二氧化钛含量测定

二氧化钛含量测定
二氧化钛含量测定

二氧化钛使用依据

概况:

二氧化钛(Titanium Dioxide):

CAS:134-67-7EINECS:236-675-5

JSCI:S0196

分子式:TiO2

物理性质:

白色细粒状粉末,无气味,晶体大小10-25nm,比表面(BET法)80-140m2/g。晶型:锐钛矿型。

化学性质:

二氧化钛不溶于水和有机溶剂,纳米级超微二氧化钛有很大的比表面,吸附潮气。用各种方法表面处理的二氧化钛(如二甲基硅氧烷、氧化铝、二氧化硅、硬脂酸和各种油类处理)的表面存在酸基和羟基,带有表面电荷,可具有亲水性亲油性,能很好地分散于不同的基质中,也可呈透明或半透明的胶体分散液。

UV性质:

法规情况和毒性实验:

美国:I类(W=2%-25%)日本:已批准使用

EC:列于化妆品原料清单GB7916-87:58(暂用着色剂清单)

经口毒性LD50 >5g/kg

参考文献:

1、裘炳毅编著:化妆品化学与工艺技术大全(上册),P619页。中国轻工业出版社,1997年5月第一版。

二氧化钛含量检测方法

一、原理:

把含二氧化钛的无机物用硫酸和硫酸铵溶解后,加水、盐酸和金属铝,使二氧化钛还原,冷却后用硫酸铁铵滴定即可定量测定。

二、仪器:

广口瓶1只

三角瓶500ml 1只

U形管1只

橡皮塞1只

三、试剂:

碳酸氢钠饱和溶液(NaHCO3)

浓硫酸

浓盐酸

硫酸铵

金属铝

蒸馏水

0.1mol/L硫酸铁铵溶液(Fe2(SO4)3.(NH4)2SO4.24H2O)

硫氰酸钾饱和溶液

四、操作方法:

1、将本品干燥,精确称取本品0.2克,放入三角瓶中。加入3-5ml水,摇动混合,加入30ml硫酸,12g硫酸铵,先慢慢加热,然后加强热使溶解。冷却后(注意:液体温度不超过50℃),加入120ml 水,40ml盐酸,仔细摇动混合使其溶解,加入3g金属铝,使产生氢气。把塞子塞好,按图连接好仪器,当金属铝完全溶解好后液体变透明紫色,然后冷却,用流水冷却至50℃以下(注意:碳酸氢钠溶液逆流至三角瓶中,产生CO2气体,使发生的逆流停止)。

2、将装有塞子的“U”形管取下,以硫氰酸钾饱和溶液作用指示剂,加入3ml指示溶液,立即用0.1mol/L硫酸铁铵溶液滴定,滴定至液体的淡褐色持续30秒不消失为滴定终点。

重复此操作一次,两次实验取算术平均值。

五、计算公式:

按下述公式进行二氧化钛含量计算:

0.1mol/L硫酸铁铵溶液1ml = 7.988mg 二氧化钛

参考文献:

1 宋国艾等主编:化妆品原料技术规格。中国轻工业出版社,2000年7月第1版,P1031页。

二氧化钛及其应用

编辑本段

编辑本段应用特性 纳米TiO2的功能及用途 纳米TiO2具有十分宝贵的光学性质,在汽车工业及诸多领域都显示出美好的发展前景。纳米TiO2还具有很高的化学稳定性、热稳定性、无毒性、超亲水性、非迁移性,且完全可以与食品接触,所以被广泛应用于抗紫外材料、纺织、光催化触媒、自洁玻璃、防晒霜、涂料、油墨、食品包装材料、造纸工业、航天工业中。 2.1.杀菌功能 在紫外线作用下,以0.1mg/cm3浓度的超细TiO2可彻底地杀死恶性海拉细胞,而且随着超氧化物歧化酶(SOD)添加量的增多,TiO2光催化杀死癌细胞的效率也提高;用TiO2光催化氧化深度处理自来水,可大大减少水中的细菌数,饮用后无致突变作用,达到安全饮用水的标准。在涂料中添加纳米TiO2可以制造出杀菌、防污、除臭、自洁的抗菌防污涂料,可应用于医院病房、手术室及家庭卫生间等细菌密集、易繁殖的场所,可有效杀死大肠杆菌、黄色葡萄糖菌等有害细菌,防止感染。因此,纳米TiO2能净化空气,具有除臭功能。 1)纳米二氧化钛抗菌特点: 1 对人体安全无毒,对皮肤无刺激性。 2 抗菌能力强,抗菌范围广。 3 无臭味、怪味,气味小。 4耐水洗,储存期长。 5热稳定性好,高温下不变色,不分解,不挥发,不变质。

6即时性好,纳米二氧化钛抗菌剂仅需1h就能发挥效果,而其他银系抗菌剂效果则需约24h。 7纳米二氧化钛是一种永久性维持抗菌效果的抗菌剂。 8具有很好的安全性,科用于食品添加剂等,与皮肤接触无不良影响。 2)纳米二氧化钛的抗菌原理: 纳米二氧化钛在光催化作用下使细菌分解而达到抗菌效果的。由于纳米二氧化钛的电子结构特点为一个满 TiO2的价带和一个空的导带 ,在水和空气的体系中 , 纳米二氧化钛在阳光尤其是在紫外线的照射下 ,当电 子能量达到或超过其带隙能时 ,电子就可从价带激发到导带 ,同时在价带产生相应的空穴 ,即生成电子、空穴对 ,在电场的作用下 ,电子与空穴发生分离 ,迁移到粒子表面的不同位置 ,发生一系列反应 : TiO2 + hν e —— + h H2O + h——·OH+ H O2 +e——O2 · O2 ·+ H——HO2· 2HO2· —— O2 + H2O2 H2O2 +O2 · ——·OH+OH +O2 吸附溶解在 TiO2 表面的氧俘获电子形成O2 ·, 生成的超氧化物阴离子自由基与多数有机物反应(氧化) ,同时能与细菌内的有机物反应 ,生成CO2和 H2O;而空穴则将吸附在 TiO2 表面的 OH 和H2O氧化成·OH,·OH 有很强的氧化能力 ,攻击有机物的不饱和键或抽取 H原子产生新自由基 ,激发链式反应 ,最终致使细菌分解。 TiO2 的杀菌作用在于它的量子尺寸效应 ,虽然钛白粉(普通 TiO2)也有光催化作用 ,也能够产生电子、空穴对 ,但其到达材料表面的时间在微秒级以上 ,极易发生复合 ,很难发挥抗菌效果,而达到纳米级分散程度的TiO2 ,受光激发的电子、空穴从体内迁移到表面 ,只需纳秒、皮秒、甚至飞秒的时间 ,光生电子与空穴的复合则在纳秒量级 ,能很快迁移到表面 ,攻击细菌有机体 ,起到相应的抗菌作用。 惠尔牌纳米二氧化钛具有很高的表面活性,抗菌能力强,产品易于分散。经试验表明,惠尔牌纳米二氧化钛对绿脓杆菌、大肠杆菌、金黄色葡萄球菌、沙门氏菌和曲霉菌等具有很强的杀菌能力,已广泛应用于纺织、陶瓷、橡胶、医药等领域的抗菌产品,深受广大用户的欢迎。 3)国内外对纳米二氧化钛抗菌性的研究及应用实例 1 农田抗菌剂:日本开发了一种新型无菌杀菌剂。其主要成分为纳米二氧化硅、纳米二氧化钛和银、铜等离子,可用于土壤中,对所有的细菌都有很强的抗菌性。改杀菌剂是陶瓷类微量混合金属离子,并在含有相同离子的催化剂作用下,具有使土壤中的氧活化之功能,该功能能持续时间长达2-5年。

