尺寸符号 心爲1?-边长 0」底面对角线的交点 体积附)底面积(F ) 表面积(小侧表面积(阳 S=6a 2 V = a??* A S = 2(∣z *? + a??+??ft) 51=2?(α + ?) 柱 和 空 心 圆 柱 ∧ 管 F-外半径 1内半径 f-柱壁厚度 P -平均半径 内 外侧面积 圆柱: y = rtS a *? * ft +2∕τfi a ?=-3d??? 空心言圆拄: y r = ∕ACΛa -r a )^3s?ft ^ = 2f rC Λ+r)Λ + 2√Λi -r a ) S=S +? +c)?Λ+2J 7 (Si = (a+if+c)*h

V y = ψ?(j?2 3 + √+?) 5*1 = KHR+r) I= y ∣(R-r)2+h 2 £ =址十疔 ( 0+/) y = -jιr? =2W44r? 3 y=^(4ft+rf) = 157f(??+^ £ 斜 线 直 圆 柱 ?-≡小高度 ?-盘大高度 T -底面半径 ^-^c?+?>rtf 1?α+J —) cc≤ α S l - πr(? +?) r-廐面半径 卜母线长 +?2 =鈕 球半径 d ?弓定底11直径 A-弓形高 一半径 d-直径 4 3 皿' — L.P V = Lf I f =——=0.5236 护 3 6 S=A f tr 2 = =

立体几何专题

立体几何知识点整理 一. 直线和平面的三种位置关系: 1. 线面平行 l 符号表示: 2. 线面相交 符号表示: 3. 线在面内 符号表示: 二.平行关系: 1.线线平行: 方法一:用线面平行实现。 m l m l l // // ? ? ? ? ? ? = ? ? β α β α 方法二:用面面平行实现。 m l m l// // ? ? ? ? ? ? = ? = ? β γ α γ β α 方法三:用线面垂直实现。 若α α⊥ ⊥m l,,则m l//。 方法四:用向量方法: 若向量l和向量m共线且l、m不重合,则m l//。 2.线面平行: 方法一:用线线平行实现。 α α α// // l l m m l ? ? ? ? ? ? ? ? 方法二:用面面平行实现。 α β β α // // l l ? ? ? ? ? 方法三:用平面法向量实现。 若为平面α的一个法向量,⊥且 α ? l,则α // l。 3.面面平行: 方法一:用线线平行实现。 β α α β // ' ,' , ' // ' // ? ? ? ? ? ? ? ? ? ? 且相交 且相交 m l m l m m l l 方法二:用线面平行实现。 β α β α α // , // // ? ? ? ? ? ? ?且相交 m l m l 三.垂直关系: 1. 线面垂直: 方法一:用线线垂直实现。 α α ⊥ ? ? ? ? ? ? ? ? ? = ? ⊥ ⊥ l AB AC A AB AC AB l AC l , 方法二:用面面垂直实现。 α β β α β α ⊥ ? ? ? ? ? ? ? ⊥ = ? ⊥ l l m l m , 2. 面面垂直: 方法一:用线面垂直实现。 β α β α ⊥ ? ? ? ? ? ⊥ l l

高中数学-立体几何-线面角知识点

立体几何知识点整理一.直线和平面的三种位置关系: 1. 线面平行 2. 线面相交 3. 线在面内 二.平行关系: 1.线线平行: 方法一:用线面平行实现。 方法二:用面面平行实现。 方法三:用线面垂直实现。 若α α⊥ ⊥m l,,则m l//。 方法四:用向量方法: 若向量和向量共线且l、m不重合,则m l//。 2.线面平行: 方法一:用线线平行实现。 α α α// // l l m m l ? ? ? ? ? ? ? ? m l m l// // ? ? ? ? ? ? = ? = ? β γ α γ β α m l m l l // // ? ? ? ? ? ? = ? ? β α β α l α l

