螺纹联接防松综述

螺纹联接防松综述
螺纹联接防松综述

第37卷第6期2008年 5月

贵州工业大学学报(自然科学版)

J OURNAL OF GU I ZHOU UN I V ERSI TY OF TEC HNOLOGY

(Natura l Science Ed ition)

V o.l37No.6

M ay.2008

文章编号:1009-0193(2008)06-0021-04

螺纹联接防松综述

王莉霞,马玉钦,李亚青

(贵州大学机械工程学院,贵州贵阳550003)

摘 要:分析了螺纹联接防松的原因,总结了目前螺纹防松的常用的一般方法和先进方法,对

实际应用中机械设备的联接和运转进行了探讨。

关键词:螺纹联接;防松;先进方法

中图分类号:T H13113 文献标识码:A

0 引 言

螺纹联接是现代结构和机械设备常用的联接方式之一。松动失效是承受交变载荷螺纹联接的主要失效形式之一。在实际应用中,因联接件松动、脱落而造成设备和人身事故事例屡见不鲜,如何实现螺纹联接防松是个值得研究的重要问题。

1 螺纹联接防松原因及一般方法

1.1 螺纹联接松动原因

在静载荷和工作温度变化不大时,螺纹连接一般不会自动松脱。但在冲击、振动、变载荷作用或高温、温度变化较大下,联接中预紧力和摩擦力逐渐减小,都会导致联接失效[1]。

对具体的螺纹联接而言,引起螺纹联接件松动的原因很多,但归纳起来主要有以下三个方面原因:(1)螺纹联接件的初始变形;(2)轴向载荷的作用;(3)受横向载荷作用[2]。

螺纹联接松脱,轻者会影响机器运转,重者会造成事故,设计时须采取有效防松措施。

1.2 螺纹联接防松一般方法

防松的根本问题在于防止螺旋副在受载时发生相对转动。防松的方法,按其工作原理可分为摩擦防松、机械防松和破坏螺旋副运动关系防松等。

1.2.1 摩擦防松

螺纹副中存在着不随联接载荷而变的压力,因而始终有摩擦力矩防止相对转动。压力可由螺纹副纵向或横向压紧而产生。常用方法有采用对顶螺母,弹簧垫圈,一般自锁螺母等。

1.2.2 机械防松

(1)开口销与六角开槽螺母六角开槽螺母拧紧后,将开口销穿入螺栓尾部小空和螺母的槽内,并将开口销尾部掰开与螺母侧面贴紧。

(2)止动垫圈螺母拧紧后,将单耳或双耳止动垫圈分别向螺母和被联接件侧面折弯贴紧,即可将螺母锁住。若两螺栓需要双联锁紧,可采用双联止动垫圈,使两螺母相互制动。

(3)串联钢丝用低碳钢丝穿入各螺钉头部孔内,将各螺钉串联起来,使其相互制动。

1.2.3 破坏螺旋副运动关系防松

铆冲防松 螺母拧紧后把螺栓末端伸出部分铆死,或利用冲头在螺栓末端与螺母的缝合处打冲,利用冲点防松动,这种方法很可靠,但是拆卸后不能重复使用[1]。

*收稿日期:2008-04-02

基金项目:贵州大学研究生创新基金资助项目

作者简介:王莉霞(1984-),女,汉族,贵州贵阳人,研究生,研究方向:机械设计。

22 贵 州 工 业 大 学 学 报 (自然科学版)2008年

2 先进螺纹联接防松方法

2.1 滚压收口的自锁螺母防松

自锁螺母在使用中防止自松脱是通过对自锁螺母圆柱体端部收口,使螺母收口部位螺纹孔变形,当螺栓每拧入到螺母收口部位时产生干涉配合起到防松作用。传统压扁法是造成锁紧力矩不稳定重要原因,事实上采用压扁收口法不易得到曲率变化均匀对称的椭圆形。

基于这些,沈阳飞机设计研究所的张占元提出采用滚压收口的方法来加工自锁螺母,这样可使螺母收口部位的螺纹孔由圆形变成曲率变化均匀的对称的椭圆形,螺距沿螺纹孔轴向增大,造成与螺栓干涉配合,可获得比较稳定的锁紧力矩。他对滚压加工螺母的原理和结构进行了较详尽的分析,虽然这项技术还没有推广,但是不失为螺纹防松的一种方法[3]。

2.2 美国底特公司的自锁螺母技术

20世纪70年代,美国底特螺纹工具公司,经过长期研究,重新设计螺纹的几何形状设计,称为SPI R-ALOCK,译名 施必牢 ,简称为自锁螺母,从根本解决了紧固件自行松脱问题。

自锁螺母的防松原理在于它的独特结构。在阴螺纹的牙底有一个30 的楔形斜面,当螺栓、螺母相互拧紧时,螺栓的牙尖就紧紧地顶在自锁螺纹的楔形面上,从而产生很大的锁紧力。

自锁螺母的优点表现在:(1)可靠的防振、防松性能;(2)可提高螺母及螺栓的使用寿命,可重复使用;

(3)不受温度剧烈变化的影响,应用范围广;(4)自由旋转型,直到拧紧时才施加力矩,方便装卸;(5)尺寸规格不受限制,能与标准螺栓匹配等。

该螺母已广泛应用于航天、航空、军工、汽车、港口机械、柴油机、铁道机车、磁悬浮轨道、工程机械、医疗器械等行业,在纺织工业、纺机、纺器行业也有广泛的使用前景[4]。

2.3 铁基S MA螺母防松

铁基形状记忆合金防松螺母的防松是通过增大自锁摩擦力矩防松和阻尼防松两种方式来实现的。该螺母利用铁基形状记忆合金的形状记忆效应,可将螺母内螺纹加工成略小于螺栓外螺纹的尺寸,然后扩孔变形至标准螺母内螺纹的尺寸,因为在此过程产生应力诱发马氏体相变,所以按规定力矩拧紧后,对螺母加热,应力诱发马氏体发生逆相变,但因受到螺栓的约束作用,螺母会产生巨大径向回复力,该回复力转化为自锁摩擦力矩,能有效增大螺旋副之间的锁紧力矩,从而防止螺旋副出现相对转动,达到防松目的。此外,因为螺母的径向形状回复,减小了螺纹牙之间的间隙,有效防止螺母与螺栓在受到动载荷作用时产生不同频率的振动,避免螺旋副间自锁摩擦力矩急剧下降[5]。

2.4 ST2型防松螺母

上海铁道大学研制的ST2型防松螺母在3批装车试验后,于1997年通过部级鉴定,认为 属国内首创,其技术水平与国际同类产品相当,建议在车辆上进一步推广使用 [6]。

ST2型自锁防松螺母的防松是通过增大自锁摩擦力矩防松和阻尼防松两种方式。该螺母改进螺纹的结构形状,螺母的底径上有一30 锥面,而螺栓螺纹的形状仍保持标准的三角形。当螺母和螺栓配合在一起使用时,因为预紧力作用,螺栓的牙顶和螺母的牙底有直线接触或微量变形,在横向动载荷作用下由于螺母和螺栓之间横向间隙减小,且两者之间存在较大的摩擦力,从而提供较大的摩擦力矩作用,所以能有效地防止螺旋副产生较少的相对运动,从而达到防松目的[2]。

ST2型防松螺母是目前国内结构简单、工艺性好、防松性能稳定、使用效果显著、重复使用性好、装机考验较充分、应用领域亦较广泛、实用性好的一种新型防松螺母,除已在铁路电务、工务、电气化接触网上推广应用外,在铁道车辆上的应用前景也是十分广泛[6]。

2.5 唐氏螺纹

唐氏螺纹是由左旋和右旋两种螺旋线复合在同一段螺纹段上,既有左旋螺纹的特点又有右旋螺纹的特点,既可以和左旋螺纹配合又可以和右旋螺纹配合。唐氏螺纹可以利用螺纹自身特点解决防松问题。在联接时,需使用两只不同旋向的螺母:工件支承面上的螺母称为紧固螺母,非支承面上的螺母称为锁紧螺母。紧固螺母和锁紧螺母是两种不同旋向的螺母,使用时先将紧固螺母预紧,然后再将锁紧螺母预紧[7]。

在振动、冲击的情况下,紧固螺母会发生松动的趋势,但是,由于紧固螺母松退方向是锁紧螺母拧紧方向,锁紧螺母拧紧恰恰阻止了紧固螺母松退,导致紧固螺母无法松脱

[7]。2.6 液压防松螺母

液压防松螺母联接是利用增加螺栓联接预紧力,使高强度螺栓在轴向发生弹性变形并保持拉伸状态,依靠螺栓弹性变形产生内应力将螺母压紧,达到防松目的的一种新型螺纹联接。

该技术的出现,成功的解决了煤矿机械中的一些螺栓松动的难题。但是,到目前为止,液压防松螺母除了在采煤机上有较好的使用,受到了井下采煤机使用维护人员的欢迎外,液压防松螺母并没有得到普遍的推广,分析原因大致有以下几点:

(1)液压防松螺母与普通螺母比较,结构复杂,尺寸较大,而且强度较高,价格比较高。

(2)使用液压防松螺母,须配套使用手动便携式高压油泵,其输出压力须达到250MPa 以上。而目前国内市场上额定压力能达到250MPa 的液压配件(油管、压力表、密封件等)基本没有,这就阻碍了液压螺母的

推广[8]。

2.7 充填软性材料防松

当拧紧螺母时,附着在螺牙表面的微观薄屑、微粒或疏或密地夹杂在内外牙隙之间,被挤得更扁、压得更薄了,并且与其它尘垢搀合在一起,就像夹缝中 细沙层 一样被裹夹其间。要想完全清除干净上述的薄屑微粒显然是困难的,最简单而有效的办法是把内外螺纹之间的径向间隙和侧向间隙抵紧并 挤死 ,令 细沙层 失去受振松动错位的机会。

其防松机理是:借助橡胶垫受压所产生的弹性变形和弹性预紧力 挤死 螺母与螺杆及螺母与紧定螺钉之间径向及侧向的间隙。换言之,凭借橡胶垫变形后对螺牙隙间的充填和塞紧来抵制和预防螺母松动。橡胶的摩擦系数远大于金属的摩擦系数,因此这种弹性胀紧比单纯的刚性夹紧更能吸振消振解振,从而增强了自锁的可靠性。即用最简单实用且可靠的方法巧妙地解决了单螺母防松问题[9]。

3 总 结

除了这些之外,还有其它一些。比如:FSL M 型防松螺母,自攻自锁防松,树脂锚杆高强度防松螺母,楔紧自锁螺母,改变齿形防松等。

4 结束语

文章从螺纹联接防松的原因出发,分析了常见的螺纹放松的措施,后面又结合生产实际和文献总结,得出了比较新近的一些螺纹防松的方法或技术,对于机械工作者更好地从事专业工作有指导意义。螺纹防松技术的发展不会停止,还要在实践和研究中进一步完善和发展。

参考文献:

[1]濮良贵,纪名刚.机械设计[M ].北京:高等教育出版社,2001.

[2]沈英明,杜彦良,李惠军.螺纹联接防松方法研究综述[J].石家庄铁道学院学报,2002,15(4):84-87.

[3]张占元.自锁螺母的防松及滚压收口的应用[J].飞行器设计,2002,49-52.

[4]刘荣清,秋黎凤.自锁螺母的原理及应用[J].纺织器材,2007(35):256-258.

[5]李俊良,杜彦良,孙宝臣.铁基S MA 螺母防松摩擦力矩的试验研究[J].中国机械工程,2007,19(10).

[6]曹亦清.S T 2型防松螺母的防松效果调查及安装注意事项[J].铁道车辆,2000,38(7):20-23.

[7]孙 峰,唐宗才.唐氏螺纹的防松原理及效果[J].机械工程师,2002,5.

[8]赵 勤.液压防松螺母[J].煤炭技术,2002,21(6).

[9]高 伟,冯艳华,夏仁丰.单螺母防松的新方法[J].现场经验,2002.23第6期王莉霞,等:螺纹联接防松综述

24 贵 州 工 业 大 学 学 报 (自然科学版)2008年

A Survey of Preventi ng Loosi ng of Threade d Connection

WANG Li-x i a,MA Yu-q i n,LI Ya-qing

(Schoo l ofM echanical Eng i n eering,Guizhou Un i v ersity,Guiyang550003,China) Abstract:This paper analyzes the causes o f threaded connecti o n s looseness,and generalm ethods and ad-vanced m ethods o f preven ti n g loosi n g of threaded connecti o n are also g i v en.F i n ally,itw ill co m e to a con-clusion and g i v e so m e proposa ls o f developm en.t

Key w ords:threaded connection;prevent loosi n g of threaded connect i o n;advanced m ethods

(上接20页)h max增加;整体拉深比 m增加,但增长较缓;r c/B越大,对矩形盒短边的影响较大,长轴端部的皱曲比短轴显著。

凹模圆角过小过大都会严重影响拉深成形性,降低成形极限。适当增大凹模圆角半径有利于板坯的成形,防止起皱和破裂发生。

参考文献:

[1]颚大辛.成形工艺与模具设计[M].北京:北京理工大学出版社,2007.

[2][美]V ukota Bo lj anov ic.sheet m eta l for m i ng processes and die design[M].北京:化学工业出版社,2006.

[3]龚红英,李少平,张质良.工艺参数对热镀锌钢板拉深成形性能的影响[J].锻压技术,2003,(6):33-35.

[4]李书涛,李 赞,董湘怀.工艺参数对板料成形性能的影响[J].锻压技术,2002,(3):22-23.

[5]蒋定举,等.启动齿星轮冷挤压工艺的模拟分析与研究[J].锻压技术,2008,(2):80-83.

Nu m erical Si m ul ation and Analysis of Rectangular Case s For m i ng L i m it

YUAN Yu-hong1,WU Q i-shan2,Z H E NG W ei-gang2

(1.C ollege o fM echan ica l Eng ineeri n g,Gu izhou U niversity,Gu iyang550003,China;2.Gu izhou Sc ience

and Techno logy Eng i n eeri n g Vocati o na lCo llege,Gu i y ang550008,Ch i n a)

Abstract:Fracturi n g and flange w rinkli n g i n deep dra w i n g m ay occur for rectangu lar case.There are m any pr ocess para m eters leadi n g to the f o r m ation o f li m i.t The forg i n g si m u lation soft w are-Q for m2D/3D w as a-dopted to carry ou t num erical si m u lation about deep dra w i n g w ith the i m portant pr ocess para m eters(rc/B、rd),anglic izing their i m pact on the rectangu lar case s for m ing li m it

Key w ords:rectangular case;t h e analysis of for m i n g process;;num erical si m u lation;for m i n g li m it

浅析螺纹联接的预紧和防松

浅析螺纹联接的预紧和防松 文章简要介绍了螺纹联接预紧的目的和松动的原因,分析了各种防松原理,并对其应用效果作了简要评价。指出了在工程上选用合理的联接结构和防松措施,可有效地提高螺纹联接的可靠性。 關键词:螺纹联接;预紧力;防松方法;可靠性 引言 近年来,随着机械制造业的发展,螺纹联接在机械设计中的作用体现的越来越明显,在机械设备、航空航天、汽车及高速列车等领域螺纹联接都得到了广泛的应用,是当前可拆联接方式发展中不可或缺的一部分。同时,随着螺纹联接件的大量使用,因螺纹联接件松动甚至脱落引起的事故也是时有发生,而造成螺纹联接件松动甚至脱落的主要原因在于联接件使用过程中的振动及冲击等动载荷或工作温度的较大变化,螺纹联接的反复使用可以导致联接件的摩擦系数及预紧力的降低,然后造成螺纹联接件的失效。为此,螺纹联接的预紧和防松问题应引起机械制造业的足够重视。 1 螺纹联接的预紧 螺纹联接进行预紧可以有效的防止松动,加强其紧密性与联接的可靠性。在螺纹联接预紧时力度要适合,适合的力度不单单能够加强整体结构的承载力度,还能有效地将应力分布均匀,提高并改善螺纹联接的工作可靠性。如果预紧力过大,会降低其承载载荷,螺纹在强大的压力下从螺栓中脱落或者发生螺纹断裂现象;而如果预紧力过小,联接处出现间隙,导致螺栓受力发生变化,降低其使用寿命。同时,适度的控制预紧力,也要控制好力的大小,不能过大或過小,螺栓在受力不均匀的情况下,容易导致螺栓与螺纹联接整体设计载荷下降,失去螺栓联接处应发挥的作用。从以上可以看出,均匀适度的预紧力,可以提高机械设备的整体运行效果。 当螺栓联接受螺栓拧紧力矩T?撞时,被联接零件间产生预紧压力F0,而螺栓则受到预紧拉力F0,此时F0即为螺栓所受的预紧力。 1.1 拧紧力矩(扳手力矩)T?撞 在预紧螺栓联接时,加于扳手上的拧紧力矩T?撞,须克服螺旋副中的螺纹力矩T和螺母与支承表面间的摩擦阻力矩Tf,即T?撞=T+Tf对于M10~M68的粗牙螺纹,则T?撞为(经验公式): T?撞≈0.2F0d×10-3 (1) 式中:T?撞-拧紧力矩,单位为N·m;F0-拧紧力,单位为N;d-螺纹的公

