BS EN 10228-3-1998-C 钢锻件无损检验.铁素体或马氏体钢锻件超声检验 -中文版

BS EN 10228-3-1998-C 钢锻件无损检验.铁素体或马氏体钢锻件超声检验 -中文版
BS EN 10228-3-1998-C 钢锻件无损检验.铁素体或马氏体钢锻件超声检验 -中文版

DP钢

1.DP钢(简称双相钢) 是低碳钢或低合金钢经临界区热处理或经控制轧制而得到的高强度钢,其组织有铁素体基体和约20%在铁素体晶界上的岛状马氏体构成,也称马氏体双相钢。双相钢的基本成分为C和Mn,有时为了提高淬透性还添加一定量的Cr和Mo。 双相钢是20世纪70年代中期发展起来的一种新材料,其具有低屈强比,高伸长率及初始硬化速率快的特性。DP钢主要应用在汽车的边梁,侧面构件,横梁,支柱,底盘加强件,油箱支架及车体的结构件,加强件和防撞件。 其生产工艺为: 1.热轧双相钢工艺板坯加热到1200℃左右,然后经粗轧和精轧,将钢材的终轧温度控制在两相区的某一范围,缓冷后快速冷却,通过控制最终形变温度及冷却速度而获得铁素体(F)和马氏体(M)组织。其工艺过程如 图1所示。 图1中加热段是将钢坯温度加热到1150℃~1300℃后进行轧制,终轧温度控制在800℃~850℃;然后进行缓冷,缓冷约15s后进行快速冷却,使钢带快冷至370℃以下,最后进行空冷。 2.冷轧后热处理工艺 冷轧后热处理工艺将冷轧后的钢材重新加热至两相区的某一范围,并保温一定时间,然后以一定速度缓冷和快速冷却后,从而获得所需要的F+M的组织。其工艺如图2所示:

图2冷轧后热处理生产工艺过程 预热段将钢带预热到200℃左右,然后进行加热,加热至780℃一830℃进行保温,40s后进行缓冷,缓冷至680℃~720℃,然后进行快速冷却,快冷终止温度320℃左右,进入过时效段,过时效段出口温度250℃左右,后进行终冷,终冷温度至170℃然后进行水淬至40℃。 3.TRIP钢即相变诱导塑性钢。其组织是有铁素体,贝氏体和残余奥氏体三相组 成。其具有高的强度和韧性,良好的成形性和可焊性及可镀性。TRIP钢与其他同级别的高强度钢相比,最大特点是兼具高强度和高延伸性能,可冲制较复杂的零件;还具有高碰撞吸收性能,一旦遭遇碰撞,会通过自身形变来吸收能量,而不向外传递,常用作汽车的保险杠、汽车底盘等防撞部位。这种钢还因其优良的高速力学性能和疲劳性能,受到现代汽车制造上的青睐,主要用于汽车结构件及其加强件。其最佳的应用前景是TRIP 钢最佳的应用前景是汽车车门防护杆、保险杠和底盘结构件等。 生产工艺:有热轧和冷轧两种生产工艺生产TRIP 钢材( 板) , TRIP钢的生产工艺 图2 (a)为热轧工艺示意图, 即热轧TRIP钢通过形变热处理来获得, 在形变热处理的过程中, 热轧后的钢板组织随冷却发生快速的相变,可以获得包含铁

低碳马氏体

低碳马氏体 显微组织性能及处理工艺 锻轧后空冷:贝氏体+马氏体+铁素体 性能:σ=828MPa;σ=1049MPa -室温冲击功96J制造汽车时的轮托架 锻轧后直接淬火并回火:低碳回火马氏体σ=935MPa;σ=1197MPa室温冲击功50J,-40℃的冲击功32J,制造汽车操作杆 具有高强度,高韧性和高的疲劳强度,适用于工程机械运动的部件和低温下适用部件 2,低碳马氏体的合金化 低碳加入Mo Nb V B等与合理的Mn、Cr配合 提高淬透性,Nb还细化晶粒 BHS系列:Mn-Mo-Nb 成分:c:0.1%,Mn1.8%,Mo0.45%,Nb0.05% Mn-Si-Mo-V-Nb系列 铁素体-马氏体双相钢 特征:显微组织:铁素体+岛状马氏体+少量残奥 性能特点:1,低的屈服强度一般不超过350Mpa 2, ε曲线是光滑的,没有屈服平台,更没有锯齿形屈服现象 3,高的均匀加延伸率和总延伸率,在24%上 4,高的加工硬化指数,你>0.24 5,高的塑性变化 双相组织或得方法 1热处理双相处理 刚在Ac1与Ac3双相区加热,组织为α﹢γ,随加热温度升高,钢种---相增加,在冷却过程中,保证转变产物α﹢M而不是α﹢P 双相钢的力学性能与组织有密切的关系,钢的化学成分,亚临界区加热温度,最终冷却速度,将起决定性作用 热轧双相钢 热轧后从A状态冷却时,先形成70—80%的多边形铁素体,使未转变的A有足够稳定性,避免发生珠光体和贝氏体相变,在以后冷却转变变成M 工艺要求:合理设计合金成分和实现控轧与控冷 双相钢优异性能的原因 屈服强度和高应变硬化率的原因存在三种可能 首先在马氏体区域存在残余应力,这些应力来源于快速冷却时马氏体相变的体积和形状变化其次,由于这些体积和形状变化效应,使周围铁素体经受塑性变形,导致铁素体中存在高密度的可动位错。再次,伴随着马氏体的残余奥氏体,在成形操作时,发生应变诱发马氏体相变。双相钢的典型成分和用途 化学成分:W(c)0.04-0.1.% W﹙Mn﹚0.8-1.8% W﹙Si﹚0.9-1.5% W﹙Mo﹚0.3-0.4% W﹙Cr﹚0.4-0.6% 用途:强度成形性的综合性能好,满足汽车冲压成形件的要求。 调制刚 结构钢在淬火+高温回火具有良好的综合机械性能,有较高的强度、良好的塑性和韧性适用于这种热处理钢种称为调制刚。 化学成分特点:中碳,碳含量在0.3%~0.5%。碳含量过低时淬硬性不够;C 含量过高的韧性下降。 合金元素:主加:Cr Mn Si Ni。辅加:Mo W V Ti Al B