锐钛型二氧化钛与金红石型二氧化钛的区分

1、(锐钛型二氧化钛与金红石型二氧化钛)的区分 1.1 方法 利用X射线衍射仪得到XRD图谱进行分析 1.2用到的仪器 X射线衍射仪 X射线产生原理: 高速运动的电子与物体碰撞时,发生能量转换,电子的运动受阻失去动能,其中一小部分(1%左右)能量转变为X射线,而绝大部分(99%左右)能量转变成热能使物体温度升高 1.2.1 X射线管的结构 阴极:又称灯丝(钨丝),通电加热后便能释放出热辐射电子。 阳极:又称靶,通常由纯金属制成(Cr,Fe,Co,Ni,Cu,Mo,Ag, W等),使电子突然减速并发射X射线。阳极需要水强制冷却。 窗口:是X射线射出的通道,维持管内高真空,对X射线吸收 较少,如金属铍、含铍玻璃、薄云母片 X射线管中心焦点

在X射线衍射中,总希望有较小的焦点(提高分辨率)和较强的X射线强度(缩短爆光时间)。 一般采用在与靶面成一定角度的位置接受X射线,这样可以达到焦点缩小,X射线相应增强的目的。 1.2.2 X射线特点

1.2.3理论基础:布拉格方程 1.2.4具体方法 用X射线衍射分析法中的粉末法来分析两种结构。 只有满足Bragg方程,才能产生衍射现象,因此用粉末法对测定的晶体样品,不改变λ,要连续改变θ。: ?用单色的X射线照射多晶体试样,利用晶体的不同取向来改变θ,以满足 Bragg方程。试样要求:粉末,块状晶体。 ?特点:试样容易获得,衍射花样反映晶体的全面信息。

粉末法:由于多晶体由无数取向无规的单晶组成,相当于单晶绕所有取向的轴转动,晶体内某等同晶面族{HKL}的倒易点,形成-相应倒易矢量gHKL为半径的倒易球。一系列的倒易球与反射球相交,其交集是一系列园,则相应的衍射线束分布于以样品为中心、入射方向为轴、上述交线园为底的园锥面上。 1.2.5 两者结构分析 晶胞结构的不同 金红石型二氧化钛及锐钛型二氧化钛结晶类型均为正方结晶,前者为R型,后者为A型。金红石型二氧化钛晶格结构致密,比较稳定,光化学活性小,因而耐久性由于锐钛型二氧化钛。另外,金红石型二氧化钛晶体结构是细长的成对的孪生晶体,每个金红石晶胞含有2个二氧化钛分子,以两个棱相连,这比锐钛型二氧化钛八面体的形式体积更小、结构更密,因而硬度和密度增大,介电常数和导热性增加,所以耐候性好,不易粉化 (a)金红石型 (b)锐钛型 金红石型和锐钛型晶胞中TiO2分子数分别是2和4。晶胞参数分别是:金红石型a:4.593A,c=2.959A;锐钛型a=3.784A,c=9.515^。金红石型二氧化钛比锐钛型二氧化钛稳定而致密,有较高的硬度、密度、介电常数及折射率,其遮

化妆品中二氧化钛的检测方法

附件1: 化妆品中二氧化钛的检测方法 1 适用范围 本方法规定了采用分光光度法测定化妆品中总钛[以二氧化钛TiO2(CAS:13463-67-7)计]的方法。 本方法适用于以膏霜、乳、液等化妆品中总钛(以二氧化钛计)含量的测定。暂无实验数据支持本方法适用于粉类、腊质类化妆品。 本方法不适用于配方中同时含有除二氧化钛外其他钛及钛化合物的化妆品测定。 2 方法提要 样品预处理后,使钛以离子状态存在于样品溶液中,加入抗坏血酸溶液掩蔽干扰,在酸性环境下样品溶液中的钛与二安替比林甲烷溶液生成黄色,用分光光度法在388nm处检测,以标准曲线法计算含量。10000倍钾、钠、铷、钙、镁、锶、磷,1000倍锰、铅、锌、铝、锆、砷、铁,50倍铌、锡,20倍铬,10倍铋、钼,对钛测定不产生干扰。本方法对二氧化钛的检出限为0.068μg/mL,定量下限为0.2μg/mL;若取0.1g样品测定,二氧化钛的检出浓度为0.0068%,最低定量浓度为0.02%。 3 试剂和材料 除另有规定外,所用试剂均为分析纯。 3.1 抗坏血酸。 3.2 硫酸(ρ20 =1.84 g/ml)。 3.3 盐酸(ρ20 =1.19 g/ml)。 3.4 二安替比林甲烷,纯度>97%。

3.5 焦硫酸钾:将焦硫酸钾固体块研成粉末。 3.6 钛单元素溶液标准物质(100μg/mL)。 3.7 硫酸(1+9):取硫酸(3.2)10mL,缓缓加入90 mL去离子水中,混匀。 3.8 二安替比林甲烷溶液(80g/L):称取8g二安替比林甲烷(3.4),加入10mL盐酸(3.3),加去离子水稀释至100mL,摇匀,即得。 3.9 抗坏血酸溶液(100g/L):称取10g抗坏血酸(3.1),加去离子水稀释至100mL,摇匀,即得。 3.10 钛系列浓度标准工作溶液的制备 精密量取5mL盐酸(3.3)于100mL容量瓶中,精密量取100μg/mL钛单元素溶液标准物质(3.6)0、0.1、0.2、0.5、1.0、2.0、3.0mL,分别置于100mL容量瓶中。精密加入10mL抗坏血酸溶液(3.9),稍加振摇,置于室温下放置5min。精密加入10mL 二安替比林甲烷溶液(3.8),用去离子水稀释至刻度,摇匀,放置45min,得钛系列浓度标准工作溶液中钛的浓度依次为0、0.1、0.2、0.5、1.0、2.0、3.0μg/mL。 4 仪器 4.1 紫外可见分光光度计。 4.2马弗炉。 4.3 分析天平:感量0.0001g。 4.4 电炉。 4.5 50mL瓷坩埚。 5 测定步骤 5.1 样品处理

