薄板工件在平面磨床上的磨削方法

薄板工件在平面磨床上的磨削方法
薄板工件在平面磨床上的磨削方法

磨削平面

湖南省娄底技师学院 实习教学教案 教师姓名:刘联盟

一、任务引入 机器零件除了圆柱、圆锥表面外,还经常由各种平面图组成。例如V型铁的两侧面,如图1所示: 钳工加工小型工件之前,有时需要用V型块侧面作靠山来划线。该侧面必须要有一定的表面粗 糙度要求和平面度要 求,如果表面粗糙度和 平面度不符合要求,则 会影响工件已加工表 面质量和划线精度。所 以,为了加工出合格的 零件,须理解平面磨削 的形式、特点;通过实践操作要掌握平面磨削的操作步骤、工件的装夹方法、平面精度的检验以及工件的常见缺陷形式。 本次课题的任务是磨削加工矩形工件的二面,如图2 二、任务分析 图2为垫铁工件,材料45钢,经淬火硬度40—45HRC,厚度10mm,需要磨削表面的平面图度为0.015mm,表面粗糙度为Ra0.8um。平面加工的方法比较多,常见的平面图铣削加工。对于淬硬材料用铣削方式加工不合适,是由于刀具材料的硬度比加工材料的硬度低;所以常用磨削的加工方法,而且经磨削

过的工件表面质量比铣削加工质量高。 三、相关知识 1、平面磨削的形式圆周磨和端面磨 1)圆周磨:利用砂轮的圆周面进行磨削。 工件与砂轮的接触 面积小,发热少,排屑与 冷却情况好,因此加工精 度高,但生产率低,在单 件小批生产中应用较广。 2)端面磨:利用砂轮的端面进行磨削。 1)砂轮轴立式安装,刚性好,可采用较大的切削用量,而且砂轮与工件的接触面积大,故生产率高。 2)但精度较周磨差,磨削热较大,切削液进入磨削区较困难,易使工件受热变形,且砂轮磨损不均匀,影响加工精度。

平面磨削常作为刨削或铣削后的精加工,特别是用于磨削淬硬工件,以及具有平行表面的零件(如滚动轴承环、活塞环等)。 经磨削两平面间的尺寸公差等级可达IT6~IT5级,表面粗糙度R a值为 0.8~0.2μm。 2、平面磨床的磨削方法 在平面磨床上磨削平面有圆周磨削(图1—14a,c)和端面磨削(图1—14b,d)两种形式。卧轴矩台或圆台平面磨床的磨削属圆周磨削,砂轮与工件的接触面积小,生产效率低,但磨削区散热、排屑条件好,因此磨削精度高。 卧轴矩台平面磨床磨削平面的主要方法如下: 1).横向磨削法(图1—16) 每当工作台纵向行程终了时,砂轮主轴作一次横向进给,待工件表面上第一层金属磨去后,砂轮再按预选磨削深度作一次垂直进给,以后按上述过程逐层磨削,直至切除全部磨削余量。 横向磨削法是最常用的磨削方法,适于磨削长而宽的平面,也适于相

第一节 磨削的应用及工艺特点

教师姓名 授课形式讲授授课时数1授课日期年月日授课班级 授课项目及任务名称 第九章磨削 第一节磨削的应用及工艺特点 教学目标知识目 标 掌握磨削的应用及其工艺特点等基础知识。 技能目 标 学会应用磨削的基础知识加工工件。 教学重点磨削的工艺特点及应用教学难点磨削的工艺特点 教学方法教学手段 借助于多媒体课件和相关动画及视频,详细教授磨削的工艺特点及应用等基础知识。教师先通过PPT课件进行理论知识讲解,再利用相关动画和视频进行演示,让学生能够将理论知识转化成实践经验。同时学生根据所学内容,完成知识的积累,为以后的实践实训打下基础。 学时安排1.磨削的应用约10分钟; 2.磨削的工艺特点约35分钟; 教学条件多媒体设备、多媒体课件。 课外作业查阅、收集磨削的相关资料。检查方法随堂提问,按效果计平时成绩。 教学后记