马氏体强化机制

2012春季学期 材料力学性能课程论文 院(系)材料科学与工程 专业材料科学与工程 学生唐骜 学号 1091900101 班号 0919001

铁碳马氏体的强化机制 唐骜 1091900101 摘要:本文以铁碳马氏体的组织形貌以及马氏体转变过程为出发点,引述了马氏体的主要强韧化机制。并通过引用各学者的实验结论,得到了铁碳马氏体的强韧化机理。 关键词:马氏体,强韧化机制,高强度钢,低碳钢,时效 1. 马氏体概述 马氏体(martensite)是黑色金属材料的一种组织名称。将钢加热到一定温度(形成奥氏体)后经迅速冷却(淬火),得到的能使钢变硬、增强的一种淬火组织。 马氏体最先由德国冶金学家 Adolf Martens(1850-1914)于19世纪90年代在一种硬矿物中发现。马氏体的三维组织形态通常有片状(plate)或者板条状(lath),但是在金相观察中(二维)通常表现为针状(needle-shaped),这也是为什么在一些地方通常描述为针状的原因。马氏体的晶体结构为体心四方结构(BCT)。中高碳钢中加速冷却通常能够获得这种组织。高的强度和硬度是钢中马氏体的主要特征之一。 20世纪以来,对钢中马氏体相变的特征累积了较多的知识,又相继发现在某些纯金属和合金中也具有马氏体相变,如:Ce、Co、Hf、Hg、La、Li、Ti、Tl、Pu、V、Zr、和Ag-Cd、Ag-Zn、Au-Cd、Au-Mn、Cu-Al、Cu-Sn、Cu-Zn、In-Tl、Ti-Ni等。目前广泛地把基本特征属马氏体相变型的相变产物统称为马氏体。 2. 马氏体相变特征 马氏体转变的一般定义为:过冷奥氏体以较快的速度冷却,抑制其扩散性分解,在较低的温度下发生的无扩散型相变称为马氏体相变。 其主要特点有以下几点: (1)马氏体相变是无扩散相变。马氏体相变时没有穿越界面的原子无规行走或顺序跳跃,因而新相(马氏体)承袭了母相的化学成分、原子序态和晶体缺陷。马氏体相变时原子有规则地保持其相邻原子间的相对关系进行位移,这种位移是切变式的。原子位移的结果产生点阵应变(或形变)。这种切变位移不但使母相点阵结构改变,而且产生宏观的形状改变。 (2)产生表面相变时浮突。马氏体形状改变使先经抛光的试样表面形成浮突。马氏体形成时,与马氏体相交的表面上发生倾动,在干涉显微镜下可见到浮突的高度以及完整尖锐的边缘。 (3)新相(马氏体)和母相之间始终保持一定的位向关系。马氏体相变时在一定的母相面上形成新相马氏体,这个面称为惯习(析)面,它往往不是简单的指数面,如

铁素体耐热钢

为确保火力发电的长期稳定和减少CO2排放问题,开发超临界压力火力发电用高强度耐蚀耐热钢是不可或缺的,使用这种钢能够使蒸汽高温高压化,从而提高发电效率,减少CO2排放。 人们通常将蒸汽温度超过566℃、压力超过24.1MPa的设备称为USC设备。目前,USC设备的最高蒸汽温度已达到610℃,日本等国家正在进行蒸汽温度达到650℃的高强度铁素体耐热钢的研究开发。作为630℃级汽轮机用铁素体耐热钢,日本开发了MTR10A(10Cr-0.7Mo-1.8W-3Co-VNb)、HR1200(11Cr-2.6W-3Co-NiVNb)和TOS110(10Cr-0.7Mo-1.8W-3Co-VNb)。 对于650℃级铁素体耐热钢,日本从材料结构方面研究了微细组织在晶界附近长时间稳定的问题。9Cr-3W-3Co-0.2V-0.05Nb-0.08C钢添加了在晶界容易产生偏析的硼后,根据该钢在650℃时的蠕变断裂数据,为抑制试验用钢生成氮化硼(Boronnitride简称BN),因此不添加氮。无添加硼的钢在1千小时左右的长时间运转后,蠕变断裂强度急剧下降,但随着硼含量的增加,在长时间运转后能抑制蠕变断裂强度的劣化。由于该钢没有添加氮,因此Z相的生成不会导致长时间运转后蠕变断裂强度的劣化。长时间运转后蠕变断裂强度的劣化是由于在蠕变过程中M23C6碳化物凝聚粗化会导致马氏体组织迅速恢复所致。硼在晶界附近的M23C6碳化物中浓缩,可以长时间抑制晶界附近的M23C6碳化物在蠕变过程中发生凝聚粗化,使晶界附近的微细板条状-块状组织保持长时间不变。 根据在650℃、80MPa时的蠕变速度-时间曲线可知,添加硼后发生大的变化的是加速蠕变的开始时间延长了。由此可使最小蠕变速度变得更低,断裂寿命延长。添加硼,可以抑制晶界附近发生局部蠕变变形,使变形在晶界附近和晶粒内变得更加均匀,还可提高蠕变延性,从而提高蠕变疲劳寿命。在添加140ppm硼的9Cr钢中,当氮为80ppm左右时,蠕变强度变得极大。 作为650℃级高效USC设备用钢,日本在耐热钢的研究方面领先于欧美。为解决能源供给和减少CO2排放这两个课题,因此对耐热钢的高强度化、高温化、尤其是确保长时间运转可靠性的要求非常高,研究开发新一代耐热钢对火力发电来说今后将起越来越重要的作用

汽车用高强钢有新进展

? ? 分类:国际新闻 创建于2013年7月11日星期四10:14 最后更新于2013年7月11日星期四10:14 作者:Super User 点击数:9 浦项制铁技术研究实验室 Young Sool Jin 郭金宇译 在现在和未来的汽车上,汽车的减重成为减少CO2排放和降低燃油消耗的关键手段。同时,复合动力车和电动车更加要求车身减重。包括有色金属在内的轻量化材料中,从技术和经济性的观点来看,先进高强钢是最有应用前景的汽车用材料。根据调查,先进高强钢在汽车用钢的比例将从2009年的7%增加到2020年的28%~36%,特别是在亚洲国家,比例将更高。此外,在未来的白车身和覆盖件上,铝合金的用量也将大幅度增加。考虑到未来的应用前景,钢铁行业应加快先进高强钢和相关应用技术的研究与发展。 多种高强钢物尽其用 为了满足汽车工业在提高安全性、燃油经济性、耐用性和舒适性等方面的要求,钢铁企业开发了多种钢材并应用在车身结构上,更加先进的新型汽车用钢也正在加紧研发中。强塑积小于25000MPa%的汽车用钢已经广泛应用在汽车行业,如IF钢、HSLA(高强低合金)钢、传统的先进高强钢(AHSS)如DP(双相)钢、TRIP(相变诱导塑性)

