空间几何体表面积与体积公式大全

空间几何体表面积与体积公式大全
空间几何体表面积与体积公式大全

空间几何体的表面积与体积公式大全

一、 全(表)面积(含侧面积) 1、

柱体

① 棱柱 ② 圆柱 2、

锥体

① 棱锥:h c S ‘

底棱锥侧2

1=

② 圆锥:l c S 底圆锥侧2

1

=

3、 台体

① 棱台:h c c S )(21

‘下底上底棱台侧+=

② 圆台:l c c S )(2

1

下底上底棱台侧+=

4、 球体

① 球:r S 24π=球 ② 球冠:略 ③ 球缺:略 二、 体积 1、

柱体

① 棱柱 ② 圆柱 2、

锥体

① 棱锥 ② 圆锥

3、

① 棱台 ② 圆台 4、

球体

① 球:r

V 33

4

π=球

球冠:略 ③ 球缺:略

说明:棱锥、棱台计算侧面积时使用侧面的斜高h '

计算;而圆锥、圆台的侧面积计算时使用母线l 计算。 三、 拓展提高 1、

祖暅原理:(祖暅:祖冲之的儿子)

夹在两个平行平面间的两个几何体,如果它们在任意高度上的平行截面面积都相等,那么这两个几何体的体积相等。

最早推导出球体体积的祖冲之父子便是运用这个原理实现的。 2、

阿基米德原理:(圆柱容球)

圆柱容球原理:在一个高和底面直径都是r 2的圆柱形容器内装一个最大的球体,则该球体的全面积等于圆柱的侧面积,体积等于圆柱体积的3

2

分析:圆柱体积:r r h S V r 3

222)(ππ=?==圆柱

圆柱侧面积:r h c

S r r 2

42)2(ππ=?==圆柱侧

因此:球体体积:r r V 333

423

2ππ=?=球 球体表面积:r S 24π=球

通过上述分析,我们可以得到一个很重要的关系(如图)

+ =

即底面直径和高相等的圆柱体积等于与它等底等高的圆锥与同直径的球体积之和 3、

台体体积公式

公式: )(31

S S

S S h V 下下

台++=

证明:如图过台体的上下两底面中心连线的纵切面为梯形ABCD 。 延长两侧棱相交于一点P 。

设台体上底面积为S 上,下底面积为S 下高为h 。

易知:PDC ?∽PAB ?,设h PE 1=, 则h h PF +=1

由相似三角形的性质得:PF

PE

AB CD =

即:

h

h h

S

S +=

11

上(相似比等于面积比的算术平方根)

整理得:S

S h S h 上

上-=

1

又因为台体的体积=大锥体体积—小锥体体积 ∴h

S S S h h S h h S V 下上下上下台)(31

)(313131111+

-=-+=

代入:S

S h S h 上

上-=1得:h S S S S

S h S V 下上下

上台3

1

)(

3

1+--=

即:)(31

31)(

3

1S S

S S h h S S S h

S V 下下

下上下上

台++

=+

+=

∴)(3

1

S S

S S h V 下下

上台++=

4、

球体体积公式推导

分析:将半球平行分成相同高度的若干层(层n ),n 越大,每一层越近似于圆柱,+∞→n 时,每一层都可以看作是一个圆柱。这些圆柱的高为n

r ,则: 每个圆柱的体积h S V i i ==n

r

r i 2π 半球的体积等于这些圆柱的体积之和。

]1[)0()0(

2

2

2221

n r r n r r

-=-= ]1[)

1()1(2

2

22

22

n r r n r r -=-= ]1[)2

()2(2

2

2223

n

r r n r r -=-=

……

]1[)1

()1(2

2

22

2n

n r r n n r r n

---=-=

∴半球体积为:)......(2

22

21r r r V V n n n

r

+++??==∑π半球 =]}......[1{)1()1()0(2

222

n

n n n

r n n

r -+++-??π =

]......[2

2

2

2

2

3

)

1(210n

n r

n n -++++-

π

=]6)12)(1(1[])

12()1(61

[2323n r n r n n n n n n n ---=---ππ ]6)1

2)(11(1[3n n r ---

=π 当+∞→n 时,01

→n

∴=V 半球r r r n n 33332)6211(]6)

12)(11(1[πππ=?-=--- ∴球体积为:r V 33

4

π=球

5、 球体表面积公式推导

分析:球体可以切割成若干(个n )近似棱锥,当+∞→n 时,这些棱锥的高为球体半径,底面积为球面面积的n

1

,则每一个棱锥的体积r S V n

球1

311?=,则所有的小棱锥体积之和为球体体积。即有:r

r S n n 3

3431π

=?球 ∴r S 24π=球 6、

正六面体(正方体)与正四面体 (1) 体积关系

如图:正方体切下四个三棱锥后,

球S n

1

o

剩下的部分为正四面体 设正方体棱长为a , 则其体积为:a V 3

=正方体

四个角上切下的每一个三棱锥体积为:

a a a h

S

V 326

1)21(3131=??==

三棱锥 中间剩下的正四面体的体积为:

a

a a a h

S

V 32

2

2

31]60sin 2

1

[3131

)32

232(

)

2()

2(=

-?

????==??正三棱锥这样一个正方体可以分成四个三棱锥与中间一个正四面体 即:

a a a 3

333

1461=+? (2) 外接球

正方体与其体内最大的正四面体有相同的外接球。(理由:过不共面的四点确定一个球。)正方体与其体内最大的正面体有四个公共顶点。所以它们共球。

回顾:① 两点定线 ② 三点定面 ③ 三点定圆 ④ 四点定球 如图:

(a)正方体的体对角线=球直径 (b)正四面体的外接球半径=4

3

高 (c)正四面体的棱长=正方体棱长?2 (d)正方体体积:正四面体体积=3:1 (e)正方体外接球半径与

正四面体外接球半径相等 (3) 正方体的内切球与正四面体的关系

(a ) 正方体内切球直径=正方体棱长

(b ) 正方体内切球与正四面体的四条棱相切。

(c ) 与正四面体四条棱相切的球半径=正方体棱长的一半 (d ) 设正四面体棱长为a ,则与其棱都相切的球半径为r 1

有:a a

r 4

2

2

2

1

1=

?

= 7、

利用祖暅原理推导球体体积。

构造一个几何体,使其截面与半球截面处处相等,根据祖暅原理可得两物体体积相等。

证明:作如下构造:在底面半径和高都是r 的圆柱内挖去一个与圆柱等底等高的圆锥。如图:

在半球和挖去圆锥后的组合体的相同截面上作研究,设圆柱和半球底面半径均为R ,截面高度均为h ,倒圆锥的截面半径为r 1锥,半球截面半径为

r

1

球,

则:挖去圆锥后的组合体的截面为:r R S 2

121锥ππ-= 半球截面面积为:r S 21

2球π= ∵倒圆锥的底面半径与高相等,由相似三角形易得:h r =1锥 在半球内,由勾股定理易得:h R

r 2

2

1-=球

∴h R S 2

21ππ-=

h R S 2

2

2ππ-=

即:S S 21=,也就是说:半球与挖去倒圆锥后有圆柱在相同的高度上有相同的截面。

由祖暅原理可得:V V 21=

所以半球体积:R R R V Sh Sh Sh 323

2323

2

31ππ=??==-=?半球

即,球体体积:R

R V 3

33

4

322π

π=?=球

8、 正方体与球

(1) 正方体的内切球

正方体的棱长=a 球体的直径d a

V 3

=正方体 a d r V 3

3

36

13434)2

(πππ===球

:正方体V π:6=V 球 (2) 正方体的外接球

正方体的体对角线=a 3球体的直径d

a d r V 33

3

233

434)2

(πππ===

球 :球V 2:3π=V 正方体

(3) 规律:

①正方体的内切球与外接球的球心为同一点; ②正方体的内切球与外接球的球心在体对角线上; ③正四面体的内切球与外接球的的半径之比为:3:1 ④正四面体内切球与外接球体积之比为:1:33 ⑤正四面体内切球与外接球表面积之比为:1:3

⑥正方体外接球半径、正方体棱长、内切球半径比为:3:2:1 ⑦正四面体外接球、正四面体、内切球体积比为:ππ:6:33 ⑧正四面体外接球、正四面体、内切球表面积比为:ππ:6:3 9、

正四面体与球

(1)正四面体的内切球

解题关键:利用体积关系思考

内切球的球心到各个面的距离相等,球心与各顶

点的连线恰好把一个正四面体分成四个三棱锥,每个三棱锥的底面为原正四面体的底面,高为内切球的半径r 。

利用体积关系得:h a r a ???=????)60sin 2

1(31)60sin 213142

2( 所以:h

r 41

=

,其中h 为正四面体的高。 由相关计算得:a

a a

h 36

)]32

1

(32[

2

2

=

-=

?? ∴a h r 12

6

41==

即:a a r V 33

3

216

63434)12

6

(

πππ=

==

球 a

a a V 321223660sin 2131=???=

正四面体 ∴π3:18=V V 球正四机体:

(2)正四面体的外接球

外接球的半径=)2

332(

2

2

4

343

a a

?-?

