开关电源设计很全的资料

开关电源设计很全的资料
开关电源设计很全的资料

1目录

1 开关电源的特点与分类 (1)

1.1 线性、开关电源的特点 (1)

1.2 开关电源的电路类型 (1)

1.3 开关电源的工作模式 (4)

1.4 零电压开关(ZVS)和零电流开关(ZCS)方式 (5)

2 开关电源的拓扑结构 (8)

2.1 BUCK变换器的基本原理 (8)

2.2 BOOST变换器的基本原理 (9)

2.3 BUCK/BOOST变换器的基本原理 (10)

2.4 反激变换器的基本原理 (12)

2.5 正激变换器的基本原理 (16)

2.6 推挽式变换器的基本原理 (18)

2.7 电流型半桥变换器的基本原理 (20)

2.7.1 基本原理 (20)

2.7.2 控制要求 (23)

2.8 电压式半桥式变换器 (24)

2.9 全桥式变换器的基本原理 (25)

2.10 半桥LLC谐振变换器的基本原理 (27)

3 变压器的设计 (33)

3.1 变压器的工作原理 (33)

3.2 变压器的模型 (35)

3.3 高频变压器对磁芯材料的要求 (37)

3.4 高频变压器设计考虑的几个问题 (38)

3.5 寄生参数和影响 (39)

3.6 高频变压器设计步骤 (41)

4 高频变压器的绕组 (48)

4.1 Ansys 有限元分析软件 (48)

4.2 通电导线的集肤和邻近效应 (53)

4.3 不同绕组结构对高频变压器电磁参数的影响 (54)

4.4 不同绕组结构高频变压器的设计示例 (58)

5 AC/DC开关电源实例 (63)

5.1 65W 反激开关开关电源 (63)

5.1.1 产品特色 (64)

5.1.2 典型应用及引脚功能描述 (65)

5.1.3 TOP264-271 功能描述 (66)

5.1.4 65 W通用输入适配器电源 (70)

5.2 24W 反激开关电源的设计 (74)

5.2.1 电路原理图 (74)

5.2.2 电路描述 (76)

5.2.3 变压器规格 (78)

5.3 带PFC的半桥谐振LLC开关电源 (80)

5.3.1 PFC电路 (80)

5.3.2 LLC部分 (86)

5.4 120W/19V双开关反激式开关电源 (116)

5.4.1 FAN6920介绍 (116)

5.4.2 功能说明 (119)

5.4.3 电路图 (140)

6 DC/DC开关电源实例 (141)

6.1 隔离式正激DC-DC变换器 (141)

6.1.1 基本性能和典型应用 (142)

6.1.2 应用信息 (144)

6.1.3 控制信息 (160)

6.2 30W正激DC/DC开关电源 (169)

6.2.1 产品特色 (170)

6.2.2 功能描述 (171)

6.2.3 引脚功能描述 (172)

6.2.4 DPA-Switch产品系列功能描述 (173)

6.2.5 正激30 W开关电源 (176)

6.3 6-42V输入、5V输出的DC/DC变换器 (178)

6.3.1 LM25574芯片介绍 (178)

6.3.2 工作描述 (182)

6.3.3 应用信息 (191)

6.4 500W DC/DC变换器 (203)

6.4.1 L6599简介 (203)

6.4.2 全桥LLC 变换器的工作原理分析 (204)

6.4.3 LLC 全桥谐振变换器主电路参数设计 (208)

6.4.4 LLC 全桥谐振变换器控制电路参数设计 (209)

6.5 120W/24V LLC谐振变换器 (211)

6.5.1 引言 (211)

6.5.2 工作原理和基波近似 (213)

6.5.3 设计流程 (224)

7 LED电源实例 (233)

7.1 50W 直流小功率恒流源 (233)

7.1.1 功能介绍 (233)

7.1.2 典型电路和实际电路 (235)

7.2 交流大功率恒流源 (245)

7.2.1 芯片特性和引脚功能 (245)

7.2.2 充电电流控制的工作原理 (247)

7.2.3 混合控制(PWM+PFM) (252)

7.2.4 电流检测 (253)

7.2.5 软启动和输出电压调节 (258)

7.2.6 功能设置 (260)

7.3 交流18W LED恒流源驱动 (276)

7.3.1 电源管理芯片DU8633 (278)

7.3.2 电路参数设计 (279)

7.4 70W LED 照明灯电源 (285)

7.4.1 BCM 升压PFC 转换器的基本工作原理 (288)

7.4.2 准谐振反激式转换器的工作原理 (290)

7.4.3 设计思路 (292)

7.4.4 直流-直流部分 (298)

7.5 16.8 W/24V LED反激式驱动电源 (310)

7.5.1 芯片描述 (310)

7.5.2 电源设计 (324)

8 数字电源实例 (327)

8.1 UCD3138的数字电源 (327)

8.1.1 器件概述 (327)

8.1.2 描述 (336)

8.1.3 总体概览、系统模块与IDE计算 (348)

8.1.4 DPWM工作模式 (352)

8.1.5 自动模式开关 (359)

8.1.6 滤波器 (365)

8.1.7 典型应用 (368)

8.2 小功率数字充电电源 (379)

8.2.1 国内外数字电源发展现状 (380)

8.2.2 设计指标 (382)

8.2.3 系统总体设计 (383)

8.2.4 基于L6562的PFC电路设计 (385)

8.2.5 控制软件 (391)

9 参考文献 (397)

1开关电源的特点与分类

1.1线性、开关电源的特点

线性电源(SwichingMode Power Supply)首先通过工频变压器降压,再用整流桥整流,之后利用功率半导体器件工作在线性放大状态,通过调节调整管的线性阻抗来达到调节输出电压的目的。其优点是稳定度高、可靠性好、无电磁干扰、纹波系数小、设计简单、维修方便、抗雷击性能好、成本低;其缺点是调整管损耗大、工频变压器体积大、笨重、输入范围窄、效率低。

开关电源是利用功率半导体器件的饱和区,通过调整其开通时间或频率来达到调节输出电压的目的。其优点是功率电子器件损耗小、高频变压器体积小、重量轻、效率高、输入范围宽;其缺点是电磁干扰大、纹波系数大、设计复杂、维修不方便、抗雷击和浪涌能力较差、成本高。

目前,在小功率的电源中还存在一些线性电源,但在中、大功率的电源中,线性电源已经被开关电源所取代。随着控制芯片频率的提高和功能的增多,高速和低功耗功率开关管的研制成功,开关电源是未来电源主要的发展方向。

1.2开关电源的电路类型

开关电源主要有三部分组成:PWM控制模块、开关管(BJT、MOSFET、IGBT等)和滤波器(电感、电容),隔离开关电源还包括隔离变压器。当然还要考虑EMI(Electromagnetic Interference,即电磁干扰)、PFC(Power

Factor Correction,即功率因数校正)的设计。

1按隔离、非隔离分类

开关电源可以分为非隔离型和隔离型。非隔离型开关电源也就是无变压器的开关电源,主要分为降压电路(BUCK)型,升压电路(BOOST)型,升降压电路(BUCK-BOOST)型,CUK电路型,SPEIC电路型,ZETA电路型;隔离型开关电源也就是有高频变压器的开关电源,主要分为单管(双管)正激(FORWARD)电路型,反激(FLYBACK)电路型,半桥(HALF-BRIDGE)电路型,全桥(FULL-BRIDGE)电路型,推挽(PUSH-PULL)电路型。

2按输入和输出进行分类

可以分为:

①AC-DC,即交流-直流:把交流输入变换成直流输出,如一次电源;

②DC-DC,即直流-直流:把直流输入变换成另一种电压(电流)输出的直流输出或为隔离目的而进行的设计,如二次电源;