钢、CP(复相)钢、马氏体钢和HF(热冲压成形)钢。另外两组钢,分别称为超高强度先进高强钢(X-AHSS)和超高强度先进高强钢 (U–AHSS),具有优越的强度和塑性平衡,强塑积大于25000MPa%,被称为下一代汽车用钢。而这些先进高强钢的微观组织包括铁素体、贝氏体、马氏体和残余奥氏体等组织。那么,传统先进高强钢有何最新发展,下一代先进高强钢的研发进展如何?附表总结了浦项制铁先进高强钢的研发情况。 热轧先进高强钢。为了得到性能优异的热轧双相钢、铁素体-贝氏体钢和TRIP钢,在工艺过程中需要优化钢种的成分、轧制工艺和冷却速率。总的说来,热轧终轧温度大于Ar3点,冷却过程采用2步法进行控制。中间的冷却温度和空冷时间会对铁素体转变行为产生影响,如铁素体的体积、形态,以及未转变奥氏体的富碳情况。热轧卷最终的卷曲温度会对产品的微观组织产生影响。 采用低C-Mn-Si的成分体系,590MPa级和780MPa级DP钢的卷曲温度设定在马氏体转变温度以下,冷却后直接得到铁素体和马氏体组织。980MPa级DP钢采用低C-Mn-Si-Cr的成分体系,卷曲温度在马氏体转变温度以上。通过添加Cr提高钢卷的淬透性,残余奥氏体在卷曲后转变为马氏体。双相钢主要用在要求良好强度和塑性平衡以及低屈服强度的车轮和汽车悬挂件等零部件上。 为了得到扩孔性能优良的FB钢(铁素体-贝氏体双相钢),减小基体和第二相之间的碳含量和硬度的差别是至关重要的。低C-Mn系590MPa级、低C-Mn-Si系的780MPa级和980MPa级FB钢的卷曲

奥氏体、马氏体、铁素体、双相不锈钢的区别简介

奥氏体、马氏体、铁素体、双相不锈钢的区别简介

不锈钢通俗地说,不锈钢就是不容易生锈的钢,实际上一部分不锈钢,既有不锈性,又有耐酸性(耐蚀性)。不锈钢的不锈性和耐蚀性是由于其表面上富铬氧化膜(钝化膜)的形成。这种不锈性和耐蚀性是相对的。试验表明,钢在大气、水等弱介质中和硝酸等氧化性介质中,其耐蚀性随钢中铬含水量的增加而提高,当铬含量达到一定的百分比时,钢的耐蚀性发生突变,即从易生锈到不易生锈,从不耐蚀到耐腐蚀。不锈钢的分类方法很多。按室温下的组织结构分类,有马氏体型、奥氏体型、铁素体和双相不锈钢;按主要化学成分分类,基本上可分为铬不锈钢和铬镍不锈钢两大系统;按用途分则有耐硝酸不锈钢、耐硫酸不锈钢、耐海水不锈钢等等,按耐蚀类型分可分为耐点蚀不锈钢、耐应力腐蚀不锈钢、耐晶间腐蚀不锈钢等;按功能特点分类又可分为无磁不锈钢、易切削不锈钢、低温不锈钢、高强度不锈钢等等。由于不锈钢材具有优异的耐蚀性、成型性、相容性以及在很宽温度范围内的强韧性等系列特点,所以在重工业、轻工业、生活用品行业以及建筑装饰等行业中获取得广泛的应用。

200 系列—铬-镍-锰奥氏体不锈钢 300 系列—铬-镍奥氏体不锈钢 型号301—延展性好,用于成型产品。也可通过机械加工使其迅速硬化。焊接性好。抗磨性和疲劳强度优于304不锈钢。 型号302—耐腐蚀性同304,由于含碳相对要高因而强度更好。 型号303—通过添加少量的硫、磷使其较304更易切削加工。 型号304—通用型号;即18/8不锈钢。GB牌号为0Cr18Ni9。 型号309—较之304有更好的耐温性。 型号316—继304之後,第二个得到最广泛应用的钢种,主要用于食品工业和外科手术器材,添加钼元素使其获得一种抗腐蚀的特殊结构。由于较之304其具有更好的抗氯化物腐蚀能力因而也作“船用钢”来使用。SS316则通常用于核燃料回收装置。18/10级不锈钢通常也符合这个应用级别。[1] 型号321—除了因为添加了钛元素降低了材

奥氏体马氏体铁素体双相不锈钢的区别简介

不锈钢简介: 不锈钢通俗地说,不锈钢就是不容易生锈的钢,实际上一部分不锈钢,既有不锈性,又有耐酸性(耐蚀性)。不锈钢的不锈性和耐蚀性是由于其表面上富铬氧化膜(钝化膜)的形成。这种不锈性和耐蚀性是相对的。试验表明,钢在大气、水等弱介质中和硝酸等氧化性介质中,其耐蚀性随钢中铬含水量的增加而提高,当铬含量达到一定的百分比时,钢的耐蚀性发生突变,即从易生锈到不易生锈,从不耐蚀到耐腐蚀。不锈钢的分类方法很多。按室温下的组织结构分类,有马氏体型、奥氏体型、铁素体和双相不锈钢;按主要化学成分分类,基本上可分为铬不锈钢和铬镍不锈钢两大系统;按用途分则有耐硝酸不锈钢、耐硫酸不锈钢、耐海水不锈钢等等,按耐蚀类型分可分为耐点蚀不锈钢、耐应力腐蚀不锈钢、耐晶间腐蚀不锈钢等;按功能特点分类又可分为无磁不锈钢、易切削不锈钢、低温不锈钢、高强度不锈钢等等。由于不锈钢材具有优异的耐蚀性、成型性、相容性以及在很宽温度范围内的强韧性等系列特点,所以在重工业、轻工业、生活用品行业以及建筑装饰等行业中获取得广泛的应用。 不锈钢牌号分组 200 系列—铬-镍-锰奥氏体不锈钢 300 系列—铬-镍奥氏体不锈钢 型号301—延展性好,用于成型产品。也可通过机械加工使其迅速硬化。焊接性好。抗磨性和疲劳强度优于304不锈钢。 型号302—耐腐蚀性同304,由于含碳相对要高因而强度更好。 型号303—通过添加少量的硫、磷使其较304更易切削加工。 型号304—通用型号;即18/8不锈钢。GB牌号为0Cr18Ni9。 型号309—较之304有更好的耐温性。 型号316—继304之後,第二个得到最广泛应用的钢种,主要用于食品工业和外科手术器材,添加钼元素使其获得一种抗腐蚀的特殊结构。由于较之304其具有更好的抗氯化物腐蚀能力因而也作“船用钢”来使用。SS316则通常用于核燃料回收装置。18/10级不锈钢通常也符合这个应用级别。[1] 型号321—除了因为添加了钛元素降低了材料焊缝锈蚀的风险之外其他性能类似304。 400 系列—铁素体和马氏体不锈钢 型号408—耐热性好,弱抗腐蚀性,11%的Cr,8%的Ni。 型号409—最廉价的型号(英美),通常用作汽车排气管,属铁素体不锈钢(铬钢)。 型号410—马氏体(高强度铬钢),耐磨性好,抗腐蚀性较差。 型号416—添加了硫改善了材料的加工性能。 型号420—“刃具级”马氏体钢,类似布氏高铬钢这种最早的不锈钢。也用于外科手术刀具,可以做的非常光亮。 型号430—铁素体不锈钢,装饰用,例如用于汽车饰品。良好的成型性,但耐温性和抗腐蚀性要差。