授课主要内容 第一节磨削的应用及工艺特点 近年来,磨削正朝着两个方向发展:一是高精度、低粗糙度磨削;另一个是高效磨削。 高精度、低粗糙度磨削包括精密磨削、超精密磨削和镜面磨削,可以代替研麿加工,以便节省工时和减轻劳动强度。 高效磨削包括高速磨削、强力磨削和砂带磨削,主要目标是提高生产效率。 一、磨削的应用 磨削可以加工的零件材料范围很广,既可以加工铸铁、碳钢、合金钢等一般结构材料,也能够加工高硬度的淬硬钢、硬质合金、陶瓷和玻璃等难切的材料,但是,磨削不宜精加工塑性较大的有色金属零件。 磨削可以加工外圆、内圆、平面、螺纹和齿轮等各种的表面,还常用于各种刀具的刃麿。 二、磨削的工艺特点 磨削是机器零件精密加工的主要方法之一,去除的加工余量很小。磨削的工艺特点有: 1.精度高 比一般切削加工机床精度高,刚度及稳定性较好,并有微量进给机构。 2.表面粗糙度小 一般磨削表面粗糙度值为0.8μm~0.2μm,当采用小粗糙度磨削时,表面粗糙度值可达0.1μm~0.08μm。 3.背向磨削力较大 麿外圆时总麿削力F也可以分解为三个互相垂直的力,其中:FX称为进给磨削力,很小,一般可忽略不计。 F称为背向磨削力,不消耗功率,一般作用在工艺系统刚度较差的方向上,因此容易使工艺系统变形,影响零件加工精度。 F称为磨削力,决定磨削时消耗功率的大小。 .残余应力和表面变形强化严重 与普通刀具切削相比,磨削的残余应力层比表面变形强化层要浅得多,但对零件的加工精度、加工工艺和使用性能均有一定的影响。 5.砂轮有自锐作用 在磨削过程中,砂轮存在着自锐作用,正由于砂轮本身的自锐性,使得磨粒能够以较锋利的刃口对零件进行切削。 6.磨削温度高 磨削时切削速度为一般切削加工的10~20倍,在高的切削速度下,磨削时所消耗的能量绝大部分转化为热量。

高速磨削技术的现状及发展前景

高速磨削技术的现状及发展前景 The Situ ation and Developing Vistas of High-Speed G rinding T echnology 荣烈润 摘 要:本文综述了高速磨削的概念、优势、关键技术、应用近况和发展前景。 关键词:高速磨削 动平衡 砂轮修整 精密高速磨削 高效深磨   Abstract:This paper introduced concept,advantages,key technical points,application and developing vistas of high2speed grinding technology. K ey w ords:high2speed grinding dynamic balancing grinding wheel trim precision high2speed grind2 ing high2efficiency deep grinding   0 引言 人们一直对于提高磨削的砂轮速度所带来的技术优势和经济效益给予了充分的注意和重视。但是在高速磨削过程中,工件受热变形和表面烧伤等均限制了砂轮速度的进一步提高,砂轮强度和机床制造等关键技术也使得高速磨削技术在一段时间内进展缓慢。当20世纪90年代以德国高速磨床FS-126为主导的高速磨削(High-speed Grinding)技术取得了突破性进展后,人们意识到一个全新的磨削时代已经到来。 高速磨削技术是磨削工艺本身的革命性跃变,是适应现代高科技需要而发展起来的一项新兴综合技术,它集现代机械、电子、光学、计算机、液压、计量及材料等先进技术成就于一体。随着砂轮速度的提高,目前磨削去除率已猛增到了3000mm3/ mm?s甚至更多,可与车、铣、刨等切削加工相媲美,尤其近年来各种新兴硬脆材料(如陶瓷、光学玻璃、光学晶体、单晶硅等)的广泛应用更推动了高速磨削技术的迅猛发展。日本先端技术研究会把高速加工列为五大现代制造技术之一。国际生产工程学会(CIRA)将高速磨削技术确定为面向21世纪的中心研究方向之一。 1 高速磨削的概念及优势 高速加工(High-speed Machining)概念首先由德国切削物理学家Card.J.Salomon于1931年提出,他发表了著名的Salomon曲线,创造性地预言了超越Taloy切削方程式的非切削工作区域的存在,提出如能大幅度提高切削速度,就可以越过切削过程产生的高温死谷而使刀具在超高速区进行高速切削,从而大幅度减少切削工时,成倍地提高机床生产率。这对今后高速磨削的发展有着非常重要的启示,对于高速磨削技术的实用化起到了直接的推动作用。 高速磨削与普通磨削相比具有以下突出的技术优势: (1) 可大幅度提高磨削效率,减少设备使用台数。以往磨削仅适用于加工余量很小的精加工,磨削前须有粗加工工序和半精加工工序,需配有不同类型的机床。而高速磨削既可精加工又可粗加工,这样就可以大大减少机床种类,简化了工艺流程。 (2) 可以明显降低磨削力,提高零件的加工精度。高速磨削在材料切除率不变的条件下,可以降低单一磨粒的切削深度,从而减少磨削力,获得高质量的工件表面,尤其在加工刚度较低(如薄壁零件)的工件时,易于保证较高的加工精度。 (3) 成功地越过了磨削热沟的影响,工件表面层可获得残余压应力(这对工件受力有利)。 (4) 砂轮的磨削比显著提高,有利于实现自动化磨削。 (5) 能实现对硬脆材料(如工程陶瓷及光学玻璃等)的高质量加工。

