二次函数与平行四边形

 二次函数与平行四边形
 二次函数与平行四边形

二次函数与平行四边形

1.已知抛物线的顶点为A(2,1),且经过原点O,与x轴的另一交点为B。

(1)求抛物线的解析式;

(2)若点C在抛物线的对称轴上,点D在抛物线上,且以O、C、D、B四点为顶点的四边形

为平行四边形,求D点的坐标;

2.如图,在坐标系xOy 中,△ABC 是等腰直角三角形,∠BAC=90°,A (1,0),B (0,2),

抛物线221

2bx x y 的图象过C 点.

(1)求抛物线的解析式;

(2)平移该抛物线的对称轴所在直线l .当l 移动到何处时,恰好将△ABC 的面积分为相等的两部分?

(3)点P 是抛物线上一动点,是否存在点P ,使四边形PACB 为平行四边形?若存在,求出P 点坐标;若不存在,说明理由.

3.如图,抛物线32bx ax y 与x 轴相交于点A (﹣1,0)、B (3,0),与y 轴相交于点C ,

点P 为线段OB 上的动点(不与O 、B 重合),过点P 垂直于x 轴的直线与抛物线及线段BC

分别交于点E 、F ,点D 在y 轴正半轴上,OD=2,连接DE 、OF .

(1)求抛物线的解析式;

(2)当四边形ODEF 是平行四边形时,求点P 的坐标;(3)过点A 的直线将(2)中的平行四边形ODEF 分成面积相等的两部分,求这条直线的解析式.(不必说明平分平行四边形面积的理由)

4.如图,抛物线经过A )0,1(,B )0,5(,C )2

5,0(三点. (1)求抛物线的解析式;

(2)在抛物线的对称轴上有一点P ,使PA+PC 的值最小,求点P 的坐标;

(3)点M 为x 轴上一动点,在抛物线上是否存在一点N ,使以A,C,M,N 四点构成的四边形为

平行四边形?若存在,求点N 的坐标;若不存在,请说明理由

.

5.综合与探究:如图,抛物线423412x x y 与x 轴交于A,B 两点(点B 在点A 的右侧)与y 轴

交于点C,连接BC,以BC 为一边,点O 为对称中心作菱形BDEC,点P 是x 轴上的一个动点,设点P 的坐标为(m ,0),过点P 作x 轴的垂线l 交抛物线于点Q

(1)求点A,B,C 的坐标。

(2)当点P 在线段OB 上运动时,直线l 分别交BD ,BC 于点M,N 。试探究m 为何值时,四边形CQMD 是平行四边形,此时,请判断四边形CQBM 的形状,并说明理由。

(3)当点P 在线段EB 上运动时,是否存在点 Q ,使△BDQ 为直角三角形,若存在,请直接写出点Q 的坐标;若不存在,请说明理由。

6.如图,抛物线c

y2与x轴交于A(1,0)、B(﹣4,0)两点,交y轴与C点.

bx

x

(1)求该抛物线的解析式;

(2)在该抛物线位于第二象限的部分上是否存在点D,使得△DBC的面积S最大?若存在,求出点D的坐标;若不存在,请说明理由;

(3)设抛物线的顶点为点F,连接线段CF,连接直线BC,请问能否在直线BC上找到一个点M,在抛物线上找到一个点N,使得C、F、M、N四点组成的四边形为平行四边形?若存在,请写出点M和点N的坐标;若不存在,请说明理由.

7.将抛物线212x y 向右平移2个单位,得到如图抛物线2y 的图象,P 是抛物线2y 对称轴上

的一个动点,直线t x 平行于y 轴,分别与直线x y 、抛物线2y 交于点A 、B .若△ABP 是以点A 或点B 为直角顶点的等腰直角三角形,求满足条件的t 的值,则t = .

二次函数与平行四边形存在性问题

老师 姓名 学生姓名学管师 学科 名称 年级上课时间月日_ _ :00-- __ :00 课题 名称 二次函数与平行四边形的存在问题 教学 重点 教学过程【知识梳理】 1、平行四边形的性质是什么? 2、在坐标系中,平行四边形又有哪些性质? 3、解决问题的策略: ①根据要求画出满足要求的图形,然后根据几何性质计算未知量 ②分类讨论,根据对角线“共中点”的性质直接计算。 1.(2011?盘锦)如图,二次函数y=ax2+bx的图象经过A(1,﹣1)、B(4,0)两点. (1)求这个二次函数解析式; (2)点M为坐标平面内一点,若以点O、A、B、M为顶点的四边形是平行四边形,请直接写出点M的坐标.

2.(2010?陕西)在平面直角坐标系中,抛物线A(﹣1,0),B(3,0),C(0,﹣1)三点. (1)求该抛物线的表达式; (2)点Q在y轴上,点P在抛物线上,要使Q、P、A、B为顶点的四边形是平行四边形,求所有满足条件点P的坐标. 3.(2011?阜新)如图,抛物线y=x2+x﹣与x轴相交于A、B两点,顶点为P. (1)求点A、B的坐标; (2)在抛物线是否存在点E,使△ABP的面积等于△ABE的面积,若存在,求出符合条件的点E的坐标;若不存在,请说明理由; (3)坐标平面内是否存在点F,使得以A、B、P、F为顶点的四边形为平行四边形,直接写出所有符合条件的点F的坐标.