耐热钢的分类与用途资料

一、不锈钢: 按成分可分为Cr系(400系列)、Cr-Ni系(300系列)、Cr-Mn-Ni(200系列)及析出硬化系(600系列)。200 系列—铬-镍-锰奥氏体不锈钢300 系列—铬-镍奥氏体不锈钢301—延展性好,用于成型产品。也可通过机械加工使其迅速硬化。焊接性好。抗磨性和疲劳强度优于304不锈钢。302—耐腐蚀性同304,由于含碳相对要高因而强度更好。303—通过添加少量的硫、磷使其较304更易切削加工。304—即18/8不锈钢。GB牌号为0Cr18Ni9。309—较之304有更好的耐温性。316—继304之后,第二个得到最广泛应用的钢种,主要用于食品工业、制药行业和外科手术器材,添加钼元素使其获得一种抗腐蚀的特殊结构。由于较之304其具有更好的抗氯化物腐蚀能力因而也作“船用钢”来使用。SS316则通常用于核燃料回收装置。18/10级不锈钢通常也符合这个应用级别。[1] 不锈钢水桶 型号321—除了因为添加了钛元素降低了材料焊缝锈蚀的风险之外其他性能类似304。400 系列—铁素体和马氏体不锈钢。408—耐热性好,弱抗腐蚀性,11%的Cr,8%的Ni。409—最廉价的型号(英美),通常用作汽车排气管,属铁素体不锈钢(铬钢)。410—马氏体(高强度铬钢),耐磨性好,抗腐蚀性较差。416—添加了硫改善了材料的加工性能。420—“刃具级”马氏体钢,类似布氏高铬钢这种最早的不锈钢。也用于外科手术刀具,可以做的非常光亮。430—铁素体不锈钢,装饰用,例如用于汽车饰品。良好的成型性,但耐温性和抗腐蚀性要差。440—高强度刃具钢,含碳稍高,经过适当的热处理后可以获得较高屈服强度,硬度可以达到58HRC,属于最硬的不锈钢之列。最常见的应用例子就是“剃须刀片”。常用型号有三种:440A、440B、440C,另外还有440F(易加工型)。500 系列—耐热铬合金钢。600 系列—马氏体沉淀硬化不锈钢。不锈钢 630—最常用的沉淀硬化不锈钢型号,通常也叫17-4;17%Cr,4%Ni。 “不锈钢”一词不仅仅是单纯指一种不锈钢,而是表示一百多种工业不锈钢,所开发的每种不锈钢都在其特定的应用领域具有良好的性能。成功的关键首先是要弄清用途,然后再确定正确的钢种。有关不锈钢的进一步详细情况可参见由NiDI 编制的"不锈钢指南"软盘。幸而和建筑构造应用领域有关的钢种通常只有六种。它们都含有17~22%的铬,较好的钢种还含有镍。添加钼可进一步改善大气腐蚀性,特别是耐含氯化物大气的腐蚀。 二耐热钢: 耐热钢是指在高温下工作的钢材。耐热钢的发展与电站、锅炉、燃气轮机、内燃机、航空发动机等各工业部门的技术进步密切相关。由于各类机器、装置使用的温度和所承受的应力不同,以及所处环境各异,因此所采用的钢材种类也各不相同。这里所谈的温度是个相对的概念。最早在锅炉和加热炉中使用的材料是低碳钢,使用的温度一般在200℃左右,压力仅为0.8MPa。知道现在使用的锅炉用低碳钢,如20g,使用温度也不超过450℃,工作压力不超过6MPa。随着各类动力装置的使用温度不断提高,工作压力迅速增加,现代耐热钢的使用温度已高达700℃,使用的环境也变得更加复杂与苛刻。现在,耐热钢的使用温度范围为200~800℃,工作压力为几兆帕到几十兆帕,工作环境从单纯的氧化气氛,发展到硫化气氛、混合气氛以及熔盐和液金属等更复杂的环境。

