纹波及其测量

纹波及其测量
纹波及其测量

变频器中直流母线电容的纹波电流计算

變頻器中直流母線電容的紋波電流計算 1 引言 各類電動機是我們發電量的主要消耗設備,而變頻器作為電動機的驅動裝置成為當前“節能減排”的主力設備之一。它一方面可以起到節約能源消耗的作用,另一方面也可以實現對原有生產或處理工藝過程的優化。目前應用最多也最廣的是交-直-交電壓型變頻器,即中間存在直流儲能濾波環節,一般採用大容量電解電容器實現此功能。 使用電解電容器的作用主要有以下幾個[1]: (1)補償以電源頻率兩倍或六倍變化的逆變器所需功率與整流橋輸出功率之差; (2)提供逆變器開關頻率的輸入電流; (3)減小開關頻率的電流諧波進入電網; (4)吸收急停狀態時所有功率開關器件關斷下的電機去磁能量;(5)提供暫態峰值功率; (6)保護逆變器免受電網暫態峰值衝擊。 電解電容器設計選型所需要考慮的主要因素有以下幾個:電容器的電壓、電容器量、電容器的紋波電流、電容器的溫升與散熱、電容器的壽命等等。這些因素對變頻器滿足要求的平均無故障時間(MTBF)十分重要。然而電解電容器的紋波電流的計算如何能明確給出計算依據,這是本文所要解決的問題。

2 直流母線電容紋波電流的計算 紋波電流指的是流過電解電容器的交流電流,它使得電解電容器發熱。紋波電流額定值的確定方法是在額定工作溫度下規定一個允許的溫升值,在此條件下電容器符合規定的使用壽命要求。當工作溫度小於額定溫度時,額定紋波電流可以加大。但過大的紋波電流會大大縮短電容器的耐久性,當紋波電流超過額定值,紋波電流所引起的內部發熱每升高5℃,電容器器的壽命將減少50%。因此當要求電容器器具有長壽命性能時,控制與降低紋波電流尤其重要。 但在實際設計過程中,電解電容器的紋波電流由於受變頻器輸入輸出各物理量變化以及控制方式等的影響很難直接計算得到[2],一般多採用根據實際經驗估算大小,如每μf電容器要求20ma紋波電流之類的經驗值,或者通過電腦模擬來估算[3~6]。 本文根據對變頻器電路拓撲與開關調製方式的分析,並借鑒已有文獻資料,歸納出一個直接的計算電解電容器紋波電流的方法,供大家參考。 圖1 變頻器拓撲示意圖 由圖1可以得到直流母線電容的紋波電流ic=il-i,il和i分別是整流器

电源纹波的产生、危害、测量和抑制

1 引言 对于电子产品来说唯一不可缺少的是电源,但是它除了提供能量外,也带来了纹波、噪声等影响电子产品正常工作的影响。纹波电压对高放、本振、混频、滤波、检波、A/D变换等电路都会产生影响,在设计控制设备、电子仪器、电视、摄像机等电子产品时都要想办法尽量减小纹波。为此就要了解纹波、知道它是如何产生的、如何测量以及抑制方法。 2 电源纹波 纹波是附着于直流电平之上的包含周期性与随机性成分的杂波信号,指在额定输出电压、电流的情况下,输出电压中的交流电压的峰值。狭义上的纹波电压,是指输出直流电压中含有的工频交流成分。 纹波用示波器可以看到,在直流电压上下轻微波动,就像水平面上波动的水纹一样,所以被称为纹波(见图1)。 图1 RIGOL示波器DS1302观察的纹波信号波形 2.1 电源纹波产生 我们通常在产品中用的电源主要有线性电源和开关电源二大类,输出的直流电压是一个固定值,由交流电压经整流、滤波、稳压后得到。由于滤波不干净,直流电压中含有交流成分,这就产生了纹波。纹波是一种复杂的杂波信号,它是围绕输出直流电压上下来回波动的周期性信号,但周期和振幅不是定值,随时间而变,不同电源的纹波波形不一样。 产生电源纹波的因素有许多,即使你用电池供电也会因负载的波动而产生波纹。 线性电源

由于我国供电频率是50Hz,所以它的纹波主要来自工频50Hz变压器,纹波电压的频率常常是50nHz,n取自然数,大小取决于整流电路的类型。对于半波整流,是1;对于全波整流,是2;对于三相全波整流,是6,即300Hz。所以这种电源的输出端纹波主要是50HZ 或它的整数倍,幅值小,较易滤除,通常纹波可做到几mV。 如假定整流桥输出负载电流IL,负载电压VL,整流桥输人交流电压幅值Vm及其输人交流电压频率f,则其输出的纹波电压由表1各式计算。 表1 整流纹波电压 采用功率匹配法或等效电流源法计算纹波电压,一般表示为: △U=ILsin2wt/(2wC) (1) 从式(1)中可以看出,纹波频率为输人频率的两倍,其幅值正比于变换器的输出电流,反比于输人电压频率和平滑电容的大小。 开关电源 产生的纹波比较复杂、很难滤除且幅值较大。主要来源于五个方面:除低频纹波外还有高频纹波、共模噪声、开关器件产生的噪声和调节控制环路引起的纹波噪声。一般开关电源的纹波比线性电源的纹波要大,频率要高。 ①高频纹波。高频纹波来源于开关变换电路。开关电源的开关管在导通和截止的时候,都会有一个上升和下降时间,这时候在电路中就会出现一个与开关上升与下降时间的频率相同或者奇数倍频的噪声,一般为几十MHz。同样二极管在反向恢复瞬间,其等效电路为电阻电容和电感的串联,会引起谐振,产生的噪声频率也为几十MHz。还有高频变压器的漏感也会产生高频干扰。这些噪声一般叫做高频纹波噪声,幅值通常要比纹波大得多。