4.(2007?玉溪)如图,已知二次函数图象的顶点坐标为C(1,0),直线y=x+m与该二次函数的 图象交于A、B两点,其中点A的坐标为(3,4),点B在y轴上。 (1)求m的值及这个二次函数的关系式; (2)P为线段AB上的一个动点(点P与A、B不重合),过P点作x轴的垂线交二次函数图象于点E,设线段PE的长为h,点P的横坐标为x,求h与x之间的函数关系式,并写出自变量x的取值范围; (3)D为直线AB与二次函数图象对称轴的交点,在线段AB上是否存在一点P,使得四边形DCEP是平行四边形?若存在,求点P的坐标;若不存在,请说明理由。

(完整版)二次函数与三角形的存在性问题的解法

二次函数与三角形的存在性问题 一、预备知识 1、坐标系中或抛物线上有两个点为P (x1,y ),Q (x2,y ) (1)线段对称轴是直线2x 2 1x x += (2)AB 两点之间距离公式:221221)()(y y x x PQ -+-= 中点公式:已知两点 ()()2211y ,x Q ,y ,x P ,则线段PQ 的中点M 为??? ??++222121y y ,x x 。 2、两直线的解析式为11b x k y +=与 22b x k y += 如果这两天两直线互相垂直,则有121-=?k k 3、平面内两直线之间的位置关系:两直线分别为:L1:y=k1x+b1 L2:y=k2x+b2 (1)当k1=k2,b1≠b2 ,L1∥L2 (2)当k1≠k2, ,L1与L2相交 (3)K1×k2= -1时, L1与L2垂直 二、三角形的存在性问题探究: 三角形的存在性问题主要涉及到的是等腰三角形,等边三角形,直角三角形 (一)三角形的性质和判定: 1、等腰三角形 性质:两腰相等,两底角相等,三线合一(中线、高线、角平分线)。 判定:两腰相等,两底角相等,三线合一(中线、高线、角平分线)的三角形是等腰三角形。 2、直角三角形 性质:满足勾股定理的三边关系,斜边上的中线等于斜边的一半。 判定:有一个角是直角的三角形是直角三角形。 3、等腰直角三角形 性质:具有等腰三角形和等边三角形的所以性质,两底角相等且等于45°。 判定:具有等腰三角形和等边三角形的所以性质的三角形是等腰直角三角形 4、等边三角形 性质:三边相等,三个角相等且等于60°,三线合一,具有等腰三角形的一切性质。 判定:三边相等,抛物线或坐标轴或对称轴上三个角相等,有一个角是60°的等腰三角形是等边三角形。

中考最后冲刺《锐角三角函数与二次函数》精析精练

锐角三角函数精析精练 一、知识梳理 1. 三角函数的概念:在Rt △ABC 中,∠C=? 90, SinA=斜边 的对边A ∠,cosA=斜边的邻边A ∠, tanA=的邻边 的对边A A ∠∠ 例1:已知在Rt ABC △中,∠C 为直角,AC = 4cm ,BC = 3cm ,sin ∠A = . 例2:在Rt ABC △中,90C ∠=°,a b c ,,分别是A B C ∠∠∠,,的对边,若2b a =, 则tan A = . 例3:如图1,在Rt △ABC 中,∠C =90°,AB =5,AC =2,则cos A 的值是( ) A . 215 B .25 C .212 D .5 2 图1 图2 例4:如图2,在△ABC 中,∠C =90°,AB =10cm ,sinA = 5 4 ,则BC 的长为 ___cm . 例5:正方形网格中,AOB ∠如图3放置,则cos AOB ∠的值为( ) C. 12 D.2 2. 特殊角的三角函数值: 例6:若30α=∠,则α∠的余角是 °,cos α= . 例7:如果a ∠是等腰直角三角形的一个锐角,则tan α的值是( ) A B O 图3

A. 12 B. 2 C.1 例8: 45cos 45sin +的值等于( ) A. 2 B. 2 1 3+ C. 3 D. 1 例9:因为1sin 302= ,1sin 2102 =-, 所以sin 210sin(18030)sin30=+=-;因为2sin 452= ,sin 2252 =-, 所以sin 225sin(18045)sin 45=+=-, 由此猜想,推理知:一般地当α为锐角时有sin(180)sin αα+=-, 由此可知:sin 240=( ) A .1 2 - B . C . D .3.锐角三角函数的应用 例10:《中华人民共和国道路交通管理条理》规定:“小汽车在城市街道上的行驶速度不得超过70千米/时.”如图所示,已知测速站M 到公路l 的距离MN 为30米,一辆小汽车在公路l 上由东向西行驶,测得此车从点A 行驶到点B 所用的时间为2秒,并测得 60AMN ∠=,30BMN ∠=.计算此车从A 到B 的平均速度为每秒多少米(结果保 留两个有效数字),并判断此车是否超过限速. 1.732 ≈ 1.414≈) 二、巩固练习 (一)选择题: 1.已知ABC ?中,AC =4,BC =3,AB =5,则sin A =( ) A. 35 B. 4 5 C. 5 3 D. 34 M N B A l

二次函数与等腰三角形

以二次函数与等腰三角形问题为背景的解答题 【学习目标】 这类问题主要是以一点(或以一条线段)为依托,动点和函数思想相结合以几何图形为背景,以动点为元素,构造动态型几何问题。解此类题目,应从相关图形的性质和数量关系分类讨 论来解决。此类问题较多地关注学生对图形性质的理解,用动态的观点去看待一般函数和图形结合的问题,具有较强的综合性. 【教学过程】解题思路:等腰三角形的存在性的解题方法:①几何法三步:先分类;再画图;后计算.② 代数法三步:先罗列三边;再分类列方程;后解方程、检验.再以二次函数与等腰三角形问题为背景的解答题中,这两种方法往往结合使用. 一、考点突破 12 例1、如图,已知抛物线y=﹣x2+bx+4 与x 轴相交于A、B两点,与y 轴相交于点C,若 4 已知 A 点的坐标为(﹣2,0). (1)求抛物线的解析式; 2)连接AC、BC,求线段BC 所在直线的解析式; P,使△ACP为等腰三角形?若存在,求出符合条件的(3)在抛物线的对称轴上是否存在 点P 点坐标;若不存在,请说明理

【例2】如图,在平面直角坐标系中,直线y=﹣2x+10与x 轴,y 轴相交于A,B 两点,点C 的坐标是(8,4),连接AC,BC. (1)求过O,A,C三点的抛物线的解析式,并判断△ABC的形状; (2)动点P从点O出发,沿OB以每秒 2 个单位长度的速度向点 B 运动;同时,动点Q 从点 B 出发,沿BC以每秒 1 个单位长度的速度向点C运动.规定其中一个动点到达端点时, 另一个动点也随之停止运动.设运动时间为t 秒,当t 为何值时,PA=QA? (3)在抛物线的对称轴上,是否存在点M ,使以A,B,M 为顶点的三角形是等腰三角形? 若存在,求出点M 的坐标;若不存在,请说明理由.