铁素体型耐热钢发展主要分为四个发展阶段

铁素体型耐热钢发展主要分为四个发展阶段 在1960~1970年代EM12、HCM9M、HT9、HT91等9~12%Cr钢对于亚临界机组的发展有很大贡献。直到1970~1985年期间,T/P91、HCM12和HCM2S提高了钢的持久强度、可焊接性等,机组蒸汽温度提高到593℃以上,保证了超临界机组的运行和超超临界机组的试验建造。1985年以后开发了T92(NF616)、E911和HCM12A(T/P122)。由于进一步增加W、Mo、Cu等强化元素,钢的持久强度提高,机组的蒸汽温度提高至600℃以上,这样保证了超超临界机组的成功运行。由于铁素体钢导热性好,热膨胀系数小,钢的热疲劳抗力比奥氏体钢好。同时,铁素体耐热钢焊接性好,与其它铁素体钢的焊接属于同种材料焊接,焊接接头性能稳定,成本比18-8奥氏体钢低。由于这些优点,世界各国都大力研究发展铁素体耐热钢。近年来,通过加入3W-3Co及B、Ta、Nd等元素进一步强化发展了NF12,SA VE12等新型耐热钢,可望满足650℃蒸汽温度参数使用。 奥氏体耐热钢主要用于过热器和再热器的高温段管道,其的特点是持久强度高、抗氧化和抗腐蚀性能优越,使用温度比铁素体钢高。可以大致分成四类,即15Cr-15Ni型、18-8型、25Cr-20Ni型和高Cr合金型。15Cr-15Ni型有17-14CuNb、Esshete1250、TempaloyA-2等;18-8型有TP304H、TP321H、TP316H、TP347H、TP347HFG、Super304H、TempaloyA-1等;25Cr-20Ni型有TP310、TP310NbN(HR3C)、NF707、NF709、Alloy800H、TempaloyA-3、SA VE25等;高铬合金型有CR30A、

高扩孔钢变形奥氏体的连续冷却转变

收稿日期:2007 12 24 基金项目:国家自然科学基金资助项目(50527402) 作者简介:蔡明晖(1979-),男,河南周口人,东北大学博士研究生;丁 桦(1958-),女,安徽合肥人,东北大学教授,博士生导师 第29卷第11期2008年11月东北大学学报(自然科学版)Journal of Northeastern U niversity(Natural Science)Vol 29,No.11Nov. 2008 高扩孔钢变形奥氏体的连续冷却转变 蔡明晖,丁 桦,李晓滨,唐正友 (东北大学材料与冶金学院,辽宁沈阳 110004) 摘 要:研究了三种硅 锰系低碳钢变形奥氏体的连续冷却转变,分析了w (Si),w (M n)对相变温度A r3、转变组织及力学性能的影响 实验结果表明:w (Si)由0.50%增加到1.35%时,A r 3升高15~25!,而w (M n)由0.97%增加到1.43%时,A r3降低30~50!,锰对A r3的影响效果强于硅;硅促进了高温等轴铁素体析出,抑制了贝氏体相变,而锰不仅细化了相变组织,还促进了贝氏体形成;w (Si),w (M n)分别为0 56%和1.43%的钢在850!变形后以30!/s 冷却,获得均匀、微细化的铁素体/贝氏体双相组织,抗拉强度可达到654M P a 关 键 词:铁素体/贝氏体双相钢;变形奥氏体;硅含质量分数;锰质量分数;相变温度中图分类号:T G 142.1 文献标识码:A 文章编号:1005 3026(2008)11 1576 05 Continuous Cooling Transformation of Deformed Austenite in Highly Hole Expandable Steels CAI Ming hui,DING H ua,L I X iao bin ,TAN G Zheng y ou (School of M ater ials &M etallurgy ,Northeastern U niversity,Shenyang 110004,China.Correspondent:CAI M ing hui,E mail:cmhing @126.co m) Abstract:The effects of Si and M n contents on transformation tem perature A r3,transformed microstructure and mechanical properties of three kinds of low carbon steels during continuous cooling w ere investig ated.A r3rises by 15~25!w hen increasing Si content from 0.50%to 1 35%,and it drops by 30~50!when increasing M n content from 0.97%to 1.43%.The effect of Mn on A r3is more significant than Si.Si stimulates the precipitation of the hig h temperature equiaxed ferrite to suppress the bainite transformation,but Mn not only provides the g rain refining of transformed m icrostructure but also stimulates the forming of bainite.The homogeneous and g rain refining diphase ferrite/bainite steel (w (Si)=0.56,w (Mn)=1.43)can be obtained after deformed at 850!and cooled at the rate 30!/s,of w hich the tensile strength is up to 654MPa. Key w ords:ferrite bainite diphase steel;deformed austenite;Si mass ratio;M n m ass ratio;transformation tem perature 为了汽车轻量化、降低油耗和改善整车的安全性等目的,近年来已开发出多种具有高强度和良好成形性,且能满足汽车工业发展要求的高强度钢板 其中,日本新开发的具有高扩孔性能的热轧高强度钢,其强度级别为440~780M Pa,被广泛应用于汽车的底盘部件 目前,国内开发的汽车底盘用冷连轧钢板的抗拉强度仅为370~430M Pa,热轧钢板的强度级别也仅为400MPa,限制 了其使用范围[1-2] 因此,开发新型的汽车底盘等部件用热轧高扩孔钢在我国具有十分重要的意义 铁素体/贝氏体双相钢(FB 钢)具有非常好的成形性能,特别是延伸凸缘性,在强度相同时FB 钢的扩孔率为双相钢(DP 钢)的2倍左右,更适合于冲压像汽车底盘等要求较厚且成形性尤其是翻边性良好的部件[3] FB 钢的化学成分(质量分

新型耐热钢研究现状

新型耐热钢的研发现状 新型耐热钢在原耐热钢的基础上进一步多元合金化以及优化制造工艺。采用固溶强化、弥散强化、位错强化、碳化物强化、Laves相强化等复合强化机制,提高了材料的综合性能,以满足超超临界机组的选材要求,确保发电设备的安全运行。 现阶段我国经济正在稳定快速发展,对电能的需求不断增加。预计到2020年全国装机容量将达到10亿千瓦,其中火电装机容量仍将占70%以上,发展超超临界机组将是我国火力发电提高效率、节约能源、改善环境、降低发电成本的必然趋势。众所周知,发电效率的提高必然提高锅炉蒸汽参数。蒸汽压力及温度参数提高后对耐热钢提出了更苛刻的综合性能要求,尤其是要求材质具有优异的热强性能、抗高温腐蚀、抗氧化性能、焊接性能、冷加工和热加工性能等。 超超临界锅炉用钢可分为两大类:奥氏体钢和铁素体钢(包括珠光体、贝氏体和马氏体及其两相钢)。奥氏体钢比铁素体钢具有更高的热强性、抗氧化性能,但膨胀系数大、导热性能差、抗应力腐蚀能力低、工艺性差,热疲劳和低周疲劳(特别是厚壁件)性能也比不上铁素体钢,且成本要高。目前国内新建超超临界机组的关键部件均采用了大量新型耐热钢,因而对此类材质的综合性能、强化机理、服役性能、国产化的研究迫在眉睫。 1 新型铁素体钢研发现状 铁素体钢按照主要元素Cr的加入量可划分为2-3Cr、9Cr、12Cr三