如何正确地测试纹波电压

如何正确地测试纹波电压 纹波电压在产品中是一项很重要的参数,过大的纹波电压不仅会直接影响音频电路的信噪比,甚至引起电路的误动作。在实际做设计调试和测试时,我们发现很多同事并不知道如何去测试纹波,因此收集了一些网上资料结合实际经验总结出这篇文章,借此抛砖引玉。 由于目前产品中大量应用开关电源和DC-DC等电路进行供电和电压转化,此类设计由于应用了开关技术使供电的效率有了本质上的提高,大大减小了功率耗散;但同时也增加了输出的交流成分,即我们所说的纹波和噪声(Ripple & Noise)。 一、 纹波的概念: 纹波就是一个直流电压中的交流成分。直流电压本来应该是一个固定的值, 但是很多时候它是通过交流电压整流、滤波后得来的,由于滤波不干净,就会有剩余的交流成分,即便如此,就是用电池供电也因负载的波动而产生波纹。事实上,即便是最好的基准电压源器件,其输出电压也是有波纹的。 纹波应是AC和开关频率的整倍数,用傅里叶级数展开应该是mf越高,Am越小。杂噪应该是不规则的离散波,是由非线性器件对I、V互相反复调制,在负载、输入的AC变化、温度变化都使杂噪变化,其频带可能有数十MHz到1GHz,主要以辐射的形式存在。杂噪是一种常用的通俗说法。其共性就是具有随机性。但必须注意,噪声的分布一般呈现高斯分布,即白噪声,而纹波则不是。 输出纹波和输出电流和输出电压都有关系,主要是与电流的关系。 通常输出纹波近似等于输出电流乘上输出滤波电容的ESR值。所以并不是滤波电容的容量越大输出纹波越小,而应该是滤波电容的ESR值越小输出纹波越小。 纹波是出现在输出端子间的一种与输入频率和开关频率同步的成分,用峰-峰(peak to peak)值表示,一般在输出电压的0.5%以下;噪声是出现在输出端子间的纹波以外的一种高频成分,也用峰-峰(peak to peak)值表示,一般在输出电压的1%左右。纹波噪声是二者的合成,用峰-峰(peak to peak)值表示,一般在输出电压的2%以下。 通常我们所说的纹波噪声是对电压信号而言。 二、 纹波噪声的成分分析: 测试纹波噪声,我们需要先对纹波噪声信号的成分进行区分。 如上图所示,纹波噪声可分为如下四个部分:

变频器直流母线电容纹波电流计算方法

变频器直流母线电容纹波电流计算方法 各类电动机是我们发电量的主要消耗设备,而变频器作为电动机的驱动装置成为当前“节能减排”的主力设备之一。它一方面可以起到节约能源消耗的作用,另一方面也可以实现对原有生产或处理工艺过程的优化。目前应用最多也最广的是交-直-交电压型变频器,即中间存在直流储能滤波环节,一般采用大容量电解电容器实现此功能。 使用电解电容器的作用主要有以下几个: (1)补偿以电源频率两倍或六倍变化的逆变器所需功率与整流桥输出功率之差; (2)提供逆变器开关频率的输入电流; (3)减小开关频率的电流谐波进入电网; (4)吸收急停状态时所有功率开关器件关断下的电机去磁能量; (5)提供瞬时峰值功率; (6)保护逆变器免受电网瞬时峰值冲击。 电解电容器设计选型所需要考虑的主要因素有以下几个:电容器的电压、电容器量、电容器的纹波电流、电容器的温升与散热、电容器的寿命等等。这些因素对变频器满足要求的平均无故障时间(mtbf)十分重要。然而电解电容器的纹波电流的计算如何能明确给出计算依据,这是本文所要解决的问题。 直流母线电容纹波电流的计算 纹波电流指的是流过电解电容器的交流电流,它使得电解电容器发热。纹波电流额定值的确定方法是在额定工作温度下规定一个允许的温升值,在此条件下电容器符合规定的使用寿命要求。当工作温度小于额定温度时,额定纹波电流可以加大。但过大的纹波电流会大大缩短电容器的耐久性,当纹波电流超过额定值,纹波电流所引起的内部发热每升高5℃,电容器器的寿命将减少50%。因此当要求电容器器具有长寿命性能时,控制与降低纹波电流尤其重要。 但在实际设计过程中,电解电容器的纹波电流由于受变频器输入输出各物理量变化以及控制方式等的影响很难直接计算得到,一般多采用根据实际经验估算大小,如每μf电容器要求20ma纹波电流之类的经验值,或者通过计算机仿真来估算[3~6]。 本文根据对变频器电路拓扑与开关调制方式的分析,并借鉴已有文献资料,归纳出一个直接的计算电解电容器纹波电流的方法,供大家参考。