二次函数中三角形存在问题(二)

二次函数中三角形存在性问题(二) 1.相似三角形 2.等腰直角三角形 例一: 1.如图,抛物线经过三点A(1,0),B(4,0),C(0,-2) (1)求出抛物线的解析式; (2)P是抛物线上一动点,过P作PM⊥x轴,垂足为M,是否存在P点,使得以B,P,M为顶点的三角形与OBC△相似(相似比不为1)?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由. 2.如图,抛物线与x轴交于A(1,0)、B(-3,0)两点,与y轴交于点C(0,3),设抛物线的顶点为D. (1)求该抛物线的解析式与顶点D的坐标. (2)试判断△BCD的形状,并说明理由. (3)探究坐标轴上是否存在点P,使得以P、A、C为顶点的三角形与△BCD相似?若存在,请直接写出点P的坐标;若不存在,请说明理由.

y=向左平移1个单位,再向下平移4个单位,得到抛物线3.如图,在平面直角坐标系xOy中,抛物线2x ()k - =2,所得抛物线与x轴交于A、B两点(点A在点B的左边),与y轴交于点C,顶点为D。 x y+ h (1)求h、k的值。 (2)判断△ACD的形状,并说明理由。 (3)在线段AC上是否存在点M,使△AOM与△ABC相似?若存在,求出点M的坐标;若不存在,说明理由。 4.如图,平面直角坐标系中,点A、B、C在x轴上,点D、E在y 轴上,OA=OD=2,OC=OE=4,2OB=OD,直线AD与经过B、E、C三点的抛物线交于F、G两点,与其对称轴交于M.点P为线段FG上一个动点(与F、G不重合),PQ∥y轴与抛物线交于点Q. (1)求经过B、E、C三点的抛物线的解析式; (2)是否存在点P,使得以P、Q、M为顶点的三角形与△AOD相似?若存在,求出满足条件的点P的坐标;若不存在,请说明理由.

三角函数及二次函数知识点及典型题

三角函数知识点及典型题 1.在△ABC 中,∠C =90°,tan A =23 ,则sin B =( ) A B .23 C .34 D . 2. 如图,在Rt ABC △中,CD 是斜边AB 上的中线,已知2CD =,3AC =,则c o s B 的值是( ) A .23 B .32 C .4 D .43 3.(cos60A 关于x 轴对称点1A 的坐标是 ________ 4.已知α是锐 角, 且sin(15)2α+= ,计 算114c o s (3.14)t a n ()3απα?---- ++ 5.已知A 为锐角,且030sin cos

8.在Rt △ABC 中,∠C =90°,∠A =60°,△ABC 的面积,312=S 求a 、b 、c 及∠B . 9.如图,将等腰直角三角形ABC 绕点A 逆时针旋转15° 后得到△AB ′C ′,若AC=1,则图中阴影部分的面积为______. 10. 如图,将宽为1cm 的纸条沿BC 折叠,使∠CAB =45°,则折叠 后重叠部分的面积为__________ 11.在△ABC 中,∠B 为锐角,5sin ,26,20,13B AB AC ===, 求BC 的长。 12.如图,在△ABC 中,AB=AC=13,BC=10,点D 为BC 的中点,DE ⊥AB 于点E ,则tan ∠BDE 的值等于( ) A . B . C . D . 13.某地下车库出口处安装了“两段式栏杆”,如图1所示,点 A 是栏杆转动的支点,点E 是栏杆两段的联结点.当车辆经过时,栏杆AEF 最多只能升起到如图2所示的位置,其示意图如图3所示(栏杆宽度忽略不计),其中A B ⊥B C ,EF ∥BC ,∠AEF=143°,AB=AE=1.2米,那么适合该地下车库的车辆限高标志牌为( )(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75) A . B . C . D . 14.某人沿坡度i=1:的坡面向上走50米,则此人离地面的高度为( ) A .25米 B .50米 C .25米 D .50米

二次函数与三角形综合题型

22.如图,直线y=x+2与抛物线y=ax2+bx+6(a≠0)相交于A(,)和B(4,m),点P 是线段AB上异于A、B的动点,过点P作PC⊥x轴于点D,交抛物线于点C. (1)求抛物线的解析式; (2)是否存在这样的P点,使线段PC的长有最大值?若存在,求出这个最大值;若不存在,请说明理由; (3)求△PAC为直角三角形时点P的坐标. 20.如图,抛物线y=x2+bx+c与x轴交于点A和点B(3,0),与y轴交于点C(0,3). (1)求抛物线的解析式; (2)若点M是抛物线在x轴下方上的动点,过点M作MN∥y轴交直线BC于点N,求线段MN的最大值; (3)在(2)的条件下,当MN取得最大值时,在抛物线的对称轴l上是否存在点P,使△PBN是等腰三角形?若存在,请直接写出所有点P的坐标;若不存在,请说明理由. 23.已知抛物线C1的顶点为P(1,0),且过点(0,).将抛物线C1向下平移h个单位 (h>0)得到抛物线C2.一条平行于x轴的直线与两条抛物线交于A、B、C、D四点(如图),且点A、C关于y轴对称,直线AB与x轴的距离是m2(m>0). (1)求抛物线C1的解析式的一般形式; (2)当m=2时,求h的值;