大系列。总体来说,铁素体耐热钢研发经历了Mo系→Cr-Mo系→Cr-Mo-V系→Cr-W-V系的历程。 Cr不仅改善钢的抗氧化性能,而且能起到固溶强化作用;W、Mo 主要为固溶强化,也参与形成析出强化,可以提高钢的高温强度;V的加入可以明显降低蠕变速度,Nb可以提高钢的强度,复合加入V、Nb 易形成纤细弥散稳定的MX碳化物而产生沉淀强化(以0.25%V和0.05%Nb的组合最为有效),对蠕变断裂强度影响很大;Cu可代Ni稳定蠕变强度,抑制δ铁素体的形成;B进入M23C6碳化物,并偏聚于M23C6和基体间的界面从而阻止M23C6的粗化,同时促进VN形核而提高蠕变强度;Co除固溶强化作用外,还延缓了马氏体在高温回火时的回复,并促进回火时细小碳化物的形核,还减慢碳化物的熟化长大,从而提高蠕变强度。 中国自行研制的钢102(12Cr2MoWVTiB),在570~595℃这一温度区内,具有足够的抗氧化性能,且比12Cr1MoV钢有较高的许用应力,是性能价格比好且经实践考验的低合金热强钢钢种。 HCM2S是在T22(2.25Cr-1Mo)钢的基础上吸收了钢102的优点改进的,600℃时的强度比T22高93%,与钢102相当。但由于C含量降低,加工性能和焊接性能优于钢102,可以焊前不预热,焊后不热处理(壁厚≤8mm)。该钢已获得ASME锅炉压力容器规范CASE2199认可,被命名为SA213-T23。目前HCM2S已做出大口径管,性能达到小口径管的水平。 T24(7CrMoVTiB10-10)钢是在T22钢的基础上改进的,与T22

和 L L和 双相钢之区别

304 18Cr-8Ni 作为一种用途广泛的钢,具有良好的耐蚀性、耐热性,低温强度和机械特性;冲压、弯曲等热加工性好,无热处理硬化现象(无磁性,便用温茺-196℃~800℃)。 家庭用品(1、2类餐具、橱柜、室内管线、热水器、锅炉、浴缸),汽车配件(风挡雨刷、消声器、模制品),医疗器具,建材,化学,食品工业,农业,船舶部件。 304L 18Cr-8Ni-低碳 作为低C的304钢,在一般状态下,其耐蚀性与304刚相似,但在焊接后或者消除应力后,其抗晶界腐蚀能力优秀;在未进行热处理的情况下,亦能保持良好的耐蚀性,使用温度 -196℃~800℃。 应用于抗晶界腐蚀性要求高的化学、煤炭、石油产业的野外露天机器,建材耐热零件及热处理有困难的零件。 316 因添加Mo,故其耐蚀性、耐大气腐蚀性和高温强度特别好,可在苛酷的条件下使用;加工硬化性优(无磁性)。 海水里用设备、化学、染料、造纸、草酸、肥料等生产设备;照像、食品工业、沿海地区设施、绳索、CD杆、螺栓、螺母。 316L 低碳

作为316钢种的低C系列,除与316钢有相同的特性外,其抗晶界腐蚀性优。 316钢的用途中,对抗晶界腐蚀性有特别要求的产品。 双相钢(dual-phase,简称DP钢),又称复相钢。 由马氏体、奥氏体或贝氏体与铁素体基体两相组织构成的钢。一般将铁素体与奥氏体相组织组成的钢称为双相不锈钢,将铁素体与马氏体相组织组成的钢称为双相钢。双相钢是低碳钢或经临界区热处理或控制轧制后而获得。典型的双相钢σs为310MPa,σb为655MPa。双相钢用于制造冷冲、深拉成型的复杂构件,也可用作管线钢、链条、冷拔钢丝、预应力钢筋等。所谓是在其固溶组织中铁素体相与奥氏体相约各占一半,一般量少相的含量也需要达到30%。在含C较低的情况下,Cr含量在18%~28%,Ni含量在3%~10%。有些钢还含有Mo、Cu、Nb、Ti,N等合金元素。该类钢兼有奥氏体和的特点,与铁素体相比,塑性、韧性更高,无室温脆性,耐晶间腐蚀性能和焊接性能均显着提高,同时还保持有的475℃脆性以及导热系数高,具有超塑性等特点。与相比,强度高且耐晶间腐蚀和耐氯化物应力腐蚀有明显提高。具有优良的耐孔蚀性能,也是一种节镍不锈钢。

铁素体马氏体双相钢表面纳米化及性能研究

铁素体/马氏体双相钢表面纳米化及性能研究 梯度纳米结构(Gradient Nanostructure)指材料的结构单元(如晶粒尺寸或层片厚度)在空间上呈梯度变化,从纳米尺度连续增加到宏观尺度。梯度纳米结构可以使具有不同特征尺寸的结构相互协调,使材料的整体性能(强度、硬度、耐磨性、疲劳性能等)得到优化和提高。 铁素体/马氏体双相钢具有良好的力学性能和成形性,探究双相钢微观变形行为,研究两相的变形协调性对制备梯度纳米结构的影响,理解其微观晶粒细化行为,有助于双相钢表面梯度纳米结构的制备设计。通过采用临界区退火(Intercritical Annealing,IA)、中间淬火(Intermediate Quenching,IQ)和分级淬火(Step Quenching,SQ)对低碳钢进行双相区热处理,得到不同马氏体形貌和不同马氏体体积分数的双相钢;首先,对不同马氏体形貌和体积分数的双相钢 表面进行超音微粒轰击(Supersonic Fine Particles Bombardment,SFPB)处理制备梯度纳米结构层;随后,对其力学性能和抗腐蚀性能进行测试分析;最终,基于微观应力模型下模拟试样受力下微观组织应力应变分布情况。 结果表明:(1)相同超音微粒轰击工艺下,三种马氏体组织形貌试样均产生了一定的梯度纳米变形层,其中,岛状马氏体(IA处理)形成较小颗粒分散于变形层中,纤维状马氏体(IQ处理)变为细小颗粒状并均匀的分散亚晶层区域,块状马氏体(SQ处理)组织经过表面塑性变形后形成片状组织。IA工艺下,不同马氏体体积分数试样的变形层形貌基本相似,随着马氏体体积分数增大,变形层厚度也随之增大,但表面晶粒细化幅度总体呈减小趋势;(2)通过纳米梯度层制备后,试样强度都得到明显增大,而塑性有所降低。 其中,纤维状马氏体双相钢强度增幅最大且塑性降低最小,而块状马氏体双