超精密平面磨削的技术要求

超精密平面磨削的技术要求 1.1超精密平面磨削的技术指标 精密加工和超精密加工代表了加工精度发展的不同阶段,通常,按加工精度划分,可将机械加工分为一般 加工、精密加工、超精密加工三个阶段。由于生产技术的不断发展,划分的界限将逐渐向前推移,过去的 精密加工对今天来说已是普通加工,因此,其划分的界限是相对的,且在具体数值上至今没有固定。精密 加工是指加工精度为1-1μm、表面粗糙度为Ra0.1-0.025μm的加工技术;超精密加工是指加工精度高于 0.1μm、表面粗糙度Ra小于0.025μm的加工技术,因此,超精密加工又称之为亚微米级加工。但是,目前 超精密加工已进入纳米级精度阶段,故出现了纳米加工及其相应的技术,如表1所示。 根据我国目前精密平面磨削的基础,结合国外超精密平面磨削的技术指标,提出以下超精密平面磨削机床 的技术指标,并与已实现的技术指标作了比较。 表1 超高精度平面磨床主要技术参数与目前三个精度级的对比单位mm 1.2超精密平面磨削的技术要求 根据表1所示的超精密平面磨削的技术指标,我们可以提出超精密平面磨削机床的技术要求:机床的砂轮 垂直进给能实现微量进给,机床具有足够的静、动态刚性,尤其是对机床的热变形及振动的控制较常规的 机床要有质的提高。 2实现超精密平面磨削的方法与手段 如上所述,为了实现这些技术要求来达到理想的技术指标,在机床的设计理念与机床的具体结构中,要求 与传统的机床有较大的改进与提高,根据我们的经验及对国外精密加工技术资料收集与分析,结合平面磨 削的机床结构、运动要求,可将整机分解为如下的主要单元技术:(1)机床布局型式;(2)新材料运用;(3)主轴精密回转技术;(4)微量进给技术;(5)运动导轨型式;(6)高精度温度控制技术。 2.1机床布局型式 机床布局型式极为重要,是决定成败的关键,但是超精密磨削技术是由精密磨削发展而来,从国外已实现 超精密平面磨削机床看,其结构型式多种多样,既有“磨头移动式”,也有“立柱移动式”或“十字拖板移动式”,无一例外,均未脱离传统的机床布局结构型式。从我们已掌握的高精度平面磨削技术基础上,认为机床结 构采用“十字拖板移动式”适合于超高精度平面磨削机床的研制。因为该结构型式,具有机床结构布局对称 性好,热稳定性好;主要运动部件重心低,运动平稳等优点。 2.2新材料运用 超精密平面磨削对机床的热变形及振动控制要求较高。在机床基础结构件材料的运用上,应突破传统以灰 铸铁为主的原则,采用一些新型材料,如:非金属材料——树脂混凝土,该材料的振动衰减性、耐热梯度、线胀系数等特性均大大优于金属材料。这在国外已被成熟运用,在国内也有运用的例子,如上海机床厂有 限公司的数控凸轮轴磨的床身采用了人造大理石材料,取得了较好的效果。因而在超精密平面磨削机床的 主要关键基础件,如床身、立柱、拖板等应采用人造大理石材料。 2.3主轴精密回转技术