(3)若抛物线C1的对称轴与直线AB交于点E,与抛物线C2交于点F.求证:tan∠EDF ﹣tan∠ECP=. 22.解:(1)∵B(4,m)在直线y=x+2上, ∴m=4+2=6, ∴B(4,6), ∵A(,)、B(4,6)在抛物线y=ax2+bx+6上, ∴,解得, ∴抛物线的解析式为y=2x2﹣8x+6. (2)设动点P的坐标为(n,n+2),则C点的坐标为(n,2n2﹣8n+6), ∴PC=(n+2)﹣(2n2﹣8n+6), =﹣2n2+9n﹣4, =﹣2(n﹣)2+, ∵PC>0, ∴当n=时,线段PC最大且为.

三角函数与二次函数综合专题(含解析)

三角函数与二次函数综合卷2 1.如图,在矩形ABCD 中,点E 为AB 的中点,EF ⊥EC 交AD 于点F ,连接CF (AD >AE ),下列结论: ①∠AEF=∠BCE ; ②AF+BC >CF ; ③S △CEF =S △EAF +S △CBE ; ④若= ,则△CEF ≌△CDF . 其中正确的结论是 .(填写所有正确结论的序号) 2.已知:BD 是四边形 ABCD 的对角线,AB ⊥BC ,∠C=60°,AB=1, (1)求tan ∠ABD 的值; (2)求AD 的长. 3.海上有一小岛,为了测量小岛两端A 、B 的距离,测量人员设计了一种测量方法,如图所示,已知B 点是CD 的中点,E 是BA 延长线上的一点,测得AE = 10海里,DE =30海里,且DE ⊥EC ,cos ∠D (1)求小岛两端A 、B 的距离; (2)过点C 作CF ⊥AB 交AB 的延长线于点F ,求sin ∠BCF 的值. A B 4.如图,在△ABC 中,90ACB ∠=,AC BC =,点P 是△ABC 内一点,且135APB APC ∠=∠=.

A B C P (1)求证:△CPA ∽△APB ; (2)试求tan PCB ∠的值. 5.如图,在梯形A B CD 中,?=∠=∠ 90B A 点E 在AB 上,?=∠45AED ,6=DE ,7=CE . (1)求AE 的长; (2)求BCE ∠sin 的值. 6.如图,在△ABC 中, AD 是BC 边上的高,AE 是BC 边上的中线,∠C=45°,AD=4. (1)求BC 的长; (2)求tan ∠DAE 的值. 7.如图,在Rt △ABC 中,∠ABO=90°,OB=4,AB=8内的图象分别交OA 、AB 于点C 和点D ,连结OD ,若4=?BOD S , (1)求反比例函数解析式; (2)求C 点坐标. 8.如图,在△ABC 中,BD ⊥AC 于点D , ,,并且. 求的长. AB =BD = 12 ABD CBD ∠=∠AC

二次函数与平行四边形综合.

【例1】 已知:如图,在平面直角坐标系xOy 中,直线3 64 y x =-+与x 轴、y 轴的交点分 别为A B 、, 将OBA ∠对折,使点O 的对应点H 落在直线AB 上,折痕交x 轴于点.C (1)直接写出点C 的坐标,并求过A B C 、、三点的抛物线的解析式; (2)若抛物线的顶点为D ,在直线BC 上是否存在点P ,使得四边形ODAP 为平行四边形?若存在,求出点P 的坐标;若不存在,说明理由; (3)设抛物线的对称轴与直线BC 的交点为T Q , 为线段BT 上一点,直接写出QA QO -的取值范围. 【例2】 如图,点O 是坐标原点,点(0)A n ,是x 轴上一动点(0)n <.以AO 为一边作矩形AOBC ,点C 在第二象限,且2OB OA =.矩形AOBC 绕点A 逆时针旋转90?得矩形AGDE .过点A 的直线y kx m =+(0)k ≠交y 轴于点F ,FB FA =.抛物线2y ax bx c =++过点E 、F 、G 且和直线AF 交于点H ,过点H 作HM x ⊥轴,垂足为点M . ⑴ 求k 的值; ⑵ 点A 位置改变时,AMH ?的面积和矩形AOBC 的面积的比值是否改变?说明你的理由. 【例3】 如图1,Rt ABC ?中,90A ∠=?,3 tan 4 B = ,点P 在线段AB 上运动,点Q 、R 分别在线段BC 、AC 上,且使得四边形APQR 是矩形.设AP 的长为x ,矩形APQR 的面积为y ,已知y 是x 的函数,其图 象是过点()1236,的抛物线的一部分(如图2所示). (1)求AB 的长; (2)当AP 为何值时,矩形APQR 的面积最大,并求出最大值. R Q B C A 二次函数与平行四边形综合

09三角函数在单位圆的表示方法

09三角函数在单位圆的表示方法 1 在理解任意角三角函数定义的基础上,理解三角函数在单位圆上的表示方法,理解正弦线、余弦线,并能由图象讲出三角函数的值域和已知三角函数值作出对应的角。 三角函数(正弦、余弦)在单位圆的表示 已知三角函数值作出对应的角。 讲授与讨论相结合

三角函数在单位圆的表示方法 课本P14 图4-12 MP y y r y ====1sin α -1≤sin α≤1 -1≤cos α≤1 例 题 OM x x r x ====1cos α 例 题 P20 第2 题