新型铁素体耐热钢CB2的焊接及热处理工艺研究 吴富强

新型铁素体耐热钢CB2的焊接及热处理工艺研究吴富强 摘要:随着我国经济的快速发展,提高火电机组的热效率是一项重要和紧迫的 任务。而火电机组效率的提高主要在于提高蒸汽的压力和温度。这就对火电机组 的相关设备用钢特别是高温承压部件用钢的高温性能提出了更高的要求,目前我 国自主研发新型耐热钢ZG12Cr9Mo1Co1NiVNbNB(CB2)以良好性能逐渐应用于 火力发电厂热力系统设备的耐热钢材。因此,新型耐热钢CB2焊接及热处理工艺 的研究是目前火电建设施工技术领域亟待解决的问题。 关键词:新型耐热钢;CB2钢;热处理工艺; 1引言 CB2钢是欧洲COST536项目研发的新型铁素体耐热钢,可用于 600℃/620℃30MPa的第二代超超临界机组汽轮机高温部件及管道,目前已实现 国产化,但尚处于初步应用阶段。据查,国内焊接及热处理工艺方面的研究文献 极少,为突破国外厂商的技术壁垒,充分发挥其性能并推广应用,迫切需要掌握 该钢种现场焊接和热处理施工工艺。 2研究内容 2.1CB2钢焊接性分析 CB2钢材料是经过淬火+回火处理的供货状态,其组织为回火马氏体。CB2钢 是在P91钢基础上加入适量的Co,同时加入少量的Nb和B,适当增加Mo的含 量得到的。 ①焊接热裂纹敏感性 由于CB2钢合金程度高,其硼、硫含量低,锰含量高,这些因素共同决定了 其在施焊冷却过程中,随着温度的降低导致产生的低溶点共晶物少,又由于其自 身线膨胀系数小,因此,CB2钢的热裂纹敏感性不大。 ②焊接冷裂纹敏感性 由于CB2钢合金元素含量高,碳当量高,临界冷却速度低,奥氏体稳定性很大,冷却时不易发生正常的珠光体转变,从而冷却到较低温度时发生了马氏体转变。在焊接过程中,淬硬将会形成较多的的晶格缺陷(空位、位错),同时在热 力不均及应力作用下易形成裂纹源,且该裂纹源在后续工作条件下产生裂纹的所 需要吸收的能量低,故CB2钢产生冷裂纹倾向大。 ③化学成分Co对焊接接头的影响 CB2钢是在P91钢基础上加入适量的Co,可抑制铁素体的析出、降低硫含量,同时可发生固溶强化,提高钢的回火稳定性。其缺点是易发生过时效倾向而使钢 变脆。合适的焊后热处理工艺可以获得相对细小弥散分布的析出相,进一步提高CB2钢的力学性能。 2.2CB2钢焊接材料选择分析 ①CB2钢化学成分及性能分析 ZG12Cr9Mo1Co1NiVNbNB(CB2)钢是在P91钢基础上加入1.27%的Co,同时 加入少量的Nb和B,适当增加Mo的含量得到的,目的是为了提高钢材的高温力学性能。CB2钢化学成分: C0.13Cr9.11Ni0.14Co1.27Mo1.59V0.054Nb0.21B0.01N0.015 CB2钢室温下力学性能:抗拉强度≥690MPa,屈服强度≥490MPa,伸长率 ≥15%,断面收缩率≥35%,冲击功≥27J,布氏硬度210-260HB。 ②CB2钢焊材的选用

双相钢和相变诱导塑性(TRIP)钢

双相钢和相变诱导塑性(TRIP)钢 引言 节省燃料和保证安全的要求是高强度钢在汽车工业中的应用稳步增长的驱动力。与其它材料,如轻金属铝、镁,或是塑料和复合材料相比,高强度钢除了减轻重量外,还有另外的优点,即其加工工艺类似于传统的低碳钢。因此,高强度钢在减轻重量的同时其总的制造成本也下降。其它竞争材料在这方面的情况则截然相反(1)。 根据强度和成形性的不同要求,采用不同的高强度带钢和薄板钢。以无间隙原子钢为基础的高强度钢具有优异的冷成形性能(2)。当深冲作为主要加工方法,而抗拉强度要求约400N/mm2时,低碳含磷钢和烘烤硬化钢得到大量应用。如果对深冲性的要求不很严格, Lankford值r 1.0左右足够时,可以使用更高强度级别的钢种。和微合金带钢和薄板钢应用的同时,具有双相显微组织的钢种(3)的应用也相当普遍。这种类型钢在同等抗拉强度时具有较高的均匀延伸率和总延伸率,如图1所示(4)。但如果从同等的屈服强度来考虑,这种优势消失。 特性及工艺路线 双相显微组织指在铁素体基体上分布着一定量的第二相。该组织具有网状、弥散和两相组织的特征,如图2(5)。第二相通常是马氏体,其典型的体积分数约为20%。 这样的显微组织构成影响应力一应变曲线。屈服强度由软相即铁素体的塑性流变的起动所决定。在此阶段,硬相还处于弹性区。根据两相组组织的混合规律,当施加的应力较高时,材料显示较高的加工硬化行为。两相中应变的分布是不一样的,以致于软相中的应变和硬相中的应力高于复合体平均值。即使在变形的稍后阶段硬相变成塑性时,这种现象仍然存在。这样复杂的情况的示意图如图3所示。应用有限元的方法,可以计算出最终力学性能(6)。 显微组织的详细分析表明,双相钢也包含有一定量的残余奥氏体。由于铁素体组分内