=?高=

a 4

6

a a r V 33

3

8

63

434)4

6

(πππ=

==

球 a a a V 3

212

23660sin 2131=???

=正四面体 ∴2:33122:

8

6:3

3

ππ==

a

a

V V 正四面体球 (3)规律:

①正四面体的内切球与外接球的球心为同一点; ②正四面体的内切球与外接球的球心在高线上; ③正四面体的内切球与外接球的的半径之和等于高; ④正四面体的内切球与外接球的半径之比等于1:3 ⑤正四面体内切球与外接球体积之比为:1:27 ⑥正四面体内切球与外接球表面积之比为:1:9

⑦正四面体外接球半径、正四面体棱长、内切球半径比为:63:12:6 ⑧正四面体外接球、正四面体、内切球体积比为:ππ3:18:327

⑨正四面体外接球、正四面体、内切球表面积比为:ππ:26:9 10、 圆柱与球

(1)圆柱容球(阿基米德圆柱容球模型)

圆柱高=底面直径=球的直径 球体体积=3

2圆柱体积 球面面积=圆柱侧面积

(2)球容圆柱

球体直径、圆柱的高、圆柱底面直径构成直

角三角形。

设球体半径为R ,圆柱高为h ,

底面半径为r

则有:)2()2(2

2

2

r h R += 即:2

42

2

r h

R +=

四、 方法总结

下面举例说明立体几何的学习方法

例:已知正四面体的棱长为a ,求它的内切球和外接球的半径

思路:先分析球心的位置。因为正四面体是特殊的四面体,显然内切球与

外接球的球心是重合的。且是正四面体的高线交点。再分析球心与一些特殊的点、线、面的位置、数量关系。在内切球这种情况下,球心垂直于每一个面,且到每一个面的距离相等;在外接球这种情况下,球心到每个顶点的距离相等。

方法1:展平分析:(最重要的方法)

如图:取立体图形中的关键平面图形进行分析! 连接DO 并延长交平面ABC 于点G ,连接G O 1

连接D O 1并延长交BC 于点E ,则A 、G

在平面AED 中,由相似知识可得:

2

1

1

1

==

GA EG D

E O O ∴AD G O //1 且

3

11=AD

G O ∴△GO O 1∽△DOA ∴ 3

1AO O O 1

= 即:a a A h O 4

636434343

AO 1=?

=?== a a A h O 12

6

36414141O 11O =?=?==

a V 338634DO ππ==?外接球

a OO V 3

31216

634ππ==

?内切球 方法2:体积分析:(最灵活的方法)

如图:设正四面体ABCD 的内切球球心为O ,连接

AO 、BO 、CO 、DO ,则正四面体被分成四个完全一样的三棱锥。

设内切球半径为r ,正四面体的棱长为a 则正面四体的高为:a a a

h 3

6)2

332(

2

2

=

-=

? 则:4个完全一样的三棱锥体积=

有:r a a )60sin 21(31])60

sin 21(31[422??=????∴a r 12

6=

∴ a r V 33

216

634ππ=

=内切球 a a a r h V 3

3

38

63

434)12

6

36()(πππ=

==

--外接球 方法3:方程分析:(最常见的做法)

如图:显然AO 、DO 是外接球半径,O 在Rt △DO O 12DO

2

1212

DO OO +=

其中:a 2

3

32DO 1

?= a h 3

6A D DO O O 11=

==+ 代入方程解得:a 46DO =

、a 12

6O O 1= a V 3

38634DO ππ==?外接球

a OO V 3

31216

634ππ==

?内切球

方法4:补形分析(最巧妙的思考) 把正四面体补成正方体进行分析。如图: 此时,正四面体与正方体有共同的外接球。 正四面体的棱长为a ,则正方体棱长 为:

2

a

正方体的外接球直径为其体对角线 ∴

a a D

2

6)2

(

3

=

?= ∴正四面体的外接球半径为:a D

4

62

=

内切球半径为:

a D

12

6312

=?

a R V 338

634ππ==

?外接球 a r V 33216634ππ==内切球

方法5:坐标分析(最意外的解法) 建立如图所示的空间直角坐标系: 则A (0,0,a 36),B (0, a 3

3-,0C (a 2

1,

a 63,0),D (a 2

1-,a 63,0),设球心位置为O (x ,y ,z ,) 由R ====|OD ||OC ||OB ||OA |得:OD OC OB OA 2

2

2

2

=== 即:=++

-

)36(22

2

a z y

x z a y x 2

2

2

)33(+++z

a y a x 2

2

2

)3

6()21(+

+--=

=z a y a x 2

2

2

)3

6()21(++-+

解得:0==y x ,a z 126=

,即:a r 126=,a a a R 4612636=-= ∴a R V 33

8

63

4ππ=

=?外接球 a r V 33216634ππ==内切球

主要方法:

一、 统一思想 1、 公式的统一

对于每个几何形体的面积与体积公式,我们很想找出一个万能公式全部适用于所有形体,但是这只是一个理想状况,实际上不可能,最多只可能适用于一部分而已。即使是这样,也只减小我们对公式的记忆难度,增强学习的灵活性。

(1) 梯形的面积公式:h b a S )(2

1+=,同样适用于三角形、平行四

边形、长方形、正方形、扇形的面积计算。只是在使用时作微调而已。在分析三角形时,上底变为0;分析长方形、正方形、平行四边形时,上下底变成一样;在分析扇形时,上底变为0,下底变成弧长,高为半径。

(2) 台体的侧面积公式:h c c S '

'

)(2

1

+=侧,同样适用于圆柱、棱柱、

圆锥、棱锥、球的侧面积计算。只是在使用时作微调而已。在分析圆柱、棱柱时,上下底周长变成一样;在分析棱锥时,上底周长变为0;在分析圆锥时,上底周长变为0,斜高变成母

线;在分析球体的面积时,上下底都取最大圆的周长,高取直径,即:r S r r r 242)22(2

1πππ=+=球 (3) 台体的体积公式:h S S S S V '

)(3

1

下下上上++

=,同样适用于圆

柱、棱柱、圆锥、棱锥、球的体积计算。只是在使用时作微调而已。在分析圆柱、棱柱时,上下底面积变成一样;在分析棱锥时,上底面积变为0;在分析圆锥时,上底面积变为0;在分析球体的体积时,上底面积取0,下底取最大圆面积的2倍,高取直径,即:r r S r 323

42)2(3

1

ππ==球 2、 字母的统一

在进行分析时,一般要把字母统一,这样便于进行比较! 3、 关系的统一

注意相似的关系:面积比等于相似比的平方,体积比等于相似比的立方。球体、正方体、正多面体相似! 二、 转换思想 1、 平面与立体的转换

这是立体几何的一种重要思想,即把立体的问题交给平面来解决。但是要在特殊的面中进行,有时还要把面与面的关系交给线与线来分析。如二面角的大小研究,通常会作垂直于两面的交线的直线来分析。异面直线的有关系也要平移到同一面中研究。在立体与平面的转换中平移是一种很实用的手段。通过平移不在同一平面内的可转换为同一平面内,不垂直的可转换为垂直来分析! 2、 位置的转换

3、形体的转换

三、特殊思想

1、特殊点

(1)中点:特殊的线的中点是解题的钥匙!特别要关注!