高速超高速磨削技术发展与关键技术

* 国家自然科学基金资助项目(编号:50475052) 教育部科学技术研究重点项目(编号:104190) 高校博士学科点专项科研基金资助项目(编号:20040145001)高速超高速磨削技术发展与关键技术* 青岛理工大学 机械工程学院 ( 266033) 李长河 东北大学 机械工程与自动化学院 (110004) 修世超 蔡光起 摘 要 论述了高速超高速磨削加工技术的发展、特点以及关键技术。 关键词 高速超高速 磨粒加工 关键技术 1 高速/超高速磨削技术发展 超高速磨削技术是现代新材料技术、制造技术、控制技术、测试技术和实验技术的高度集成,是优质与高效的完美结合,是磨削加工工艺的革命性变革。德国著名磨削专家T.Tawakoli 博士将超高速磨削誉为“现代磨削技术的最高峰”。日本先端技术研究学会把超高速加工列为五大现代制造技术之一。在1996年国际生产工程学会(CIRP )年会上超高速磨削技术被正式确定为面向21世纪的中心研究方向之一,是当今在磨削领域最为引人注目的技术。 高速加工(High-speed Machining)和超高速加工(Ultra-High Speed Machining )的概念是由德国切削物理学家Carl.J.Salomon 博士于1931年首先提出,他发表了著名的Salomon 曲线,创造性地预言了超越Talor 切削方程式的非切削工作区域的存在,提出如能够大幅度提高切削速度,就可以越过切削过程产生的高温死谷而使刀具在超高速区进行高速切削,从而大幅度减少切削工时,成倍地提高机床生产率。他的预言对后来的高速甚至超高速磨削的发展指明了方向,为高速超高速磨削技术研究开辟了广阔的空间,对于高速超高速磨削技术的实用化也起到了直接的推动作用。 通常将砂轮线速度大于45 m/s 的磨削称为高速磨削,而将砂轮线速度大于150 m/s 的磨削称为超高速磨削。超高速磨削在欧洲、日本和美国等发达国家发展较快。 欧洲高速超高速磨削技术的发展起步比较早, 最初在20世纪60年代末期就开始进行高速超高速 磨削的基础研究,当时实验室的磨削速度就已经达 到210~230 m/s 。20世纪70年代,超高速磨削开始采用CBN 砂轮。1973年9月意大利的Famir 公司在西德汉诺威国际机床展览会上,展出了砂轮圆周速度120 m/s 的RFT-C120/50R 型磨轴承内套圈外沟的高速实用化磨床。1979年德国Bremen 大学的P.G .Werner 教授撰文预言了高效深磨区存在的合理性,由此开创了高效深磨的概念。1983年德国Bremen 大学出资由德国Guhring Automation 公司制造了当时世界上第一台高效深磨的磨床,功率为60 kW ,转速为10 000 r/min ,砂轮直径为φ400 mm ,砂轮圆周速度达到了209 m/s 。德国Guhring Automation 公司于1992年成功制造出砂轮线速度为140~160 m/s 的CBN 磨床,并正在试制线速度达180 m/s 的样机。德国Aachen 大学、Bremen 大学在高效深磨的研究方面取得了世界公认的高水平成果,其方法是用高线速度、深切入、快进给进行磨削,可得到高效率、高质量的磨削效果。据Aachen 工业大学实验室的Koeing 和Ferlemann 宣称,该实验室已经采用了圆周速度达到500 m/s 的超高速砂轮,这一速度已突破了当前机床与砂轮的工作极限。另外Braunschweig 大学、Berlin 工业大学等也在进行此方面的研究。 瑞士Studer 公司开发的CBN 砂轮磨削线速度在60 m/s 以上,并向120~130 m/s 方向发展。S40 CBN 砂轮磨床,在125 m/s 时高速磨削性能发挥最为充分,即使在500 m/s 也能照常工作。目前在试验室内正用改装的S45型外圆磨床进行线速度为280m/s 的磨削试验。德国Kapp 公司很早就对超高速磨床的研制进行过尝试,目前该公司制造的高效深磨用超高速磨床利用线速度300 m/s 的砂轮在60 s 内对有10个沟槽的成组转子毛坯完成一次磨削成