关于纹波测试的相关问题

关于纹波测试的相关问题 对于纹波测试是一个老生长谈的问题.个人总结如下: 1, 电源输出纹波的分解为,首先是工频和整流频率50HZ,100HZ及期整数倍的谐波部分;其次是开关纹波部分,即PWM产生的开关纹波,一般在30KHZ~500KHZ,根据开关频率不同而不同;第三是噪声和杂讯电压信号; 对于AC/DC的测试,通常会采用加电解电容和电阻滤波47UF,1Koum等不同的方法. 具体操作和原理如下: 一所谓纹波电压,是指输出电压中50赫或100赫的交流分量,通常用有效值或峰值表示。经过稳压作用,可以使整流滤波后的纹波电压大大降低,降低的倍数反比于稳压系数S 。 问题:如何测量电源纹波? 回答:可以先用示波器将整个波形捕获,然后将关心的纹波部分放大来观察和测量(自动测量或光标测量均可),同时还要利用示波器的F FT功能从频域进行分析。 1.最大纹波电压。 在额定输出电压和负载电流下,输出电压的纹波(包括噪声)的绝对值的大小,通常以峰峰值或有效值表示。 2.纹波系数Y(%)。 在额定负载电流下,输出纹波电压的有效值Urms与输出直流电压Uo之比,既y=Umrs/Uo x100% 3.纹波电压抑制比。 在规定的纹波频率(例如50HZ)下,输出电压中的纹波电压Ui~与输出电压中的纹波电压Uo~之比,即: 纹波电压抑制比=Ui~/Uo~ 。 这里声明一下:噪声不同于纹波。纹波是出现在输出端子间的一种与输入频率和开关频率同步的成分,用峰-峰(peak to peak) 值表示,一般在输出电压的0.5%以下;噪声是出现在输出端子间的纹波以外的一种高频成分,也用峰-峰(peak to peak)值 表示,一般在输出电压的1%左右。纹波噪声是二者的合成,用峰-峰(peak to peak)值表示,一般在输出电压的2%以下。 二.纹波噪声(涟波杂讯电压)(Ripple & Noise)%,mv 2.1定义: 直流输出电压上重叠之交流电压成份最大值(P-P)或有效值。 2.2测试条件:

输出纹波噪音的几种判定

输出纹波噪音的几种判定 ·中国绿网· 一般根据电源的输出纹波及噪音,可以判定一部分电源存在的故障。当然电源会有很多的情况会影响到开关电源的输出纹波及噪音。如变压器的绕制工艺、磁材等,而下面我所列的也并非按照相应的解决方法就可以消除的。“人非圣贤,孰能无过”,这里我也只是给大家提供一个思路而已! 开关管在导通及关断时的尖峰,正常波形(当然要满足电源规格要求为准) 1、辅助电源或基准电压稳定性不够所致 解决方法:在相关部位并大容量的电容。 2、变压器产生的漏磁场对采样形成干扰而引起自激,导致出现正弦振荡 解决方法:在变压器外层加一铜皮,适当加以屏蔽,且屏蔽层要接地。 改进变压器绕制工艺,以减小对采样的干扰。 3、输出如果存在低通滤波器的,可能是其电感量偏大而引起自激振荡。 解决方法:对于输出低通滤波器的情况则减小电感量,同时加大输出电容量。 重置光耦上的电压取样点。 4、电源补偿网络 解决方法:改进补偿网络,增加相应的带宽。

幅值变化随机、无规则。 1、采样电阻上所加电压过高 解决方法:采样电阻的阻值加大,比例不变,且放置位在靠近输出的同时亦靠近电容,改进采样。 2、印制板绝缘不良 解决方法:更改板材或重新改板。 3、电源补偿网络 解决方法:改进补偿网络,增加相应的带宽。 幅值过高 1、输出滤波电容容量太小,或ESR过高 解决方法:增大滤波电容容量。 选用低等效电阻、高频特性好的电容。 采用多个电容并联。 2、输入滤波电容过小 解决方法:增大滤波电容容量。 3、输出储能电感电感量太小(不针对反激式) 解决方法:增大滤波电容容量。

4、电源补偿网络 解决方法:改进补偿网络,增加相应的带宽。 可能电源板布线不合理,引起交叉干扰。 解决方法:调整布线或在相应的干扰源处加电容以消除干扰。

最有效的开关电源纹波计算方法

对滤波效果而言,电容的ESL和ESR参数都很重要,电感会阻止电流的突变,电阻则限制了电流的变化率,这些影响对电容的充放电显然都不利。优质的电容在设计及制造时都采取了必要的手段来降低ESL和ESR,故而横向比较起来,同样的容量滤波效果却不同。

漏电流小,ESR小,一般都是认为要选择低ESR的系列,不过也与负载有关,负载越大,ESR不变时,纹波电流变大,纹波电压也变大。我们从公式上来看看,dV=C*di*dt;dv就是纹波,di是电感上电流的值,dt是持续的时间。一般的开关电源书籍都会讲到怎么算纹波,大题分解为:滤波电容对电压的积分+滤波电容的ESR+滤波电容的ESL+noise,如下图: 一般对纹波的计算通常是估算 有关开关电源纹波的计算,原则上比较复杂,要将输入的矩形波进行傅立叶展开成各次谐波的级数,计算每个谐波的衰减,再求和。最后的结果不仅与滤波电感、滤波电容有关,而且与负载电阻有关。当然,计算时是将滤波电感和滤波电容看成理想元件,若考虑电感的直流电阻以及电容的ESR,那就更复杂了。所以,通常都是估算,再留出一定余量,以满足设计要求。对样机需要实际测试,若不能满足设计要求,则需要更改滤波元件参数。 以Buck电路为例,电感中电流连续和断续,开关电源的传递函数完全不同。电流连续时环路稳定,电流断续时未必稳定。而电感中电流是否连续,除与电感量等有关外,还与负载有关。更严重的是,电流是否连续还与占空比有关,而占空比是由反馈电路控制的。不仅Buck,其它如Boost以及由基本拓扑衍生出来的正激、反激等也是一样。 若要求所有可能产生的工作状态下都稳定,通常要加假负载以保证Buck电路电感电流总是连续(对Buck/Boost或反激则保证不会在连续断续之间转变),或者把反馈环路时间常数设计得非常大(这会在很大程度上降低开关电源的响应速度)。对输出电压可调整的开关电源(例如实验室用的0~30V输出电源),环路稳定的难度更大。对这类电源,往往要在开关电源之后再加一级线性调整。 电解电容的选择很重要 在输出端采用高频性能好、ESR低的电容,高频下ESR阻抗低,允许纹波电流大。可以在高频下使用,如采用普通的铝电解电容作输出电容,无法在高频(100kHz以上的频率)下工作,即使电容量也无效,因为超过10kHz时,它已成电感特性了。