水热法合成二氧化钛及研究进展

水热法合成二氧化钛及研究进展 摘要:水热法合成了不同晶型、形貌、大小和研定形貌的二氧化钛。究了pH值、水热反应温度和水热反应时间对纳米二氧化钛晶型、形貌和晶粒尺寸的影响,对TiO2晶形影响光催化活性的原因进行了探讨。同时从二氧化钛水解制氢、废水处理、空气净化、抗菌、除臭方面介绍了纳米二氧化钛在环境治理方面的应用和发展趋势,并对纳米二氧化钛的制备方法与应用作出展望。 关键词:二氧化钛;晶型;水热法;光催化;制备;应用 纳米二氧化钛(TiO2)具有比表面积大、磁性强、光吸收性好、表面活性大、热导性好、分散性好等性能。纳米TiO2是一种重要的无机功能材料, 可应用于随角异色涂料、屏蔽紫外线、光电转换、光催化等领域,在光催化领域环境治理方面具有举足轻重的地位,可应用在环保中的各个领域,它在环境污染治理中将日益受到人们的重视,具有广阔的应用前景,因此制备高光催化性能的纳米TiO2,拓展纳米二氧化钛的应用也是学者研究的重点。水热法合成纳米TiO2粉体具有晶粒发育完整、粒径分布均匀、不需作高温煅烧处理、颗粒团聚程度较轻的特点。 1.TiO2的制备方法、材料的性能 1.1不同晶型纳米二氧化钛的水热合成 1.1.1实验方法 边搅拌边将2mol·L- 1的四氯化钛水溶液缓慢滴加到115mol·L- 1的氢氧化钠水溶液中,保持30℃反应,生成纳米TiO2前驱体,反应终点的pH值分别控制为110、310、510、810、1110、1210。把纳米TiO2前驱体装入内衬聚四氟乙烯的不锈钢反应釜中进行水热反应,120℃~200℃反应1h~48h,反应结束后,冷却至室温,产物经过滤和蒸馏水洗至滤液中无Cl-,在100℃下鼓风干燥10h,粉碎后得到不同结构的纳米TiO2 粉体。选择不同的特征峰(金红石型选110面、锐钛矿型选101面,板钛矿型选121面),根据特征衍射峰的半高宽,利用Scherrer 公式展宽法估算出其晶粒尺寸。 1.1.2研究与开发 1.1. 2.1pH值对纳米TiO2晶型和形貌的影响 在水热反应温度为200 ℃和水热反应时间24 h的条件下。当pH = 1.0时,产

钛白粉的使用

钛白粉的使用 基于钛白粉具有折射率高,消色力强,遮盖力大,耐候性好,分散性强,光泽好,物理与化学性能稳定等许多优异的特性,所以是用量最大,质量最好,应用最广的白色颜料。是电子、化工、轻工和冶金等行业中不可缺少的原料,是一种重要的化工产品,具有广泛的应用前景。 (一)、在涂料上的应用 涂料是由颜料、油料、漆料(树脂)、溶剂和催干剂等组成的粘稠悬浮液,它涂布在物体表面受空气的氧化和溶剂的挥发而形成一层坚韧的涂膜,对物体起到装饰和防护的作用。涂料中的颜料,不但使漆膜呈现不同的色彩,达到美观和装饰外,它还可以增强漆膜的机械强度和附着力,并且能防止紫外线及水分等的穿透,使漆膜本身推迟了老化作用,延长了使用寿命。 颜料中白色颜料用途最广,白色漆和浅色漆都要用到它,所以在造漆中,白色颜料的用量比其他颜料多得多,能用于造漆的白色颜料常为锌白、锌钡白和钛白粉等。由于涂料工业品种的发展,出现合成树脂涂料,其聚合度较大,如加入锌白,则因锌白有碱性,与涂料中的游离脂肪酸作用,而有变稠的倾向;如加入锌钡白,则耐候性差。但采用钛白,就可以改善以上的缺点,因为钛白粉的粒子细小而均匀,光化学稳定性高,遮盖率比锌白、锌钡白大二倍以上,消色力大5~6倍,因此可以大大降低整个漆料中颜料的用量,同时制成的漆颜色好,不易泛黄,并且有耐热性和耐酸、耐硫、耐碱等化学稳定性,特别是金红石型钛白粉,其结构稳定,耐候性比锐钛型好,能耐紫外线的照射,在室外不会粉化等优点,因此适用于高度耐候性的各种高级船舶、桥梁、汽车、建筑等室外涂料。而锐钛型钛白粉一般只用于室内涂料。由此可见,钛白粉已成为涂料生产中必不可少的白色颜料。世界上大约有60%以上的钛白粉用于各种涂料的生产。 (二)、在塑料上的应用 塑料是树脂、增塑剂、填料和着色剂的混和物,它具有质轻、耐腐蚀、耐摩擦、机械性能高、电绝缘性好、易于加工、美观等特点,可以作结构材料、绝缘材料和耐腐蚀材料,在国民经济各部门、军事工业和尖端科学技术中得到广泛的应用。 为了使塑料具有美观的色彩,常在塑料中加入一定量的色料。对色料的要求是在加工过程中易于着色和分散,并与塑料中的其他成分不起化学反应。由于钛白粉的白度高,消色力大,具有良好的不透明度和化学稳定性,用钛白粉代替立德粉,白色颜料的用量可降低2~3倍所以制造白色或彩色塑料的必需的着色填充剂,是最优良的白色颜料。当它和其他颜料配合使用,能形成美丽鲜艳的色彩,由于玩具和食品用具是无毒的。 (三)、在油墨上的应用 油墨是由色料、填料、助剂和展色剂等所组成的一种粘性流体。目前印刷报纸、书籍、画片和印铁、印金属、印瓷、印橡胶、印塑料和印无线电半导体的电路板都离不开油墨。由于钛白粉具有遮盖力大、消色力高、颗粒细、耐稀酸稀碱、耐光、耐热、不易泛黄、憎水性好、流动性小、不溶于展色剂且能均匀分散在展色剂中,所以是高级白色油墨和浅色油墨不可缺