(2)顶点:几何体的顶点也是重要的点,其连线在分析时很有作用。

(3)垂足:高与面交点是比较特殊的点,解题时也要注意!2、特殊线

(1)高线

(2)中线

(3)角平分线

3、特殊面

(1)平行的面

(2)垂直的面

(3)二面角特殊的面

4、特殊关系

(1)相似关系

(2)比值关系

四、标准化思想

1、三视图的规则

2、斜二测画法的规则

3、空间直角坐标规则

空间几何体的表面积和体积公式汇总表

空间几何体的表面积和 体积公式汇总表 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

空间几何体的表面积和体积公式汇总表 1.多面体的面积和体积公式 2.旋转体的面积和体积公式 3.(1)圆柱的侧面展开图是一个 ,设底面半径为r ,母线长为l ,那么圆柱的底面积 =底S ,侧面积=侧S ,表面积S = 。 (3)圆锥的侧面展开图是一个 ,设圆锥的底面半径为r ,母线长为l ,那么它的底面积 =底S ,侧面积=侧S ,表面积S = 。 (4)圆台的侧面展开图是一个 ,设上、下底面圆半径分别为r '、r ,母线长为l ,那么上底面面积=上底S ,下底面面积=下底S 那么表面=S 。 4、正四面体的结论:设正四面体的棱长为a ,则这个正四面体的 (1)全面积:S 全2a ; (2)体积:3a ; (3)对棱中点连线段的长:a ; (4)对棱互相垂直。 (5)外接球半径:R= a ; (6)内切球半径; r= a 5、正方体与球的特殊位置结论; 空间几何体练习题 1.已知圆柱与圆锥的底面积相等,高也相等,它们的体积分别为1V 和2V ,则 1V :2V 是( ) A. 1:3 B. 1:1 C. 2:1 D. 3:1 2.一个圆柱的侧面展开图是一个正方形,这个圆柱的全面积与侧面积的比是( ) A. ππ221+ B. ππ421+ C. ππ21+ D. π π241+ 3.一个圆锥的展开图如图所示,其中扇形的圆心角为0120,已知 底面圆的半径为1,求该圆锥的体积。 4. 已知棱长为a ,各面均为等边三角形的四面体ABC S -,求它的表面积。

空间几何体的表面积和体积公式大全

空间几何体的表面积与体积公式大全 一、 全(表)面积(含侧面积) 1、 柱体 ① 棱柱 ② 圆柱 2、 锥体 ① 棱锥:h c S ‘ 底棱锥侧21= ② 圆锥:l c S 底圆锥侧2 1 = 3 、 台体 ① 棱台:h c c S )(2 1 ‘下底上底棱台侧+= ② 圆台:l c c S )(2 1 下底上底棱台侧+= 4、 球体 ① 球:r S 24π=球 ② 球冠:略 ③ 球缺:略 二、 体积 1、 柱体 ① 棱柱 ② 圆柱 2 、 锥体 ① 棱锥 ② 圆锥

3、 ① 棱台 ② 圆台 4、 球体 ① 球: r V 33 4 π=球 ② 球冠:略 ③ 球缺:略 说明:棱锥、棱台计算侧面积时使用侧面的斜高h ' 计算;而圆锥、圆台的侧面积计算时使用母线l 计算。 三、 拓展提高 1、 祖暅原理:(祖暅:祖冲之的儿子) 夹在两个平行平面间的两个几何体,如果它们在任意高度上的平行截面面积都相等,那么这两个几何体的体积相等。 最早推导出球体体积的祖冲之父子便是运用这个原理实现的。 2、 阿基米德原理:(圆柱容球) 圆柱容球原理:在一个高和底面直径都是r 2 的圆柱形容器内装一个最大的 球体,则该球体的全面积等于圆柱的侧面积,体积等于圆柱体积的3 2 。

分析:圆柱体积:r r h S V r 3 222)(ππ=?==圆柱 圆柱侧面积:r h c S r r 2 42)2(ππ=?==圆柱侧 因此:球体体积:r r V 333 4 23 2ππ=?=球 球体表面积:r S 24π=球 通过上述分析,我们可以得到一个很重要的关系(如图) + = 即底面直径和高相等的圆柱体积等于与它等底等高的圆锥与同直径的球体积之和 3、 台体体积公式 公式: )(3 1 S S S S h V 下下 上 上台++= 证明:如图过台体的上下两底面中心连线的纵切面为梯形ABCD 。 延长两侧棱相交于一点P 。 设台体上底面积为S 上,下底面积为S 下高为h 。 易知:PDC ?∽PAB ?,设h PE 1=, 则h h PF +=1 由相似三角形的性质得: PF PE AB CD =

空间几何体的表面积和体积公式汇总表

空间几何体的表面积和体积公式汇总表 TYYGROUP system office room 【TYYUA16H-TYY-TYYYUA8Q8-

空间几何体的表面积和体积公式汇总表 1.多面体的面积和体积公式 2.旋转体的面积和体积公式 3.(1)圆柱的侧面展开图是一个 ,设底面半径为r ,母线长为l ,那么圆柱的底面积 =底S ,侧面积=侧S ,表面积S = 。 (3)圆锥的侧面展开图是一个 ,设圆锥的底面半径为r ,母线长为l ,那么它的底面积 =底S ,侧面积=侧S ,表面积S = 。 (4)圆台的侧面展开图是一个 ,设上、下底面圆半径分别为r '、r ,母线长为l ,那么上底面面积=上底S ,下底面面积=下底S 那么表面=S 。 4、正四面体的结论:设正四面体的棱长为a ,则这个正四面体的 (1)全面积:S 全2a ; (2)体积:V=312a ; (3)对棱中点连线段的长:d= 2 a ; (4)对棱互相垂直。 (5)外接球半径:R= a ; (6)内切球半径; r= a 5、正方体与球的特殊位置结论; 空间几何体练习题 1.已知圆柱与圆锥的底面积相等,高也相等,它们的体积分别为1V 和2V ,则1V :2V 是( ) A. 1:3 B. 1:1 C. 2:1 D. 3:1 2.一个圆柱的侧面展开图是一个正方形,这个圆柱的全面积与侧面积的比是( ) A. ππ221+ B. ππ421+ C. ππ21+ D. π π241+ 3.一个圆锥的展开图如图所示,其中扇形的圆心角为0120,已知 底面圆的半径为1,求该圆锥的体积。 4. 已知棱长为a ,各面均为等边三角形的四面体ABC S -,求它的表面积。 5.圆柱的侧面展开图是长、宽分别为6π和π4的矩形,求圆柱的体积。 6.若圆台的上下底面半径分别为1和3,它的侧面积是两底面面积和的2倍,则圆台的母线长是( ) A. 2 B. C. 5 D. 10 7.圆柱的侧面展开图是长为12cm ,宽8cm 的矩形,则这个圆柱的体积为( )

空间几何体表面积与体积公式大全

空间几何体的表面积与体积公式大全 一、全(表)面积(含侧面积) 1、柱体 ①棱柱 ②圆柱 2、锥体 ①棱锥: ②圆锥: 3、台体 ①棱台: ②圆台: 4、球体 ①球: ②球冠:略 ③球缺:略 二、体积 1、柱体 ①棱柱 ②圆柱 2、锥体 ①棱锥 ②圆锥

3、台体 ①棱台 ②圆台 4、球体 ①球: ②球冠:略 ③球缺:略 说明:棱锥、棱台计算侧面积时使用侧面的斜高计算;而圆锥、圆台的侧面积计算时使用母线计算。 三、拓展提高 1、祖暅原理:(祖暅:祖冲之的儿子) 夹在两个平行平面间的两个几何体,如果它们在任意高度上的平行截面面积都相等,那么这两个几何体的体积相等。 最早推导出球体体积的祖冲之父子便是运用这个原理实现的。 2、阿基米德原理:(圆柱容球) 圆柱容球原理:在一个高和底面直径都是的圆柱形容器内装一个最大的球体,则该球体的全面积等于圆柱的侧面积,体积等于圆柱体积的。