+紧固件常用防松方法

224 第21章 螺纹紧固件连接的防松 一、松动机理 螺纹连接在工作状态下可能会经受所有类别的变动载荷,包括极为激烈的振动和冲击载荷。在变动载荷的作用下,螺纹连接的失效通常是由其自身的松动和疲劳破坏所引起的。在一般情况下,螺纹连接抗振松的寿命比其材料和结构的疲劳寿命短得多,远在疲劳破坏之前,就已经出现了因松动而造成螺纹连接的松脱失效,或者出现了因松动而导致连接件和被连接件的过早疲劳破坏。螺纹连接的失效会影响产品和设备的正常运转,甚至会造成严重的后果。如何防止螺纹连接的松动是研制和设计螺纹紧固件的重要任务之一。 在通常的螺纹连接中,摩擦力产生于内外螺纹接触面或螺纹紧固件支承面与被连接件的接触面上。当螺纹连接开始松转时,克服螺纹接触面上的摩擦所需的力矩M 1为: ()αρ-= tg Qd M 2 2 1……………………………(公式21-1) 式中:Q ——作用于螺栓或螺钉上的预紧力,又称轴力或紧固系统的夹紧力; d 2——螺纹中径; ρ——摩擦角,对于三角形螺纹,β ρcos 1 M tg = ,M 1是螺纹接触面之间的摩擦系数,β是牙型半角; α——螺纹螺旋线的升角,又称导角。 螺纹紧固件被拧紧后,由于螺母或螺钉头支承面上的摩擦而产生的附加力矩M 2为: 2 2 22D Q M μ= …………………………(公式21-2) 式中:μ 2——螺母或螺钉头支承面与被连接件接触面之间的摩擦系数; D 2——螺母或螺钉头支承面的平均直径,在接触压力均匀的情况下,D 2的精确值是: ??? ? ??--=223 3232n n R R R R D ωω ,R ω和R n 分别是支承面的外半径和内半径,如果支承面不平或接触压力不均匀,D 2就可能随着支承面的内半径到外半径而变化。 综上所述,决定螺纹连接开始松转时的总力矩M 为: ()??????+-=+=22 22221D tg d Q M M M μαρ…………………(公式21-3) 分析公式21-3可知,仅在总力矩M 等于或小于零的情况下,螺纹紧固件才开始自行松 转。对于连接用螺纹,在受静载荷作用时,即使润滑条件很理想,其摩擦角也始终大于升角:ρ>α,即满足螺纹的自锁条件,使公式21-3括号内的总值不会等于或小于零,螺纹紧固件也就不会自行松转。但是在经受动载荷时,例如在振动和冲击的作用下,螺纹紧固件在螺纹和支承面上产生了微观的滑移,这种相对的微观运动使摩擦系数由相对高的静态值变为很低的动态值,螺纹连接在各个方向上处于自由摩擦状态。此时,作用在螺纹上的轴向力在圆周方向上形成一个导致螺母松转的内松出力矩,使螺母开始松转,就像一个在斜面上的重物,由于摩擦力的变小或消失而往下滑动一样。这种松转称为螺纹连接的自松。千万次的振动循环耗尽了螺纹连接的防松摩擦阻力,使其从细微的松转直到完全的松脱。 螺纹件在螺纹面和支承面上的微观滑移是怎样产生的呢?对于承受轴向动载荷的螺纹

螺纹联接防松方法研究

螺纹联接防松方法研究 从理论上分析了螺纹松动的原因,得到松动原因包括接触面有变形的情况、受到了轴向和横向的作用力等。对平常使用的防松方法进行了阐述,尤其是对螺母防松、防松胶、预紧力等方法的原理展开了研究,并对这些方法的作用结果进行评价。结果表明,得到预紧力防松方法是当前较为适合的方法,对螺纹间连接的可靠性的提升提供了有益的借鉴。 關键词:螺纹联接;预紧力;锁紧螺母;施必牢螺母;防松胶 引言 螺纹联接由于精度高、装配方便、零件拆装便利等优点,对当前机构设备之间的连接应用非常广泛。由于这种方式具有自锁性等特点,然而,对于有冲击力作用、振动及温度突变等环境下工作,由于支承面的磨损、被连接件的受压下陷、螺栓的过载屈服等各种原因可能松动,导致预紧力下降,使其由拧紧状态的紧连接变为没有预紧力或预紧力不足的松连接。若出现螺纹间的连接不紧,就会出现预紧力下降,严重时没有预紧力作用,使得螺纹之间的连接质量下降,而设备零件易于损坏,严重时连接直接分离开来。对真实的环境中,由于联接件之间连接不紧或分离,导致人受伤或设备受损的情况经常出现。因此,保持紧固件自身的锁紧,使其在一定时间内松而不脱,对防止被连接件因分离而失效至关重要。 一、螺纹联接的连接及防松原理 1.连接原理。螺纹联接是用一个或多个螺栓将两个或多个零部件进行可拆卸的连接,按照设计的位置传递相连零件之间的力和力矩。螺纹联接既要承受外部载荷的作用,又要满足接头的功能要求。在螺纹联接系统中,螺栓相当于拉簧,被连接件相当于压簧,螺栓连接原理如图1所示。由图可以看出被连接件被压缩f P M,螺栓被拉长f SM,由此产生的夹持力将被连接件夹紧,以达到设计要求及抵抗外部载荷。 2.防松原理。为防止螺旋副相对转动,必须使旋合螺纹间始终受到附加压力和摩擦力的作用。工作载荷变动时该摩擦力仍然存在。但在实际应用中螺旋副间的摩擦力瞬时减小或瞬时消失多次后,螺纹联接可能失效,这种失效趋势是必然的。 二、螺纹联接松动原因分析 1.支撑面被压陷引起的松动 a.松动原因。在被拧紧的螺纹联接中,如果螺栓或螺母支撑面的接触压强(即单位接触面积上的轴向压力)过大时,被连接件表面在与螺栓或螺母支撑面接触产生塑性的环状压陷,严重的压陷或在工作中塑性变形的继续而加剧的压陷会使

机械设计基础-5.4螺纹联接的防松

第四节螺纹联接的防松 螺纹副的受力关系、效率和自锁 (a) 滑块等速上升时的受力分析 (b) 滑块等速下降时的受力分析 由《机械原理》可知,拧紧螺母时,可看作推动重物沿螺纹表面运动。将螺纹沿中径处展开,滑块代表螺母,螺母和螺杆间的运动可视为滑块在斜面上运动。 根据力的平衡条件可得: 旋紧螺母时作用在螺纹中径上的水平推力(圆周力): 转动螺纹需要的转矩为: 螺杆传动的效率为: 同理,可得到松开螺母时的圆周力和效率分别为:

自锁条件为: 为当量摩擦角,,当量摩擦系数, 为实际摩擦系数,为螺旋副所受的轴向力。 三角形螺纹升角小、当量摩擦系数大,自锁性好,主要用于联接; 其余三种螺纹用于传动。为提高传动效率,线数要尽可能地多一些,但线数过多,加工困难,所以,常用的线数为2~3,最多到4。 螺纹联接虽然在设计上都是满足自锁条件的,但在实际中,由于会遇到冲击、振动,温度变化等因素的影响,使联接也可能出现松动现象。导致机器不能正常工作,甚至发生严重事故。所以设计时,应考虑到防宋的问题。以保证连接安全可靠。 通常采用的防松措施很多。 按工作原理分为?? ???永久止动机械防松 —增大摩擦力 —摩擦防松 注:前述内容比较零散,但是都不可缺少。 (要求最起码记住几种常用的防松方法) (1)防松的原因: A 、在冲击、振动和变载荷作用下,螺纹之间的摩擦力可能瞬时消失而影响正常工作; B 、在高温或温度变化较大时,若螺栓与被联接件的温度变形差或材料的蠕变,也可能导至联接的松脱。 (2)防松方法: A 、摩擦防松 (a)对顶螺母:两螺母拧紧后螺栓旋合段受拉而螺母受压,使螺纹副纵向压紧;