第五节 磨削的工艺特点及其应用

第五节磨削的工艺特点及其应用 用砂轮或其他磨具加工工件,称为磨削。本节主要讨论用砂轮在磨床上加工工件的特点及其应用,磨床的种类很多,较常见的有外圆磨床、内圆磨床和平面磨床等。 作为切削工具的砂轮,是由磨料加结合剂用烧结的方法而制成的多孔物体。由于磨料、结合剂及制造工艺等的不同,砂轮特性可能差别很大,对磨削的加工质量、生产效率和经济性有着重要影响。砂轮的特性包括磨料、粒度、硬度、结合剂、组织以及形状和尺寸等。 一.磨削过程 磨削可以加工外圆面、内孔、平面、成形面、螺纹、齿轮等 1.外圆磨削 1、在外圆磨床上进行 磨法:纵磨法横磨法综合磨深磨法 2、无心外圆磨 圆面必须连续,不能有较长键槽等孔的磨削 2.平面磨削 周磨质量较高,但较慢 端磨较快,但质量不高 特点:主运动是砂轮的旋转运动; 磨削过程:实际上是磨粒对工件表面的切削、刻削和滑擦三种作用的综合效应; 砂轮的“自锐性” :磨削中,磨粒本身也会由尖锐逐渐磨钝,使切削能力变差,切削力变大,当切削力超过粘结剂强度时,磨钝的磨粒会脱落,露出一层新的磨粒,这就是砂轮的“自锐性”。

磨削往往作为最终加工工序。 砂轮的修整 由于砂轮的“自锐性”以及切屑和碎磨粒会阻塞砂轮,在磨削一定时间后,需用金刚石车刀等对砂轮进行修整。 二.磨削的工艺特点 磨床的特点: a.使用磨料、磨具(如砂轮、砂带、油石、研磨料等)为工具,进行切削加工。 b.用来加工硬度较高的材料。 c.加工精度高、光洁度高。 d.一般加工余量较小。 工业发达国家,磨床比例高(约30%左右),磨床用于粗、精加工,发展了新型强力磨和高速磨。

三.磨削的应用和发展 (一)外圆磨床 磨床中所占比例较大的一种,包括万能外圆磨床、外圆磨床、无心外圆磨床。 1.万能外圆磨床 万能性好,常用于加工以下几种典型表面。 <1>磨外圆 加工所需的运动 砂轮主运动 n 工件的圆周进给运动 f1 工件的纵向进给运动 f2 砂轮的横向切入运动 c <2>磨长圆锥面 外圆磨床工作台分两层,上工作台相对下工作台调整至一定的角度位置(不超过±7°)机床运动与(1)相同,但工件回转中心线与工作台纵向进给方向不平行,故磨削出来的是圆锥面。 <3>磨短圆锥面 圆锥面的宽度小于砂轮宽度。砂轮架在水平面内转角度,工件不作往复运动。 <4>磨内锥孔(包括圆柱孔) 工件卡盘装在头架主轴上,头架可在水平面内转角度,此时大砂轮不转,内圆磨具支架翻下,小砂轮磨削。 由上可知:万能外圆磨床万能性高,但是机床的层次多,刚性差,加工精度低。 2.普通外圆磨床 与万能外圆磨床的区别~头架、砂轮架、头架主轴都固定不可转动,并且没有内圆磨具。主要加工外圆柱表面和锥度不大的圆锥表面。 特点:结构简单,刚性好,加工精度高,但万能性较差。 3.无心外圆磨 工件很短(如销钉)无法用顶针顶起,是以工件的外圆面作定位面的外圆磨床。 无心磨的两种方法: 1.贯穿磨法~工件中心高出e=(15~25%)D工件,导轮用橡胶和树脂作磨粒粘结剂,摩擦系数大,工件随导轮转,速度相同,且磨粒粒度细不产生磨削。 砂轮转速快,与工件有相对运动,产生磨削。导轮中心线倾斜α角,导轮与工件接触处的线速