一、三角函数的定义,指出:“定义”从代数的角度揭示了三角函数是一个“比值”,三角函数的定义已经明确告诉角的终边上取点具有任意性,如果我们在角的终边上取适当的点,使比值中的分母为1,那末三角函数就可以用相应的一个坐标表示,这样讨论三角函数就比较方便。 二、单位圆的定义 在直角坐标系中,以原点为圆心,以1为半径的圆。 三、角α的正弦、余弦在单位上的表示 1.作图:(课本P14 图4-12 ) 此处略 …… …… ……… …… …… 设任意角α的顶点在原点,始边与x 轴的非负半轴重合,角α的终边与单位圆交于P 过P(x,y)作PM ⊥x 轴于M , 简单介绍“向量”(带有“方向”的量—用正负号表示),“有向线段”(带有方向的线段),方向可取与坐标轴方向相同,长度用绝对值表示。 例:有向线段OM ,OP 长度分别为y x , 当OM=x 时 若0>x OM 看作与x 轴同向 OM 具有正值x 若0

二次函数和三角形的存在性问题的解法

二次函数与三角形的存在性问题 一、预备知识 1、坐标系中或抛物线上有两个点为P( x1,y),Q(x2,y) x 1x 2 x 2 (1) 线段对称轴是直线 (2)AB 两点之间距离公式:PQ(x1x2 ) 2( y1 y2 )2 中点公式:已知两点P x 1 , y 1 x1 x 2 , y 1y2 ,Q x2 ,y 2,则线段 PQ的中点 M为22。 Q P G O 2 、两直线的解析式为y k 1 x b 1 与y k 2 x b2 如果这两天两直线互相垂直,则有k1k21 3、平面内两直线之间的位置关系:两直线分别为:L1:y=k1x+b1L2 :y=k2x+b2 (1)当 k1=k2, b1≠b2,L1∥ L2 (2)当 k1≠ k2,,L1 与 L2 相交 (3)K1×k2= -1时,L1 与L2垂直 二、三角形的存在性问题探究: 三角形的存在性问题主要涉及到的是等腰三角形,等边三角形,直角三角形 (一)三角形的性质和判定: 1、等腰三角形 性质:两腰相等,两底角相等,三线合一(中线、高线、角平分线)。 判定:两腰相等,两底角相等,三线合一(中线、高线、角平分线)的三角形是等腰三角形。2、直角三角形 性质:满足勾股定理的三边关系,斜边上的中线等于斜边的一半。 判定:有一个角是直角的三角形是直角三角形。 3、等腰直角三角形 性质:具有等腰三角形和等边三角形的所以性质,两底角相等且等于 45°。判定: 具有等腰三角形和等边三角形的所以性质的三角形是等腰直角三角形4、等边三 角形 性质:三边相等,三个角相等且等于60°,三线合一,具有等腰三角形的一切性质。

判定:三边相等,抛物线或坐标轴或对称轴上三个角相等,有一个角是 60°的等腰三角形是等 边三角形。 总结:( 1)已知 A、B 两点,通过“两圆一线”可以找到所有满足条件的等腰三角形,要求 的点(不与 A、B 点重合)即在两圆上以及两圆的公共弦上 (2)已知 A、B 两点,通过“两线一圆” 可以找到所有满足条件的直角三角形,要求的点(不与A、B 点重合)即在圆上以及在两条与直径 AB垂直的直线上。 (二)关于等腰三角形找点(作点)和求点的不同, 1、等腰三角形找点(作点)方法:以已知边为边长,作等腰三角形,运用两园一线法,在图 上找出存在点的个数,只找不求。 2、等腰三角形求点方法:以已知边为边长,在抛物线或坐标轴或对称轴上找点,与已知点构 成等腰三角形,先设所求点的坐标,然后根据两点间的距离公式求出三点间的线段长度,然后分 顶点进行讨论, 如:已知两点 A、B,在抛物线上求一点 C,使得三角形 ABC 为等腰三角形 解法:这是求点法:先运用两点间的距离公式分别求出线段AB BC AC的长度, 第二步,作假设,(1)以点 A 为顶点的两条腰相等,即AB=AC(2)以点B为顶点的两条腰相等,即 BA=BC ( 3)以点 C为顶点的两条腰相等,即CA=CB 第三步,根据以上等量关系,求出所求点的坐标 第四步进行检验,这一步是非常重要的,因为求出的有些点是不符合要求的。 如:已知两点 A、 B,在抛物线上求一点C,使得三角形 ABC 为等腰三角形 解法:这是求点法:先运用两点间的距离公式分别求出线段AB BC AC的长度, 第二步,作假设,(1)以点 A 为顶点的两条腰相等,即 AB=AC (2)以点 B 为顶点的两条腰相等,即 BA=BC (3)以点 C 为顶点的两条腰相等,即CA=CB 第三步,根据以上等量关系,求出所求点的坐标 第四步,进行检验,这一步是非常重要的,因为求出的有些点是不符合要求的。 (三)关于直角三角形找点和求点的方法 1、直角三角形找点(作点)方法:以已知边为边长,作直角三角形,运用两线一园法,在图 上找出存在点的个数,只找不求。所谓的两线就是指以已知边为直角边,过已知边的两个端点分 别作垂线与抛物线或坐标轴或对称轴的交点,就是所求的点;一圆就是以已知边为直径,以已知 边的中点作圆,与抛物线或坐标轴或对称轴的交点即为所求的点。 2、具体方法 ( 1) k1 k21; (2)三角形全等(注意寻找特殊角,如 30°、 60°、 45°、 90 °) (3)三角形相似;经常利用一线三等角模型 (4)勾股定理; 当题目中出现了特殊角时,优先考虑全等法三、二 次函数的应用:

二次函数典型题解题技巧

二次函数典型题解题技巧

————————————————————————————————作者:————————————————————————————————日期:

二次函数典型题解题技巧 (一)有关角 1、已知抛物线2y ax bx c =++的图象与x 轴交于A 、B 两点(点A 在点B 的左边),与y 轴 交于点(0C ,3),过点C 作x 轴的平行线与抛物线交于点D ,抛物线的顶点为M ,直线5y x =+经过D 、M 两点. (1) 求此抛物线的解析式; (2)连接AM 、AC 、BC ,试比较MAB ∠和ACB ∠的大小,并说明你的理由. 思路点拨:对于第(1)问,需要注意的是CD 和x 轴平行(过点C 作x 轴的平行线与抛物线交于点D ) 对于第(2)问,比较角的大小 a 、 如果是特殊角,也就是我们能分别计算出这两个角的大小,那么他们之间的大小关系就清楚了 b 、 如果这两个角可以转化成某个三角形的一个外角和一个不相邻的内角,那么大小关系就确定了 c 、 如果稍难一点,这两个角转化成某个三角形的两个内角,根据大边对大角来判断角的大小 d 、 除了上述情况外,那只有可能两个角相等,那么证明角相等的方法我们学过什么呢,全等三角形、相似三角形和简单三角函数,从这个题来看,很明显没有全等三角形,剩下的就是相似三角形和简单三角函数了,其实简单三角函数证明角相等和相似三角形证明角相等的本质是一样的,都是对应边的比相等 e 、 可能还有人会问,这么想我不习惯,太复杂了,那么我再说一个最简单的方法,如何快速的找出题目的结论问题,在本题中,需要用到的点只有M 、C、A、B 这四个点,而这四个点的坐标是很容易求出来的,那么请你把这四个点规范的在直角坐标系内标出来,再用量角器去量这两个角大大小,你就能得出结论了,得出结论以后你再看d 这一条 解:(1)∵CD ∥x 轴且点C(0,3), ∴设点D 的坐标为(x ,3) . ∵直线y = x+5经过D 点, ∴3= x+5.∴x=-2. 即点D(-2,3) . 根据抛物线的对称性,设顶点的坐标为M (-1,y ), 又∵直线y= x+5经过M 点, ∴y =-1+5,y =4.即M(-1,4). ∴设抛物线的解析式为 2(1)4y a x =++. ∵点C (0,3)在抛物线上,∴a=-1. 即抛物线的解析式为 223y x x =--+.…………3分 (2)作BP ⊥AC 于点P,MN⊥AB 于点N. 由(1)中抛物线 223y x x =--+可得 点A(-3,0),B(1,0), ∴AB=4,AO =C O=3,A C=32. ∴∠PAB =45°. ∵∠ABP=45°,∴P A=PB=22. ∴P C=A C-PA =2. 在Rt△BPC 中,tan ∠BCP=PB PC =2.

二次函数平行四边形存在性问题例题(最新整理)

二次函数平行四边形存在性问题例题 一.解答题(共9小题) 1.如图,抛物线经过A(﹣1,0),B(5,0),C(0,)三点. (1)求抛物线的解析式; (2)在抛物线的对称轴上有一点P,使PA+PC的值最小,求点P的坐标;(3)点M为x轴上一动点,在抛物线上是否存在一点N,使以A,C,M,N四点构成的四边形为平行四边形?若存在,求点N的坐标;若不存在,请说明理由. 2.如图,在平面直角坐标系中,直线y=﹣3x﹣3与x轴交于点A,与y轴交于点C.抛物线y=x2+bx+c经过A,C两点,且与x轴交于另一点B(点B在点A右侧).(1)求抛物线的解析式及点B坐标; (2)若点M是线段BC上一动点,过点M的直线EF平行y轴交x轴于点F,交抛物线于点E.求ME长的最大值; (3)试探究当ME取最大值时,在x轴下方抛物线上是否存在点P,使以M,F,B,P 为顶点的四边形是平行四边形?若存在,请求出点P的坐标;若不存在,试说明理由. 3.已知:如图,在平面直角坐标系xOy中,直线与x轴、y轴的交点分别为A、B两点,将∠OBA对折,使点O的对应点H落在直线AB上,折痕交x

轴于点C. (1)直接写出点C的坐标,并求过A、B、C三点的抛物线的解析式; (2)若(1)中抛物线的顶点为D,在直线BC上是否存在点P,使得四边形ODAP 为平行四边形?若存在,求出点P的坐标;若不存在,说明理由; (3)若把(1)中的抛物线向左平移3.5个单位,则图象与x轴交于F、N(点F 在点N的左侧)两点,交y轴于E点,则在此抛物线的对称轴上是否存在一点Q,使点Q到E、N两点的距离之差最大?若存在,请求出点Q的坐标;若不存在,请说明理由. 4.已知:如图,在平面直角坐标系xOy中,直线与x轴、y轴的交点分别为A、B,将∠OBA对折,使点O的对应点H落在直线AB上,折痕交x轴于点C. (1)直接写出点C的坐标,并求过A、B、C三点的抛物线的解析式; (2)若抛物线的顶点为D,在直线BC上是否存在点P,使得四边形ODAP为平行四边形?若存在,求出点P的坐标;若不存在,说明理由; (3)设抛物线的对称轴与直线BC的交点为T,Q为线段BT上一点,直接写出|QA﹣QO|的取值范围. 5.如图,Rt△OAB如图所示放置在平面直角坐标系中,直角边OA与x轴重合,∠

二次函数中三角形问题(含问题详解)

二次函数中的三角形 一.与三角形面积 例1:如图,已知在同一坐标系中,直线22 k y kx =+- 与y 轴交于点P ,抛物线k x k x y 4)1(22 ++-=与x 轴交于)0,(),0,(21x B x A 两点。C 是抛物线的顶点。 (1)求二次函数的最小值(用含k 的代数式表示); (2)若点A 在点B 的左侧,且021