分析:圆柱体积: 圆柱侧面积: 因此:球体体积: 球体表面积: 通过上述分析,我们可以得到一个很重要的关系(如图) += 即底面直径和高相等的圆柱体积等于与它等底等高的圆锥与同直径的球体积之和 3、台体体积公式 公式: 证明:如图过台体的上下两底面中心连线的纵切面为梯形。 延长两侧棱相交于一点。 设台体上底面积为,下底面积为 高为。 易知:∽,设, 则 由相似三角形的性质得:

即:(相似比等于面积比的算术平方根) 整理得: 又因为台体的体积=大锥体体积—小锥体体积 ∴ 代入:得: 即: ∴ 4、球体体积公式推导 分析:将半球平行分成相同高度的若干层(),越大,每一层越近似于圆柱,时,每一层都可以看作是一个圆柱。这些圆柱的高为,则:每个圆柱的体积= 半球的体积等于这些圆柱的体积之和。 ……

常用面积体积计算公式大全

电如_边長 馬-高 F-底面积 0-底両申銭的交点 卩=FJ — (c -+i H - c) * b+2F 禺="+6+c)*ft ,-一个粗合三箱我的両积 71 -组合三角形的惱 O-锥底备对角護交点 年店-两平行底面的面积 力L 底面间歴畫 "-一个爼舍梯戒的面积 R-组合梯形数 多面体的体积和表面积 体积(茁)庭百积(F ) 表面瞅门侧恚面积(鬲) 图形 尺寸符号 d-刘角爲 表 面积 覇-侧表面积 长 方 扩=Q S=6a 2 CS 血为-边拴 0-底面对角线的交点 V = a*h* h S = 2(a ? b 4-(j ? h +i * ft) £l-2Ma+&) 圆 柱 和 空 心 圆 柱 A 管 去-外宰径 —内半径 £-柱壁區度 p -平均半径 心=内外側面祝 B&- $=2滋?/! +2JC £^ E\ = 2/rR ? h 空心言圆柱: F =凤疋7勺=2叭伤 S=X?4F )JU2/I (用-沔 场=2品第卄) 5=n?/ + F

h -盘小高度 怒-毘大高度F-属面举径 尸-廐面半径巾-高卜母爼长 E工-虧面半径巾-高 ”母緩g ■制血+吩2*卩+—!_:cos a 禺F偽十吗) & = + F — ttri y-^^2+ ^+^) 禺■忒迎肝) 卩十押 十试疋■!■/) 球扇r-*e 4宜径 尸■兰直玉■輕:?口」 石6沪 3 6 S =血2 -

夙-球半径 ①巳-底面半径 S ■ 4nJ -2J &, ■ £戊■矽一4了*彷 V a,b,c-半轴 交 叉 圆 柱 体 球 缺 椭 球 体 A 胎 D-中间斷面苴狂 说 -廐直径 『-桶高 = 2冲丘= ST ⑷-Q 护=佩乃 -町 十山2 y~—(3R^3^+h^ $■2鈕 g= 2fviih 十牙叶 4-^) 卫-風总儒平旳半径 0-同环体平均半径 川-凰环体截面言径 r-回环体茁両半径 .—— 圆 环 体 为-球鎂的高 r- 瑋岐半栓 日-平切厨言径 业=曲面"5^ 球破表面积 用于抛物线我桶徘 卩=竺口“+戊4丄护) 15 4 对于园飛确体 卩皤用十吗

空间几何体的表面积和体积讲解及经典例题

空间几何体的表面积和体积 一.课标要求: 了解球、棱柱、棱锥、台的表面积和体积的计算公式(不要求记忆公式)。 二.命题走向 近些年来在高考中不仅有直接求多面体、旋转体的面积和体积问题,也有已知面积或体积求某些元素的量或元素间的位置关系问题。即使考查空间线面的位置关系问题,也常以几何体为依托.因而要熟练掌握多面体与旋转体的概念、性质以及它们的求积公式.同时也要学会运用等价转化思想,会把组合体求积问题转化为基本几何体的求积问题,会等体积转化求解问题,会把立体问题转化为平面问题求解,会运用“割补法”等求解。 由于本讲公式多反映在考题上,预测2009年高考有以下特色: (1)用选择、填空题考查本章的基本性质和求积公式; (2)考题可能为:与多面体和旋转体的面积、体积有关的计算问题;与多面体和旋转体中某些元素有关的计算问题; 三.要点精讲 1.多面体的面积和体积公式 长。 2.旋转体的面积和体积公式 12

下底面半径,R 表示半径。 四.典例解析 题型1:柱体的体积和表面积 例1.一个长方体全面积是20cm 2 ,所有棱长的和是24cm ,求长方体的对角线长. 解:设长方体的长、宽、高、对角线长分别为xcm 、ycm 、zcm 、lcm 依题意得:? ??=++=++24)(420 )(2z y x zx yz xy )2()1( 由(2)2 得:x 2 +y 2 +z 2 +2xy+2yz+2xz=36(3) 由(3)-(1)得x 2+y 2+z 2 =16 即l 2 =16 所以l =4(cm)。 点评:涉及棱柱面积问题的题目多以直棱柱为主,而直棱柱中又以正方体、长方体的表面积多被考察。我们平常的学习中要多建立一些重要的几何要素(对角线、切)与面积、体积之间的关系。 例2.如图1所示,在平行六面体ABCD —A 1B 1C 1D 1中,已知AB=5,AD=4,AA 1=3,AB ⊥AD ,∠A 1AB=∠A 1AD= 3 π。 (1)求证:顶点A 1在底面ABCD 上的射影O 在∠BAD 的平分线上; (2)求这个平行六面体的体积。 图1 图2 解析:(1)如图2,连结A 1O ,则A 1O ⊥底面ABCD 。作OM ⊥AB 交AB 于M ,作ON ⊥AD 交AD 于N ,连结A 1M ,A 1N 。由三垂线定得得A 1M ⊥AB ,A 1N ⊥AD 。∵∠A 1AM=∠A 1AN , ∴Rt △A 1NA ≌Rt △A 1MA,∴A 1M=A 1N , 从而OM=ON 。 ∴点O 在∠BAD 的平分线上。 (2)∵AM=AA 1cos 3 π =3×21=23 ∴AO=4 cos πAM =223 。 又在Rt △AOA 1中,A 1O 2 =AA 12 – AO 2 =9- 29=2 9,

空间几何体的表面积和体积公式汇总表

空间几何体的表面积和体积公式汇总表 1.多面体的面积和体积公式 2.旋转体的面积和体积公式 1、圆柱体: 表面积:2πRr+2πRh 体积:πR2h (R为圆柱体上下底圆半径,h为圆柱体高) 2、圆锥体: 表面积:πR2+πR[(h2+R2)的平方根]

体积:πR2h/3 (r为圆锥体低圆半径,h为其高, 3、正方体 a-边长,S=6a2 ,V=a3 4、长方体 a-长,b-宽,c-高S=2(ab+ac+bc) V=abc 5、棱柱 S-底面积h-高V=Sh 6、棱锥 S-底面积h-高V=Sh/3 7、棱台 S1和S2-上、下底面积h-高V=h[S1+S2+(S1S2)^1/2]/3 8、拟柱体 S1-上底面积,S2-下底面积,S0-中截面积 h-高,V=h(S1+S2+4S0)/6 9、圆柱 r-底半径,h-高,C—底面周长 S底—底面积,S侧—侧面积,S表—表面积C=2πr S底=πr2,S侧=Ch ,S表=Ch+2S底,V=S底h=πr2h 10、空心圆柱 R-外圆半径,r-圆半径h-高V=πh(R^2-r^2) 11、直圆锥 r-底半径h-高V=πr^2h/3