TiO2光催化原理及应用

TiO2光催化原理及应用 一.前言 在世界人口持续增加以及广泛工业化的过程中,饮用水源的污染问题日趋严重。根据世界卫生组织的估计,地球上22% 的居民日常生活中的饮用水不符合世界卫生组织建议的饮用水标准。长期摄入不干净饮用水将会对人的身体健康造成严重危害, 世界围每年大概有200 万人由于水传播疾病死亡。水中的污染物呈现出多样化的趋势,常见的污染物包括有毒重金属、自然毒素、药物、有机污染物等。常规的饮用水净化技术有氯气、臭氧和紫外线消毒以及过滤、吸附、静置等,但是这些方法对新生的污物往往不是非常有效,并且可能导致二次污染。包括我国在世界围广泛应用的氯气消毒法,可能在水中生成对人类健康有害的高氯酸盐。臭氧消毒是比较安全的消毒方法,但是所需设备昂贵;而紫外线消毒法需要能源支持,并且日常的维护都需要专业的技术人员;吸附法一般需要消耗大量的吸附剂,使用过的吸附剂一般需要额外的处理。这些缺点限制了它们的应用围,迫切需要发展一种高效、绿色、简单的净化水技术。 自然界中,植物、藻类和某些细菌能在太的照射下,利用光合色素将二氧化碳(或硫化氧)和水转化为有机物,并释放出氧气(或氢气)。这种光合作用是一系列复杂代反应的总和,是生物界赖以生存的基础,也是地球碳氧循环的重要媒介。光化学反应的过程与植物的光合作用很相似。光化学反应一般可以分为直接光解和间接光解两类。直接光解为物质吸收能量达到激发态,吸收的能量使反应物的电子在轨道间的转移,当强度够大时,可造成化学键的断裂,产生其它物质。直接光解是光化学反应中最简单的形式,但这类反应产率一般较低。间接光解则为反应系统中某一物质吸收光能后,再诱使另一种物质发生化学反应。 半导体在光的照射下,能将光能转化为化学能,促使化合物的合成或使化合物(有机物、无机物)分解的过程称之为半导体光催化。半导体光催化是光化学反应的一个前沿研究领域,它能使许多通常情况下难以实现或不可能进行的反应在比较温和的条件下顺利进行。与传统技术相比,光催化技术具有两个最显著的特征:第一,光催化是低温深度反应技术。光催化氧化可在室温下将水、空气和土壤中有机污染物等完全氧化二氧化碳和水等产物。第二,光催化可利用紫外光或太作为光源来活化光催化剂,驱动氧化-还原反应,达到净化目的,对净化受无机重金属离子污染的废水及回收贵金属亦有显著效果。 二.TiO2的性质及光催化原理 许多半导体材料(如TiO2,ZnO,Fe2O3,ZnS,CdS等)具有合适的能带结构可以作为光催化剂。但是,由于某些化合物本身具有一定的毒性,而且有的半导体在光照下不稳定,存在不同程度的光腐蚀现象。在众多半导体光催化材料中,TiO2以其化学性质稳定、氧化-还原性强、抗腐蚀、无毒及成本低而成为目前最为广泛使用的半导体光催化剂。 TiO2属于一种n型半导体材料,它有三种晶型——锐钛矿相、金红石相和板钛矿相,板

钛白粉中二氧化钛的含量

钛白粉 1.TiO2含量的检测(铝还原法) 1.1测试原理经干燥的试样溶解在含有硫酸铵的硫酸中。在二氧化碳气氛下用金属铝将钛(Ⅳ)还原成钛(Ⅲ)。然后以硫氰酸铵作指示剂,用硫酸铁(Ⅲ)铵标准滴定溶液滴定上述溶液。 1.2试剂所用试剂均应采用分析纯试剂,并使用符合GB/T 6682规定的纯度至少为3级的水。浓盐酸;浓硫酸;硫酸铵;碳酸氢钠:饱和溶液;硫氰酸铵指示剂:245g/L;高锰酸钾溶液:c( KMnO4)=0.1mol/L 金属铝: 电解级,以铝箔、铝片和铝线形式存在,含量不低于99.5%。硫酸铁(Ⅲ)铵标准滴定溶液: 1mL相当于0.0048gTiO2。制备称取30g硫酸铁铵〔FeNH4(SO4)2·12H2O〕置于1000mL容量瓶中,加入300mL含15mL硫酸的水溶解。滴加高锰酸钾溶液直至溶液呈粉红色。用水稀释至刻度并摇匀。如溶液浑浊则过滤。标定称取经(105±2)℃下干燥至恒重的二氧化钛标准参比物质190mg 至210mg,按测定样品的步骤标定上述溶液。用式(1)计算每毫升溶液的二氧化钛相当量T1,以克/毫升(g/mL)表示:T1= m1*ω0/( V1*100)…………………(1)式中:m1——所用二氧化钛标准参比物质的质量,单位为克(g);ω0——标准参比物质的二氧化钛含量,以质量分数表示(如用光谱纯二氧化钛,则ω0以100%计); V1——滴定消耗硫酸铁(Ⅲ)铵标准溶液的体积,单位为毫升(mL)。 1.3仪器使用普通实验室仪器,以及下列仪器:玻璃液封管或其它合适的吸收器;称量瓶;烘箱:能维持(105±2)℃;干燥器:内盛合适干燥剂,如硅胶。(缺少仪器:液化二氧化碳储气瓶,可加热到400摄氏度的电炉。) 1.4操作要点熔样:称取已于(105±2)℃下干燥并冷却的试样0.19g~ 0.21g(精确至 0.0001g)于500ml锥形瓶中,加入7g至8g硫酸铵,加入20ml 浓硫酸,缓慢加热至澄清,再强热(白雾至瓶口),冷却。还原:加入水120ml,20ml浓盐酸,摇匀,加入铝片2.5g,立即加液封管(管中盛饱和碳酸氢钠溶液),待铝片溶解完毕微沸几分钟(除尽残余的氢气碎泡,此时应为透明清晰的紫色),再于流水下迅速冷却(这个过程中应随时补加碳酸氢钠溶液)。滴定:液封管中碳酸氢钠溶液倒入瓶中,加入2ml硫氰酸铵指示剂,立即用硫酸铁(Ⅲ)铵标准溶液滴定至淡橙色为终点。记录所耗硫酸铁(Ⅲ)铵溶液的体积(V2)。 1.5结果表示用式(2)计算二氧化钛含量ω,以质量分数表示:ω(TiO2)= V2* T1*100/ m2…………………(2)式中: m2——经干燥至恒重的试样的质量,单位为克(g); V2 ——滴定消耗硫酸铁(Ⅲ)铵标准溶液的体积,单位为毫升(mL); T1——与每毫升硫酸铁(Ⅲ)铵标准溶液相当的二氧化钛克数,单位为克/毫升(g/mL)。以两次平行测定值之平均值作为结果,精确至0.1%。两次平行测定值之绝对差不得大于0.4%,否则重新测试。