方法二:用面面平行实现。 αββα////l l ?? ?? ? 方法三:用平面法向量实现。 若为平面α的一个法向量,⊥且α?l ,则α//l 。 3. 面面平行: 方法一:用线线平行实现。 β ααβ//',','//' //????? ?????且相交且相交m l m l m m l l 方法二:用线面平行实现。 βαβαα //,////??? ? ???且相交m l m l 三.垂直关系: 1. 线面垂直: 方法一:用线线垂直实现。 αα⊥???? ? ??? ?=?⊥⊥l AB AC A AB AC AB l AC l , 方法二:用面面垂直实现。 αββαβα⊥??? ? ?? ?⊥=?⊥l l m l m ,

2. 面面垂直: 方法一:用线面垂直实现。 βαβα⊥?? ?? ?⊥l l 方法二:计算所成二面角为直角。 3. 线线垂直: 方法一:用线面垂直实现。 m l m l ⊥?? ?? ?⊥αα 方法二:三垂线定理及其逆定理。 PO l OA l PA l αα⊥? ? ⊥?⊥???? 方法三:用向量方法: 若向量和向量的数量积为0,则m l ⊥。 三.夹角问题。 (一)异面直线所成的角: (1)范围:]90,0(?? (2)求法: 方法一:定义法。 步骤1:平移,使它们相交,找到夹角。 步骤2:解三角形求出角。(常用到余弦定理) 余弦定理: ab c b a 2cos 222-+=θ (计算结果可能是其补角) θ c b a

高中数学立体几何专:空间距离的各种计算(含答案)doc

高中数学立体几何 空间距离 1.两条异面直线间的距离 和两条异面直线分别垂直相交的直线,叫做这两条异面直线的公垂线;两条异面直线的公垂线在这两条异面直线间的线段的长度,叫做两条异面直线的距离. 2.点到平面的距离 从平面外一点引一个平面的垂线,这点和垂足之间的距离叫做这个点到这个平面的距离. 3.直线与平面的距离 如果一条直线和一个平面平行,那么直线上各点到这平面的距离相等,且这条直线上任意一点到平面的距离叫做这条直线和平面的距离. 4.两平行平面间的距离 和两个平行平面同时垂直的直线,叫做这两平行平面的公垂线,它夹在两个平行平面间的公垂线段的长叫做这两个平行平面的距离. 题型一:两条异面直线间的距离 【例1】 如图,在空间四边形ABCD 中,AB =BC =CD =DA =AC =BD =a ,E 、F 分别是AB 、CD 的中点. (1)求证:EF 是AB 和CD 的公垂线; (2)求AB 和CD 间的距离; 【规范解答】 (1)证明:连结AF ,BF ,由已知可得AF =BF . 又因为AE =BE ,所以FE ⊥AB 交AB 于E . 同理EF ⊥DC 交DC 于点F . 所以EF 是AB 和CD 的公垂线. (2)在Rt △BEF 中,BF =a 23,BE =a 2 1, 所以EF 2=BF 2-BE 2=a 2 1 2,即EF =a 22. 由(1)知EF 是AB 、CD 的公垂线段,所以AB 和CD 间的距离为a 2 2. 【例2】 如图,正四面体ABCD 的棱长为1,求异面直线AB 、CD 之间的距离. 设AB 中点为E ,连CE 、ED . ∵AC =BC ,AE =EB .∴CD ⊥AB .同理DE ⊥AB . ∴AB ⊥平面CED .设CD 的中点为F ,连EF ,则AB ⊥EF . 同理可证CD ⊥EF .∴EF 是异面直线AB 、CD 的距离. ∵CE =23,∴CF =FD =21,∠EFC =90°,EF =2221232 2=??? ??-??? ? ??. ∴AB 、CD 的距离是 2 2 . 【解后归纳】 求两条异面直线之间的距离的基本方法: (1)利用图形性质找出两条异面直线的公垂线,求出公垂线段的长度. (2)如果两条异面直线中的一条直线与过另一条直线的平面平行,可以转化为求直线与平面的距离. (3)如果两条异面直线分别在两个互相平行的平面内,可以转化为求两平行平面的距离. 题型二:两条异面直线间的距离 【例3】 如图(1),正四面体ABCD 的棱长为1,求:A 到平面BCD 的距离; 过A 作AO ⊥平面BCD 于O ,连BO 并延长与CD 相交于E ,连AE . ∵AB =AC =AD ,∴OB =OC =OD .∴O 是△BCD 的外心.又BD =BC =CD , ∴O 是△BCD 的中心,∴BO =3 2 BE =332332=?. 又AB =1,且∠AOB =90°,∴AO =363312 22=?? ? ? ?? -=-BO AB .∴A 到平面BCD 的距离是36. 例1题图 例2题图 例3题图