+紧固件常用防松方法

---------------------------------------------------------------最新资料推荐------------------------------------------------------ +紧固件常用防松方法 第 21 章螺纹紧固件连接的防松一、松动机理螺纹连接在工作状态下可能会经受所有类别的变动载荷,包括极为激烈的振动和冲击载荷。 在变动载荷的作用下,螺纹连接的失效通常是由其自身的松动和疲劳破坏所引起的。 在一般情况下,螺纹连接抗振松的寿命比其材料和结构的疲劳寿命短得多,远在疲劳破坏之前,就已经出现了因松动而造成螺纹连接的松脱失效,或者出现了因松动而导致连接件和被连接件的过早疲劳破坏。 螺纹连接的失效会影响产品和设备的正常运转,甚至会造成严重的后果。 如何防止螺纹连接的松动是研制和设计螺纹紧固件的重要任务之一。 在通常的螺纹连接中,摩擦力产生于内外螺纹接触面或螺纹紧固件支承面与被连接件的接触面上。 当螺纹连接开始松转时,克服螺纹接触面上的摩擦所需的力矩 M1 为:M1 ?Qd 2 tg ?? ? ? ? ……………………………(公式 21-1)2式中:Q——作用于螺栓或螺钉上的预紧力,又称轴力或紧固系统的夹紧力; d2——螺纹中径;ρ ——摩擦角,对于三角形螺纹, tg? ?M1 ,M1 是螺纹接触面之间的摩擦系数,β cos ?是牙型半角; 1/ 34

α ——螺纹螺旋线的升角,又称导角。 螺纹紧固件被拧紧后,由于螺母或螺钉头支承面上的摩擦而产生的附加力矩 M2 为:M2 ?Q? 2 D 2 …………………………(公式 21-2)2式中:?2——螺母或螺钉头支承面与被连接件接触面之间的摩擦系数; D2——螺母或螺钉头支承面的平均直径,在接触压力均匀的情况下,D2 的精确值是:D2 ?3 3 ? ? Rn 2 ? R? ? ? 2 2 ? ,Rω 和Rn 分别是支承面的外半径和内半径,如果支承面 3? R ? R n ? ? ?不平或接触压力不均匀,D2 就可能随着支承面的内半径到外半径而变化。 综上所述,决定螺纹连接开始松转时的总力矩 M 为:? D ? ?d M ? M 1 ? M 2 ? Q ? 2 tg ?? ? ? ? ? 2 2 ? …………………(公式 21-3)2 ? ?2分析公式 21-3 可知,仅在总力矩 M 等于或小于零的情况下,螺纹紧固件才开始自行松转。 对于连接用螺纹,在受静载荷作用时,即使润滑条件很理想,其摩擦角也始终大于升角:ρ >α ,即满足螺纹的自锁条件,使公式 21-3 括号内的总值不会等于或小于零,螺纹紧固件也就不会自行松转。 但是在经受动载荷时,例如在振动和冲击的作用下,螺纹紧固件在螺纹和支承面上产生了微观的滑移,这种相对的微观运动使摩擦系数由相对高的静态值变为很低的动态值,螺纹连接在各个方向上处于自由摩擦状态。 此时,作用在螺纹上的轴向力在圆周方向上形成一个导致螺母松

螺纹联接防松综述

第37卷第6期2008年 5月 贵州工业大学学报(自然科学版) J OURNAL OF GU I ZHOU UN I V ERSI TY OF TEC HNOLOGY (Natura l Science Ed ition) V o.l37No.6 M ay.2008 文章编号:1009-0193(2008)06-0021-04 螺纹联接防松综述 王莉霞,马玉钦,李亚青 (贵州大学机械工程学院,贵州贵阳550003) 摘 要:分析了螺纹联接防松的原因,总结了目前螺纹防松的常用的一般方法和先进方法,对 实际应用中机械设备的联接和运转进行了探讨。 关键词:螺纹联接;防松;先进方法 中图分类号:T H13113 文献标识码:A 0 引 言 螺纹联接是现代结构和机械设备常用的联接方式之一。松动失效是承受交变载荷螺纹联接的主要失效形式之一。在实际应用中,因联接件松动、脱落而造成设备和人身事故事例屡见不鲜,如何实现螺纹联接防松是个值得研究的重要问题。 1 螺纹联接防松原因及一般方法 1.1 螺纹联接松动原因 在静载荷和工作温度变化不大时,螺纹连接一般不会自动松脱。但在冲击、振动、变载荷作用或高温、温度变化较大下,联接中预紧力和摩擦力逐渐减小,都会导致联接失效[1]。 对具体的螺纹联接而言,引起螺纹联接件松动的原因很多,但归纳起来主要有以下三个方面原因:(1)螺纹联接件的初始变形;(2)轴向载荷的作用;(3)受横向载荷作用[2]。 螺纹联接松脱,轻者会影响机器运转,重者会造成事故,设计时须采取有效防松措施。 1.2 螺纹联接防松一般方法 防松的根本问题在于防止螺旋副在受载时发生相对转动。防松的方法,按其工作原理可分为摩擦防松、机械防松和破坏螺旋副运动关系防松等。 1.2.1 摩擦防松 螺纹副中存在着不随联接载荷而变的压力,因而始终有摩擦力矩防止相对转动。压力可由螺纹副纵向或横向压紧而产生。常用方法有采用对顶螺母,弹簧垫圈,一般自锁螺母等。 1.2.2 机械防松 (1)开口销与六角开槽螺母六角开槽螺母拧紧后,将开口销穿入螺栓尾部小空和螺母的槽内,并将开口销尾部掰开与螺母侧面贴紧。 (2)止动垫圈螺母拧紧后,将单耳或双耳止动垫圈分别向螺母和被联接件侧面折弯贴紧,即可将螺母锁住。若两螺栓需要双联锁紧,可采用双联止动垫圈,使两螺母相互制动。 (3)串联钢丝用低碳钢丝穿入各螺钉头部孔内,将各螺钉串联起来,使其相互制动。 1.2.3 破坏螺旋副运动关系防松 铆冲防松 螺母拧紧后把螺栓末端伸出部分铆死,或利用冲头在螺栓末端与螺母的缝合处打冲,利用冲点防松动,这种方法很可靠,但是拆卸后不能重复使用[1]。 *收稿日期:2008-04-02 基金项目:贵州大学研究生创新基金资助项目 作者简介:王莉霞(1984-),女,汉族,贵州贵阳人,研究生,研究方向:机械设计。

张小强-螺纹连接松动分析及预防

螺纹连接松动分析及预防 一汽-大众汽车有限公司佛山质量保证部佛山528200 张小强 【摘要】本文分析了螺纹连接松动的定义及危害,并从理论上分析了松动的原因及解决方案,最后,针对松动的原因,提出了监控螺纹连接松动的措施。 【关键词】螺纹连接摩擦系数自锁旋转松动非旋转松动 引言 螺纹连接标准化程度高、品种多、制造方便、易于拆卸,能适应各种工作条件,因此在机械中应用广泛。从原理上说,螺纹连接能够满足自锁条件,在静载荷下不会松脱,但在摩擦、冲击、振动或交变载荷作用下,螺纹连接松动时有发生,甚至产生重大事故,因此,螺纹防松一直也是困扰机械行业的重大课题。1、螺纹连接松动定义及危害 螺纹连接的本质在于获得合适的夹紧力,以保证被连接件稳定地连接到一起。所谓松动,是指螺栓连接全部或部分丧失轴向夹紧力,这种松动通常会导致: 1、连接部分的分离和脱落; 2、连接部分的滑移; 3、过度的相对位移和连接部分的碰撞; 4、分离产生的噪音及不密封; 5、连接处的牢固性降低,导致增大的振动; 6、振动导致疲劳断裂; 7、高速运转下惯性冲击断裂; 因此,为减少螺纹连接松动失效的危害,其关键在于保证合适及稳定的夹紧力。 2、螺纹连接松动原因及解决方案 螺纹连接松动通常分为两种类型,旋转松动及非旋转松动,下面我们就这两种松动类型的原因进行分析。

2.1、旋转松动的原因及解决方案 旋转松动由螺纹副的相对移动导致,正常情况下,各紧固件厂家对螺纹摩擦系数均有要求,从而保证螺纹的自锁性能,依螺栓受力分析如图1所示。 图1 螺纹拧松受力分析图 图2 60°米制螺纹自锁螺纹摩擦系数 为便于分析,先研究矩形螺纹,将矩形螺纹沿中径2d 展开,得到斜角等于螺纹升角ψ的斜面,将螺母简化为受轴向载荷a F 的滑块,同时拧紧或拧松连接副 的扭矩,产生沿圆周推力F ,当滑块静止或匀速直线运动时,由R F 、a F 和F 组成的力多边形。 当滑块匀速下滑时,螺纹升角为ψ,摩擦角为ρ,轴向载荷a F 变为驱动滑块 匀速下滑的驱动力,F 为阻碍滑块下滑的阻力,摩擦力F '的方向与滑块运动方向相反。 ()ρ ψtg F F a -*= ------(公式1) 由公式1可知,当ρ≤ψ时,推力F ≤0,表明F 为零或其方向改变,此 时,螺母只有受到与图1中F 方向相反的推力才能松退,轴向载荷在材料性能范围内无论多大,螺母都不会松退,而且,轴向载荷越大,松退所需的力也越大; 故螺纹自锁条件为ρ≤ψ。 对于拧紧装配,我们需要足够的夹紧力来保证装配质量,而适当的螺纹摩擦系数,则有利于螺纹自锁,从而避免螺纹松动,依VW01129大众摩擦系数界限值标准,螺纹摩擦系数低于0.08意味着自锁性能的下降,而M6螺栓,当螺纹摩擦系数为0.052时,自锁能力完全丧失;统计60°米制螺纹螺纹升角对应的最