12、圆台 r-上底半径,R-下底半径,h-高V=πh(R2+Rr+r2)/3 13、球 r-半径d-直径V=4/3πr^3=πd^3/6 14、球缺 h-球缺高,r-球半径,a-球缺底半径V=πh(3a2+h2)/6 = πh2(3r-h)/3 15、球台 r1和r2-球台上、下底半径h-高V=πh[3(r12+r22)+h2]/6 16、圆环体 R-环体半径D-环体直径r-环体截面半径d-环体截面直径V=2π2Rr2=π2Dd2/4 17、桶状体 D-桶腹直径d-桶底直径h-桶高 V=πh(2D2+d2)/12 ,(母线是圆弧形,圆心是桶的中心) V=πh(2D2+Dd+3d2/4)/15 (母线是抛物线形) 1.直线在平面的判定 (1)利用公理1:一直线上不重合的两点在平面,则这条直线在平面. (2)若两个平面互相垂直,则经过第一个平面的一点垂直于第二个平面的直线在第一个平面,即若α⊥β,A∈α,AB⊥β,则ABα. (3)过一点和一条已知直线垂直的所有直线,都在过此点而垂直于已知直线的平面,即若A∈a,a⊥b,A∈α,b⊥α,则aα. (4)过平面外一点和该平面平行的直线,都在过此点而与该平面平行的平面,即若Pα,P∈β,β∥α,P∈a,a∥α,则aβ.

最常用的面积体积计算公式

用求面积、体积公式 1 平面图形面积 平面图形面积见表1-73。 平面图形面积表1-73 2 多面体的体积和表面积 多面体的体积和表面积见表1-74。 多面体的体积和表面积表1-74 3 物料堆体积计算 物料堆体积计算见表1-75。 物料堆体积计算表1-75 4 壳体表面积、侧面积计算 1-3-4-1 圆球形薄壳(图1-1) 图1-1 圆球形薄壳计算图 4-2 椭圆抛物面扁壳(图1-2) 图1-2 椭圆抛物面扁壳计算图1-3-4-3 椭圆抛物面扁壳系数计算 见图1-2,壳表面积(A)计算公式:

A=S x ·S y =2a×系数K a ×2b×系数K b 式中 K a 、K b ——椭圆抛物面扁壳系数,可按表1-76查得。 椭圆抛物面扁壳系数表表1-76 查表说明 [例]已知2a=24.0m,2b=16.0m,h x =3.0m,h y =2.8m,试求椭圆抛物面扁壳表面 积A。 先求出h x /2a=3.0/24.0=0.125 h y /2b=2.8/16.0=0.175 分别查表得系数K a 为1.0402和系数K b 为1.0765,则扁壳表面积A=24.0×1.0402× 16.0×1.0765=429.99m2 1-3-4-4 圆抛物面扁壳(图1-3) 图1-3 圆抛物面扁壳计算图 1-3-4-5 单、双曲拱展开面积 1.单曲拱展开面积=单曲拱系数×水平投影面积。 2.双曲拱展开面积=双曲拱系数(大曲拱系数×小曲拱系数)×水平投影面积。 单、双曲拱展开面积系数见表1-77。单双曲拱展开面积计算图见图1-4。 图1-4 单、双曲拱展开面积计算图

图形各面积、体积计算公式大全

长方形的周长=(长+ 宽)×2 正方形的周长=边长×4 长方形的面积=长×宽 正方形的面积=边长×边长 三角形的面积=底×高÷2 平行四边形的面积=底×高 梯形的面积=(上底+ 下底)×高÷2 直径=半径×2 半径=直径÷2 圆的周长=圆周率×直径 圆的周长=圆周率×半径×2 圆的面积=圆周率×半径×半径 长方体的表面积= (长×宽长×高+宽×高)×2 长方体的体积 =长×宽×高 正方体的表面积=棱长×棱长×6 正方体的体积=棱长×棱长×棱长 圆柱的侧面积=底面圆的周长×高 圆柱的表面积=上下底面面积侧面积 圆柱的体积=底面积×高 圆锥的体积=底面积×高÷3 长方体(正方体、圆柱体)的体积=底面积×高

平面图形 名称符号周长C和面积S 正方形 a—边长 C=4a S=a2 长方形 a和b-边长 C=2(a b) S=ab 三角形 a,b,c-三边长 h-a边上的高 s-周长的一半 A,B,C-内角 其中s=(a b c)/2 S=ah/2 =ab/2·sinC =[s(s-a)(s-b)(s-c)]1/2 =a2sinBsinC/(2sinA) 四边形 d,D-对角线长 α-对角线夹角 S=dD/2·sinα平行四边形 a,b-边长 h-a边的高 α-两边夹角 S=ah =absinα 菱形 a-边长

α-夹角 D-长对角线长 d-短对角线长 S=Dd/2 =a2sinα 梯形 a和b-上、下底长 h-高 m-中位线长 S=(a b)h/2 =mh 圆 r-半径 d-直径 C=πd=2πr S=πr2 =πd2/4 扇形 r—扇形半径 a—圆心角度数 C=2r+2πr×(a/360) S=πr2×(a/360) 弓形 l-弧长 b-弦长 h-矢高 r-半径 α-圆心角的度数 S=r2/2·(πα/180-sinα) =r2arccos[(r-h)/r] - (r-h)(2rh-h2)1/2

所有图形的面积体积表面积公式

长方形的周长=(长+宽)×2 正方形的周长=边长×4 长方形的面积=长×宽 正方形的面积=边长×边长 三角形的面积=底×高÷2 平行四边形的面积=底×高 梯形的面积=(上底+下底)×高÷2 直径=半径×2 半径=直径÷2 圆的周长=圆周率×直径= 圆周率×半径×2 圆的面积=圆周率×半径×半径 长方体的表面积= (长×宽+长×高+宽×高)×2 长方体的体积=长×宽×高 正方体的表面积=棱长×棱长×6 正方体的体积=棱长×棱长×棱长

圆柱的表面积=上下底面面积+侧面积圆柱的体积=底面积×高 圆锥的体积=底面积×高÷3 长方体(正方体、圆柱体) 的体积=底面积×高 平面图形 名称符号周长C和面积S 正方形a—边长C=4a S=a2 长方形a和b-边长C=2(a+b) S=ab 三角形a,b,c-三边长 h-a边上的高 s-周长的一半 A,B,C-内角 其中s=(a+b+c)/2 S=ah/2

=[s(s-a)(s-b)(s-c)]1/2 =a2sinBsinC/(2sinA) 四边形d,D-对角线长 α-对角线夹角S=dD/2·sinα平行四边形a,b-边长 h-a边的高 α-两边夹角S=ah =absinα 菱形a-边长 α-夹角 D-长对角线长 d-短对角线长S=Dd/2 =a2sinα 梯形a和b-上、下底长 h-高 m-中位线长S=(a+b)h/2

圆r-半径 d-直径C=πd=2πr S=πr2 =πd2/4 扇形r—扇形半径 a—圆心角度数 C=2r+2πr×(a/360) S=πr2×(a/360) 弓形l-弧长 b-弦长 h-矢高 r-半径 α-圆心角的度数S=r2/2·(πα/180-sinα)=r2arccos[(r-h)/r] - (r-h)(2rh-h2)1/2 =παr2/360 - b/2·[r2-(b/2)2]1/2 =r(l-b)/2 + bh/2

(完整版)面积和体积的公式大全

公式大全 一、平面图形 1、三角形 面积:S=ah/2 (2).已知三角形三边a,b,c,则(海伦公式)(p=(a+b+c)/2) S=√[p(p-a)(p-b)(p-c)] =(1/4)√[(a+b+c)(a+b-c)(a+c-b)(b+c-a)] (3).已知三角形两边a,b,这两边夹角C,则S=1/2 * absinC (4).设三角形三边分别为a、b、c,内切圆半径为r S=(a+b+c)r/2 (5).设三角形三边分别为a、b、c,外接圆半径为R S=abc/4R (6).根据三角函数求面积: S= absinC/2 a/sinA=b/sinB=c/sinC=2R 注:其中R为外切圆半径。 周长:l=a+b+c 2、圆 面积:S=π*R^2 =π*D^2/4 = l^2/4π(D:直径,l:周长) 周长:l=2πR =πD 3、扇形 面积:S=nπ*R^2/360 =aR^2 (n:为扇形的圆心角,a:扇形的圆心角弧度制) 周长:l=nπR/180+2R =aR+2R 4、椭圆 面积:S=abπ 5、正方形 面积:S=a^2 周长:l=4a 6、长方形 面积:S=ab 周长:l=2(a+b) 7、平行四边形 面积:S=ah =absinx(a:为底,h:为高,b:是a的邻边,x:是a、b边的夹角) 周长:l=2(a+b)