二次函数三角函数

1.在△ABC 中,若sinA = 2 3 ,则∠A 为( ) A .30o B .45o C .60o D .90o 2.下列函数中,当x >0时,y 随x 的增大而减小的是( )A.y=2x 2 B.y=2x -1 C.y= x 2 - D.y=-2x 2 3.将抛物线y =-2(x -1)2-2向左平移1个单位,再向上平移1个单位,得到的抛物线的表达式为( ) A .y =-2(x -2)2-3 B .y =-2(x -2)2-1 C .y =-2x 2-1 D .y =-2x 2-3 4.下列抛物线的图象与x 轴没有交点的是( ) A . 42-=x y B .131 2+-=x y C .2)2(22---=x y D .x x y 32+= 5.函数c ax y +=2 与x ac y =在同一直角坐标系中的图象大致是( ) A B 6.二次函数 2ax y -=的图象经过点(1,-2) 7.在△ABC 中,∠C =90°,sinA = 5 3 ,BC =15,则△ABC 的周长是 ,面积是 。 8.若α为锐角,则sin α+ cos α 1。(填“=”、“≤”、“≥”、“<”、“>”) 9.已知抛物线 342++=x x y ,它的图象开口向 ,对称轴是 ,顶点坐标为 ;与y 轴的交点坐标为 。 10.如图,在同一直角坐标系中,二次函数的图象与两坐标轴分别交于A (-1,0)、点B (3,0)和点C (0,-3),一次 函数的图象与抛物线交于B 、C 两点。当自变量 时,一次函数值大于二次函数值. 11.计算:o o o o o 30cos 60tan 45tan 60sin 230sin 22 +-++ 12.已知 2 2212()(3)m m y m m x m x m --=-+-+是x 的二次函数,求m 的值和二次函数的解析式; 13.某涵洞是抛物线形,它的截面如图所示,现测得水面宽AB =1.6m ,涵洞顶点O 到水面的距离为2.4m ,在图中直角坐标系内,求涵洞所在抛物线的函数表达式。 14.如图,一小球从斜坡O 点处抛出,球的抛出路线可以用二次函数 2214x x y - =刻画,斜坡可以用一次函数x y 2 1 =刻画。 ⑴求小球到达的最高点的坐标 ⑵小球的落点是A ,求点A 的坐标。 15.已知二次函数 2222-++-=m m mx x y ⑴当m 为何值时,二次函数的图象经过原点。 ⑵当m 为何值时,二次函数的图象关于y 轴对称 x B y A 1 2 3 4 5 6 7 8 3 1 2 4 8 7 6 5 A

三角函数单位圆的定义

§1.2.1 任意角的三角函数 第一课时任意角的三角函数的定义三角函数的定义域和函数值【学习目标、细解考纲】 1、借助单位圆理解任意角三角函数(正弦、余弦、正切)的定义; 2、从任意角三角函数的定义认识其定义域、函数值的符号。 【知识梳理、双基再现】 1、在直角坐标系中,叫做单位圆。 2、设α是一个任意角,它的终边与单位圆交于点P(x,y),那么: ⑴叫做α的正弦,记作 ,即 . ⑵叫做α的余弦,记作 ,即 . ⑶叫做α的正切,记作 ,即 . 当α=时, α的终边在y轴上,这时点P的横坐标等于 ,所以无意义.除此之外,对于确定的角α,上面三个值都是 . 所以, 正弦、余弦、正切都是以为自变量,以 为函数值的函数,我们将它们统称为 .由于与之间可以建立一一对应关系,三角函数可以看成是自变量为的函数. 3、根据任意角的三角函数定义,先将正弦余弦正切函数在弧度制下的定义域填入下表,再 将这三种函数的值在各象限的符号填入括号。

=y sin α =y cos α =y tan α 【小试身手、轻松过关】 4、已知角α的终边过点P (-1,2),cos α的值为 ( ) A .- 55 B .- 5 C .552 D .2 5 5、α是第四象限角,则下列数值中一定是正值的是 ( ) A .sin α B .cos αC .tan α D . tan 1 α 6、已知角α的终边过点P (4a ,-3a )(a <0),则2sin α+cos α的值是 ( ) A .25 B .-2 5 C .0 D .与α的取值有关 7、α是第二象限角,P (x , 5 ) 为其终边上一点,且cos α= 4 2 x ,则sin α的值为 ( ) A . 410 B .46 C .42 D .-4 10 【基础训练、锋芒初显】 8、函数x x y cos sin -+=的定义域是 ( ) A .))12(,2(ππ+k k ,Z k ∈ B .])12(,2 2[ππ π++ k k ,Z k ∈

三角函数与二次函数的运用解读

三角函数与二次函数的运用 1.a 、b 、c 是△ABC 的∠A 、∠B 、∠C 的对边,且a :b :c=1:2:3,则cosB 的值( ) A . 36 B .33 C .22 D .4 2 2.拦水坝横断面如图所示,迎水坡AB 的坡比是1BC=10m ,则坡面AB 的长度是( ) A .15m B .m C ..20m 3.如果把Rt ABC ?的三边长度都扩大2倍,那么锐角A 的四个三角比的值( ) A. 都扩大到原来的2倍; B. 都缩小到原来的 1 2 ; C. 都没有变化; D. 都不能确定; 4.如图,在某监测点B 处望见一艘正在作业的渔船在南偏西15°方向的A 处,若渔船沿北偏西75°方向以40海里/小时的速度航行,航行半小时后到达C 处,在C 处观测到B 在C 的北偏东60°方向上,则B ,C 之间的距离为( ) A. 20海里. D.30海里 5.一个小球被抛出后,如果距离地面的高度h (米)和运行时间t (秒)的函数解析式为2 5101h t t =-++,那么 小球到达最高点时距离地面的高度是( ) A. 1米; B. 3米; C. 5米; D. 6米; 6.在ABC Rt ?中,? =∠90C ,AB AC 2 1 = ,则=∠ABC tan . 7.为解决停车难的问题,在如图一段长56米的路段开辟停车位,每个车位是长5米、宽2.2米的矩形,矩形的边 与路的边缘成45°角,那么这个路段最多可以划出________________个这样的停车位.