纳米TiO2的制备与应用

1.1纳米材料概述 纳米材料是指其结构单元的尺寸介于1纳米~100纳米范围之间的材料。由于它的尺寸已经接近电子的相干长度,它的性质因为强相干所带来的自组织使得性质发生很大变化。并且,其尺度已接近光的波长,因此其所表现的特性如具有量子尺寸效应、表面效应和宏观量子隧道效应等。从而使得熔点、磁性、光学、导热、导电特性等等往往不同于该物质在整体状态时所表现的性质。 纳米材料是20世纪80年代中期研制成功的,后来相继问世的有纳米半导体薄膜、纳米陶瓷、纳米瓷性材料和纳米生物医学材料等。而现在,纳米材料已经渗透入医药化工、电子计算机和电子工业、环境保护、纺织工业、机械工业等多个领域,展现了其非凡的特性和广阔的发展的前景[1-13]。 二、纳米材料的发现和发展 1861年,随着胶体化学的建立,科学家们开始了对直径为1~100nm的粒子体系的研究工作。 1959年12月29日理查德?费曼(Richard Feynman)在美国物理学会会议上做了题为“在底部有很多空间”的演讲。虽然没有使用“”纳米这个词,但他实际上介绍了纳米技术的基本概念。 1963年,Uyeda用气体蒸发冷凝法制的了金属纳米微粒,并对其进行了电镜和电子衍射研究。 1984年德国萨尔兰大学(Saarland University)的Gleiter以及美国阿贡实验室的Siegal相继成功地制得了纯物质的纳米细粉。Gleiter在高真空的条件下将粒子直径为6nm的铁粒子原位加压成形,烧结得到了纳米微晶体块,从而使得纳米材料的研究进入了一个新阶段。 1974年日本教授谷口纪男(Norio Taniguchi)在一篇题为:“论纳米技术的基本概念“的科技论文中给出了新的名词——纳米(Nano)。 1990年7月在美国召开了第一届国际纳米科技技术会议 (International Conference on Nanoscience&Technology),正式宣布纳米材料科学为材料科学的一个新分支。 自20世纪70年代纳米颗粒材料问世以来,从研究内涵和特点大致可划分为三个阶段: 第一阶段(1990年以前):主要是在实验室探索用各种方法制备各种材料的纳米颗粒粉体或合成块体,研究评估表征的方法,探索纳米材料不同于普通材料的特殊性能;研究对象一般局限在单一材料和单相材料,国际上通常把这种材料称为纳米晶或纳米相材料。 第二阶段(1990~1994年):人们关注的热点是如何利用纳米材料已发掘的物理和化学特性,设计纳米复合材料,复合材料的合成和物性探索一度成为纳米材

二氧化钛制造过程

·二氧化钛制造过程【工艺流程】二氧化钛的制造过程二氧化钛颜料的制造有两种生产工艺:硫酸法和氯化法。R型二氧化钛和A型二氧化钛均可由任一种过程来生产。目前杜邦只使用先进的氯化法工艺来生产。 图19的流程图以简化形式说明生成二氧化钛中间体的两种加工程序。图19的下半部说明最后处理操作,此操作适用于两种制造方法。 硫酸法在1931年商业化,先是生产A型二氢化钛(A—Type),后来(1941年)生产R型二氧化钛(R—Type),在这种方法中,含钛的矿砂溶于硫酸中,产生钛的溶液及铁和其他金属的硫酸盐。然后经过一连串的步骤,包括化学还原、纯化、沉淀、洗涤、燃烧。最后产生颜料大小的二氧化钛中间体。A型二氧化钛和R型二氧化钛硅晶体结构是由核晶过程和燃烧过程控制的 FeTiO3十2H2SO4 TiOSO4十FeSO4十2H2O TiOSO4十H2O TiO2十H2SO4 氯化法大约是在1950年由杜邦公司商业化的,只用于生产R型二氧化钛。自从1975年以来,亦已用于生产A型二氧化钛了。这个方法包括两个高温无水蒸汽相反应。钛矿和氯气在还原条件下发生反应,生成四氯化钛和金属氯化物杂质,杂质随后清除。 然后,将高纯度的四氯化钛征高温下氧化,生成非常光亮的二氧化钛中间体。利用氯化法中的氧化阶段能够严格控制粒子的大小和晶体类型,能生产有高覆盖能力和着色强度的二氧化钛。 2FeTiO3十7Cl2十3C 2TiCl4十2FeCl3十3CO2 TiCl4十O2 TiO2十2Cl2 在硫酸法和氯化法两种方法中,中间产品都是颜料粒子的成簇二氧化钛晶体,这种成簇品粒必须加以分离(研磨)以得到最佳光学性能。根据最后用途的要求,采用各种湿加工方法来改良二氧化钛,包括硅、铝或锌的水合氧化物征颜料粒子表面上沉淀,可以使用个别的水合氧化物处理法或不同处理法的组合,以获得特殊用途上的最佳性能。 制造二氧化钛颜料的重要问题足钛矿的供应,虽然钛的蕴藏量列在前十名元素之中,但它在自然界中却以低浓度广泛地分布,需要提高采矿和矿物加工操作的效率,以满足制造二氧化钛的经济要求。杜邦公司的业务范围是世界性的,可保证对自己几个生产工厂有源源不断供应含钛浓缩矿物。

二氧化钛含量的测定

二氧化钛含量的测定 A 法金属铝还原法 ?原理 试样以浓硫酸和硫酸铵溶解。在二氧化碳气氛下用金属铝将钛(Ⅳ)还原成钛(Ⅲ)。还原后的溶液以硫氰酸铵作指示剂,用硫酸铁铵标准滴定溶液滴定。 2 .试剂 2 . 1 金属铝片:含量不低于 99.5% ,厚度为 0.1mm 。 2 . 2 硫酸铵( GB 1396 )。 2 . 3 硫氰酸铵指示剂( GB 660 ): 245g/L 溶液。 2 . 4 硫酸铁铵标准滴定溶液: c[NH 4 Fe(SO 4 ) 2 ]=0.06mol/L 。 称取 30g 硫酸铁铵[NH 4 Fe(SO 4 ) 2 · 12H 2 O] 置于 1000ml 容量瓶中,加入含 30ml 硫酸 [ ( GB 625 ): p1.84g/mL] 的 300mL 水溶解。滴加 c{1/5KmnO 4 }=0.1mol/L 的高锰酸钾溶液,直至溶液呈粉红色,用水稀释至刻度,并摇匀。如溶液不清,则过滤,用 0.19~0.21g 二氧化钛标准参比物质按规定的操作步骤进行标定。 硫酸铁铵标准滴定溶液的浓度按式( 1 )计算: 式中: c[NH 4 Fe(SO 4 ) 2 ] —硫酸铁铵标准滴定溶液的浓度, mol/L ; m 1 —二氧化钛标准参比物质的质量, g ; V 1 —滴定消耗硫酸铁铵标准滴定溶液的体积, mL ; P —标准参比物质中 TiO 2 含量(如用光谱纯 TiO 2 ,则 p 以 100% 计); 0.0799 —与 1.00ml 硫酸铁铵标准滴定溶液 { c[NH 4 Fe(SO 4 ) 2 ] = 1.000mol/L} 相当的以克表示的二氧化钛的质量。 2 . 5 盐酸 (GB 622) : p1.18g/mL 。 2 . 6 碳酸氢钠( GB 640 )饱和溶液。 2 . 7 硫酸( GB 625 ): p1.84g/mL 。 3 .仪器 3 . 1 天平:感量 0.000 1g 。 3 . 2 烘箱:能维持温度为105~110 ℃。 3 . 3 玻璃液封管:见图 1 。或其他合适的吸收器。 3 . 4 干燥器:内装合适的干燥剂,例如硅胶。 4 .操作步骤 4 . 1 试样 称取预先在105~110 ℃干燥 2h 的试样 0.19~0.21g ,精确至 0.000 1g 。 4 . 2 测定 将试样置于 500ml 锥形瓶中,加入 10g 硫酸铵( 2.2 ), 20ml 硫酸( 2.7 )摇匀。开始徐徐加热,再强热至试样全部溶解成澄清溶液,冷却后加 50ml 水, 25ml 盐酸( 2.5 ),摇匀,再加金属铝片( 2.1 ) 2.5g ,装上液封管,塞紧胶塞,并在该管中加入碳酸氢钠饱和溶液( 2.6 )至该管体积的 2/3 左右。待铝片溶完,继续微沸 3~5min ,此时溶液变为透明清晰的紫色。在流水中冷却至室温,在这个过