③DC-AC,即直流-交流:把直流输入变换成交流输出,如逆变器电源;

④AC-AC:把交流输入变换成交流输出,如UPS电源。

3 按电路的组成

可分为有谐振型和非谐振型。带软开关控制电路的为(准)谐振型,如LLC型开关电源就是准谐振型;其它为非谐振型,如BUCK、BOOST 开关电源等。

4 按控制方式可分为

①脉冲宽度调制(PWM)式,是指控制开关管的导通周期是固定不变

的,通过改变脉冲的宽度来调节占空比,使输出电压(或电流)改变。

PWM型开关电源具有下列有优势:

(1)体积小、重量轻:这是因为高频变压器相对工频变压器来说更加轻巧,所以体积变小、重量也大大减小了;

(2)效率高:由于开关管处于开关状态,而其导通电阻极小,消耗在开关管上的功率很小,所以其效率较高。

(3)适应性强:由于开关管只工作于导通和断开两种状态,而脉冲宽度的调节范围,理论上可达0-100%之间,由此可见其适应输入电压的范围宽、输出电压的范围大。

(4)可防止过高电压的损害:当由于电压过高而使开关管被击穿烧坏时,主回路就停止工作,也就不会有电压输出;当控制电路发生故障而引起输出电压上升时,过电压保护电路将在电压上升到高电压阈值电平时将使主回路停止工作,同样不会有电压输出。

(5)当输入电压突然断电时,输出电压会继续保持一段时间;由于输入电压比较高,电容储存了很大的电能,再加上它的输出电压必须保持在额定值,保持时间一般可达20ms以上,这就便于实现信息的保护。

(6)输出电压越低,那么输出电流就会越大:设计开关电源时,其功率是有一定要求的,由于电流与电压的乘积保持不变,所以输出低电压,就会输出大电流,这为恒流源的设计带来了思路。

②脉冲频率调制(PFM)式,是指通过改变开关管的导通周期,而脉冲的宽度是固定的,即占空比是不变的,从而使输出电压(或电流)改变。

它不仅具有PWM的优点,而且因为开关时间可以在很宽的范围里发生改变,理论上可在0-∞之间变化,因此其输出电压的可调范围很大,但其滤波电路要适应较宽的频段。

③PWM与PFM混合式

混合调制方式是脉冲宽度和开关频率均是变化,两者都可以改变的方式,它是PWM和PFM两种方式相结合。开关管的导通时间和开关的周期都相对地发生改变,在频率变化很小的情况下,利用占空比的变化就可以输出电压的变化范围很大。

1.3开关电源的工作模式

开关电源的工作模式主要有三种:连续工作模式、断续工作模式和临界工作模式。

连续工作模式即电路中的电流连续不断(Continuous Current Mode,简写为CCM),例如BUCK电路,其电感电流永远大于零;断续工作模式即电路中的电流有时没有(Discontinuous Current Mode,简写为DCM),例如对于BUCK电路,其电感电流会在一段时间内为零;临界工作模式即电路中的电流减小到零后,电流就开始增加(Critical Current Mode,简写为CRCM),例如对于BUCK电路,其电感电流在放电为零的瞬间便进入充电状态。

三种方式各有优缺点。例如CCM的纹波小,但效率低;而DCM的纹波大,但效率高;CRCM的纹波和效率介于CCM和DCM之间。在设计电源时,需要根据设计要求、成本、外围电路以及安装空间等,进行

综合考虑。

1.4零电压开关(ZVS)和零电流开关(ZCS)方式

PWM功率变换技术淘汰了庞大笨重的工频变压器,减少了变压器的体积和重量,提高了电源的功率密度和整体效率,减小了电源的体积和重量。但是,随着设备功能的增加,供电电源功率和输出路数也将增加,势必要求开关电源的功率密度更大、效率更高,且体积更小、重量更轻、可靠性和稳定性更高,这便迫使变换器的工作频率不断提高的同时,在拓扑结构和开关思想方面有所突破。因此,仍使用硬开关技术一定会碰到以下几个难题:

(1)开关损耗大:当开关管导通的瞬间,开关管两侧存在电压,而导通的瞬间电流很大;当开关管截止的瞬间,开关管两侧还有电流通过,且开关管两侧存在电压。根据功耗的定义,不管开关管导通还是截止的瞬间,均要一定的开关损耗,且随着开关频率的增加而增加。

(2)开关管所受应力大:开关管截止瞬间,电路中的感性元件上仍有电流,因而会产生一个反电动势,这是一个幅值比较大的尖峰电压;同理,当开关管导通的瞬间,电路中的容性元件上仍有电压,因而会出现充电电流,这是一个幅值比较高的尖峰电流。尖峰电压与尖峰电流都会对开关管造成不小的危害。而且频率越高,尖峰电流与尖峰电压越大,这会使开关管受很大的反向应力而损坏。

(3)EMI大:随着工作频率的增加,电磁干扰(EMI)会变得更加严重,这会对开关电源自身以及周围的电子设备造成严重的影响。

因此,若能在开关管导通的瞬间使电压为零,在关断的瞬间使电流为零,即可实现开关管的零损耗。那么就可以设想下面的两个开关过程:

(1)零电流开关(Zero Current Switching,简称ZCS):开关管理想的关断过程是先使电流降为零,再使开关管截止,之后电压再缓慢地上升到瞬态值,关断损耗近似为零。因为开关管截止之前,电流已经下降到零,这便解决了感性元件关断时的尖峰电压问题。

(2)零电压开关(Zero Voltage Switching,简称ZVS):开关管理想的导通过程是先使电压降到零,再使开关管导通,之后电流再缓慢上升到瞬态值,导通损耗近似为零。开关管导通的瞬间,其结电容上的电压为零,从而解决了容性元件导通时的尖峰电流问题。

这种开关技术,相对于硬开关技术,称作软开关技术。软开关技术的使用,从理论上来讲可使开关的损耗接近于零,进而使开关频率进一步提高,从而使变换器的工作效率得到提高,其功率密度更大、体积更小、重量也进一步减少,在一定程序上提高了可靠性和稳定性,并且可以有效地减少电磁污染。

虽然软开关技术相对于硬开关技术有更大的优越性,但其控制电路和控制算法会更加复杂,需要采用谐振技术或准谐振技术才能实现ZVS 和ZCS。采用谐振极型零电压零电流软开关技术旨在消除功率器件的开关损耗,但实际上在软开关谐振换流过程中会引入多次额外的二极管反向恢复过程,产生额外的损耗。由于软开关换流过程中的特殊性,采用一般的方法难以对反向恢复过程中的损耗进行评估和计算,给ZVZCT软开关设计带来了一定的困难。

2 开关电源的拓扑结构

这里主要介绍非隔离型开关电路的基本电路-降压、升压和升/降压电路,隔离型开关电源的基本电路-单端正激电路、单端反激电路、推挽电路、半桥电路和全桥电路的基本工作原理。

2.1 BUCK 变换器的基本原理

BUCK 电路是一种DC-DC 的基本拓扑,用于直流到直流的降压变换,其基本原理如图2-1所示。当开关S 接位置1时,等效电路如图2-2(a )所示;当开关S 接位置2时,等效电路如图2-2(b )所示。

图2-1BUCK 电路原理图

(a )开关位置在1时 (b) 开关在位置2时

图2-2BUCK 开关在不同位置时的等效电路图

由图2-2(a)可列出关系式:

L g V V V =-;/C L I I V R =-。

由图2-2(b)可列出关系式:

L V V =-;/C L I I V R =-。

根据电感的伏秒平衡关系得:

()(1)()0g D V V D V ?-+-?-=

即g V D V =?,其中D 是开关在位置1时的占空比。由于占空比小于1,因此BUCK 电路的输出电压小于其输入电压。

根据电容的安秒平衡关系得:

(/)(1)(/)0L L D I V R D I V R ?-+-?-=

即/L I V R =。说明流过电感的电流与占空比无关,其值等于输出电流。

2.2 BOOST 变换器的基本原理

BOOST 电路也是一种DC-DC 基本拓扑,用于直流到直流的升压变换,其基本原理如图2-3所示。当开关S 接位置1时,等效电路如图2-4(a)所示;当开关S 接位置2时,等效电路如图2-4(b)所示。

图2-3BOOST 电路原理图

(a) 开关在位置1时 (b) 开关在位置2时

图2-4BOOST 开关在不同位置时的等效电路图

由图2-4BOOST 开关在不同位置时的等效电路图

(a)可列出关系式:

L g V V =;/C I V R =-。

由图2-4BOOST 开关在不同位置时的等效电路图

(b)可列出关系式:

L g V V V =-;/C L I I V R =-;

根据电感的伏秒平衡关系得:

(1)()0g g D V D V V ?+-?-=

即/(1)g V V D =-,由于占空比小于1,因此BOOST 电路的输出电压大于其输入电压。

根据电容的安秒平衡关系得:

(/)(1)(/)0L D V R D I V R ?-+-?-=

即(/)/(1)/(1)L O I V R D I D =-=-。其中O I 表示流过负载的输出电流。该式表明,流过电感的电流大于输出电流。

2.3 BUCK/BOOST 变换器的基本原理

BUCK-BOOST 电路是另一种DC-DC 基本拓扑,用于直流到直流的升压

或降压变换,其输出电压极性与输入电压极性相反,其基本原理如图2-5所示。当开关S 接位置1时,等效电路如图2-6(a)所示;当开关S 接位置2时,等效电路如图2-6(b)所示。

图2-5BUCK-BOOST 电路原理图

(a) 开关在位置1时 (b) 开关在位置2时

图2-6BUCK-BOOST 开关在不同位置时的等效电路图

由图2-6(a)可列出关系式:

L g V V =;

/C I V R =-;

由图2-6(b)可列出关系式:

L V V =;

/C L I I V R =--;

根据电感的伏秒平衡关系得:

(1)0g D V D V ?+-?=

即:

/(1)g V D V D =-?-

当占空比小于0.5,输出电压小于输入电压;当占空比大于0.5,输出电压大于输入电压。负号代表输出电压反向。

根据电容的安秒平衡关系得:

(/)(1)(/)0L D V R D I V R ?-+-?--=

即:

(/)/(1)/(1)L O I V R D I D =--=--

该式表明,流过电感的电流大于输出电流。

2.4 反激变换器的基本原理

反激(FlyBack )型开关电源是使用反激高频变压器隔离输入输出的开关电源,与之对应的是正激开关电源。基本电路如图2-7所示。

图2-7单端反激开关电路

在反激变换器中变压器起着电感和变压器的双重作用。当变压器开关管导通时,变压器当做电感,能量转化为磁能储存能量。由于变压器的初级线圈与次级线圈同名端反向,此时二极管D 承受的是反向电压,所以负载中无电流流过,此时变压器副边没有输出能量。相反,当开关管关断时,变压器释放能量,磁能转化为电能,输出回路中有电流。反激式开关电源中输出变压器同时充当储能电感,减小了整个电源的体积,

300w开关电源设计(图纸)

TND313/D Rev 3, Sep-11 High-Efficiency 305 W ATX Reference Design Documentation Package ? 2011 ON Semiconductor.

Disclaimer: ON Semiconductor is providing this reference design documentation package “AS IS” and the recipient assumes all risk associated with the use and/or commercialization of this design package. No licenses to ON Semiconductor’s or any third party’s Intellectual Property is conveyed by the transfer of this documentation. This reference design documentation package is provided only to assist the customers in evaluation and feasibility assessment of the reference design. The design intent is to demonstrate that efficiencies beyond 80% are achievable cost effectively utilizing ON Semiconductor provided ICs and discrete components in conjunction with other inexpensive components. It is expected that users may make further refinements to meet specific performance goals.

基于TOPSwitch的开关电源设计

基于TOPSwitch Ⅱ的开关电源设计 1 引言 功率开关管、PWM控制器和高频变压器是开关电源必不可少的组成部分。传统的开关电源一般均采用分立的高频功率开关管和多引脚的PWM集成控制器,例如采用UC3842+MOSFET是国内小功率开关电源中较为普及的设计方法。 90年代以来,出现了PWM/MOSFET二合一集成芯片,他大大降低了开关电源设计的复杂性,减少了开关电源设计所需的时间,从而加快了产品进入市场的速度。 二合一集成控制芯片多采用3脚,4脚,5脚,7脚和8脚封装,其中美国功率集成公司于97年推出的三端脱线式TOPSwitch Ⅱ系列二合一集成控制器件,是该类器件的代表性产品。 2 TOPSwitch Ⅱ器件简介 TOPSwitch系列器件是三端脱线式PWM开关(Three-terminal Off-line PWM Swtich)的英文缩写。TOPSwitch 系列器件仅用了3个管脚就将脱线式开关电源所必需的具有通态可控栅极驱动电路的高压N沟道功率的MOS场效应管,电压型PWM控制器,100kHz高频振荡器,高压启动偏置电路,带隙基准,用于环路补偿的并联偏置调整器以及误差放大器和故障保护等功能全部组合在一起了。 TOPSwitch Ⅱ系列器件是TOPSwitch的升级产品,同后者相比,内部电路做了许多改进,器件对于电路板布局以及输

入总线瞬变的敏感性大大减少,故设计更为方便,性能有所增强。其型号包括TOP221-TOP227,内部结构如图1所示[1]。 TOPSwitch Ⅱ是一个自偏置、自保护的电流-占空比线性控制转换器。由于采用CMOS工艺,转换效率与采用双集成电路和分立元件相比,偏置电流大大减少,并省去了用于电流传导和提供启动偏置电流的外接电阻。 漏极连接内部MOSFET的漏极,在启动时,通过内部高压开关电流源提供内部偏置电流。 源极连接内部MOSFET的源极,是初级电路的公共点和基准点。 控制极误差放大电路和反馈电流的输入端。在正常工作时,由内部并联调整器提供内部偏流。系统关闭时,可激发输入电流,同时也是提供旁路、自动重启和补偿功能的电容连接点。 控制电压控制极的电压V c给控制器和驱动器供电或提供偏压。接在控制极和源极之间的外部旁路电容C T,为栅极提供驱动电流,并设置自动恢复时间及控制环路的补偿。在正常工作(输出电压稳定)时,反馈控制电流给V c供电,并

开关电源课程设计报告

现代电源技术课程实践报告 院系:物理与电气工程学院 班级:电气自动化一班 姓名: 李向伟 学号: 111101007 指导老师:苗风东

一、设计要求 (1)输入电压:AC220±10%V (2)输出电压: 12V (3)输出功率:12W (4)开关频率: 80kHz 二、反激稳压电源的工作原理

图2-1 反激稳压电源的电路图 三、 反激电路主电路设计 (1)(1)Np Vdc Ton Vo Tr Nsm -=+ (3-1) 1. 反激变压器主电路工作原理 反激式变换器以其电路结构简单,成本低廉而深受广大开发工程师的喜爱,它特别适合小功率电源以及各种电源适配器.但是反激式变换器的设计难点是变压器的设计,因为输入电压范围宽,特别是在低输入电压,满负载条件下变压器会工作在连续电流模式(CCM),而在高输入电压,轻负载条件下变压器又会工作在不连续电流模式(DCM);另外关于CCM 模式反激变压器设计的论述文章极少,在大多数开关电源技术书籍的论述中, 反激变压器的设计均按完全能量传递方式(DCM