几种先进磨削方法简介

先进磨削方法简介 1.高速磨削 普通磨床的砂轮速度为30—35m/s。当砂轮速度高于45或50m/s以上时,称为高速磨削。 (1)高速磨削机理:砂轮速度提高后,使单位时间内通过磨削区的磨粒数增加。若进给量保持与普通磨削时相同,则高速磨削时每颗磨粒切削厚度变薄,同时使每颗磨粒的负荷减小。 (2)高速磨削有如下特点: ①生产率高。生产率比普通磨削高30%—100%。 ②砂轮使用寿命可提高。由于每颗磨粒上所承受的切削负荷减小,则每颗磨粒的磨削时间可相对延长,因此可提高砂轮的使用寿命。 ③可提高精度和减小磨削表面的粗糙度。由于每颗磨粒切削厚度变薄,每颗磨粒在通过磨削区时,在工件表面上留下的磨痕深度减小。同时,由于速度提高,使磨削表面由于塑性变形而形成的隆起高度也减小,因此可减小磨削表面粗糙度。有利于保证工件(特别是刚性差的工件)的加工精度。 ④改善磨削表面质量。在高速磨削时,需要相应提高工件转速,使砂轮与工件的接触时间缩短,这样使传至工件的磨削热减少,从而减少或避免产生烧伤和裂纹的现象。 2.强力磨削 强力磨削就是以大的径向进给量(可达十几毫米)和缓慢的纵向进给量进行磨削。 (1)强力磨削的机理: 普通磨削的纵向进给速度通常为0.033—0.042m/s(2—2.5m/min),而强力磨削的纵向进给速度则为0.000166—0.005m/s(0.0l一0.3m/min)。这样就使单个磨粒的切削厚度大为减小,因而作用在每个磨粒上的力也减小。 (2)强力磨削的特点: ①生产效率高:由于采用缓速纵向进给和大的径向进给,这样就可在铸、锻毛坯上直接磨出零件所要求的表面形状及尺寸。同时由于径向进给大,砂轮与工件的接触弧长要比普通磨削时的接触孤长大得多,单位时间内同时参加磨削工作的磨粒数目随着径向进给量的增大而增加。 因此,能充分发挥机床和砂轮的潜力,使生产效率得以提高。 ②扩大磨削工艺范围:由于径向进给量很大,对毛坯加工能一次成形,所以能有效地解决一些难加工材料的成型表面的加工问题。 ③不易损伤砂轮:强力磨削时,工件作缓慢的纵向进给,这样便减轻了磨粒与工件边缘的冲击。同时也减少了机床的振动,已加工表面的波纹小。

常见的3种磨削方法介绍

常见的3种磨削方法介绍 磨削过程就是砂轮表面上的磨粒对工件表面的切削、划沟和滑擦的综合作用过程。(一)外圆磨削 外圆磨削可以在普通外圆磨床或万能外圆磨床上进行,也可在无心磨床上进行,通常作为半精车后的精加工。 1、纵磨法 磨削时,工件作圆周进给运动,同时随工作台作纵向进给运动,使砂轮能磨出全部表面。每一纵向行程或往复行程结束后,砂轮作一次横向进给,把磨削余量逐渐磨去。可以磨削很长的表面,磨削质量好。特别在单件、小批生产以及精磨时,一般都采用纵磨法。 2、横磨法(切入磨法) 采用横磨法,工件无纵向进给运动。采用一个比需要磨削的表面还要宽一些(或与磨削表面一样宽)的砂轮以很慢的送给速度向工件横向进给,直到磨掉全部加工余量。横磨法主要用于磨削长度较短的外圆表面以及两边都有台阶的 3、深磨法 特点是全部磨削余量(直径上一般为0.2~0.6mm)在一次纵走刀中磨去。磨削时工件圆周进给速度和纵向送给速度都很慢,砂轮前端修整成阶梯形或锥形。深磨法的生产率约比纵磨法高一倍,能达到IT6级,表面粗糙度的Ra值在0.4~0.8之间。但修整砂轮较复杂,只适于大批、大量生产,磨削允许砂轮越出被加工面两端较大距离的工件。 4、无心外圆磨削法 工件放在磨削砂轮和导轮之间,下方有一托板。磨削砂轮(也称为工作砂轮)旋转起切削作用,导轮是磨粒极细的橡胶结合剂砂轮。工件与导轮之间的摩擦力较大,从而使工件以接近于导轮的线速度回转。无心外圆磨削在无心外圆磨床上进行。无心外圆磨床生产率很高,但调整复杂;不能校正套类零件孔与外圆的同轴度误差;不能磨削具有较长轴向沟槽的零件,以防外圆产生较大的圆度误差。因此,无心外圆磨削多用于细长光轴、轴销和小套等零件的大批、大量生产轴径。 (二)内圆磨削 内圆磨削除了在普通内圆磨床或万能外圆磨床上进行外,对大型薄壁零件,还可采用无心内圆磨削;对重量大、形状不对称的零件,可采用行星式内圆磨削,此时工件外圆应先经过精加工。 内圆磨削由于砂轮轴刚性差,一般都采用纵磨法。只有孔径较大,磨削长度较短的特殊情况下,内圆磨削才采用横磨法。 与磨外圆磨削相比,内圆磨削有以下一些特点: (1)磨内圆时,受工件孔径的限制,只能采用较小直径的砂轮。内圆磨削砂轮需要经常修整和更换,同时也降低了生产率。 (2)砂轮线速度低,工件表面就磨不光,而且限制了进给量,使磨削生产率降低。 (3)内圆磨削时砂轮轴细而长,刚性很差,容易振动。因此只能采用很小的切入量,既降低了生产率,也使磨出孔的质量不高。 (4)内圆磨削砂轮与工件接触面积大,发热多,而切削液又很难直接浇注到磨削区域,故磨削温度高。