液相法制备纳米二氧化钛及其应用(1)(2)

纳米TiO2的液相法制备及其研究现状 摘要:作为一种新型的无机材料,纳米TiO2以其稳定的化学性质、催化效率高、无毒、耐腐蚀性强而倍受关注,制备方法主要有气相法、液相法和固相法三大类,重点介绍了纳米TiO2的液相制备法及其研究现状,并对纳米TiO2粉体的应用情况进行了概述。 关键词:纳米TiO2;液相法;研究;应用 0.前言 纳米材料[1]指在三维空间中至少有一维处于纳米尺度范围或由它们作为基本单元构成的材料,一般直径在1~100nm之间。由于纳米微粒具有量子尺寸效应、小尺寸效应、表面效应以及量子隧道效应,从而展现多种特殊性质。而纳米TiO2是纳米材料中的重要一员,包括纳米颗粒、纳米线、纳米薄膜、纳米块材料和纳米复合材料[2,3]。由于纳米TiO2化学性质稳定、氧化能力强、无毒无害、价格便宜催化能力强而且没有二次污染等诸多优点而在气体净化、抗菌除臭涂料表面自清洁等领域具有特别重要的应用价值和发展前景,因此倍受关注,其开发与制备更是现在研究纳米TiO2的热点之一。 1.纳米TiO2的制备 纳米TiO2粉体的制备方法分为气相法、液相法和固相法。但是液相法是现在最常采用的,主要原因[4,5]在于:气相法中原子移动起来过于自由,容易因为碰撞而改变方向,影响反应的持续高效进行,而在固相法中原子则基本不改变位置,且固相间的反应是通过混合固体颗粒来实现的,这样混合的效果极其粗糙,仍需进一步的细化,但是在液体中自由程度相对比较适中。因此,液相法相比之下更加合理,并且液相法原料来源广泛、设备简单得到的颗粒的活性好。 液相法制备氧化物的基本原理[6]是将可溶于水或有机溶剂的金属盐按化学计量比制备成溶液,然后用沉淀剂或通过水解、蒸发升华等方式使金属离子均匀沉淀或析出,最终经过干燥得到相应的氧化物。对于组分比较复杂的材料同样容易得到均匀的分散性较好的粉末。该法制备TiO2通常有:溶胶-凝胶法(sol-gel)、液相沉淀法(LPD法)、水热合成法、微乳液法。

纳米二氧化钛的应用

纳米二氧化钛的应用 纳米二氧化钛作为一种高效、无毒的光催化剂,在环保领域的应用越来越 受到人们的广泛关注和重视。抗菌材料纳米TiO2以其优异的抗菌性能成为开发研 究的热点之一,以期应用于水处理装置、医疗设备、食品包装、建材(如抗菌地砖、抗菌陶瓷卫生设施、抗菌砂浆、抗菌涂料等)、化妆品、纺织品、日用品以及家用电器等各个领域。1、气体净化环境有害气体可分为室内有害气体和大气污染气体。室内有害气体主要有装饰材料等放出的甲醛及生活环境中产生的甲硫醇、硫化氢及氨气等。TiO2通过光催化作用可将吸附于其表面的这些物质分解氧化,从而使空气中这些物质的浓度降低,减轻或消除环境不适感。大气污染气体,主要是由汽车尾气与工业废气等带来的氮氧化物和硫氧化合物。利用纳米TiO2的催化作用将这些气体氧化成蒸汽压低的硫酸和硝酸,在降雨过程中除去,从而达到降低大气污染的目的。在居室、办公室窗玻璃、陶瓷等建材表面涂敷TiO2光催化薄膜或在房间内安放TiO2光催化设备,均可有效地降解污染物,净化室内空气。利用纳米TiO2开发出来的一种抗剥离光催化薄板,可利用太阳光有效去除空气中的NOx气体,而且薄板表面生成的HN03可由雨水冲洗掉,保证了催化剂活性的稳定。2、抗菌除臭抗菌是指纳米TiO2在光照下对环境中微生物的抑制或杀灭作用。TiO2光催化剂对绿脓杆菌、大肠杆菌、金黄色葡萄球菌等具有很强的杀能力。当细菌吸附于由纳米二氧化钛涂敷的光催化陶瓷表面时,2被紫外光激发后产生的活性超氧离子自由基(·O2-)和羟基自由基(·OH)能穿透细菌的细胞壁,破坏细胞膜质,进入菌体,阻止成膜物质的传输,阻断其呼吸系统和电子传输系统,从而有效地杀灭细菌,并抑制细菌分解有机物产生臭味物质(如H2S、SO2、硫醇等)。因此,纳米TiO2能净化空气,具有除臭功能。3、处理有机污水工业污水和生活污水中含有大量的有机污染物,尤其是工业污水中含有大量的有毒、有害的有机物质,这些污染物用生物处理技术很难消除。许多学者对水中有机污染物光催化分解进行了系统的研究,结果表明以TiO2为光催化剂,在光照的条件下,可使水中的烃类、卤代物、羧酸等发生氧化还原反应,并逐步降解,最终完全氧化为环境友好的CO2和H2O等无害物质。4、处理无机污水除有机物外,许多无机物在TiO2表面也具有光学活性,例如无机污水中的Cr6+接触到TiO2催化剂表面时,能够捕获表面的光生电子而发生还原反应,使高价有毒的Cr6+降解为毒性较低或无毒的Cr3+,从而起到净化污水的作用;一些重金属离子如Pt4+,Hg2+,Au3+等,在催化剂表面也能够捕获电子而发生还原沉淀反应,可回收污水的无机重金属离子。5、防雾、自清洁功能TiO2薄膜在光照下具有超亲水性和超永久性,因此其具有防雾功能。如在汽车后视镜上涂覆一层氧化钛薄膜,即使空气中的水分或者水蒸气凝结,冷凝水也不会形成单个水滴,而是形成水膜均匀地铺展在表面,所以表面不会发生光散射的雾。当有雨水冲过,在表面附着的雨水也会迅速扩散成为均匀的水膜,这样就不会形成分散视线的水滴,使得后视镜表面保持原有的光亮,提高行车的安全性。阅读会员限时特惠 7大会员特权立即尝鲜 如果把高层建筑的窗玻璃、陶瓷等这些建材表面涂覆一层氧化钛薄膜,利用氧化钛的光催化反应就可以把吸附在氧化钛表面的有机污染物分解为CO2和O2,同剩余的无机物一起可被雨水冲刷干净,从而实现自清洁功能。 6、抗菌塑料 在日常生活中人们是离不开塑料制品的,如卫生间设施、桌面、垃圾箱、厨房用具、家用电器的塑料外壳、食品包装袋等等,由于温度、湿度合适,非常容易滋生感染细菌。因此!,对此类材料进行抗菌处理是极其必要的。 徐瑞芬等【2】 利用纳米TiO2作为无机抗菌剂,研制抗菌广谱长效的功能塑料。结果表明:采用锐钛矿