模式)或临界模式来计算,但这样的设计并未真实反映反激变压器的实际工作情况,变压器的工作状态可能不是最佳.因此结合本人的实际调试经验和心得,讲述一下不完全能量传递方式(CCM) 反激变压器的设计. 1)工作过程: S 开通后,VD 处于断态,W1绕组的电流线性增长,电感储能增加; S 关断后,W1绕组的电流被切断,变压器中的磁场能量通过W2绕组和VD 向输出端释放。 反激电路的工作模式: 反激电路的理想化波形 S u S i S i V D t o t o ff t t t t U i O O O O 反激电路原理图

开关电源设计步骤(精)

开关电源设计步骤 步骤1 确定开关电源的基本参数 ① 交流输入电压最小值u min ② 交流输入电压最大值u max ③ 电网频率F l 开关频率f ④ 输出电压V O (V ):已知 ⑤ 输出功率P O (W ):已知 ⑥ 电源效率η:一般取80% ⑦ 损耗分配系数Z :Z 表示次级损耗与总损耗的比值,Z=0表示全部损耗发生在初级, Z=1表示发生在次级。一般取Z=0.5 步骤2 根据输出要求,选择反馈电路的类型以及反馈电压V FB 步骤3 根据u ,P O 值确定输入滤波电容C IN 、直流输入电压最小值V Imin ① 令整流桥的响应时间tc=3ms ② 根据u ,查处C IN 值 ③ 得到V imin 步骤4 根据u ,确定V OR 、V B ① 根据u 由表查出V OR 、V B 值 ② 由V B 值来选择TVS 步骤5 根据Vimin 和V OR 来确定最大占空比Dmax V OR D m a x = ×100% V OR +V I m i n -V D S (O N ) ① 设定MOSFET 的导通电压V DS(ON) ② 应在u=umin 时确定Dmax 值,Dmax 随u 升高而减小 步骤6 确定C IN ,V Imin 值

步骤7 确定初级波形的参数 ① 输入电流的平均值I A VG P O I A VG= ηV Imin ② 初级峰值电流I P I A VG I P = (1-0.5K RP )×Dmax ③ 初级脉动电流I R ④ 初级有效值电流I RMS I RMS =I P √D max ×(K RP 2/3-K RP +1) 步骤8 根据电子数据表和所需I P 值 选择TOPSwitch 芯片 ① 考虑电流热效应会使25℃下定义的极限电流降低10%,所选芯片的极限电流最小值 I LIMIT(min)应满足:0.9 I LIMIT(min)≥I P 步骤9和10 计算芯片结温Tj ① 按下式结算: Tj =[I 2RMS ×R DS(ON)+1/2×C XT ×(V Imax +V OR ) 2 f ]×R θ+25℃ 式中C XT 是漏极电路结点的等效电容,即高频变压器初级绕组分布电容 ② 如果Tj >100℃,应选功率较大的芯片 步骤11 验算I P IP=0.9I LIMIT(min) ① 输入新的K RP 且从最小值开始迭代,直到K RP =1 ② 检查I P 值是否符合要求 ③ 迭代K RP =1或I P =0.9I LIMIT(min) 步骤12 计算高频变压器初级电感量L P ,L P 单位为μH 106P O Z(1-η)+ η L P = × I 2P ×K RP (1-K RP /2)f η 步骤13 选择变压器所使用的磁芯和骨架,查出以下参数: ① 磁芯有效横截面积Sj (cm 2),即有效磁通面积。 ② 磁芯的有效磁路长度l (cm ) ③ 磁芯在不留间隙时与匝数相关的等效电感AL(μH/匝2) ④ 骨架宽带b (mm ) 步骤14 为初级层数d 和次级绕组匝数Ns 赋值 ① 开始时取d =2(在整个迭代中使1≤d ≤2) ② 取Ns=1(100V/115V 交流输入),或Ns=0.6(220V 或宽范围交流输入) ③ Ns=0.6×(V O +V F1) ④ 在使用公式计算时可能需要迭代 步骤15 计算初级绕组匝数Np 和反馈绕组匝数N F ① 设定输出整流管正向压降V F1 ② 设定反馈电路整流管正向压降V F2 ③ 计算N P

各种开关电源介绍-开关电源设计知识大全

开关电源介绍 一、基础知识: 新型变压器:磁性元件,新型磁材料和新型变压器的开发。如集成磁路,平面型磁心,超薄型变压器;以及新型变压器如压电式,无磁芯印制电路变压器等,使开关电源的尺寸重量都可减少许多。 硬开关的条件下MOSFET和IGBT开关损耗分析: 1).开通损耗方面:由于MOSFET的输出电容大,器件处于断态时,输入电压加在输出电容上,输出电容储存较大能量。在相继开通时这些能量全部消耗在器件内,开通损耗大。器件的开通损耗和输出电容成正比,和频率成正比和输入电压的平方成正比[12]。而IGBT的输出电容比MOSFET小得多,断态时电容上储存的能量较小,故开通损耗较小。 2).关断损耗方面:MOSFET属单极型器件,可以通过在施加栅极反偏电压的方法,迅速抽走输入电容上的电荷,加速关断,使MOSFET关断时电流会迅速下降至零,不存在拖尾电流,故关断损耗小[10];而IGBT由于拖尾电流不可避免,且持续时间长(可达数微秒),故关断损耗大。 综合以上分析,硬开关条件下MOSFET的开关损耗主要是由开通损耗引起,而IGBT则主要是由关断损耗引起。因此使用MOSFET作为主开关器件的电路,应该工作于ZVS条件下,这样在器件开通前,漏极和源极之间的电压先降为零,输出电容上储存能量很小,可以大大降低MOSFET的开通损耗;而使用IGBT作为主开关器件的电路,应该工作于ZCS条件下,这样在器件关断前,流过器件的电流先降为零,可以大大降低因拖尾电流造成的关断损耗。 软开关:当电流过零时,使器件关断;当电压过零时,使器件开通-实现开关损耗为零。 变流器:把输入的电源,进行电压、电流变换,达到规定的要求后输出给用电设备。 DC-DC:直流变压器。斩波器。 为什么反激开关电源只能适合小功率?200W以下。正激开关电源适合大功率开关电源? 高效率小体积(高功率密度)一直是DC-DC变换器用户的追求,也是设计的要点。提高功率密度最有效的方式就是提高开关频率,线圈和变压器对高速变化的磁力线感应灵敏度高、特别高效率,衰减特别小,传递效率特别高,而对低频变化的磁力线灵敏度低、衰减大,传递效率差,因此高频下的磁芯体积会大幅度减小,但频率的提高会使开关管的开关损耗加大,对变换器的效率造成影响。如何在高频下减小开关管的开关损耗,是DC-DC变换器是否能实现高效率高功率密度的关键,在这种背景下,高频软开关技术逐渐成为研究的热点,LLC谐振变换器是在串联谐振变换器的基础上增加了一个与负载并联的电感,是目前效率最高的开关电源。