8、菱形 适用于平行四边形的计算公式另还有: 面积:S=ab (a、b为两对角线的长) 周长:l=4x (x为边长) 9、梯形 面积:S=(a+b)h/2 (a,b 为上下底,h 为高) 等腰梯形面积:S=csinA(a+b)/2 (c 为腰,A 是锐角底角) 10、圆环 面积:S=(R^2-r^2)π(R 外圆半径,r 内圆半径) 11、弧与弓形 弧长:l=nπR/180=aR(n:为弧所对的圆心角,a:弧度制) 弓形面积: i,圆上割下的弓形 (1)当弓形弧是劣弧时,S弓形=S扇形-S三角形; (2)当弓形弧是优弧时,S弓形=S扇形+S三角形. ii,抛物弓形 以割线为底,以平行于底的切线的切点为顶点的内接三角形的3/4 二、立体图形 1、球表面积:S=4*π*R^2 体积:V=4πR^3/3 2、正方体表面积:S=6a^2 体积:V=a^3 3、长方体表面积:S=2(ab+bc+ac) 体积:V=abc 4、棱柱体积:V=Sh (S:为底面积,h:高) 6、圆柱表面积:S=2πRh+πR^2 (R:底面圆的半径,h:侧面高) 体积:V=Sh (S:为底面积,h:高) =πR^2 h 7、圆锥、棱锥 圆锥的表面积:S=πRh+πR^2(R:底面圆的半径,h:侧面长) 圆锥、棱锥的体积:V=Sh/3 (S:为底面积,h:高) 8、棱台 设棱台的上、下底面面积分别为S1、S2,高为h, 体积:V=(1/3)[S1+√(S1S2)+S2] ×h(√表示平方根) 9、圆台体积:V=[S+S′+√(SS′)]h÷3=πh(R^2+Rr+r^2)/3 (-上底半径R-下底半径h-高)

高一数学空间几何体的表面积和体积知识点及题型例题

空间几何体的表面积和体积例题解析 一.课标要求了解球、棱柱、棱锥、台的表面积和体积的计算公式(不要求记忆,理解为主)。二.命题走向----用选择、填空题考查本章的基本性质和求积公式; 三.要点精讲 1.多面体的面积和体积公式 表中S表示面积,c′、c分别表示上、下底面周长,h表斜高,h′表示斜高,l表示侧棱长。2.旋转体的面积和体积公式 表中l、h分别表示母线、高,r表示圆柱、圆锥与球冠的底半径,r1、r2分别表示圆台上、下底面半径,R表示半径。 四.典例解析 题型1:柱体的体积和表面积

例1.一个长方体全面积是20cm 2,所有棱长的和是24cm ,求长方体的对角线长. 解:设长方体的长、宽、高、对角线长分别为xcm 、ycm 、zcm 、lcm 依题意得:? ??=++=++24)(420 )(2z y x zx yz xy )2()1( 由(2)2得:x 2+y 2+z 2+2xy+2yz+2xz=36(3) 由(3)-(1)得x 2+y 2+z 2=16 即l 2=16所以l =4(cm)。 点评:涉及棱柱面积问题的题目多以直棱柱为主,而直棱柱中又以正方体、长方体的表面积多被考察。我们平常的学习中要多建立一些重要的几何要素(对角线、内切)与面积、体积之间的关系。 例2.如图1所示,在平行六面体ABCD —A 1B 1C 1D 1中,已知AB=5,AD=4,AA 1=3,AB ⊥AD ,∠A 1AB=∠A 1AD= 3 π 。 (1)求证:顶点A 1在底面ABCD 上的射影O 在∠BAD 的平分线上; (2)求这个平行六面体的体积。 图1 图2 解析:(1)如图2,连结A 1O ,则A 1O ⊥底面ABCD 。作OM ⊥AB 交AB 于M ,作ON ⊥AD 交AD 于N ,连结A 1M ,A 1N 。由三垂线定得得A 1M ⊥AB ,A 1N ⊥AD 。∵∠A 1AM=∠A 1AN , ∴Rt△A 1NA≌Rt△A 1MA,∴A 1M=A 1N ,从而OM=ON 。∴点O 在∠BAD 的平分线上。

必修空间几何体表面积体积知识点

必修21.3空间几何体的表面积、体积 例1已知棱长为a ,各面均为等边三角形的四面体S —ABC (图6),求它的表面积. 图6 分析:由于四面体S —ABC 的四个面是全等的等边三角形,所以四面体的表面积等于其中任何一个面面积的4倍. 解:先求△SBC 的面积,过点S 作SD ⊥BC ,交BC 于点D. 因为BC=a,SD=a a a BD SB 2 3)2(2222=-=-, 所以S △SBC =2 1BC·SD=2432321a a a =?. 因此,四面体S —ABC 的表面积S=4× 2234 3a a =. 变式训练 1.已知圆柱和圆锥的高、底面半径均分别相等.若圆柱的底面半径为r ,圆柱侧面积为S ,求圆锥的侧面积. 解:设圆锥的母线长为l ,因为圆柱的侧面积为S ,圆柱的底面半径为r ,即S 圆柱侧=S ,根据圆柱的侧面积公式可得:圆柱的母线(高)长为r S π2,由题意得圆锥的高为r S π2,又圆锥的底面半径为r ,根据勾股定理,圆锥的母线长l=22)2(r S r π+,根据圆锥的侧面积公式得: S 圆锥侧=πrl=π·r·24)2(2 4222 S r r S r +=+ππ. 2.两个平行于圆锥底面的平面将圆锥的高分成相等的三段,那么圆锥被分成的三部分的体积的比是() A.1∶2∶3 B.1∶7∶19 C.3∶4∶5 D.1∶9∶27 分析:因为圆锥的高被分成的三部分相等,所以两个截面的半径与原圆锥底面半径之比为1∶2∶3,于是自上而下三个圆锥的体积之比为(h r 23π )∶[2)2(3r π ·2h ]∶[2)3(3r π ·3h ] =1∶8∶27,所以圆锥被分成的三部分的体积之比为1∶(8-1)∶(27-8)=1∶7∶19. 答案:B 3.三棱锥V —ABC 的中截面是△A 1B 1C 1,则三棱锥V —A 1B 1C 1与三棱锥A —A 1BC 的体积之比是() A.1∶2 B.1∶4 C.1∶6 D.1∶8

(完整版)第一章-空间几何体的表面积和体积练习题

空间几何体的表面积和体积练习题 题1 一个圆锥与一个球的体积相等,圆锥的底面半径是球的半径的3倍,则圆锥的高与底面 半径之比为( ) A.49 B.94 C.427 D.274 题2 正四棱锥P —ABCD 的五个顶点在同一个球面上,若该正四棱锥的底面边长为2,侧棱长 为6,则此球的体积为________. 题3 一空间几何体的三视图如图所示,则该几何体的体积为( ) A .2π+2 3 B .4π+2 3 C .2π+233 D .4π+233 题4 如图,正方体ABCD -A 1B 1C 1D 1的棱长为2.动点E ,F 在棱A 1B 1上,点Q 是棱CD 的中 点,动点P 在棱AD 上.若EF =1,DP =x ,A 1E =y (x ,y 大于零),则三棱锥P -EFQ 的体积.( ) A .与x ,y 都有关 B .与x ,y 都无关 C .与x 有关,与y 无关 D .与y 有关,与x 无关

题5 直角梯形的一个底角为45°,下底长为上底长的32 ,这个梯形绕下底所在直线旋转一周所成的旋转体的表面积是(5+2)π,求这个旋转体的体积. 题6 设三棱柱的侧棱垂直于底面,所有棱的长都为a ,顶点都在一个球面上,则该球的表面积 为( ) A .πa 2 B.73πa 2 C.113πa 2 D .5πa 2 题7 在球心同侧有相距9 cm 的两个平行截面,它们的面积分别为49π cm 2和400π cm 2,求球 的表面积. 题8 正四棱台的高为12cm ,两底面的边长分别为2cm 和12cm .(Ⅰ)求正四棱台的全面积; (Ⅱ)求正四棱台的体积. 题9 如图,已知几何体的三视图(单位:cm).(1)画出这个几何体的直观图(不要求写画法);(2) 求这个几何体的表面积及体积. 题10 如图,在长方体ABCD A B C D ''''-中,用截面截下一个棱锥C A DD ''-,求棱锥 C A D D ''-的体积与剩余部分的体积之比.