钛白粉检测方法

钛白粉检测方法 1.二氧化钛含量的测定 烘干箱定温105℃,烘干3小时,用硫酸和硫酸铵溶解试样后加水和盐酸,再加金属铝片还原四价钛,冷却后,以硫酸氰铵溶液作指示剂,用0.1mol/L硫酸高铁铵标准溶液滴定。 2.白度的测定 准确称取2g(准至0.0002g)样品,置于研磨机下层板的中间,滴加0.8ml精制亚麻仁油,用调刀充分混匀当样品充分润湿成浆状物时,用调刀将浆状物在下层板分成距板底中心约50mm直径的圆,合上玻璃板,施加约1KN力,研磨四遍,每遍50转,每研磨一遍后用调刀收拢浆状物并铺展成距板底中心约50mm直径的圆,研磨结束后,将浆状物保存备用。取相同量的标准样品,用相同方法制备浆状物。 将制得的标准样品及试样浆状物,以同一方向铺展在玻璃板上,用湿膜制备器制成宽不小于25mm,接触边长不小于40mm的不透明条带,刮后在散射日光下使光与样板成45度角,视线与样板表面垂直,比较不透明条带的表面颜色及两种浆状物的白色程度。若无可利用的良好日光时,也可在人工光源下进行比较。以样品的颜色不低于、微差于或低于标样的颜色表示。 3.消色力的比较 称取5g蓝浆,准至1mg,置于研磨机下层板的中间,按表所示称取一定量(准至0.1mg)的标准颜料样品放在蓝浆中,用调刀将其调匀,将浆状物在下层板分成距底中心约50mm直径的圆,合上玻璃板,施加1KN力,研磨四遍,每遍25转,研磨完毕后将浆状物保存备用。称取5g蓝浆和0.1g(准至0.1mg)试样以同样的步骤制成浆状物。 一系列标准样品的浆状物中选择与试验样品浆状物颜色强度最接近的二个。把试验样品插入所选择的二个标准样品浆状物,中间以同一方向用湿膜制备器刮在玻璃板上使成不透明条带,其宽度不小于25mm,接触边长不少于40mm,刮后立即在散射日光下通过玻璃板,检查其表面的颜色强度,若无法利用良好的日光,则可在人造日光下进行比较。以标准样品为100,试样的相对消色力为:100m0/m1

二氧化钛吸附研究及应用概述

二氧化钛吸附研究及应用概述 江默语 (昆明理工大学材料科学与工程学院,云南昆明 650093)摘要:近年来,随着理论计算方法的发展和计算能力的提高,以及纳米技术的发展,借助投射电镜等各种研究设备,人们对二氧化钛(TiO2)的了解逐渐加深。二氧化钛(TiO2)由于其具有的独特性质,开始在光催化、CO氧化以及太阳能电池等多个领域被广泛应用。尤其是对二氧化钛(TiO2)吸附以及催化特性的研究与应用,在环境污染治理、医学研究、化工等领域具有不可替代的作用。 关键词:二氧化钛,表面吸附,镉离子污染,有机物污染 Research and Applications of Titanium Dioxide Adsorption JIANGmo-yu (School of Materials and Engineering, Kunming University of Science and Technology, Kunming, 650093, China) Abstract:Recently, with the development of theoretical calculation method, calculation ability and nanotechnology , scientists are getting to know more about Titanium dioxideunder the help oftransmission electron microscope. Titanium dioxide, due to its unique properties, is playing an important part in photochemical catalysis, oxidization of carbonic oxide and the development of solar cell. Specially,studies about externaladsorption andCatalytic properties of Titanium dioxide, is becoming more and more important in pollution administration, medical research, chemical industry and so on. Keywords: Titanium dioxide,externaladsorption, Cadmium ionpollution, organic pollution