关于纹波系数的确定和计算

关于纹波系数的确定和计算 工频50Hz全波整流 全波整流输出为100Hz脉动直流,此时直流电压平均值为交流电压的0.9倍。也就是说交流100V 全波整流输出电压为90V。此时直流脉动系数为0.67,也就是说在这90V直流中交流电压分量为 60.3V。此时纹波系数为: 0.707X0.67=0.47=47% 【注:纹波的表示方法可以用有效值或峰值来表示;这里用的是有效值】 1:C型滤波: 在全波整流电路后面增加一个电容就构成了C型滤波。此时输出直流电压平均值上升为交流电压的1.2倍。纹波系数大小与滤波电容、纹波频率、负载电阻成反比。 纹波系数r=0。072/(f/C*RL) (C=F)r=1440/(C*RL) (C=uF) (新建)例:RL=2700欧f=50Hz C=40uF r=0。072/50/(0。00004x2700)=0。013% 2:LC型滤波: 整流器与电容之间增加一个电感就构成LC型滤波。这是利用电感对交流有感抗的特性。由于电感 有抑制电流突变特性使滤波电容两端的电压不能充到峰值。因此LC型滤波输出直流电压平均值小于交流电压的1.2倍,大约0.95。相位差接近180度。 电感临界值=RL/942 LC型滤波电路滤波系数=0.4*L*C LC型纹波系数r=0.47 / 滤波系数r=1。175/L*C (C=uF) 假设负载电阻RL=4700欧,4700/942约等于5.11H是临界电感量。 L常规应用时取该值大于或等于2RL/942 例:电流I=170mA,DC=420V,根据U=IR此时电路负载电阻R=U/I=2470欧。 电感临界值=2470/942约等于2.62H。电感取2XL=4.940H或以上 设L=5H,C=40uF,滤波系数为0.4*5*40=80。 LC型滤波电路纹波系数r=0.47/ 滤波系数=0.47/80=0。005875=0。5875% 或直接用r=1。175/LC=1。175/(5X80)=0。005875=0。5875% 3:CLC型滤波: CLC型滤波是在LC型滤波基础上改良的兀型滤波 CLC滤波系数:130*L*C1*C2*RL/1000000 CLC纹波系数r=0.47 / 滤波系数r=3615/(C1*L*C1*RL)(C=uF) C滤波 LC滤波 CLC滤波

DCDC Buck Converter输入电容纹波电流有效值

输入电容纹波电流有效值 相信很多人都知道Buck Converter 电路中输入电容纹波电流有效值,在连续工作模式下可以用一下两个公式来计算: Icin.rms =Io × ()D D ×?1 或Icin.rms =Io × 2 )(Vin Vo Vo Vin ? 然而,相信也有很多人并不一定知道上面的计算公式是如何推导出来的,下文将完成这一过程。 众所周知,在Buck Converter 电路中Q1的电流(Iq1)波形基本如右图所示(或见第二页Q1电流波形):0~DTs 期间为一半梯形,DTs ~Ts 期间为零。当0~DT 期间Iq1⊿足够小时,则Iq1波形为近似为一个高为Io 、宽为DTs 的矩形,则有: ?? ?=<<<<)() (01DTs t o Io Ts t DTs Iq 而对于Iin ,只要Cin 容量足够大,则在整个周期中是基本恒定的【见输入电流(Iin)波形】,Iin 值由下式得出: Iin =(V o/Vin)*Io =DIo 由KCL 得:Iin+Icin =Iq1,这里定义Icin 流出电容为正向。所以在整个周期中有: 输入电流(Iin)波形: Icin =Iq1-Iin 即: { )0() (DTs t DIo Io T t DTs DIo Icin <

的,所以有Icin =-DIo 根据有效值的定义,不难得出输入电容的纹波电流有效值Icin.rms 的计算公式: ])()([1.022 ∫∫ ?+?=DTs Ts DTs dt DIo dt DIo Io Ts rms Icin )]()()[(1 .22DTs Ts DIo DTs DIo Io Ts rms Icin ?×+×?= 即: 又因为有D D Io rms Icin ×?=)1(.Vin Vo D =,所以得: 2 )(.Vin Vo Vo Vin Io rms Icin ?= Q1电流(Iq1)波形:

纹波测试方法

纹波测试的注意事项 纹波是叠加在直流信号上的交流干扰信号,是电源测试中的一个很重要的标准。尤其是作特殊用途的电源,如激光器电源,纹波则是其致命要害之一。所以,电源纹波的测试就显得极为重要。 电源纹波的测量方法大致分为两种:一种是电压信号测量法;另一钟是电流信号测量法。一般对于恒压源或纹波性能要求不大的恒流源,都可以用电压信号测量法。而对于纹波性能要求高的恒流源则最好用电流信号测量法。 1 )、电压信号测量纹波是指,用示波器测量叠加在直流电压信号上的交流纹波电压信号。对于恒压源,测试可以直接用电压探头测量输出到负载上的电压信号。 2 )、对于恒流源的测试,则一般是通过使用电压探头,测量采样电阻两端的电压波形。整个测试过程中,示波器的设置是能否采样到真实信号的关键。 电源纹波噪声测试方法 我们今天的电子电路(比如手机、服务器等领域)的切换速度、信号摆率比以前更高,同时芯片的封装和信号摆幅却越来越小,对噪声更加敏感。因此,今天的电路设计者们比以前会更关心电源噪声的影响。实时示波器是用来进行电源噪声测量的一种常用工具,但是如果使用方法不对可能会带来完全错误的测量结果,笔者在和用户交流过程中发现很多用户的测试方法不尽正确,所以把电源纹波噪声测试中需要注意的一些问题做一下总结,供大家参考。 由于电源噪声带宽很宽,所以很多人会选择示波器做电源噪声测量。但是不能忽略的是,实时宽带数字示波器以及其探头都有其固有的噪声。如果要测量的噪声与示波器和探头的噪声在相同数量级,那么要进行精确测量将是非常困难的一件事情。 示波器的主要噪声来源于2个方面:示波器本身的噪声和探头的噪声。所有的实时示波器都实用衰减器来调整垂直量程。设置衰减以后示波器本身的噪声会被放大。比如,当不用衰减器时,示波器的基本量程是5mV/ 格,假设此时示波器此时的底噪声是500uVRMS。当把量程改成50mV/ 格时,示

纹波的测试

纹波是叠加在直流信号上的交流干扰信号,是电源测试中的一个很重要的标准。尤其是作特殊用途的电源,如激光器电源,纹波则是其致命要害之一。所以,电源纹波的测试就显得极为重要。 电源纹波的测量方法大致分为两种:一种是电压信号测量法;另一钟是电流信号测量法。 一般对于恒压源或纹波性能要求不大的恒流源,都可以用电压信号测量法。而对于纹波性能要求高的恒流源则最好用电流信号测量法。 电压信号测量纹波是指,用示波器测量叠加在直流电压信号上的交流纹波电压信号。对于恒压源,测试可以直接用电压探头测量输出到负载上的电压信号。对于恒流源的测试,则一般是通过使用电压探头,测量采样电阻两端的电压波形。整个测试过程中,示波器的设置是能否采样到真实信号的关键。 所用的仪器是:配有电压测量探头的TDS1012B示波器。测量之前需要进行如下设置。 1.通道设置: 耦合:即通道耦合方式的选择。纹波是叠加在直流信号上的交流信号,所以,我们要测试纹波信号就可以去掉直流信号,直接测量所叠加的交流信号就好。 宽带限制:关 探头:首先选用电压探头的方式。然后选择探头的衰减比例。必须与实际所用探头的衰减比例保持一致,这样从示波器所读取数才是真实的数据。比如,所用电压探头放在×10档,则此时,这里的探头的选项也必须设置为×10档。 2.触发设置: 类型:边沿 信源:实际所选择的通道,如,准备用CH1通道进行测试,则此处就应该选择为CH1。 斜率:上升。 触发方式:如果是在实时地观察纹波信号,则选择‘自动’触发。示波器会自动跟随实际所测信号的变化,并显示。这个时候,你也可通过设置测量按钮,实时地显示你所需要的测量的数值。但是,如果你想要捕捉某次测量时的信号波形,则需要将触发方式设置为‘正常’触发。此时,还需要设置触发电平的大小。一般当你知道你所测量的信号峰值时,将触发电平设置为所测信号峰值的1/3处。如果不知道,则触发电平可以设置的稍微小一些。 耦合:直流或交流…?(似乎没什么区别) 3.采样长度(秒/格): 采样长度的设置决定能否采样到所需要的数据。当所设置的采样长度过大时,就会漏掉实际信号中的高频成分;当所设置的采样长度过小时,就只能看到所测实际信号的局部,同样无法得到真实的实际信号。所以,在实际测量时,需来回旋转按钮,仔细观察,直到所显示波形是真实的完整的波形。 4.采样方式:

关于开关电源输出纹波问题

关于开关电源输出纹波问题 开关电源输出纹波主要来源于五个方面:输入低频纹波、高频纹波、寄生参数引起的共模纹波噪声、功率器件开关过程中产生的超高频谐振噪声和闭环调节控制引起的纹波噪声 1、低频纹波是与输出电路的滤波电容容量相关.电容的容量不可能无限制地增加,导致输出低频纹 波的残留.交流纹波经DC/DC变换器衰减后,在开关电源输出端表现为低频噪声,其大小由DC/DC 变换器的变比和控制系统的增益决定.电流型控制DC / DC变换器的纹波抑制比电压型稍有提高.但其输出端的低频交流纹波仍较大.若要实现开关电源的低纹波输出,则必须对低频电源纹波采取滤波措施.可采用前级预稳压和增大DC / DC变换器闭环增益来消除. 低频纹波抑制的几种常用的方法: a、加大输出低频滤波的电感,电容参数,使低频纹波降低到所需的指标. b、采用前馈控制方法,降低低频纹波分量. 2、高频纹波噪声来源于高频功率开关变换电路,在电路中,通过功率器件对输入直流电压进行高频 开关变换而后整流滤波再实现稳压输出的,在其输出端含有与开关工作频率相同频率的高频纹波,其对外电路的影响大小主要和开关电源的变换频率、输出滤波器的结构和参数有关,设计中尽量提高功率变换器的工作频率,可以减少对高频开关纹波的滤波要求. 高频纹波抑制的目的是给高频纹波提供通路,常用的方法有以下几种: a、提高开关电源工作频率,以提高高频纹波频率,有利于抑制输出高频纹波 b、加大输出高频滤波器,可以抑制输出高频纹波. C、采用多级滤波. 3、由于功率器件与散热器底板和变压器原、副边之间存在寄生电容,导线存在寄生电感,因此当矩 形波电压作用于功率器件时,开关电源的输出端因此会产生共模纹波噪声.减小与控制功率器件、变压器与机壳地之间的寄生电容,并在输出侧加共模抑制电感及电容,可减小输出的共模纹波噪声. 减小输出共模纹波噪声的常用方法: a、输出采用专门设计的EMI滤波器. b、降低开关毛刺幅度. 4、超高频谐振噪声主要来源于高频整流二极管反向恢复时二极管结电容、功率器件开关时功率器 件结电容与线路寄生电感的谐振,频率一般为1-10MHz,通过选用软恢复特性二极管、结电容小的开关管和减少布线长度等措施可以减少超高频谐振噪声. 开关电源都需对输出电压进行闭环控制,调节器参数设计的不适当也会引起纹波.当输出端波动时通过反馈网络进入调节器回路,可能导致调节器的自激振荡,引起附加纹波.此纹波电压一般没有固定的频率. 在开关直流电源中,往往因调节器参数选择不适当会引起输出纹波的增大. 这部分纹波可通过以下方法进行抑制: a、在调节器输出增加对地的补偿网络,调节器的补偿可抑制调节器自激引起的纹波增大. b、合理选择闭环调节器的开环放大倍数和闭环调节器的参数,开环放大倍数过大有时会引起调节 器的振荡或自激,使输出纹彼含量增加,过小的开环放大倍数使输出电压稳定性变差及纹波含量增加. 所以调节器的开环放大倍数及闭环调节器的参数要合理选取,调试中要根据负载状况进行调节. c、在反馈通道中不增加纯滞后滤波环节.使延时滞后降到最小.以增加闭环调节的快速性和 及时性,对抑制输出电压纹波是有益的.