超详细的反激式开关电源电路图讲解

反激式开关电源电路图讲解 一,先分类 开关电源的拓扑结构按照功率大小的分类如下: 10W以内常用RCC(自激振荡)拓扑方式 10W-100W以内常用反激式拓扑(75W以上电源有PF值要求) 100W-300W 正激、双管反激、准谐振 300W-500W 准谐振、双管正激、半桥等 500W-2000W 双管正激、半桥、全桥 2000W以上全桥 二,重点 在开关电源市场中,400W以下的电源大约占了市场的70-80%,而其中反激式电源又占大部分,几乎常见的消费类产品全是反激式电源。 优点:成本低,外围元件少,低耗能,适用于宽电压范围输入,可多组输出. 缺点:输出纹波比较大。(输出加低内阻滤波电容或加LC噪声滤波器可以改善) 今天以最常用的反激开关电源的设计流程及元器件的选择方法为例。给大家讲解如何读懂反激开关电源电路图! 三,画框图 一般来说,总的来分按变压器初测部分和次侧部分来说明。开关电源的电路包括以下几个主要组成部分,如图1

图1,反激开关电源框图 四,原理图 图2是反激式开关电源的原理图,就是在图1框图的基础上,对各个部分进行详细的设计,当然,这些设计都是按照一定步骤进行的。下面会根据这个原理图进行各个部分的设计说明。 图2 典型反激开关电源原理图

五,保险管 图3 保险管 先认识一下电源的安规元件—保险管如图3。 作用:安全防护。在电源出现异常时,为了保护核心器件不受到损坏。 技术参数:额定电压 ,额定电流 ,熔断时间。 分类:快断、慢断、常规 计算公式:其中:Po:输出功率 η效率:(设计的评估值) Vinmin :最小的输入电压 2:为经验值,在实际应用中,保险管的取值范围是理论值的1.5~3倍。 0.98: PF值 六,NTC和MOV NTC 热敏电阻的位置如图4。 图4 NTC热敏电阻 图4中的RT为NTC,电阻值随温度升高而降低,抑制开机时产生的浪涌电压形成的浪涌电流。

基于TOP244Y的开关电源设计

1.开关电源感念 1.1开关电源就是用通过电路控制开关管进行高速的道通与截止。将直流电转化为高频的交流电提供给变压器进行变压,从而产生所需要的一组或多组电压,转化为高频交流电的原因是高频交流在变压器变压电路中的效率要比50HZ高很多,所以开关变压可以做的很小,而且工作时不是很热,成本很低。如果不将50HZ变为高频开关就没有意义,开关变压也不神秘,就是一个普通的变压器。这就是开关电源。 *简单地说,开关电源的工作原理是: *1、交流电源输入经整流滤波成直流; *2、通过高频PWM(脉冲宽度调制)信号控制开关管,将那个直流加到开关变压器初级上; *3、开关变压器次级感应出高频电压,经整流滤波供给负载; *4、输出部分通过一定的电路反馈给控制电路,控制PWM占空比,以达到稳定输出的目的。 1.2开关电源自20世纪70年代开始应用以来,涌现出许多功能完备的集成控制电路,使开关电源电路日益简化,工作频率不断提高,效率大大提高,并为电源小型化提供了广阔的前景。我司采用的TOP244Y是将PWM控制器与功率开关场效应管合二为一封装在一起,可使用电路大为简化,体积进一步缩小,成本也明显降低。 ★TOP 244Y开关电源的基本原理: 封装形式

*漏极管脚(D):高压功率场效应管漏极输出。 *控制管脚(C):用于调节占空比的误差放大器。 *源极管脚(S):将其连接至输出场效应管源极可得到高压功率回馈。 *L:为输入电压的欠压与过压检测端。 *F:开关频率选择端,当F端接到源极时,其开关频率为132kHz,而当F端接到控制端时,其开关频率为66kHz。我司频率为132KHZ。 *X:外部电路流定调整端。在X端与源极之间接入不同的电阻,则开关电流可限定在不同的数值。若R=12kΩ,则流过开关的电流被设定为额定值的69%;若R1=6k Ω,则为额定值的90%;也就是说,随着电阻值的增大,开关允许流过的电流随之减小。 *若在L端与输入电压正端接入2MΩ的电阻,那么其: 欠压保护值为:Vuv=100VDC 过压保护值为:Vou=450VDC *产品主要有如下性能特点:输出功率250W;外围电路简单,成本低;在极低压或冲情况下能充分集成软启动;外部可编程精确电流限制的高效率,低成本设计和功率可限电路;线性欠压保护,无关断干扰。

关于开关电源设计时的基本问题解答

关于开关电源设计时的基本问题解答 如何为开关电源电路选择合适的元器件和参数?很多未使用过开关电源设计的工程师会对它产生一定的畏惧心理,比如担心开关电源的干扰问题,PCB layout问题,元器件的参数和类型选择问题等。其实只要了解了,使用开关电源设计还是非常方便的。一个开关电源一般包含有开关电源控制器和输出两部分,有些控制器会将MOSFET集成到芯片中去,这样使用就更简单了,也简化了PCB设计,但是设计的灵活性就减少了一些。 开关控制器基本上就是一个闭环的反馈控制系统,所以一般都会有一个反馈输出电压的采样电路以及反馈环的控制电路。因此这部分的设计在于保证精确的采样电路,还有来控制反馈深度,因为如果反馈环响应过慢的话,对瞬态响应能力是会有很大影响。 输出部分设计包含了输出电容,输出电感以及MOSFET等等,这些器件的选择基本上就是要满足性能和成本的平衡,比如高的开关频率就可以使用小的电感值(意味着小的封装和便宜的成本),但是高的开关频率会增加干扰和对MOSFET的开关损耗,从而效率降低。低的开关频率带来的结果则是相反的。 对于输出电容的ESR和MOSFET的Rds_on参数选择也是非常关键的,小的ESR可以减小输出纹波,但是电容成本会增加,好的电容会贵嘛。开关电源控制器驱动能力也要注意,过多的MOSFET是不能被良好驱动的。 一般来说,开关电源控制器的供应商会提供具体的计算公式和使用方案供工程师借鉴的。如何调试开关电源电路?有一些经验可以共享给大家:(1)电源电路的输出通过低阻值大功率电阻接到板内,这样在不焊电阻的情况下可以先做到电源电路的先调试,避开后面电路的影响。(2)一般来说开关控制器是闭环系统,如果输出恶化的情况超过了闭环可以控制的范围,开关电源就会工作不正常,所以这种情况就需要认真检查反馈和采样电路。特别是如果采用了大ESR值的输出电容,会产生很多的电源纹波,这也会影响开关电源的工作的。

开关电源设计教学内容

开关电源设计

开关直流稳压电源设计 摘要 直流稳压电源应用广泛,几乎所有电器,电力或者电子设备都毫不例外的需要稳定的直流电压(电流)供电,它是电子电路工作的“能源”和“动力”。不同的电路对电源的要求是不同的。在很多电子设备和电路中需要一种当电网电压波动或负载发生变化时,输出电压仍能基本保持不点的电源。电子设备中的电源一般由交流电网提供,如何将交流电压(电流)变为直流电压(电流)供电?又如何使直流电压(电流)稳定?这是电子技术的一个基本问题。解决这个问题的方案很多,归纳起来大致可分为线性电子稳压电源和开关稳压电源两类,他们又各自可以用集成电路或分立元件构成。开关稳压电源具有效率高,输出功率大,输入电压变化范围宽,节约能耗等优点。 一、引言 1.1基本要求 稳压电源。 1.基本要求 ①输出电压UO可调范围:12V~15V; ②最大输出电流IOmax:2A; ③U2从15V变到21V时,电压调整率SU≤2%(IO=2A); ④IO从0变到2A时,负载调整率SI≤5%(U2=18V); ⑤输出噪声纹波电压峰-峰值UOPP≤1V(U2=18V,UO=36V,IO=2A); ⑥DC-DC变换器的效率≥70%(U2=18V,UO=36V,IO=2A); ⑦具有过流保护功能,动作电流IO(th)=2.5±0.2A; 1.2发挥部分 (1)排除短路故障后,自动恢复为正常状态; (2)过热保护; 二、方案设计与论证 开关式直流稳压电源的控制方式可分为调宽式和调频式两种。实际应用中,调宽式应用较多,在目前开发和使用的开关电源集成电路中,绝大多数为脉宽调制(PWM)型。开关电源的工作原理就是通过改变开关器件的开通时间和工作周期的比值,即占空比来改变输出电压,通常有三种方式:脉冲宽度调制(PWM)、脉冲频率调制(PFM)和混合调制。PWM调制是指开关周期恒定,通过改变脉冲宽度来改变占空比的方式。因为周期恒定,滤波电路的设计比较简单,因此本次设计采用PWM调制方式实现电路设计要求。主要框架如图1所示。由变压器降压得到交流电压,再经过整流滤波电路,将交流电变成直流电,然后再经过DC-DC变换,由PWM的驱动电路去控制开关管的导通和截止,从而产生一个稳定的电压源。