双相钢简介

双相钢又称复相钢。由马氏体或奥氏体与铁素体基体两相组织构成的钢。一般将铁素体与奥氏体相组织组成的钢称为双相不锈钢,将铁素体与马氏体相组织组成的钢称为双相钢。双相钢是低碳钢或低合金高强度钢经临界区热处理或控制轧制后而获得。典型的双相钢屈服强度σs为310MPa,拉伸强度σb为655MPa。双相钢用于制造冷冲、深拉成型的复杂构件,也可用作管线钢、链条、冷拔钢丝、预应力钢筋等。 性质:指主要由铁素体相和马氏体相组成的钢。可由低碳钢或低合金钢经临界区处理或控制轧制而得到。这类钢具有高强度和高延性的良好配合,已成为一种强度高、成形性好的新型冲压用钢,成功的用于汽车产业等。 双相钢 - 性能特点 由于两相组织的特点,通过正确控制化学成分和热处理工艺,使双相不锈钢兼有铁素体不锈钢和奥氏体不锈钢的优点,它将奥氏体不锈钢所具有的优良韧性和焊接性与铁素体不锈钢所具有的较高强度和耐氯化物应力腐蚀性能结合在一起,正是这些优越的性能使双相不锈钢作为可焊接的结构材料发展迅速,80年代以来已成为和马氏体型、奥氏体型和铁素体型不锈钢并列的一个钢类。双相不锈钢有以下性能特点: (1)含钼双相不锈钢在低应力下有良好的耐氯化物应力腐蚀性能。一般18-8型奥氏体不锈钢在60°C以上中性氯化物溶液中容易发生应力腐蚀断裂,在微量氯化物及硫化氢工业介质中用这类不锈钢制造的热交换器、蒸发器等设备都存在着产生应力腐蚀断裂的倾向,而双相不锈钢却有良好的抵抗能力。 (2)含钼双相不锈钢有良好的耐孔蚀性能。在具有相同的孔蚀抗力当量值 (PRE=Cr%+3.3Mo%+16N%)时,双相不锈钢与奥氏体不锈钢的临界孔蚀电位相仿。双相不锈钢与奥氏体不锈钢耐孔蚀性能与AISI 316L相当。含25%Cr的,尤其是含氮的高铬双相不锈钢的耐孔蚀和缝隙腐蚀性能超过了AISI 316L。 (3)具有良好的耐腐蚀疲劳和磨损腐蚀性能。在某些腐蚀介质的条件下,适用于制作泵、阀等动力设备。 (4)综合力学性能好。有较高的强度和疲劳强度,屈服强度是18-8型奥氏体不锈钢的2倍。固溶态的延伸率达到25%,韧性值AK(V型槽口)在100J以上。 (5)可焊性良好,热裂倾向小,一般焊前不需预热,焊后不需热处理,可与18-8型奥氏体不锈钢或碳钢等异种焊接。(6)含低铬(18%Cr)的双相不锈钢热加工温度范围比18-8型奥氏体不锈钢宽,抗力小,可不经过锻造,直接轧制开坯生产钢板。含高铬(25%Cr)的双相不锈钢热加工比奥氏体不锈钢略显困难,可以生产板、管和丝等产品。 (7)冷加工时比18-8型奥氏体不锈钢加工硬化效应大,在管、板承受变形初期,需施加较大应力才能变形。 (8)与奥氏体不锈钢相比,导热系数大,线膨胀系数小,适合用作设备的衬里和生产

双相钢介绍

双相不锈钢是指不锈钢中同时具有奥氏体和铁素体两种金相组织结构的不锈钢。双相钢又称复相钢。一般将铁素体与奥氏体相组织组成的钢称为双相不锈钢,将铁素体与马氏体相组织组成的钢称为双相钢。 双相钢是低碳钢或低合金高强度钢经临界区热处理或控制轧制后而获得。典型的双相钢屈服强度σs为310MPa,拉伸强度σb为655MPa。双相钢用于制造冷冲、深拉成型的复杂构件,也可用作管线钢、链条、冷拔钢丝、预应力钢筋等。 这类钢具有高强度和高延性的良好配合,已成为一种强度高、成形性好的新型冲压用钢,成功的用于汽车工业等。 一般双相钢是指马氏体(贝氏体)加上铁素体基体的组织。马氏体呈岛状分布在铁素体晶粒之间即:10%~20%马氏体加铁素体组织。这种钢具有屈服强度低、延伸率高及形变硬化率高等特性有利于冷拔成型可以通过冷加工硬化提高强度同时还具有良好的塑性和韧性。 不锈钢一般是不锈钢和耐酸钢的总称。不锈钢是指耐大气、蒸汽和水等弱介质腐蚀的钢,而耐酸钢则是指耐酸、碱、盐等化学浸蚀性介质腐蚀的钢。不锈钢自本世纪初问世,到现在已有90多年的历史。不锈钢的发明是世界冶金史上的重大成就,不锈钢的发展为现代工业的发展和科技进步奠定了重要的物质技术基础。 不锈钢钢种很多,性能各异,它在发展过程中逐步形成了几大类。 按组织结构分,分为马氏不锈钢(包括沉淀硬化不锈钢)、铁素体不锈钢、奥氏体不锈钢和奥氏体加铁素体双相不锈钢等四大类; 按钢中的主要化学成分或钢中的一些特征元素来分类,分为铬不锈钢、铬镍不锈钢、铬镍钼不锈钢以及低碳不锈钢、高钼不锈钢、高纯不锈钢等; 按钢的性能特点和用途分类,分为耐硝酸不锈钢、耐硫酸不锈钢、耐点蚀不锈钢、耐应力腐蚀不锈钢、高强不锈钢等; 按钢的功能特点分类,分为低温不锈钢、无磁不锈钢、易切削不锈钢、超塑性不锈钢等。目前常用的分类方法是按钢的组织结构特点和钢的化学成分特点以及两者相结合的方法分类。一般分为马氏体不锈钢、铁素体不锈钢、奥氏体不锈钢、双相不锈钢和沉淀硬化型不锈钢等,或分为铬不锈钢和镍不锈钢两大类。 奥氏体加铁素体双相不锈钢是指不锈钢中既有奥氏体又有铁素体组织结构的钢种,而且此二相组织要独立存在,含量都较大,一般认为最少相的含量应大于15%。而实际工程中应用的奥氏体+铁素双相不锈钢(习惯称α+γ双相不锈钢或双相不锈钢)多以奥氏体为基并含有不小于30%的铁素体,最常见的是两相各约占50%的双相不锈钢。双相不锈钢英文简写是DSS(Duplex Stainless Steel)。 由于具有α+γ双相组织结构,双相不锈钢兼有奥氏体不锈钢和铁素体不锈钢的特点。与铁素体不锈钢相比,α+γ双相不锈钢的韧性高,脆性转变温度低。耐晶间腐蚀性能和焊接性能均显著提高;同时又保留了铁素体不锈钢的一些特点,如475℃脆性、导热系数高、线膨

相关文档
最新文档