纹波电容计算

本文主要是通过纹波电流的计算,然后通过电容的热等效模型来计算电容中心点的温度,在得到中心点温度后,也就是得到电容的工作点最高的问题后,通过电容的寿命估算公式来估算电容的设计寿命。 首先,电容等效成电容、电阻( ESR )和电感( ESL )的串联。关于此请参考其他资料,接下来演示电容寿命计算步骤: 1 、纹波电流计算,纹波电流计算是得到电容功率损耗的一个重要参数,在设计电容时候,我们必须首先确定下来电流的纹波大小,这和设计规格和具体拓扑结构相关。铝电解电容常被用在整流模块后以平稳电压,我们在选择好具体拓扑结构后,根据规格要求得到最小的电容值: 控制某一纹波电压所需的电容容值为: P: 负载功率(单位 W ) 注意:这是应用所需要的最小电容容值。此外,电容容值有误差,在工作寿命期内,容值会逐步降低,随着温度降低,容值也会降低。 必须知道主线及负载侧的纹波电流数据。可以首先计算出电容的充电时间。 f main是电网电流的频率。 电容的放电时间则为: 充电电流的峰值为 dU 是纹波电压( U max – U min)

则充电电流有效值: 接下来计算放电电流峰值和有效值。 最后计算得出:整流模块后纹波电流: 这个有效值只是纹波电流的计算式,在复杂的市电输入的情况下,我们必须考虑各阶谐波的纹波有效值,也就是说要通过各阶谐波的有效值叠加,才是最后得到的电容纹波寿命计算的纹波,也就是需要将电流傅立叶分解。 2 、计算功率损耗 在得到纹波电流后,我们可以计算各阶电流的纹波损耗,然后将各阶纹波求和: 3 、计算电容中心点温度 得到功率损耗后,我们由电容的热等效模型(参考其他资料)计算中心点温度: 其中: Th 电容为电容中心点温度 , 为电容最高温度,其值直接影响到电容寿命,是电容寿命计算公式中的重要参数。 Rth 为电容的热阻,其值和风速等有关 ,Ta 表示电容表面温度。 P Loss 为纹波电流的中损耗。 4 、计算电容寿命 得到电解电容中心点最高温度后,我们可以计算电容的寿命,各个电容生产厂商会有不同的电容寿命的计算参数,也有不同的电容寿命修正值,现我们介绍阿列纽斯理论来计算电容寿命,其公式是说,电容工作没下降 10 度,其寿命增加一倍,反过来也就是电容温度升高 10 度,电容寿命减小一倍:

开关电源输出纹波测试方法

模块电源的基本参数及测试方法 HOPLITE 2005-4-1 电源的测试 以下主要介绍一些对电源进行性能测试的方法。 测试采用标准的开尔文四端测试法。图21为电源输出电压的开尔文四端测量。测量是通过另外一对不同的接触端点和连线来进行的。这对端点上没有负载电流通过,否则会产生毫伏级的测量误差。图21为通用的测试设置。 1. 输出电压精度 在标称的输入电压和额定负载下,用高精度的直流电压表来测试输出电压。测量值与标称值之间的差值以百分比来表示就是输出电压精度,其计算公式为: 其中U0为标称值,U为测量值。 2. 电压调整率 随着输入电压的变化,输出电压会出现一定的变化。输出电压随着输入电压变化的百分比就是电压调整率。在25℃及标称的输入电压和额定负载下,测量: 标称输入电压下的输出电压Un0 高输入电压下的输出电压Uh0 低输入电压下的输出电压U10 取最大偏差电压,即取|Uh0-Un0|和|U10-Un0|中的最大值与标称输出电压下的输入电压Un0相比,以百分比来表示,就是电压调整率。 3. 负载调整率 随着电源负载的变化,输出电压也会出现一定的变化。输出电压随着负载变化的百分比就是负载调整率。 在25℃及标称的输入电压下测量: 额定负载下的输出电压Un0 空载或最小负载下的输出电压Uml0 两次测量值的差值即|Un0-Uml0|与Un0相比,以百分比来表示,就是负载调整率。 4. 温度系数 在标称输入电压和额定负载下,输出电压随环境温度的变化率称之为温度系数。一般来说,温度升高输出电压下降。 把电源放在温度控制箱内,在标称输入电压和额定负载下,测量: 25℃环境温度下的输出电压Un0 升到最高工作温度并稳定15~30分后,测量输出电压Uht0 降到最低工作温度并稳定15~30分后,测量输出电压U1t0 分别计算出高温下的温度系数和低温下的温度系数,取两者中教大的数值 作为温度系数。 高温下的温度系数 低温下的温度系数 5. 输出纹波和噪音 纹波和杂音是叠加在直流输出电压上的交流成分,对纹波和噪音的测量在额定负载和常温下进行。对于开关型的DC/DC变换器而言,输出纹波电压为一系统带有高频分量的小脉冲,因此通常测量峰-峰值,而不是有效值(RMS)。其测量值用毫伏峰-峰值(mVp-p)表示。例如当一个DC/DC变换器的纹波峰-峰值为50mV时,其RMS值很低,仅为5mV,但是否能用于某一系统,必须要进一步考虑才行。 因为所测量的纹波中含有的高频分量,必须使用特殊的测量技术,才能获得正确的测量结果。为了测出纹波尖峰中的所有高频谐波,一般要用20MHz带宽的示波器。 其次在进行纹波测量时,必须非常注意,防止将错误信号引入测试设备中。测量时必须去掉探头地线夹,因为在一个高频辐射场中,地线夹会象一个天线一样接受噪音,干扰测量结果。用带有接地环的探头,采用图22所示的测量方法来消除干扰。

电源纹波分析及测试方法

电源纹波分析及测试方法 一、什么叫纹波 纹波(ripple)的定义是指在直流电压或电流中,叠加在直流稳定量上的交流分量。 它主要有以下害处: 1.1.容易在用电器上产生谐波,而谐波会产生更多的危害; 1.2.降低了电源的效率; 1.3.较强的纹波会造成浪涌电压或电流的产生,导致烧毁用电器; 1.4.会干扰数字电路的逻辑关系,影响其正常工作; 1.5.会带来噪音干扰,使图像设备、音响设备不能正常工作 二、纹波、纹波系数的表示方法 可以用有效值或峰值来表示,或者用绝对量、相对量来表示; 单位通常为:mV 例如:

一个电源工作在稳压状态,其输出为12V5A,测得纹波的有效值为10mV,这10mV就是纹波的绝对量,而相对量,即纹波系数=纹波电压/输出电压=10mv/12V=0.12%。 三、纹波的测试方法 3.1.以20M示波器带宽为限制标准,电压设为PK-PK(也有测有效值的),去除示波器控头上的夹子与地线(因为这个本身的夹子与地线会形成环路,像一个天线接收杂讯,引入一些不必要的杂讯),使用接地环(不使用接地环也可以,不过要考虑其产生的误差),在探头上并联一个10UF电解电容与一个0.1UF瓷片电容,用示波器的探针直接进行测试;如果示波器探头不是直接接触输出点,应该用双绞线,或者50Ω同轴电缆方式测量。 四、开关电源纹波的主要分类 开关电源输出纹波主要来源于五个方面: 4.1.输入低频纹波; 4.2.高频纹波; 4.3.寄生参数引起的共模纹波噪声; 4.4.功率器件开关过程中产生的超高频谐振噪声; 4.5.闭环调节控制引起的纹波噪声。

五、电源纹波测试 纹波是叠加在直流信号上的交流干扰信号,是电源测试中的一个很重要的标准。尤其是作特殊用途的电源,如激光器电源,纹波则是其致命要害之一。所以,电源纹波的测试就显得极为重要。 电源纹波的测量方法大致分为两种:一种是电压信号测量法;另一钟是电流信号测量法。 一般对于恒压源或纹波性能要求不大的恒流源,都可以用电压信号测量法。而对于纹波性能要求高的恒流源则最好用电流信号测量法。 电压信号测量纹波是指,用示波器测量叠加在直流电压信号上的交流纹波电压信号。对于恒压源,测试可以直接用电压探头测量输出到负载上的电压信号。对于恒流源的测试,则一般是通过使用电压探头,测量采样电阻两端的电压波形。整个测试过程中,示波器的设置是能否采样到真实信号的关键。 所用的仪器是:配有电压测量探头的TDS1012B示波器。 测量之前需要进行如下设置。 1.通道设置:

LED驱动器输出纹波电压的计算-正式

导致LED频闪的LED驱动器输出电压纹波的计算 西安电子科技大学王水平王镭 西北工业大学胡民浩 陕西唐华能源有限公司高辉徐万俊乔晓涛 【摘要】本文对中小功率LED驱动器电路进行了理论上的等效,遵循电感两端的电流不能突变和电容两端的电压不能突变的原则,从电容充放电电流的观点出发推导出了中小功率LED驱动器输出电压纹波的计算公式。通过计算公式从理论上找出了减小导致LED频闪的LED 驱动器输出电压纹波的有效方法,为解决LED频闪问题奠定了理论基础。 关键词:LED频闪,LED驱动器,电压纹波,PWM控制器,DC-DC变换器 Calculation of LED driver output voltage ripple in led strobe Xi'an University of Electronic Science and Technology Wang shuiping Wang lei XiDian University 【Abstract】 In this paper, medium-power LED driver circuit equivalent in theoretically , followed the principle that current of across inductor and voltage across the capacitor can not be mutated ,viewpoint which charge and discharge current from the capacitor deduced medium power LED driver output voltage ripple formula. Though calculation find out reduce LED Strobe in theoretically that LED driver output voltage ripple is an effective way to solve the problem of LED strobe laid a theoretical foundation. Keywords:LED strobe,LED drivers,LED light failure,voltage ripple,PWM controller 1 引言 LED以自己独有的能耗低、寿命长、光效高等优点作为新一代光源将取代传统的白炽灯、荧光灯、HID灯、金卤灯等光源是不可置疑的,但是解决LED频闪、光衰、眩光,以及降低LED的成本等问题一直是LED上游产品和下游产品的研发者们努力攻克的难题。LED上游产品的研发者们通过提高光效、解决散热途径和散热材料的方法已将LED光衰降低到实用化产品的程度,通过二次配光已将LED眩光问题彻底解决。LED频闪问题则是LED下游产品的研发者们应该解决的问题,也就是如何抑制和降低LED驱动器输出电压的纹波。 2 中小功率LED驱动器的等效电路【1】 中小功率LED驱动器不管是隔离式还是非隔离式一般均采用降压式DC/DC变换器电路结构,其等效电路结构如图1所示。电路中的PWM控制与驱动电路均采用对应于降压式DC/DC 变换器的控制与驱动IC来完成,电流/电压取样反馈控制信号处理电路将输出给LED负载的电流和电压信号采样后经过处理输入给PWM控制与驱动IC,从而形成以电流为主,电压为辅的双控制模式反馈环路,使LED负载始终工作在恒功率状态。

纹波电流计算例子

电容器纹波电流有效值的计算 要正确计算纹波电流有效值,理论上应将电容器纹波电流波形进行傅利叶分析,得出各次频率下流过电容的纹波电流值。然后求出各次频率下的电容等效串联电阻ESR。最后根据损耗相等的原则求出总的纹波电流有效值。 图1-1 图1-2 图1-1为某一电路中流过电容100μF /420V的纹波电流波形,图1-2为在某点展开时的高频电流波形,求解该电容的纹波电流有效值。 从图1-1中将高频分量去除可以得出100Hz时的电流波形,如图1-3所示: 图1-3 根据曲线可以将其分为三段来进行积分计算,具体的纹波电流有效值为: 6.068 rms I A = 其中T1=1ms(第一段的维持时间),I1=-2.6A(第一段的起始电流),I rp1=19.825+2.6=22.425A (第一段的脉动电流); T2=1.75ms(第二段的维持时间),I2=19.825A(第二段的起始电流),I rp2=-22.425A(第二段的脉动电流); T3=7.25ms(第三段的维持时间),I1=-2.6A(第三段的起始电流),I rp1=0A(第三段的脉动电流); T=10ms(总周期) 查电容手册可知CD294 400V/470μF电容在120Hz下的ESR为0.22欧。 图1-2为58.8KHz下的纹波电流叠加了一个低频电流,因此只需去除图1-2中的低频直

流分量就可以得到58.8KHz 下的纹波电流波形,如图1-4所示: 图 1-4 计算出有效值 4.863rms I A = 其中T 1=10μs (第一段的维持时间),I 1=4A (第一段的起始电流),I rp 1=0A (第一段的脉动电流) T 2=7μs (第二段的维持时间),I 1=-3.2A (第二段的起始电流),I rp 1=-5A (第二段的脉动电流) T =17μs (总周期) 考虑到在高频情况下,纹波电流波形存在毛刺,因此取有效值电流为5A 。在此频率下ESR 为20.220.1531.2 =Ω,其中1.2为频率系数,可以查电容手册得到。 两种频率下的纹波电流总共产生的损耗为:226.0680.2250.15311.925W ?+?= 根据损耗相等原则将两种频率下的纹波电流值折合成120Hz 时 的电流值7.36A =。 注:理论上计算纹波电流有效值的方法(如上所示)比较繁琐,在工程上可以通过示波器直接读出该波形的有效值,该值与理论计算出来的值相差不多。在本例中示波器读出的纹波电流有效值为6.27A 。

电解电容寿命与纹波电流测试

电解电容寿命纹波电流测试 E-cap Lifetime Test 1. 工作原理/Working principle ★ 当U2为正半周并且数值大于电容两端电压Uc时,二极管D1和D3管导通,D2和D4管截止,电流一路流经负载电阻RL,另一路对电容C充电。当Uc>U2,导致D1和D3管反向偏置而截止,电容通过负载电阻RL放电,Uc按指数规律缓慢下降。 ★ The diode D1&D3 work, D2&D4 cut off, the current flows through the load resistance RL in a loop and charge the capacitor C up when U2 in the positive half circuit and its value exceeding the voltage Uc which is parallel connected in the two terminals of capacitor. When Uc exceeds U2, and causes the diode D1&D3 cut off, the capacitor discharge through the load resistance RL and Uc decline slowly according to the principle of index function. ★ 当U2为负半周幅值变化到恰好大于Uc时,D2和D4因加正向电压变为导通状态,U2再次对C充电,Uc上升到U2的峰值后又开始下降;下降到一定数值时D2和D4变为截止,C对RL放电,Uc按指数规律下降;放电到一定数值时D1和D3变为导通,重复上述过程。 ★ As the same reason , when U2 in the negative half circuit and the amplitude is even changed to exceed Uc ,the diode D2&D4 work due to the positive voltage and U2 charge capacitor C up again. Uc start to decline when it’s voltage rise to the peak value of U2 and to a certain value , the diode D2&D4 cut off , the capacitor C discharge to RL, Uc decline according to the principle of index function again. When the discharge to a certain value, the diode D1&D3 work again and the cycle repeats.

相关文档
最新文档