超高速磨削及其砂轮技术发展

超高速磨削及其砂轮技术发展1 李长河1,蔡光起2 1 青岛理工大学机械工程学院,山东青岛(266033) 2东北大学机械工程与自动化学院,辽宁沈阳(110004) E-mail:sy_lichanghe@https://www.360docs.net/doc/703130122.html, 摘要:高速超高速磨削加工是先进制造方法的重要组成部分,集粗精加工与一身,达到可与车、铣和刨削等切削加工方法相媲美的金属磨除率,而且能实现对难磨材料的高性能加工。本文主要论述了高速超高速磨削工艺技术的特点;分析了超高速砂轮用电镀或涂层超硬磨料(CBN、金刚石)的特点以及修整方法,介绍了在高速及超高磨床上得到广泛应用的德国Hofmann公司生产的砂轮液体式自动平衡装置。 关键词:超高速磨削,砂轮,关键技术 1. 超高速磨削的特点 超高速磨削技术是现代新材料技术、制造技术、控制技术、测试技术和实验技术的高度集成,是优质与高效的完美结合,是磨削加工工艺的革命性变革。德国著名磨削专家T.Tawakoli.博士将超高速磨削誉为“现代磨削技术的最高峰”。日本先端技术研究学会把超高速加工列为五大现代制造技术之一。在1996年国际生产工程学会(CIRP)年会上超高速磨削技术被正式确定为面向21世纪的中心研究方向之一,是当今在磨削领域最为引人注目的技术[1]。 高速加工(High-speed Machining)和超高速加工(Ultra-High Speed Machining)的概念是由德国切削物理学家Carl.J.Salomon博士于1931年首先提出,他发表了著名的Salomon曲线,创造性地预言了超越Talor切削方程式的非切削工作区域的存在,提出如能够大幅度提高切削速度,就可以越过切削过程产生的高温死谷而使刀具在超高速区进行高速切削,从而大幅度减少切削工时,成倍地提高机床生产率。他的预言对后来的高速甚至超高速磨削的发展指明了方向,为高速超高速磨削技术研究开辟了广阔的空间,对于高速超高速磨削技术的实用化也起到了直接的推动作用。 通常将砂轮线速度大于45m/s的磨削称为高速磨削,而将砂轮线速度大于150m/s的磨削称为超高速磨削。砂轮周速提高后,在单位宽度金属磨除率一定的条件下,单位时间内作用的磨粒数大大增加;如进给量与普通磨削相同,则每颗磨粒的切削厚度变薄、负荷减轻。因此高速与超高速磨削有以下特点[2]: 1.1生产效率高。 由于单位时间内作用的磨粒数增加,使材料磨除率成倍增加,最高可达2000mm3/mm?s,比普通磨削可提高30%~100%。实验表明,200m/s超高速磨削的金属切除率在磨削力不变的情况下比80m/s磨削提高150%,而340m/s时比180m/s时提高200%。采用CBN砂轮进行超高速磨削,砂轮线速度由80m/s提高至300m/s时,比金属切除率由50mm3/mm·s提高至1000mm3/mm·s,因而可使磨削效率显著提高 1.2砂轮使用寿命长 1本课题得到国家自然科学基金资助项目(50475052)和教育部科学技术研究重大项目(104190)的资助。