基于MC34063的开关电源设计

正文 一、设计任务与要求 2.掌握开关电源的设计、组装与调试方法。 3.研究开关电源的实现方法,并按照设计指标要求进行电路的设计与仿真。 具体要求如下: 分析、掌握该课题总体方案,广泛阅读相关技术资料,并提出见解。 掌握开关电源的工作原理。 主要技术指标 直流输入电压:15~30V; 输出电压:8V; 输出电流:0.5A; 效率:≥80%。 二.BUCK型电路 在实际应用中我们对电压有很重要的应用,而且很多时候我们对电压的值有十分严格的要求,所以有时在电路中也要求我们使用一些方法来达到升压或者降压的目的,以完成自己设计的要求,故对升压与降压电源电路的认识有着重要的意义。 开关电源实质就是一个振荡电路,这种转换电能的方式,不仅应用在电源电路,在其它的电路应用也很普遍,如液晶显示器的背光电路、日光灯等。 开关稳压电源分为三种,即BUCK型电路(降压)、 BOOST型电路(升压)、Buck-Boost型电路(降压-升压混合)。现在我对基本电路BUCK做简要说明,以方便大家对基于MC34063开关稳压电源设计的理解。 2.1.线路组成 图1(a)所示为由单刀双掷开关S、电感元件L和电容C组成的Buck变换器电路图。图1(b)所示为由以占空比D工作的晶体管T r、二极管D1、电感L、电容C组成的Buck变换器电路图。电路完成把直流电压V s转换成直流电压V o的功能。 图1Buck变换器电路 当开关S在位置a时,有图2 (a)所示的电流流过电感线圈L,电流线性增加,在负

载R上流过电流I o ,两端输出电压V o ,极性上正下负。当i s >I o 时,电容在充电状态。这时 二极管D 1承受反向电压;经过时间D 1 T s 后(,t on 为S在a位时间,T s 是周期), 当开关S在b位时,如图2(b)所示,由于线圈L中的磁场将改变线圈L两端的电压极性, 以保持其电流i L 不变。负载R两端电压仍是上正下负。在i L 0,开关打开时,i s =0,故i s 是脉动的,但输出电流I o ,在L、D 1 、C作用 下却是连续的,平稳的。 图2Buck变换器电路工作过程 三、开关电源的分类: (1)按开关管的连接方式,开关电源可分为串联型开关电源和并联型开关电源。串联型开关电源的开关管是串联在输入电压和输出负载之间,属于降压式稳压电路;而并联型开关电源的开关管是在输入电压和输出负载之间并联的,属于升压式稳压电路。 (2)按激励方式,开关电源可分为自激式和他激式。在自激式开关电源中,由开关管和高频变压器构成正反馈环路,来完成自激振荡,类似于间歇振荡器;而他激式开关电源必须附加一个振荡器,振荡器产生的开关脉冲加在开关管上,控制开关管的导通和截止,使开关电路工作并有直流电压输出。 (3)按调制方式,开关电源可分为脉宽调制(PWM)方式和脉频调制(PFM)方式。PWM是通过改变开关脉冲宽度来控制输出电压稳定的方式,而PFM是当输出电压变化时,通过取样比较,将误差值放大后去控制开关脉冲周期(即频率),使输出电压稳定。 (4)按输出直流值的大小,开关电源可分为升压式开关电源和降压式开关电源,也可分为高压开关电源和低压开关电源。 (5)按输出波形,开关电源可分为矩形波和正弦波电路。 (6)按输出性能,开关电源可分为恒压恒频和变压变频电路。 (7)按开关管的个数及连接方式又可将开关电源分为单端式、推挽式、半桥式和全桥式等。单端式仅用一只开关管,推挽式和半桥式采用两只开关管,全桥式则采用四只开关管。 (8)开关电源按能量传递方式又可分为正激式和反激式。 (9)按软开关方式分,开关电源有电流谐振型、电压谐振型、E类与准E类谐振型和部分谐振型等 四.MC34063的基本知识 该器件本身包含了DC/DC变换器所需要的主要功能的单片控制电路且价格便宜。它由具有温度自动补偿功能的基准电压发生器、比较器、占空比可控的振荡器,R—S触发器和大电流输出开关电路等组成。该器件可用于升压变换器、降压变换器、反向器的控制核心,

开关电源设计

& 课程设计任务书 学生姓名:专业班级: 指导教师:工作单位: 题目: 开关电源设计 初始条件: 输入交流电源:单相220V,频率50Hz。 要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求)? 1、输出两路直流电压:12V,5V。 2、直流最大输出电流1A。 3、完成总电路设计和参数设计。 时间安排: 课程设计时间为两周,将其分为三个阶段。 第一阶段:复习有关知识,阅读课程设计指导书,搞懂原理,并准备收集设计资料,此阶段约占总时间的20%。 第二阶段:根据设计的技术指标要求选择方案,设计计算。 ) 第三阶段:完成设计和文档整理,约占总时间的40%。 指导教师签名:年月日 系主任(或责任教师)签名:年月日

目录 ) 引言 (1) 1设计意义及要求 (2) 设计意义 (2) 开关电源的组成部分 (2) 开关电源的工作过程 (2) 开关电源的工作方式 (3) 脉宽调制器的基本原理 (3) 2方案设计 (5) ) 设计要求 (5) 方案选择 (5) 整流滤波部分 (6) 降压斩波电路 (7) 脉宽调制电路 (8) MOSFET管的驱动电路 (9) 总电路图 (11) 3主电路参数设定 (12) { 变压器、二极管、MOSFET管选择 (12) 反馈回路的设计 (13) MOSFET的驱动设计 (14) 结束语 (15) 参考文献 (16)

附录一 (17) ]

引言 随着电力电子技术的高速发展,电力电子设备与人们的工作、生活的关系日益密切,而电子设备都离不开可靠的电源,进入80年代计算机电源全面实现了开关电源化,率先完成计算机的电源换代,进入90年代开关电源相继进入各种电子、电器设备领域,远程控制交换机、通讯、电子检测设备电源、控制设备电源等都已广泛地使用了开关电源,更促进了开关电源技术的迅速发展。 开关电源高频化是其发展的方向,高频化使开关电源小型化,并使开关电源进入更广泛的应用领域,特别是在高新技术领域的应用,推动了高新技术产品的小型化、轻便化。开关电源是利用现代电力电子技术,控制开关管开通和关断的时间比率,维持稳定输出电压的一种电源,开关电源一般由脉冲宽度调制(PWM)控制IGBT和MOSFET构成。随着电力电子技术的发展和创新,使得开关电源技术也在不断地创新。目前,开关电源以小型、轻量和高效率的特点被广泛应用几乎所有的电子设备,是当今电子信息产业飞速发展不可缺少的一种电源方式。 开关电源根据输入输出的性质不同可分为AC/DC和DC/DC两大类。AC/DC称为一次电源,也常称为开关整流器。值得指出的是,AC-DC变换不单是整流的意义,而是整流后又做DC-DC变换。所以说,DC-DC变换器是开关电源的核心。DC/DC称为二次电源,其设计技术及生产工艺在国内外均已成熟和标准化,所以学习设计开关电源有重要的意义。