螺纹联接的拧紧和防松

螺纹联接的拧紧和防松 内容摘要:螺纹联接的拧紧绝大多数螺纹联接在安装时都必须拧紧。其目的是为了增强联接的刚性,增加紧密性和提高防松能力。对于受轴向拉力的螺栓联接,还可以提高螺栓的疲劳强度。对于受横向载荷的普通螺栓联接,有利于增大联接中接合面间的摩擦力。... 1. 螺纹联接的拧紧 绝大多数螺纹联接在安装时都必须拧紧。其目的为了增强联接的刚性,增加紧密性和提高防松能力。对于受轴向拉力的螺栓联接,还可以提高螺栓的疲劳强度;对于受横向载荷的普通螺栓联接,有利于增大联接中接合面间的摩擦力。 图1 拧紧螺母时,加在扳手上的力矩T,用来克服螺纹牙间的阻力矩T1和螺母支承面上的摩擦阻力矩T2 (图1),即 T=T1+T2(1) 螺纹阻力矩 ((2) 螺母支承面上的摩擦阻力矩 T2=μF`r f(3) 故

此处螺纹中径升角λ=arctan[np/πd2] 当量摩擦角ρ`=arctan[μ/cosα] 支承面摩擦半径 上列各式中符号意义如下: F`为预紧力;d2为螺纹中径;μ为螺母与被联接件支承面之间的摩擦系数,无润滑时可取μ=0.15;n为螺纹头数;p为螺矩;α为牙侧角;D1和d0为承压面直径(图1)。对于M10~M68的粗牙螺纹,若取ρ`actan0.15=及μ=0.15,则式(4)可简化为 T≈0.2F`d Nmm(5) 式中:d为螺纹公称直径,mm;F`为预紧力,N。 控制拧紧力矩有许多方法,例如:使用测力矩扳手或定力矩扳手,装配时测量螺栓的伸,规定拧紧后的扳动角度或圈数。对于大型联接,还可利用液力或加热使螺栓伸长到需要的变形量时把螺母拧到与被联接件相贴合。近年来发展了利用微机通过轴力传感器获取数据并画出预紧力与所加拧紧力矩对应曲线的方法来控制拧紧力矩。 由于加在扳手上的力难于准确控制,有时可能拧得过紧而将螺栓拧断。因此,对于要求拧紧的螺栓联接不宜用小于M12~M16的螺栓。 2. 螺纹联接的防松 在静载荷和工作温度变化不大时,螺纹联接能满足自锁条件l 防松的根本问题在于防止螺纹副的相对转动。具体的防松方法和装置很多,就其工作原理来看,可分为利用摩擦、直接锁住和破坏螺纹副关系三种。举例说明见表。

常见的螺栓螺母连接防松方法

常见的螺栓螺母连接防松方法 常用的防松方法有三种:摩擦防松、机械防松和永久防松。 机械防松和摩擦防松称为可拆卸防松,而永久防松称为不可拆卸防松。 常用的永久防松有:点焊、铆接、粘合等。这种方法在拆卸时大多要破坏螺纹紧固件,无法重复使用。 常见摩擦防松有:利用垫片、自锁螺母及双螺母等。 常见的机械防松方法:利用开口销、止动垫片及串钢丝绳等。 机械防松的方法比较可靠,对于重要的联接要使用机械防松的方法。 下面分述如下。 (1)摩擦防松 ①弹簧垫片防松 弹簧垫圈材料为弹簧钢,装配后垫圈被压平,其反弹力能使螺纹间保持压紧力和摩擦力,从而实现防松 ②对顶螺母防松 利用螺母对顶作用使螺栓式中受到附加的拉力和附加的摩擦力。由于多用一个螺母,并且工作不十分可靠,目前已经和少使用了。 ③自锁螺母防松 螺母一端制成非圆形收口或开缝后径向收口。当螺母拧紧后,收口胀开,利用收口的弹力使旋合螺纹间压紧。这种防松结构简单、防松可靠,可多次拆装而不降低防松性能。 ④弹性圈螺母防松 螺纹旋入处嵌入纤维或尼龙来增加摩擦力。该弹性圈还起防止液体泄漏的作用。2)机械防松 ①槽形螺母和开口销防松 槽形螺母拧紧后,用开口销穿过螺栓尾部小孔和螺母的槽,也可以用普通螺母拧紧后进行配钻销孔。 ②圆螺母和止动动垫片 使垫圈内舌嵌入螺栓(轴)的槽内,拧紧螺母后将垫圈外舌之一褶嵌于螺母的一个槽内。 ③止动垫片 螺母拧紧后,将单耳或双耳止动垫圈分别向螺母和被联接件的侧面折弯贴紧,实现防松。如果两个螺栓需要双联锁紧时,可采用双联止动垫片。 ④串联钢丝防松 用低碳钢钢丝穿入各螺钉头部的孔内,将各螺钉串联起来,使其相互制动。这种结构需要注意钢丝穿入的方向, 3)永久防松 ①冲边法防松 螺母拧紧后在螺纹末端冲点破坏螺纹 ②粘合防松 通常采用厌氧胶粘结剂涂于螺纹旋合表面,拧紧螺母后粘结剂能够自行固化,防松效果良好。

螺栓常用的防松方法介绍

螺栓常用的防松方法介绍 螺栓常用的防松方法有三种:摩擦防松、机械防松和永久防松。机械防松和摩擦防松称为可拆卸防松,而永久防松称为不可拆卸防松。 常用的永久防松方法有:点焊、铆接、粘合等。这种方法在拆卸时大多要破坏螺纹紧固件,无法重复使用。 常见摩擦防松有:利用垫片、自锁螺母及双螺母等。 常见的机械防松方法:利用开口销、止动垫片及串钢丝绳等。机械防松的方法比较可靠,对于重要的联接要使用机械防松的方法。下面分述如下: (1)摩擦防松 ①弹簧垫片防松: 弹簧垫圈材料为弹簧钢,装配后垫圈被压平,其反弹力能使螺纹间保持压紧力和摩擦力,从而实现防松。

②对顶螺母(双螺母)防松: 利用螺母对顶作用使螺栓式中受到附加的拉力和附加的摩擦力。由于多用一个螺母,并且工作不十分可靠,目前已经很少使用了。 ③自锁螺母防松: 螺母一端制成非圆形收口或开缝后径向收口。当螺母拧紧后,收口胀开,利用收口的弹力使旋合螺纹间压紧。这种防松结构简单、防松可靠,可多次拆装而不降低防松性能。

④弹性圈螺母防松: 螺纹旋入处嵌入纤维或尼龙来增加摩擦力。该弹性圈还起防止液体泄漏的作用。 (2)机械防松 ①槽形螺母和开口销防松 槽形螺母拧紧后,用开口销穿过螺栓尾部小孔和螺母的槽,也可以用普通螺母拧紧后进行配钻销孔。

②圆螺母和止动垫片 使垫圈内舌嵌入螺栓(轴)的槽内,拧紧螺母后将垫圈外舌之一褶嵌于螺母的一个槽内。

③止动垫片 螺母拧紧后,将单耳或双耳止动垫圈分别向螺母和被联接件的侧面折弯贴紧,实现防松。如果两个螺栓需要双联锁紧时,可采用双联止动垫片。

④串联钢丝防松 用低碳钢钢丝穿入各螺钉头部的孔内,将各螺钉串联起来,使其相互制动。这种结构需要注意钢丝穿入的方向,原则就是:当一个螺栓有松动的趋势,它应该拉动铁丝,让临近的螺栓有旋紧的趋势。见下图所示: (3)永久防松 ①冲边法防松 螺母拧紧后在螺纹末端冲点破坏螺纹 ②粘合防松 通常采用厌氧胶粘结剂涂于螺纹旋合表面,拧紧螺母后粘结剂能够自行固化,防松效果良好。