几何图形初步知识点总结

几何图形初步 第一节几何图形 认识立体图形 (1)几何图形:从实物中抽象出的各种图形叫几何图形.几何图形分为立体图形和平面图形. (2)立体图形:有些几何图形(如长方体、正方体、圆柱、圆锥、球等)的各部分不都在同一个平面内,这就是 立体图形. (3)重点和难点突破: 结合实物,认识常见的立体图形,如:长方体、正方体、圆柱、圆锥、球、棱柱、棱锥等.能区分立体图形与平面 图形,立体图形占有一定空间,各部分不都在同一平面内. 点、线、面、体 1)体与体相交成面,面与面相交成线,线与线相交成点. (2)从运动的观点来看点动成线,线动成面,面动成体.点、线、面、体组成几何图形,点、线、面、体的运动 组成了多姿多彩的图形世界. (3)从几何的观点来看点是组成图形的基本元素,线、面、体都是点的集合. (4)长方体、正方体、圆柱、圆锥、球、棱柱、棱锥等都是几何体,几何体简称体. (5)面有平面和曲面之分,如长方体由6个平面组成,球由一个曲面组成. 欧拉公式 (1)简单多面体的顶点数V、面数F及棱数E间的关系为:V+F-E=2.这个公式叫欧拉公式.公式描述了简单多 面体顶点数、面数、棱数特有的规律. (2)V+F-E=X(P),V是多面体P的顶点个数,F是多面体P的面数,E是多面体P的棱的条数,X(P)是多面体P的欧拉示性数. 几何体的表面积 (1)几何体的表面积=侧面积+底面积(上、下底的面积和) (2)常见的几种几何体的表面积的计算公式 ①圆柱体表面积:2πR2+2πRh (R为圆柱体上下底圆半径,h为圆柱体高) ②圆锥体表面积:πr2+nπ(h2+r2)360(r为圆锥体低圆半径,h为其高,n为圆锥侧面展开图中扇形的圆 心角) ③长方体表面积:2(ab+ah+bh)(a为长方体的长,b为长方体的宽,h为长方体的高) ④正方体表面积:6a2 (a为正方体棱长 认识平面图形 (1)平面图形:一个图形的各部分都在同一个平面内,如:线段、角、三角形、正方形、圆等. (2)重点难点突破: 通过以前学过的平面图形:三角形、长方形、正方形、梯形、圆,了解它们的共性是在同一平面内. 几何体的展开图 (1)多数立体图形是由平面图形围成的.沿着棱剪开就得到平面图形,这样的平面图形就是相应立体图形的展开 图.同一个立体图形按不同的方式展开,得到的平面展开图是不一样的,同时也可看出,立体图形的展开图是平面 图形. (2)常见几何体的侧面展开图: ①圆柱的侧面展开图是长方形.②圆锥的侧面展开图是扇形.③正方体的侧面展开图是长方形.④三棱柱的侧面展 开图是长方形. (3)立体图形的侧面展开图,体现了平面图形与立体图形的联系.立体图形问题可以转化为平面图形问题解决. 从实物出发,结合具体的问题,辨析几何体的展开图,通过结合立体图形与平面图形的转化,建立空间观念,是解 决此类问题的关键. 展开图折叠成几何提体 通过结合立体图形与平面图形的相互转化,去理解和掌握几何体的展开图,要注意多从实物出发,然后再从给定的 图形中辨认它们能否折叠成给定的立体图形

相关文档
最新文档