关于开关电源设计

一种基于TOP227Y 的脉冲开关电源设计 摘要:在研究脉冲开关电源技术的基础上 ,提出一种基于 TOP227Y的脉冲开关电源设计。首先给出脉冲开关电源的 总体结构 ,分析其工作原理 ,对系统中高频变压器、主电路、控制电路进行设计。接着介绍 TOP227Y芯片的工作原理及各个 功能块的主要作用 ,最后设计系统总电路图。 关键词:PWM;TOP227Y;开关电源;高频变压器 Design of Pulse Switch Power Supply Based on TOP227Y Abstract:A pulse switch power supply based on TOP227Yis introduced in the paper ,after analsing its working principle , the whole structure of switch power supply is also designed ,the main design content consists of the high frequency trans former ,the main circuit and the control circuit ,then the working principle and the main action of each function module of TOP227Yare introduced in the paper ,finally the whole circuit of system is designed. Keywords:PWM;TOP227Y;switch power supply;high frequency transformer 脉冲电源是各种电源设备中比较特殊的一种,它的电压或电流波形为脉冲状。其实质上是一种通断的直流电源,其基本工作原理是首先经过慢储能 ,使初级能源具有足够的能量,然后向中间储能和脉冲成形系统电或流入能量 ,能量经化 等复杂过程之后 ,形成脉冲电源。随着开关电源的发展 ,电源的小型化、模块化、智能化越来越受到人们的关注。各种电源控制芯片如雨后春笋纷纷涌现 ,美国电源集成 PI 公司相继推出 TOP系列芯片 ,这些芯片集脉冲信号控制电路和功率开关器件 MOSEFT 于一体 ,具有高集成度、最简外围电路、最佳性能指标等特点,能组成高效率无工频变压器的隔离式开关电源。所以,本文设计基于 TOP227Y芯片控制的开关电源。 一、绪论 1.设计的目的及意义 开关电源是利用现代电力电子技术,控制开关晶体管开通和关断的时间比率,维持稳定输出电压的一种电源,开关电源一般由脉冲宽度调制(PWM)控制IC和MOSFET构成。开关电源和线性电源相比,二者的成本都随着输出功率的增加而增长,但二者增长速率各异。线性电源成本在某一输出功率点上,反而高于开关电源,这一点称为成本反转点。随着电力电子技术的发展和创新,使得开关电源技术也在不断地创新,这一成本反转点日益向低输出电力端移动,这为开关电源提供了广阔的发展空间。 开关电源高频化是其发展的方向,高频化使开关电源小型化,并使开关电源进入更广泛的应用领域,特别是在高新技术领域的应用,推动了高新技术产品的小型

开关电源的制作流程

开关电源的制作流程 开关电源(Switch Mode Power Supply,SMPS)具有高效率、低功率、体积小、重量轻等显著优点,代表了稳压电源的发展方向,现已成为稳压电源的主流产品。开关电源的设计与制作要求设计者具有丰富的实践经验,既要完成设计制作,又要懂得调试、测试与分析等。本文章介绍开关电源组成及制作、调试所需的基本步骤和方法。 第一节开关电源的电路组成 开关电源一般是指输入与输出隔离的电源变换器,包括AC/DC电源变换器和DC/DC电源变换器,也称为AC/DC开关电源和DC/DC开关电源。非隔离式DC/DC变换器也属于开关电源,通常称之为开关稳压器。 1、AC/DC开关电源的组成 AC/DC开关电源的典型结构如图1-1-1所示。电源由输入电磁干扰(EMI)滤波器、输入整流/滤波电路、功率变换电路、PWM控制器电路、输出整流/滤波电路和输出电压反馈电路组成。 图1-1-1 AC/DC开关电源的典型结构 其中输入整流/滤波电路、功率变换电路、输出整流/滤波电路和PWM控制器电路是主要电路,其他为辅助电路。有些开关电源中还有防雷击电路、输入过压/欠压保护电路、输出过压保护电路、输出过流保护电路、输出短路保护电路等其他辅助电路。 2. DC/DC开关电源的组成 DC/DC开关电源的组成相对AC/DC开关电源要简单一点,其典型结构如图1-1-2所示。电源由输入滤波电路、功率变换电路、PWM控制器电路、输出整流/滤波电路和输出电压反馈电路组成。当然,有些DC/DC开关电源也会包含其他辅助电路。 图1-1-2 DC/DC开关电源的典型结构

第二节开关电源的制作流程 开关电源的设计与制作要从主电路开始,其中功率变换电路是开关电源的核心。功率变换电路的结构也称开关电源拓扑结构,该结构有多种类型。拓扑结构也决定了与之配套的PWM控制器和输出整流/滤波电路。下面介绍开关电源设计与制作一般流程。 1.解定电路结构(DC/DC变换器的结构) 无论是AC/DC开关电源还是DC/DC开关电源,其核心都是DC/DC变换器。因此,开关电源的电路结构就是指DC/DC变换器的结构。开关电源中常用的DC/DC变换器拓扑结构如下: (1)降压式变换器,亦称降压式稳压器。 (2)升压式变换器,亦称升压式稳压器。 (3)反激式变换器。 (4)正激式变换器。 (5)半桥式变换器。 (6)全桥式变换器。 (7)推挽式变换器。 降压式变换器和升压式变换器主要用于输入、输出不需要隔离的DC/DC变换器中;反激式变换器主要用于输入、输出需要隔离的小功率AC/DC或DC/DC变换器中;正激式变换器主要用于输入/输出需要隔离的较大功率AC/DC或DC/DC变换器中;半桥式变换器和全桥式变换器主要用于输入/输出需要隔离的大功率AC/DC或DC/DC变换器中,其中全桥式变换器能够提供比半桥式变换器更大的输出功率;推挽式变换器主要用于输入/输出需要隔离的较低输入电压的DC/DC或DC/AC变换器中。 顾名思义,降压式变换器的输出电压低于输入电压,升压式变换器的输出电压高于输入电压。在反激式、正激式、半桥式、全桥式和推挽式等具有隔离变压器的DC/DC变换器中,可以通过调节高频变压器的一、二次匝数比,很方便地实现电源的降压、升压和极性变换。此类变换器既可以是升压型,也可以是降压型号,还可以是极性变换型。在设计开关电源时,首先要根据输入电压、输出电压、输出功率的大小及是否需要电气隔离,选择合适的电路结构。 2.选择控制电路(PWM) 开关电源是通过控制功率晶体管或功率场效应管的导通与关断时间来实现电压变换的,其控制方式主要有脉冲宽度调制、脉冲频率调制和混合调制三种。脉冲宽度调制方式,简称脉宽度调制,缩写为PWM;脉冲频率调制方式,简称脉频调制,缩写PFM;混合调制方式,是指脉冲宽度与开关频率均不固定,彼此都能改变的方式。 PWM方式,具有固定的开关频率,通过改变脉冲宽度来调节占空比,因此开关周期也是固定的,这就为设计滤波电路提供了方便,所以应用最为普通。目前,集成开关电源大多采用此方式。为便于开关电源的设计,众多厂家将PWM控制器设计成集成电路,以便用户选择。开关电源中常用的PWM控制器电路如下: (1)自激振荡型PWM控制电路。 (2)TL494电压型PWM控制电路。 (3)SG3525电压型PWM控制电路。 (4)UC3842电流型PWM控制电路。 (5)TOPSwitch-II系列的PWM控制电路。 (6)TinySwitch系列的PWM控制电路。 3.确定辅助电路