螺纹防松结构

螺纹防松方法 生产和生活中,应用到的螺纹防松方法有多种形式,但归纳以来,一般就 有四种。 第一种是摩擦防松,主要依靠增加摩擦力; 第二种是机械防松,主要是用销、垫片、钢丝将螺母卡死; 而是防脱落。 拆御力矩是预紧力矩的80%,说明螺栓的松比紧要容易。 常见的螺纹连接防松方法如下表所示: 在常见的螺母放松结构中,还有很多禁忌。如下图所示:对于要求比较高一些的防松,更有细节的禁忌。如下图所示: 以上介绍的各种相关防松方式,其根本一点是依靠第三者力的防松。第三

者力有多大,防松效果就有多好。其效果,无非是通过增加摩擦力,直至焊死 而已。 能不能不依靠第三者而突破传统螺纹防松方式呢? 答案就是第四种防松方式,即结构防松方式:唐氏螺纹防松。 实际上,螺纹的防松原理大家能认可,关键是对强度的担心。我们一般想象受力面积减小了,强度一定也会减小。唐氏螺纹的受力面积减小了,强度肯 定会很差,事实不是这样的。 33.1%,第二圈受力为22.5%,最后一圈受力为1~ 增加30%;悬置螺母,受力面积增加, 40%。 环槽螺母强度增加的原因是因为其下部螺母结构变软,前几圈螺纹易于变形;内斜螺母强度增加的原因是下部螺纹受力面积减小,前几圈螺纹易于变形;悬置螺母强度增加的原因是改变了受力点,前几圈螺纹由受压变成受拉,与螺

栓变形一致。 唐氏螺纹受力面积小,螺纹易于变形,各螺纹段受力较普通螺纹均匀,强度不象我们想向的那小。唐氏螺纹的强度可达普通螺纹强度的90%以上。 唐氏螺纹防松 1.唐氏螺纹的作用和意义 螺纹发明一千多年了,谁是发明者已经无法考证了。 而唐氏螺纹是由我国唐宗才先生发明的。 螺纹结构“单旋向、连续、等截面” 而是独立的形成了第四种防松方式。 成锁紧螺母的拧紧力。它完全依靠螺纹自身结构,而不依靠第三者力,是一种 纯结构式的防松形式。 唐氏螺纹紧固件利用螺纹自身矛盾,以松动制约松动,起到“以毒攻毒”的效果。它的发明标志着紧固件领域振松问题得到突破性的进展。这是螺纹防松领域的一场革命,它开创了螺纹结构防松的新时代。

螺纹紧固件连接的防松分析

龙源期刊网 https://www.360docs.net/doc/702920223.html, 螺纹紧固件连接的防松分析 作者:曹向权陈铄魏庆 来源:《中国科技博览》2013年第16期 [摘要]目前基本上所有的现在的机械产品均采用了螺纹连接方式,机械产品的经济性和可靠性也与螺纹有着密切的关系。本文从汽车的实际应用的角度出发研究螺纹紧固件连接的防松问题,发现松动原因,给出放松措施和预紧方法,有利于提高螺纹紧固件的连接效果。 [关键词]螺纹紧固件;螺纹连接;防松;预紧 中图分类号:TH113 .1 文献标识码:A 文章编号:1009-914X(2013)16-0013-01 1.前言 易拆卸、易安装、能重复使用是螺纹紧固件的突出特点,同时也是螺纹获得广泛应用的重要原因之一。但是螺纹紧固件的使用缺点也是显而易见的,即,处于长期工作状态时或者是处于多温差变动、高低荷载变化、多冲击、多振动的工作环境时,螺纹紧固件容易出现松动情况,直接影响机械的运转性能并降低其安全可靠性。螺纹紧固件是将若干个功能元件连接成为一个机械整体的重点节点,如果紧固件出现脱落的情况,则势必会直接影响整个机械设备的正常运转;即便是紧固件不脱落,而是出现不紧也不落的状态,一旦持续时间过长,则会导致紧固件和连接件出现机械疲劳问题,最终影响整个机械设备的正常运转。有鉴于此,笔者在本文中以汽车的实际应用效果作为研究出发点,重点分析并探讨了螺纹紧固件连接的防松措施和方法。 2.各种螺纹紧固件连接防松方法在汽车生产中的应用分析 2.1 增大摩擦力 所谓的增加摩擦力,主要是指增加螺栓或者螺纹间与螺母支承面的摩擦力。通过增大摩擦力的方式来达到螺纹紧固件连接防松的目的,这种做法的可靠性相对较差,但是因为该种做法的最大优势在于没有使用空间的束缚,并且能够进行频繁的拆卸与安装,因而得到了最广泛的应用。常见的增加摩擦力的方法主要包括以下几个方面: 第一,两螺母对顶拧紧。采用两螺母对顶拧紧的方式,能够让两个旋紧的螺母之间始终受到摩擦力和压力的作用,降低螺母松动的几率。具体的装配方法是,首先以4/5的安装扭矩旋紧内侧的螺母,而后以全部的安装扭矩旋紧外侧的螺母。如此一来,两个螺母能够非常紧密的贴合在一起,防松摩擦力也会因此显著增大。虽然采用两个螺母会增加一定的重量并占用一定的空间,但是由于防松效果较好,装配容易、结构简单,也颇受人们亲睐。

紧固件常用防松方法

紧固件常用防松方法公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

第21章 螺纹紧固件连接的防松 一、松动机理 螺纹连接在工作状态下可能会经受所有类别的变动载荷,包括极为激烈的振动和冲击载荷。在变动载荷的作用下,螺纹连接的失效通常是由其自身的松动和疲劳破坏所引起的。在一般情况下,螺纹连接抗振松的寿命比其材料和结构的疲劳寿命短得多,远在疲劳破坏之前,就已经出现了因松动而造成螺纹连接的松脱失效,或者出现了因松动而导致连接件和被连接件的过早疲劳破坏。螺纹连接的失效会影响产品和设备的正常运转,甚至会造成严重的后果。如何防止螺纹连接的松动是研制和设计螺纹紧固件的重要任务之一。 在通常的螺纹连接中,摩擦力产生于内外螺纹接触面或螺纹紧固件支承面与被连接件的接触面上。当螺纹连接开始松转时,克服螺纹接触面上的摩擦所需的力矩M 1为: ()αρ-=tg Qd M 2 21……………………………(公式21-1) 式中:Q ——作用于螺栓或螺钉上的预紧力,又称轴力或紧固系统的夹紧力; d 2——螺纹中径; ρ——摩擦角,对于三角形螺纹,β ρcos 1M tg =,M 1是螺纹接触面之间的摩擦系数,β是牙型半角; α——螺纹螺旋线的升角,又称导角。 螺纹紧固件被拧紧后,由于螺母或螺钉头支承面上的摩擦而产生的附加力矩M 2为: 2 222D Q M μ=…………………………(公式21-2) 式中:μ 2——螺母或螺钉头支承面与被连接件接触面之间的摩擦系数; D 2——螺母或螺钉头支承面的平均直径,在接触压力均匀的情况下,D 2的精确值是:??? ? ??--=2233232n n R R R R D ωω,R ω和R n 分别是支承面的外半径和内半径,如果支承面不平或接触压力不均匀,D 2就可能随着支承面的 内半径到外半径而变化。 综上所述,决定螺纹连接开始松转时的总力矩M 为: ()??????+-=+=22 22221D tg d Q M M M μαρ…………………(公式21-3) 分析公式21-3可知,仅在总力矩M 等于或小于零的情况下,螺纹紧固件才开始自行松转。对于连接用螺纹,在受静载荷作用时,即使润滑条件很理想,其摩擦角也始终大于升角:ρ>α,即满足螺纹的自锁条件,使公式21-3括号内的总值不会等于或小于零,螺纹紧固件也就不会自行松转。但是在经受动载荷时,例如在振动和冲击的作用下,螺纹紧固件在螺纹和支承面上产生了微观的滑移,这种相对的微观运动使摩擦系数由相对高的静态值变为很低的动态值,

螺栓常用的防松方法有三种

常用的防松方法有三种:摩擦防松、机械防松和永久防松。 机械防松和摩擦防松称为可拆卸防松,而永久防松称为不可拆卸防松。 常用的永久防松有:点焊、铆接、粘合等。这种方法在拆卸时大多要破坏螺纹紧固件,无法重复使用。 常见摩擦防松有:利用垫片、自锁螺母及双螺母等。 常见的机械防松方法:利用开口销、止动垫片及串钢丝绳等。 机械防松的方法比较可靠,对于重要的联接要使用机械防松的方法。 下面分述如下。 (1)摩擦防松 ①弹簧垫片防松 弹簧垫圈材料为弹簧钢,装配后垫圈被压平,其反弹力能使螺纹间保持压紧力和摩擦力,从而实现防松 ②对顶螺母防松 利用螺母对顶作用使螺栓式中受到附加的拉力和附加的摩擦力。由于多用一个螺母,并且工作不十分可靠,目前已经和少使用了。 ③自锁螺母防松 螺母一端制成非圆形收口或开缝后径向收口。当螺母拧紧后,收口胀开,利用收口的弹力使旋合螺纹间压紧。这种防松结构简单、防松可靠,可多次拆装而不降低防松性能。 ④弹性圈螺母防松 螺纹旋入处嵌入纤维或尼龙来增加摩擦力。该弹性圈还起防止液体泄漏的作用。2)机械防松 ①槽形螺母和开口销防松 槽形螺母拧紧后,用开口销穿过螺栓尾部小孔和螺母的槽,也可以用普通螺母拧紧后进行配钻销孔。