锐钛矿TiO2转变为金红石TiO2机制和性能

锐钛矿TiO2转变为金红石TiO2机制和性能 摘要:TiO2 是多相光催化研究中使用较多的一种材料。其在自然界存有3种不同的晶型:锐钛矿、金红石、板钛矿相。锐钛矿相转变为金红石相的过程是扩散相变。金红石是热力学稳定相, 锐钛矿是亚稳相, 并且从锐钛矿相到金红石相的相变是亚稳相到稳定相的不可逆相变。而煅烧时间与煅烧温度会影响其晶型的转变。在众多影响光催化性能的因素中,晶型是较为重要的一个因素。 关键字:锐钛矿、金红石、TiO2、相变、光催化 光催化降解是一门新型的并正在迅速发展的科学技术。研究表明,在适当的条件下,许多有机物污染物经光催化降解,可生成无毒无味的CO2、H2O及一些简单的无机物。目前,在光催化降解领域所采用的光催化剂多为N型半导体材料, 如TiO2、ZnO、Fe2O3、SnO2、WO3和CdS 等, 其中TiO2以其无毒、价廉、稳定和特殊的光、电性能等优点倍受人们青睐,成为最受重视的一种光催化剂[1]。 1.二氧化钛的结构 近年来, TiO2纳米材料制备、表征及改性一直是光催化研究领域的重点。同一种半导体可能具有不同的晶型,晶型的不同实际上就是组成物质的原子不同的空间构型有序的排布。二氧化钛是白色粉末状多晶型化合物, 自然界有锐钛矿型, 金红石型和板钛型三种晶 型结构, 但板钛型二氧化钛极不稳定且无实用价值[2]。所以目前的研究一般都主要为金红石相及锐钛矿相。TiO2晶体基本结构是钛氧八面体( TiO6)。钛氧八面体连接形式不同而构成锐钛矿相、金红石相和板钛矿相。锐钛矿型和金红石型均属于四方晶系,二者均可用相互连接的Ti06八面体表示,但八面体的畸变程度和连接方式各不不同。板钛矿型属正交晶系,一般难以制备,目前研究很少。如图1所示,金红石型(a)的八面体不规则,微显斜方晶;锐钛矿(b)呈明显的斜方晶畸变,对称性低于前者。从图2[3]中可以看出锐钛矿TiO2的Ti-Ti键长比金红石大,而Ti-O键比金红石小。 TiO2晶体基本结构——钛氧八面体有两种连接方式。如图3所示,分别为共边连接与共顶角连接。从图4[4]中可以看到锐钛矿中每个八面体与周围8个八面体相联(四个共边,四个共顶角)。金红石中的每个八面体与周围10个八面体相联(其中两个共边,八个共顶角)。 图1 金红石、锐钛矿和板钛矿的TiO6八面体结构

二氧化钛的测定

§1.9 二氧化钛的测定---二安替吡啉甲烷光度法测定钛量 1.方法提要与适用范围 试样经熔剂分解后,在盐酸介质中加入二安替吡啉甲烷,使与钛生成黄色络合物,在波长385nm 处测量其吸光度。借此测定钛量。 本法适用于铁矿石、铁精矿、烧结矿、球团矿、钒钛矿和炉渣中TiO 2量的测定。 2.主要试剂 2.1 混合熔剂:Na 2B 4O 7H 2O+NaCO 3=2+1。 2.2 硝酸:7+93。 2.3 过氧化氢:浓。 2.4 石墨粉:(化学纯)。 2.5 盐酸:浓。 2.6 抗坏血酸溶液:2%(用时现配)。 2.7 二安替吡啉甲烷溶液:1%。称取10克二安替吡啉甲烷于烧杯中加入500ml 水,加30ml 硫酸(1+1),搅拌至全部溶解。过滤于1000ml 棕色容量瓶中保存,冷却后用水稀释至刻度。 3. 分析步骤 称取试样0.2000g,置于有混合熔剂2g 的滤纸中混匀,包好,放入盛有石墨粉的瓷坩埚内,于马弗炉炉口低温处烧去滤纸,然后置于850--900℃的马弗炉炉膛中熔融10—15分钟,取出稍冷,将熔块放入盛有热硝酸(7+93)100ml 溶液的250ml 高型烧杯中,低温加热溶解,溶完后加H 2O 2数滴,煮沸30秒,取下 冷却,用滤纸过滤于100ml 容量瓶中,水稀刻度,摇匀。 吸取试液10.00ml(视含钛量高低可取1、2、5ml),置于50ml 容量瓶中加入浓盐酸6ml ,滴加抗坏血酸溶液还原黄色Fe 3+ 至无色,过量几滴,放置5分钟。加入二安替吡啉甲烷溶液20ml,以水稀至刻度,摇匀。放置40~60分钟(室温在20℃以上放置20-30分钟),于分光光度计波长385nm 、比色皿1-3cm 测量其吸光度。 4. 分析结果的计算 称取同类型、含二氧化钛量不同的标准试样3-5个,与试样同样操作显色后,测量吸光度值,并以百分含量为纵坐标,吸光度值为横坐标绘制工作曲线。根据试样测得的吸光度值,从工作曲线上查出试样二氧化钛的含量(%)。 也可以带试样相同、含量相近的标样同法操作,换算结果。 TiO 2(%)=试标 标A A )(TiO *%2 式中: 2TiO 标(%) ——标准样品中二氧化钛的含量; 标A ——标准样品测量的吸光度值; A 试——分析试样测量的吸光度值。

介孔二氧化钛的合成及应用

介孔二氧化钛的合成及应用 摘要介孔二氧化钛是一种多孔材料,它具有巨大的比表面积,发达的孔道结构,因而在光电转换领域,光催化降解,光催化制氢等环境能源领域表现广泛的应用前景而备受瞩目。目前,国内外对制备介孔二氧化钛材料的方法的研究主要集中在模板法制备,此外,还有非模板法等方法也有研究。 关键词介孔二氧化钛,光催化,模板法 1 前言 多孔材料,因具有空旷结构和巨大的表面积,而被广泛应用于催化剂和吸附载体。按孔径的大小,多孔材料可分为:微孔材料(孔径<2nm),介孔材料(孔径2~50nm),大孔材料(孔径50nm~1μm)和宏孔材料(孔径>1μm)等。按材料的结构特征,多孔材料又可以分为三类:无定形、次晶和晶体。介孔材料因孔径范围较大,存在着孔道形状不规则、孔径尺寸分布范围大等优点,是良好的催化剂载体[1]。 介孔TiO2包括有序、无序两大类,其中有序介孔材料又分为纳米量级和宏观尺度两类。因其具有高比表面积,发达有序的孔道结构,孔径尺寸在一定范围内可调,表面易于改性等特点,可以有效地增强TiO2光催化、光电转换等功能,使其在水处理、空气净化、太阳能电池、纳米材料微反应器、生物材料等方面表现出广阔的应用前景而备受瞩目。为科学家从微观角度研究纳米材料的尺寸效应、表面效应及量子效应等性能提供了物质基础[2]。 2 影响介孔材料孔径大小的因素 介孔材料的合成过程中一个关键参数是孔径大小及尺寸分布,孔径大小的控制及影响因素一般包括以下几个方面[2]。 1) 表面活性剂碳链的长度,孔径大小的粗略控制可通过调节表面活性剂的碳链长度来达到。因为表面活性剂的碳链越长,形成棒状胶束时直径越大,若碳链大于l8,表面活性剂溶解度下降,故较少用于介孔材料的制备。 2) 辅助有机物的添加,通过添加憎水性有机物,可将辅助有机物进入表面活性剂胶束的憎水基团内部,使胶束的直径变大,达到增加介孔材料尺寸的目的。此类有机物一般包括饱和链烷烃、芳香烃、醇类。当然,表面活性剂不同,合成过程的作用机理和合成介孔材料的性能可能是有差异的。 3) 合成过程的影响,一般合成过程包括反应时间、温度、溶液的组成、表面活性剂和共溶剂种类、pH值、表面活性剂的萃取条件及煅烧条件等。 比如在碱性溶液中,反应物在进行分段热处理时,介孔材料在壁厚和稳定性不变的

相关文档
最新文档