开关电源设计(精通型)

开关电源设计 三种基础拓扑(buck boost buck-boost )的电路基础: 1, 电感的电压公式dt dI L V ==T I L ??,推出ΔI =V ×ΔT/L 2, sw 闭合时,电感通电电压V ON ,闭合时间t ON sw 关断时,电感电压V OFF ,关断时间t OFF 3, 功率变换器稳定工作的条件:ΔI ON =ΔI OFF 即,电感在导通和关断时,其电流变化相等。 那么由1,2的公式可知,V ON =L ×ΔI ON /Δt ON ,V OFF =L ×ΔI OFF /Δt OFF ,则稳定 条件为伏秒定律:V ON ×t ON =V OFF ×t OFF 4, 周期T ,频率f ,T =1/f ,占空比D =t ON /T =t ON /(t ON +t OFF )→t ON =D/f =TD →t OFF =(1-D )/f 电流纹波率r P51 52 r =ΔI/ I L =2I AC /I DC 对应最大负载电流值和最恶劣输入电压值 ΔI =E t /L μH E t =V ×ΔT (时间为微秒)为伏微秒数,L μH 为微亨电感,单位便于计算 r =E t /( I L ×L μH )→I L ×L μH =E t /r →L μH =E t /(r* I L )都是由电感的电压公式推导出来 r 选值一般0.4比较合适,具体见 P53 电流纹波率r =ΔI/ I L =2I AC /I DC 在临界导通模式下,I AC =I DC ,此时r =2 见P51 r =ΔI/ I L =V ON ×D/Lf I L =V O FF×(1-D )/Lf I L →L =V ON ×D/rf I L 电感量公式:L =V O FF×(1-D )/rf I L =V ON ×D/rf I L 设置r 应注意几个方面: A,I PK =(1+r/2)×I L ≤开关管的最小电流,此时r 的值小于0.4,造成电感体积很大。 B,保证负载电流下降时,工作在连续导通方式P24-26, 最大负载电流时r ’=ΔI/ I LMAX ,当r =2时进入临界导通模式,此时r =ΔI/ I x =2→ 负载电流I x =(r ’ /2)I LMAX 时,进入临界导通模式,例如:最大负载电流3A ,r ’=0.4,则负载电流为(0.4/2)×3=0.6A 时,进入临界导通模式 避免进入临界导通模式的方法有1,减小负载电流2,减小电感(会减小ΔI ,则减小r )3,增加输入电压 P63 电感的能量处理能力1/2×L ×I 2 电感的能量处理能力用峰值电流计算1/2×L ×I 2PK ,避免磁饱和。 确定几个值:r 要考虑最小负载时的r 值 负载电流I L I PK 输入电压范围V IN 输出电压V O 最终确认L 的值 基本磁学原理:P71――以后花时间慢慢看《电磁场与电磁波》用于EMC 和变压器 H 场:也称磁场强度,场强,磁化力,叠加场等。单位A/m B 场:磁通密度或磁感应。单位是特斯拉(T )或韦伯每平方米Wb/m 2 恒定电流I 的导线,每一线元dl 在点p 所产生的磁通密度为dB =k ×I ×dl ×a R /R 2 dB 为磁通密度,dl 为电流方向的导线线元,a R 为由dl 指向点p 的单位矢量,距离矢量为R ,R 为从电流元dl 到点p 的距离,k 为比例常数。 在SI 单位制中k =μ0/4π,μ0=4π×10-7H/m 为真空的磁导率。

基于uc3844的开关电源设计

要:介绍一种采用UC3844集成芯片实现的多路输出单端反激式IGBT驱动电源。根据设计要求给出了该电路的具体设计步骤及电路参数。实验结果表明,该电源的可靠性高,稳定性好,输出纹波小,能够适应电网电压10% 和负载20% 的波动。 近年来,随着电力电子技术的发展,各个应用领域对电源的体积、重量、效率等方面提出了越来越高的要求。单端反激式变换电路由于具有体积小、重量轻、效率高、线路简洁、可靠性高以及具有较强的自动均衡各路输出负载的能力等优点,非常适合用于设计大功率高频开关电源的辅助电源或功率开关的驱动电源。 开关电源的控制电路可以分为电压控制型和电流控制型,前者是一个单闭环电压控制系统,在其控制过程中,电源电路中的电感电流未参与控制,是独立变量,开关变换器为二阶系统,而二阶系统是一个有条件的稳定系统;后者是一个电压、电流双闭环控制系统,电感电流不再是一个独立变量,从而使开关变换器成为一个一阶无条件的稳定系统,因而很容易不受约束地得到大的开环增益和完善的小信号、大信号特性。为此,应用电流控制型芯片(峰值电流控制)UC3844设计了一种大功率高频开关电源功率开关(例如IGBT)驱动电源,其主要技术指标为:5路输出(各路均为20V/0.5A);输出电压纹波<±0.5% ;工作频率为40kHz;输入交流电压范围(1±10%)220V。 1 主电路设计 1.1 主电路拓扑 图1是所设计电源的原理图,主电路采用单端反激式变换电路,220 V交流输入电压经桥式整流、电容滤波变为直流后,供给单端反激式变换电路,并通过电阻R1、C2为UC3844提供初始工作电压。为提高电源的开关频率,采用功率MOSFET作为功率开关管,在 UC3844的控制下,将能量传递到输出侧。为抑制电压尖峰,在高频变压器原边设置了RCD 缓冲电路。

开关电源的系统设计深度解读

开关电源的系统设计深度解读 开关电源的系统设计深度解读 时间:2013-03-05 214次阅读【网友评论0条我要评论】收藏 首先从开关电源的设计及生产工艺开始描述吧,先说说印制板的设计。开关电源工作在高频率,高脉冲状态,属于模拟电路中的一个比较特殊种类。布板时须遵循高频电路布线原则。 1、布局:脉冲电压连线尽可能短,其中输入开关管到变压器连线,输出变压器到整流管连接线。脉冲电流环路尽可能小如输入滤波电容正到变压器到开关管返回电容负。输出部分变压器出端到整流管到输出电感到输出电容返回变压器电路中X电容要尽量接近开关电源输入端,输入线应避免与其他电路平行,应避开。 Y电容应放置在机壳接地端子或FG连接端。共摸电感应与变压器保持一定距离,以避免磁偶合。如不好处理可在共摸电感与变压器间加一屏蔽,以上几项对开关电源的EMC性能影响较大。 输出电容一般可采用两只一只靠近整流管另一只应靠近输出端子,可影响电源输出纹波指标,两只小容量电容并联效果应优于用一只大容量电容。发热器件要和电解电容保持一定距离,以延长整机寿命,电解电容是开关电源寿命的瓶劲,如变压器、功率管、大功率电阻要和电解保持距离,电解之间也须留出散热空间,条件允许可将其放置在进风口。 控制部分要注意:高阻抗弱信号电路连线要尽量短如取样反馈环路,在处理时要尽量避免其受干扰、电流取样信号电路,特别是电流控制型电路,处理不好易出现一些想不到的意外,其中有一些技巧,现以3843电路举例见图(1)图一效果要好于图二,图二在满载时用示波器观测电流波形上明显叠加尖刺,由于干扰限流点比设计值偏低,图一则没有这种现象、还有开关管驱动信号电路,开关管驱动电阻要靠近开关管,可提高开关管工作可靠性,这和功率MOSFET高直流阻抗电压驱动特性有关。