②圆螺母和止动动垫片 使垫圈内舌嵌入螺栓(轴)的槽内,拧紧螺母后将垫圈外舌之一褶嵌于螺母的一个槽内。 ③止动垫片 螺母拧紧后,将单耳或双耳止动垫圈分别向螺母和被联接件的侧面折弯贴紧,实现防松。如果两个螺栓需要双联锁紧时,可采用双联止动垫片。 ④串联钢丝防松 用低碳钢钢丝穿入各螺钉头部的孔内,将各螺钉串联起来,使其相互制动。这种结构需要注意钢丝穿入的方向, 3)永久防松 ①冲边法防松 螺母拧紧后在螺纹末端冲点破坏螺纹 ②粘合防松 通常采用厌氧胶粘结剂涂于螺纹旋合表面,拧紧螺母后粘结剂能够自行固化,防松效果良好。

螺纹防松

客车车下悬挂系统的紧固现状及改进建议 目前,普遍采取的紧固方式为螺纹连接,依靠螺纹副承载。这种紧固方式存在的振松问题,必然会导致设备运行状况恶化,甚至造成部件损坏,严重的将危及行车安全。因此,设备维护的最重要环节及前提就是紧固良好。针对这种情况,选择可靠、可行的紧固方式就显得尤为重要。 1、车下悬挂系统紧固件状况及松动原因分析 螺纹紧固件是目前车下悬挂系统使用最为广泛的紧固件。与其他紧固件相比,其最大的优点是拆卸比较方便、实用;最大的缺点是在冲击、振动或变载荷的作用下容易松脱。因此,振松问题一直是螺纹紧固件应用的最大难题。 1. 1紧固件的防松形式及特点 日前紧固件的防松方法有多种,按其防松原理可大体归纳为以下3种。 1.1.1摩擦防松 摩擦防松是应用最广的一种防松方式。这种方式在螺纹副之间产生一个不随外力变化的正压力,以产生一个可以阻止螺纹副相对转动的摩擦力。这种正压力可通过轴向或同时两向压紧螺纹副来实现,如采用弹性垫圈、双螺母、自锁螺母和尼龙嵌件锁紧螺母等。 这种防松方式对于螺母的拆卸比较方便,但在冲击、振动和变载荷的情况下,一开始螺栓会因松弛导致预紧力下降,随着振动次数的增加,损失的预紧力缓慢地增多,最终将会导致螺母松脱,螺纹连接失效。 1.1.2机械防松 机械防松是用止动件直接限制螺纹副的相对转动,如采用开口销、串联钢妊和止动垫圈等。这种方式造成拆卸不方便。 1.1.3铆冲防松 铆冲防松在拧紧后采用冲点、焊接、粘接等方法,使螺纹副失去运动副特性而成为不可拆连接。这种方式的缺点是栓杆只能使用1次,目拆卸十分困难,必须破坏螺栓副方可拆卸。 螺纹紧固件的防松方法虽然很多,但常用的方法并不多,卞要有对顶螺母(双螺母)、尼龙嵌套、开槽螺母加开口销、弹簧垫圈等。 1.2传统方式车下悬挂系统的紧固 车下悬挂系统一般采用弹性垫圈紧固、双螺母紧固、扣紧螺母紧固、双螺母配以开口销紧固等紧固方式。 (1)弹性垫圈紧固的工作原理是利用垫圈压平后产生的弹力。其结构简单,但由于弹力不均,不十分可靠。多用于不很重要的连接。 ( 2)双螺母紧固的工作原理是利用螺母拧紧后的对顶作用。其重量增大,不经济;副螺母采用薄型,拧紧不便。多用于低速重载或较平稳的场合。 (3)扣紧螺母紧固的工作原理是利用扣紧螺母的弹力。受振动载荷时,其紧固效果良好。一般用于不常拆卸的连接。 (4)双螺母配以开日销紧固的工作原理是通过机械方法紧固限制螺纹副的相对转动。适用于单件或少量生产的重要连接,但拆卸不便。 1.3松动原因分析 1. 3. 1螺栓预紧力过大以及紧固不均使得螺栓松动 作业人员在紧固螺母时,如果预紧力过大,将会使螺栓在偶然过载的情况下产生松动甚至拉断。尤其是在同一吊挂件的各个螺栓预紧力不一致时,这种

飞机构件中的螺纹连接防松简述

飞机构件中的螺纹连接防松简述 摘要 本文通过对北航航空航天博物馆中飞机构件展品中所采用的螺纹防松方式进行观察与调研,结合课本与相关资料,对螺纹松动的原因及飞机构件中常用的螺纹防松方式进行了分析与总结。 关键词:北航航空航天博物馆飞机构件螺纹防松 螺纹连接是飞机构件中常用的连接方式之一。松动失效是承受交变载荷螺纹连接的主要失效形式之一。虽然螺纹连接具有自锁性,在静载荷时一般是可靠的,但是由于飞机在工作运行过程中经常承受动载荷(变载、冲击、振动),工作温度也经常发生较大变化, 这些都可能会引起螺纹连接的松动,从而造成螺纹连接预紧力的减小, 甚至丧失预紧力,使螺纹连接的质量降低, 甚至造成连接松脱, 导致设备故障和飞行事故。因此, 如何实现螺纹连接防松是个值得研究的重要问题 1 螺纹连接松动原因 对具体的螺纹连接而言, 引起螺纹连接件松动的原因很多, 但归纳起来主要有以下三个方面原因: 1.1 连接结合面变形产生松动 螺纹连接时施加一定的预紧力使螺栓产生拉伸变形, 在连接件的接触面上产生塑性环形压陷, 螺纹副表面粗糙度、波纹度及形位误差等产生局部塑性变形。在使用的过程中, 塑性变形的继续发生, 使螺纹副和支撑面上产生微小的滑动, 进而使预紧力下降, 促使螺纹连接发生松动。 1.2 受轴向载荷作用产生松动 当有初始预紧力的螺纹连接受到轴向载荷作用时, 螺栓受轴向力的拉伸。螺纹牙斜面上受到径向分力的作用, 螺纹接触面间会产生微小的相对滑动。在载荷的反复作用下, 这种相对滑动逐渐增大, 当达到破坏螺纹连接的自锁条件时, 会致使螺母松动回转, 连接失效。 1.3 受横向载荷作用产生松动 当有初始预紧力的螺纹连接受到垂直于轴线的横向载荷作用时, 在横向力

紧固件防松方法

224 螺纹紧固件连接的防松 一、松动机理 螺纹连接在工作状态下可能会经受所有类别的变动载荷,包括极为激烈的振动和冲击载荷。在变动载荷的作用下,螺纹连接的失效通常是由其自身的松动和疲劳破坏所引起的。在一般情况下,螺纹连接抗振松的寿命比其材料和结构的疲劳寿命短得多,远在疲劳破坏之前,就已经出现了因松动而造成螺纹连接的松脱失效,或者出现了因松动而导致连接件和被连接件的过早疲劳破坏。螺纹连接的失效会影响产品和设备的正常运转,甚至会造成严重的后果。如何防止螺纹连接的松动是研制和设计螺纹紧固件的重要任务之一。 在通常的螺纹连接中,摩擦力产生于内外螺纹接触面或螺纹紧固件支承面与被连接件的接触面上。当螺纹连接开始松转时,克服螺纹接触面上的摩擦所需的力矩M 1为: ()αρ-= tg Qd M 2 2 1……………………………(公式21-1) 式中:Q ——作用于螺栓或螺钉上的预紧力,又称轴力或紧固系统的夹紧力; d 2——螺纹中径; ρ——摩擦角,对于三角形螺纹,β ρcos 1 M tg = ,M 1是螺纹接触面之间的摩擦系数,β是牙型半角; α——螺纹螺旋线的升角,又称导角。 螺纹紧固件被拧紧后,由于螺母或螺钉头支承面上的摩擦而产生的附加力矩M 2为: 2 2 22D Q M μ= …………………………(公式21-2) 式中:μ 2——螺母或螺钉头支承面与被连接件接触面之间的摩擦系数; D 2——螺母或螺钉头支承面的平均直径,在接触压力均匀的情况下,D 2的精确值是: ??? ? ??--=223 3232n n R R R R D ωω ,R ω和R n 分别是支承面的外半径和内半径,如果支承面不平或接触压力不均匀,D 2就可能随着支承面的内半径到外半径而变化。 综上所述,决定螺纹连接开始松转时的总力矩M 为: ()??????+-=+=22 22221D tg d Q M M M μαρ…………………(公式21-3) 分析公式21-3可知,仅在总力矩M 等于或小于零的情况下,螺纹紧固件才开始自行松 转。对于连接用螺纹,在受静载荷作用时,即使润滑条件很理想,其摩擦角也始终大于升角:ρ>α,即满足螺纹的自锁条件,使公式21-3括号内的总值不会等于或小于零,螺纹紧固件也就不会自行松转。但是在经受动载荷时,例如在振动和冲击的作用下,螺纹紧固件在螺纹和支承面上产生了微观的滑移,这种相对的微观运动使摩擦系数由相对高的静态值变为很低的动态值,螺纹连接在各个方向上处于自由摩擦状态。此时,作用在螺纹上的轴向力在圆周方向上形成一个导致螺母松转的内松出力矩,使螺母开始松转,就像一个在斜面上的重物,由于摩擦力的变小或消失而往下滑动一样。这种松转称为螺纹连接的自松。千万次的振动循环耗尽了螺纹连接的防松摩擦阻力,使其从细微的松转直到完全的松脱。 螺纹件在螺纹面和支承面上的微观滑移是怎样产生的呢?对于承受轴向动载荷的螺纹