空间几何体的表面积与体积公式大全

空间几何体的表面积与体积公式大全 一、 全(表)面积(含侧面积) 1、 柱体 ① 棱柱 ② 圆柱 2、 锥体 ① 棱锥:h c S ‘ 底棱锥侧21= ② 圆锥:l c S 底圆锥侧2 1 = 3、 台体 ① 棱台:h c c S )(21 ‘下底上底棱台侧+= ② 圆台:l c c S )(2 1 下底上底棱台侧+= 4、 球体 ① 球:r S 24π=球 ② 球冠:略 ③ 球缺:略 二、 体积 1、 柱体 ① 棱柱 ② 圆柱 2、 锥体 ① 棱锥

② 圆锥 3、 ① 棱台 ② 圆台 4、 ① 球:r V 33 4 π=球 ② 球冠:略 ③ 球缺:略 说明:棱锥、棱台计算侧面积时使用侧面的斜高h '计算;而圆锥、圆台的侧面积计算时使用母线l 计算。 三、 拓展提高 1、 祖暅原理:(祖暅:祖冲之的儿子) 夹在两个平行平面间的两个几何体,如果它们在任意高度上的平行截面面积都相等,那么这两个几何体的体积相等。 最早推导出球体体积的祖冲之父子便是运用这个原理实现的。 2、 阿基米德原理:(圆柱容球) 圆柱容球原理:在一个高和底面直径都是r 2的圆柱形容器内装一个最大的球体,则该球体的全面积等于圆柱的侧面积,体积等于圆柱体积的3 2 。

分析:圆柱体积:r r h S V r 3 222)(ππ=?==圆柱 圆柱侧面积:r h c S r r 2 42)2(ππ=?==圆柱侧 因此:球体体积:r r V 333 423 2ππ=?=球 球体表面积:r S 24π=球 通过上述分析,我们可以得到一个很重要的关系(如图) = 即底面直径和高相等的圆柱体积等于与它等底等高的圆锥与同直径的球体积之和 3、 台体体积公式 公式: )(3 1 S S S S h V 下下 上 上台++= 证明:如图过台体的上下两底面中心连线的纵切面为梯形ABCD 。 延长两侧棱相交于一点P 。 设台体上底面积为S 上,下底面积为S 下高为h 。 易知:PDC ?∽PAB ?,设h PE 1=, 则h h PF +=1

立体几何--空间几何体的表面积与体积

第2讲空间几何体的表面积与体积 考点 考查柱、锥、台、球的体积和表面积,由原来的简单公式套用渐渐变为与三视图及柱、锥与球的接切问题相结合,难度有所增大. 【复习指导】 本讲复习时,熟记棱柱、棱锥、圆柱、圆锥的表面积和体积公式,运用这些公式解决一些简单的问题. 基础梳理 1.柱、锥、台和球的侧面积和体积 面积体积 圆柱S 侧 =2πrh V=Sh=πr2h 圆锥S 侧=πrl V= 1 3Sh= 1 3πr 2h= 1 3 πr2l2-r2 圆台S 侧=π(r1+r2)l V= 1 3(S上+S下+S上S下)h= 1 3π(r 2 1 +r22+r1r2)h 直棱柱S 侧 =Ch V=Sh 正棱锥S 侧= 1 2Ch′V= 1 3Sh 正棱台S 侧= 1 2(C+C′)h′V= 1 3(S上+S下+S上S下)h 球S 球面=4πR2V= 4 3πR 3 2.几何体的表面积 (1)棱柱、棱锥、棱台的表面积就是各面面积之和. (2)圆柱、圆锥、圆台的侧面展开图分别是矩形、扇形、扇环形;它们的表面积等于侧面积与底面面积之和.

两种方法 (1)解与球有关的组合体问题的方法,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.球与旋转体的组合,通常作它们的轴截面进行解题,球与多面体的组合,通过多面体的一条侧棱和球心或“切点”、“接点”作出截面图. (2)等积法:等积法包括等面积法和等体积法.等积法的前提是几何图形(或几何体)的面积(或体积)通过已知条件可以得到,利用等积法可以用来求解几何图形的高或几何体的高,特别是在求三角形的高和三棱锥的高.这一方法回避了具体通过作图得到三角形(或三棱锥)的高,而通过直接计算得到高的数值. 双基自测 1.(人教A版教材习题改编)圆柱的一个底面积为S,侧面展开图是一个正方形,那么这个圆柱的侧面积是(). A.4πS B.2πS C.πS D.23 3πS 解析设圆柱底面圆的半径为r,高为h,则r=S π, 又h=2πr=2πS,∴S圆柱侧=(2πS)2=4πS. 答案 A 2.(2012·东北三校联考)设长方体的长、宽、高分别为2a、a、a,其顶点都在一个球面上,则该球的表面积为(). A.3πa2 B.6πa2 C.12πa2 D.24πa2 解析由于长方体的长、宽、高分别为2a、a、a,则长方体的体对角线长为(2a)2+a2+a2=6a.又长方体外接球的直径2R等于长方体的体对角线,∴2R=6a.∴S球=4πR2=6πa2. 答案 B

常用图形周长面积体积计算公式

常用图形周长面积体积计算公式: 1、正方形 C周长 S面积 a边长 周长=边长×4 面积=边长×边长 C=4a S=a×a S=a2 2、正方体 V体积 a棱长 (1)表面积=棱长×棱长×6 (2)体积=棱长×棱长×棱长S表=a×a×6 表=6a2 V=a×a×a V= a3 3、长方形 C周长 S面积 a边长 周长=(长+宽)×2 C=2(a+b) 面积=长×宽 S=ab 4、长方体 V体积 S面积 a长 b宽 h高 (1)表面积=(长×宽+长×高+宽×高)×2 (2)体积=长×宽×高 S=2(ab+ah+bh) V=abh 5、三角形 S面积 a底 h高 面积=底×高÷2 S=ah÷2 三角形高=面积×2÷底 三角形底=面积×2÷高 6、平行四边形 S面积 a底 h高 面积=底×高 S=ah 7、梯形 S面积 a上底 b下底 h高 面积=(上底+下底)×高÷2 S=(a+b)× h÷2 8、圆形 S面积 C周长π圆周率 d直径 r半径 周长=直径×π 周长=2×π×半径 面积=半径×半径×π C=πd C=2πr S=πr2 d=C÷π d=2r r=d÷2 r=C÷2÷π S环=π(R2-r2) 9、圆柱体 V体积 h高 S底面积 r底面半径 C底面周长侧面积=底面周长×高 (2)表面积=侧面积+底面积×2 (3)体积=底面积×高 S侧=Ch S侧=πdh V=Sh V=πr2h 圆柱体积=侧面积÷2×半径 10、圆锥体 V体积 h高 S底面积 r底面半径 体积=底面积×高÷3 V=Sh÷3 长度单位换算 1千米=1000米;1米=10分米;1分米=10厘米; 1米=100厘米;1厘米=10毫米 面积单位换算 1平方千米=100公顷;1公顷=10000平方米; 1平方米=100平方分米;1平方分米=100平方厘米; 1平方厘米=100平方毫米;1平方米=0.0015亩; 1万平方米=15亩; 1公顷=15亩=100公亩=10000平方米; 1公亩等于100平方米;1(市)亩等于666.66平方米 体(容)积单位换算 1立方米=1000立方分米;1立方分米=1000立方厘米;1立方分米=1升;1立方厘米=1毫升; 1立方米=1000升 重量单位换算 1吨=1000千克;1千克=1000克;1千克=1公斤 人民币单位换算 1元=10角;1角=10分;1元=100分 时间单位换算 1世纪=100年;1年=12月; 大月(31天)有:1\3\5\7\8\10\12月; 小月(30天)的有:4\6\9\11月 平年2月28天,闰年2月29天; 平年全年365天,闰年全年366天 1日=24小时1时=60分; 1分=60秒1时=3600秒 总数÷总份数=平均数 和差问题的公式: (和+差)÷2=大数;(和-差)÷2=小数 和倍问题: 和÷(倍数-1)=小数 小数×倍数=大数(或者和-小数=大数) 差倍问题: 差÷(倍数-1)=小数 小数×倍数=大数(或小数+差=大数) 植树问题 1、非封闭线路上的植树问题主要可分为以下三种情形:

常用建筑面积计算公式

土建工程工程量计算规则公式汇总 平整场地: 建筑物场地厚度在±30cm以内的挖、填、运、找平. 1、平整场地计算规则 (1)清单规则:按设计图示尺寸以建筑物首层面积计算。 (2)定额规则:按设计图示尺寸以建筑物首层面积计算。 2、平整场地计算方法 (1)清单规则的平整场地面积:清单规则的平整场地面积=首层建筑面积 (2)定额规则的平整场地面积:定额规则的平整场地面积=首层建筑面积 3、注意事项 (1)、有的地区定额规则的平整场地面积:按外墙外皮线外放2米计算。计算时按外墙外边线外放2米的图形分块计算,然后与底层建筑面积合并计算;或者按“外放2米的中心线×2=外放2米面积” 与底层建筑面积合并计算。这样的话计算时会出现如下难点: ①、划分块比较麻烦,弧线部分不好处理,容易出现误差。 ②、2米的中心线计算起来较麻烦,不好计算。 ③、外放2米后可能出现重叠部分,到底应该扣除多少不好计算。 (2)、清单环境下投标人报价时候可能需要根据现场的实际情况计算平整场地的工程量,每边外放的长度不一样。 大开挖土方 1、开挖土方计算规则

(1)、清单规则:挖基础土方按设计图示尺寸以基础垫层底面积乘挖土深度计算。 (2)、定额规则:人工或机械挖土方的体积应按槽底面积乘以挖土深度计算。槽底面积应以槽底的长乘以槽底的宽,槽底长和宽是指混凝土垫层外边线加工作面,如有排水沟者应算至排水沟外边线。排水沟的体积应纳入总土方量内。当需要放坡时,应将放坡的土方量合并于总土方量中。 2、开挖土方计算方法 (1)、清单规则: ①、计算挖土方底面积: 方法一、利用底层的建筑面积+外墙外皮到垫层外皮的面积。外墙外边线到垫层外边线的面积计算(按外墙外边线外放图形分块计算或者按“外放图形的中心线×外放长度”计算。) 方法二、分块计算垫层外边线的面积(同分块计算建筑面积)。 ②、计算挖土方的体积:土方体积=挖土方的底面积*挖土深度。 (2)、定额规则: ①、利用棱台体积公式计算挖土方的上下底面积。 V=1/6×H×(S上+ 4×S中+ S下)计算土方体积(其中,S上为上底面积,S中为中截面面积,S下为下底面面积)。如下图 S下=底层的建筑面积+外墙外皮到挖土底边线的面积(包括工作面、排水沟、放坡等)。 用同样的方法计算S中和S下

高中数学空间几何体的表面积与体积练习题及答案

空间几何体的表面积与体积专题 一、选择题 1.棱长为2的正四面体的表面积是( C ). A. 3 B .4 C .4 3 D .16 解析 每个面的面积为:12×2×2×3 2= 3.∴正四面体的表面积为:4 3. 2.把球的表面积扩大到原来的2倍,那么体积扩大到原来的 ( B ). A .2倍 B .22倍 C.2倍 D.3 2倍 解析 由题意知球的半径扩大到原来的2倍,则体积V =4 3πR 3,知体积扩大到原来的22倍. 3.如图是一个长方体截去一个角后所得多面体的三视图,则该多面体的体积为( B ). A.1423 B.2843 C.2803 D.140 3 解析 根据三视图的知识及特点,可画出多面体 的形状,如图所示.这个多面体是由长方体截去 一个正三棱锥而得到的,所以所求多面体的体积 V =V 长方体-V 正三棱锥=4×4×6-13 ×? ?? ??12×2×2×2= 284 3 . 4.某几何体的三视图如下,则它的体积是( A) A .8-2π3 B .8-π 3 C .8-2π D.2π 3 解析 由三视图可知该几何体是一个边长为2的正方体内部挖去一个底面半 径为1,高为2的圆锥,所以V =23-13×π×2=8-2π 3 . 5.已知某几何体的三视图如图,其中正视图中半圆的半径为1,则该几何体的体积为( A)A .24-32π B .24-π3 C .24-π D .24-π 2 据三视图可得几何体为一长方体内挖去一个半圆柱,其中长方体的棱长分 别为:2,3,4,半圆柱的底面半径为1,母线长为3,故其体积V =2×3×4-12×π×12×3=24-3π 2. 6.某品牌香水瓶的三视图如图 (单位:cm),则该几何体的表面积为( C )

体积、表面积计算公式大全

施工员计算公式大全 多面体的体积和表面积 伉一棱 M -对角线 表面积 &-侧表面积 心虻为一边长 力一高 F-底面积 。-底面中线的交点 V = a*b*h Jl-2h(d+t) d J, +H +2 $=a+b+M"+2F S] = (a+0+c)J 厂-个组合三角形的而积 -胎三角形的个数 0柳各对角线交点 &,兀-两平行底面的面积 冃-底面间距离 a -一个组合梯形的面称 ?-组合梯形数 图形 尺寸符 体祝0)砸积(F) 表而积⑸01俵而积(曲 训也长 0俪朋腿茲 s=他+斤+马 JS\ = an

施工员计算公式大全 R -外半径尸-内半径 1柱壁厚度 P-平均半径场=内外侧面祝 勺-垠小咼?度転-量大高度r-底面半径 凰柱: 扩=心2心y=2d?皿+2点 ^ = ^R*h 空心直圃住: 卩三鈕疋-丿)=2唤也 加(R+Rh + 2机昭一 F) 禺=2总(R+E 犷=2疽2为= 209447朗 3 JT ■空(4A+M)?ld7r(4ft +d) r-底面半径力-高 i-母线长 艮尸-底面半径I =胪+Q 八耳?(疋+』+商) ^ = ^(j? + r) J = J;i?-r)3+ft a +F) J7 = -nr3 = —=0J236d3 3 6 球半径 弓形底圆直径力一弓形高/二时(岛+血)+疔J(l +丄-)COSrt 禺=nr(加+慰)

施工员计算公式大全 h—球缺的高尸- 球缺半径&-平切 圆直径他=曲面面积—球缺表面积 尺-圆球体平均半径£>-园环体平均半径d -匾]环悻韋面直径F-園环体截面半径矿=nh\r—勻 3 % ■ 2f^h■ rr(^-+ A3) S= nfi<4r - AJ d-2= 4隧N -Ja) n冷 S^^Rr=^Dd=39.^Ry R -球半径 1电_底面半径 血-腰高 % -球心o至带底圆的距离V = ~(3R^ +2務 +/) b = 2 鈕 忙=靳础+说用+尸扌) 中间断面直径厶-底直径 1-桶高对于血物线老桶体矿■旦〔2衣+3 +纟川2) 15 4 对于凰形桶体矿=吕(2&+护) a,b,c斗轴 r-园柱半径 -圆柱长v = —abcfr 3 S = 2匹心?肿+Q

相关文档
最新文档