8.如图,一渔船由西往东航行,在A 点测得海岛C 位于北偏东60°的方向,前进20海里到达B 点,此时,测得海岛C 位于北偏东30°的方向,则海岛C 到航线AB 的距离CD 等于 海里. 9.如图,在ABC ?中,90C ?∠=,5 2 sin = A ,D 为AC 上一点,45BDC ?∠=,6=DC ,求AD 的长. 10.如图,一台起重机,他的机身高AC 为21m ,吊杆AB 长为40m ,吊杆与水平线的夹角∠BAD 可从30°升到80°.求这台起重机工作时,吊杆端点B 离地面CE 的最大高度和离机身AC 的最大水平距离(结果精确到0.1m ). (参考数据:sin80°≈0.98,cos80°≈0.17,tan80°≈5.67,3≈1.73) 11.如图,某大楼的顶部树有一块广告牌CD ,小明在山坡的坡脚A 处测得广告牌底部D 的仰角为60°.沿坡面AB 向上走到B 处测得广告牌顶部C 的仰角为45°,已知山坡AB 的坡度3:1=i ,AB=10米,AE=15米.(测角器的高度忽略不计,结果精确到0.1米.参考数据:732.13,414.12≈≈) (1)、求点B 距水平面AE 的高度BH ; (2)、求广告牌CD 的高度. 12.小明家所在居民楼的对面有一座大厦AB ,AB=80米.为测量这座居民楼与大厦之间的距离,小明从自己家的窗

二次函数综合题二次函数与平行四边形

学习好资料欢迎下载 二次函数与平行四边形2,3),与y轴交于点C(0,﹣)【例1】(2011湛江)如图,抛物线y=x+bx+c的顶点为D(﹣1,﹣4 .B,两点(点A在点B的左侧)与x轴交于A )求抛物线的解析式;(1 AD,试证明△ACD为直角三角形;,(2)连接ACCD,为顶点的的四边形FE,A3)若点E在抛物线的对称轴上,抛物线上是否存在点F,使以,B,(F的坐标;若不存在,请说明理由.为平行四边形?若存在,求出所有满足条件的点 17521xx???y?与【例y轴交于A点,过点2011】2(广东)如图,抛物线A的直线与抛物线 44. 学习好资料欢迎下载 交于另一点B,过点B作BC⊥x轴,垂足为点C(3,0). (1)求直线AB的函数关系式; (2)动点P在线段OC上从原点出发以每秒一个单位的速度向C移动,过点P作PN⊥x轴,交直线AB于点M,交抛物线于点N. 设点P移动的时间为t秒,MN的长度为s个单位,求s与t

的函数关系式,并写出t的取值范围; (3)设在(2)的条件下(不考虑点P与点O,点C重合的情况),连接CM,BN,当t为何值时, . 请说明理由值,平行四边形BCMN是否菱形?四边形BCMN为平行四边形?问对于所求的t yy xx轴C中,正方形OCBA的顶点A、分别在【例3】(2010茂名)如图,在直角坐标系O 轴、2c??bxaxy?1?3ab??,坐标为(上,点B66BA经过点),抛物线、两点,且.cab的值;,,)求1(. 学习好资料欢迎下载 (2)如果动点E、F同时分别从点A、点B出发,分别沿A→B、B→C运动,速度都是每秒1个?EBFt的面、F随之停止运动.设运动时间为秒,E单位长度,当点到达终点B时,点E积 为S. t之间的函数关系式,并求出S的最大值;S与①试求出②当S取得最大值时,在抛物线上是否存在点R,使得以E、B、R、F为顶点的四边形是平行四边形?如果存在,求出点R的坐标;如果不存在,请说明理

利用二次函数求三角函数的最值

1 利用二次函数求三角函数的最值 换元法是求函数最值时常用的一种方法,它体现了化归转化数学思想的应用,可将陌生问题转化为熟悉问题来解决. 本文我们结合典型的例题来体会一下通过换元法,利用二次函数求解三角函数的最值问题. 例1. 设2[,]63x ππ ∈-,求函数24sin 12sin 1y x x =--的最值. 分析:可将sin x 可作一个整体,将给定的函数看作是关于sin x 的二次函数. 解:令sin t x =,由于2[, ]63x ππ∈-,故1[,1]2 t ∈-; 22341214()102y t t t ∴=--=--,因1[,1]2t ∈-时函数单调递减,故当12t =-,即6x π=-时,max 6y =;当1t =,即2x π =时,min 9y =-. 点评:形如2sin sin y a x b x c =++的函数,令sin t x =,这样通过换元就转化为二次函数2y at bt c =++的最值问题. 但应注意换元前后,变量的取值范围要保持不变,因此要根据给定的x 的取值范围,求出t 的范围;另外2cos cos y a x b c =++,2sin cos y a x b x c =++等形式函数的最值都可用这种方法. 例2. 求函数(43sin )(43cos )y x x =--的最小值. 【注:若x R ∈ ,则(sin cos )[x x +∈】 分析:在函数(sin cos )sin cos y a x x b x x c =+++中,由于2(sin cos )12sin cos x x x x +=+,因此 若令sin cos ,[x x t t +=∈,则21s i n c o s 2t x x -=,这样函数就变为212 t y at b c -=+?+的形式,因此此类函数也可通过换元转化为二次函数的最值问题. 解:1612(sin cos )9sin cos ,y x x x x =-++ 令sin cos t x x =+ ,则[t ∈且21sin cos ,2 t x x -= 221116129(92423)22 t y t t t -∴=-+?=-+, 故当4[3t =∈时,min 72 y =. 点评:对于形如(sin cos )sin cos y a x x b x x c =-++的函数也同样可利用此种方法进行求解.

相关文档
最新文档