螺纹连接填空题

填空题 1.螺纹联接是指利用螺纹零件把需要固定在一起的零件固连起来 ___。 螺旋传动是指__利用螺纹零件实现回转运动转换成直线运动___。2.螺纹的公称直径是指它的外径,螺纹“M12X1.5”的含义为_细牙螺纹外径12mm,螺距1.5。 3.螺纹连接预紧的目的在于增强联接的刚性、紧密性、防松性,以防止振动、噪声。 4.用于连接的螺纹牙型有普通螺纹和管螺纹,用于传动的螺纹牙型有矩形螺纹、梯形螺纹和锯齿形螺纹。 5.当两个被连接件不太厚时,宜采用螺栓联接,两个被连接件之一比较厚,往往采用双头螺柱联接。 6.螺纹连接的主要类型有螺栓联接、双头螺柱联接和螺钉联接。 7.普通螺纹联接的公称直径指的是螺纹的,计算螺纹的摩擦力矩时使用的是螺纹的,计算螺纹危险截面时使用的是螺纹的。 8.管螺纹的公称直径指的是管子内径,英制管螺纹的牙型角为55 ,米制管螺纹的牙型角为 60 。 9..螺纹联接的精度等级分别为,一般螺纹联接通常选用精度。 10.普通螺纹和管螺螺纹常用于联接,螺纹联接常用的防松方法有摩擦防松,机械防松和改变联接性质三类。 11.螺纹的公称直径是指它的_与外螺纹牙顶或内螺纹牙底相重合的

假想圆柱面的直径______,螺纹“M12X1.5”的含义为_公称直径是12_______。 12.某调整螺纹,采用双头粗牙螺纹,螺距为3mm,为使螺母相对螺杆沿轴向移动12mm,则螺杆应转_2__圈。 13.受拉螺栓的强度计算中,只计算螺杆的拉伸强度,而不计算螺纹牙、钉头的剪切强度,这是因为螺栓的几何尺寸是根据等强度原则确定的,只要螺栓的拉伸强度足够,螺纹牙和螺钉头的剪切强度就足够。 14. 紧螺栓联接强度条件式中,系数1.3的含义是将剪切应力折算成30%的正应力,从而对螺栓只进行拉伸强度计算。 15. 螺纹防松的关键在于防止螺母相对于螺栓转动。 16. 螺纹副的自锁条件为螺纹升角≤螺纹副当量摩擦角。 17. 螺纹“M12×1.5”的含义为细牙三角螺纹,外径12mm,螺距1.5。 18. 螺纹按照其用途不同,一般可分为联接螺纹和传动螺纹。 19. 预紧后受轴向变载荷的螺纹联接,为提高联接的疲劳强度,应尽量减小螺栓的刚度,提高被联接件的高度。 20. 螺纹联接的防松方法有摩擦防松、机械防松、破坏螺纹副。 21.螺纹的旋向有左旋和右旋; 牙形有三角形、梯形、矩形、锯齿形 22.螺纹联接的基本类型有螺栓联接、双头螺柱联接、螺钉联接、紧定螺钉联接四种。 23.螺纹的公称直径是指它的大径,螺纹“M12X1.5左”的含义是左旋细牙螺纹公称直径12。

紧固件常用防松方法

紧固件常用防松方法 The document was finally revised on 2021

第21章 螺纹紧固件连接的防松 一、松动机理 螺纹连接在工作状态下可能会经受所有类别的变动载荷,包括极为激烈的振动和冲击载荷。在变动载荷的作用下,螺纹连接的失效通常是由其自身的松动和疲劳破坏所引起的。在一般情况下,螺纹连接抗振松的寿命比其材料和结构的疲劳寿命短得多,远在疲劳破坏之前,就已经出现了因松动而造成螺纹连接的松脱失效,或者出现了因松动而导致连接件和被连接件的过早疲劳破坏。螺纹连接的失效会影响产品和设备的正常运转,甚至会造成严重的后果。如何防止螺纹连接的松动是研制和设计螺纹紧固件的重要任务之一。 在通常的螺纹连接中,摩擦力产生于内外螺纹接触面或螺纹紧固件支承面与被连接件的接触面上。当螺纹连接开始松转时,克服螺纹接触面上的摩擦所需的力矩M 1为: ()αρ-=tg Qd M 2 21……………………………(公式21-1) 式中:Q ——作用于螺栓或螺钉上的预紧力,又称轴力或紧固系统的夹紧力; d 2——螺纹中径; ρ——摩擦角,对于三角形螺纹,β ρcos 1M tg = ,M 1是螺纹接触面之间的摩擦系数,β是牙型半角; α——螺纹螺旋线的升角,又称导角。 螺纹紧固件被拧紧后,由于螺母或螺钉头支承面上的摩擦而产生的附加力矩M 2为: 2222D Q M μ=…………………………(公式21-2)

式中:μ 2——螺母或螺钉头支承面与被连接件接触面之间的摩擦系数; D 2——螺母或螺钉头支承面的平均直径,在接触压力均匀的情况下,D 2的精确值是:??? ? ??--=2233232n n R R R R D ωω,R ω和R n 分别是支承面的外半径和内半径,如果支承面不平或接触压力不均匀,D 2就可能随着支承面 的内半径到外半径而变化。 综上所述,决定螺纹连接开始松转时的总力矩M 为: ()??????+-=+=22 22221D tg d Q M M M μαρ…………………(公式21-3) 分析公式21-3可知,仅在总力矩M 等于或小于零的情况下,螺纹紧固件才开始自行松转。对于连接用螺纹,在受静载荷作用时,即使润滑条件很理想,其摩擦角也始终大于升角:ρ>α,即满足螺纹的自锁条件,使公式21-3括号内的总值不会等于或小于零,螺纹紧固件也就不会自行松转。但是在经受动载荷时,例如在振动和冲击的作用下,螺纹紧固件在螺纹和支承面上产生了微观的滑移,这种相对的微观运动使摩擦系数由相对高的静态值变为很低的动态值,螺纹连接在各个方向上处于自由摩擦状态。此时,作用在螺纹上的轴向力在圆周方向上形成一个导致螺母松转的内松出力矩,使螺母开始松转,就像一个在斜面上的重物,由于摩擦力的变小或消失而往下滑动一样。这种松转称为螺纹连接的自松。千万次的振动循环耗尽了螺纹连接的防松摩擦阻力,使其从细微的松转直到完全的松脱。 螺纹件在螺纹面和支承面上的微观滑移是怎样产生的呢?对于承受轴向动载荷的螺纹件,轴向外力使螺母在靠近支承面的部位产生径向弹性膨胀,引起螺纹面和支承面上的微观滑移;对于承受横向动载荷的螺纹件,横向外力使螺栓在螺母内摇摆而产生微观滑移,或者说螺母在螺栓上摇摆而产生微观滑移。试验证明,横向外力比轴向外力能引起更大的微观滑移。因此,横向外力是更危险的因素,而且垂直于螺纹轴线的纯横向外力比起与螺纹轴线成各种角度的横向外力,对螺纹连接的松动能产生最苛刻的条件。实际的使用经验

相关文档
最新文档