平面磨削工件表面波纹产生原因与预防.doc

平面磨削工件表面波纹产生原因与预防 2012-12-31 来源:作者:海军蚌埠士官学校机械系杨庆文 1 引言 利用平面磨床加工各种零件的平面时,尺寸公差可达IT5 级-IT6 级,两平面平行度误差小于0.01mm,表面粗糙度一般可达Ra0.4~0.2,精密磨削可达Ra0.01~0.1。但是如果在磨削方法、砂轮、磨削用量的选择等方面出现失误,则加工质量将急剧下降,甚至出现废品。其中工件表面波纹的出现将大大影响工件表面粗糙度和美观程度,因此,在对工件进行平面磨削时如何预防和消除表面波纹,显得极为重要。 2 波纹类型及预防 2.1 等距的直线波纹 平面磨削时工件表面如出现图1 所示等距离分布的直线波纹,表明存在着强迫振动,其振源主要来自砂轮或电动机的不平衡。因此,应检查并调整磨头电动机的转子与定子间隙是否均匀。修整砂轮时,金刚石应安装在工作台面上,而不宜装在砂轮架滑枕外端,见图2,由于这种装法砂轮修整时向前移出甚多,磨头因自重而倾斜变形,造成砂轮母线与磨头移动方向不平行,磨削时砂轮与工件接触不良。砂轮振动又会使修整器同时振动,而影响砂轮的修圆效果。因此砂轮修整器应放在工作台面上,且位于磨削工件的位置,这样可通过修整来减小砂轮不平衡量的不良影响。 2.2 单条波纹 平面磨削时,如工件两边出现单条波纹或一边出现单条波纹(见图3),说明工作台换向时产生冲击,而使磨床的立柱摇晃。当工作台换向后,工件再次进入磨削,此时立柱正在晃动,因而工件的两边或一边出现单条波纹的缺陷。故应调整工作台换向撞块的位置,使之适当,调整工作台换向节流阀螺钉,减小工作台换向冲击。

2.3 菱形波纹 磨削平面时如出现菱形波纹,说明砂轮与工件有振动(见图4)。由于砂轮每分钟转数与工作台每分钟行程次数之比,多数情况下不是整数,因此出现菱形波纹比出现等距分布的直形波纹的机会要多。故应提高磨头系统刚度,适当减小垂直进给量。 2.4 表面拉毛

磨削加工

磨削加工 一、磨削特点 磨削是在磨床上用砂轮作为切削刀具对工件进行切削加工的方法。该方法的特点是: 1.由于砂轮磨粒本身具有很高的硬度和耐热性,因此磨削能加工硬度很高的材料,如淬硬的钢、硬质合金等。 2.砂轮和磨床特性决定了磨削工艺系统能作均匀的微量切削,一般 ap=0.001~0.005mm;磨削速度很高,一般可达v=30~50m/s;磨床刚度好;采用液压传动,因此磨削能经济地获得高的加工精度(IT6~IT5)和小的表面粗糙度(Ra=0.8~0.2μm)。磨削是零件精加工的主要方法之一。 3.由于剧烈的磨擦,而使磨削区温度很高。这会造成工件产生应力和变形,甚至造成工件表面烧伤。因此磨削时必须注入大量冷却液,以降低磨削温度。冷却液还可起排屑和润滑作用。 4.磨削时的径向力很大。这会造成机床—砂轮—工件系统的弹性退让,使实际切深小于名义切深。因此磨削将要完成时,应不进刀进行光磨,以消除误差。 5.磨粒磨钝后,磨削力也随之增大、致使磨粒破碎或脱落,重新露出锋利的刃口,此特性称为“自锐性”。自锐性使磨削在一定时间内能正常进行,但超过一定工作时间后,应进行人工修整,以免磨削力增大引起振动、噪声及损伤工件表面质量。二、砂轮 砂轮是磨削的切削工具,它由许多细小而坚硬的磨粒和结合剂粘而成的多孔物体。磨粒直接担负着切削工作,必须锋利并具有高的硬度,耐热性和一定的韧性。常用的磨料有氧化铝(又称刚玉)和碳化硅两种。氧化铝类磨料硬度高、韧性好,适合磨削钢料。碳化硅类磨料硬度更高、更锋利、导热性好,但较脆,适合磨削铸铁和硬质合金。

同样磨料的砂轮,由于其粗细不同,工件加工后的表面粗糙度和加工效率就不相同,磨粒粗大的用于粗磨,磨粒细小的适合精磨、磨料愈粗,粒度号愈小。 结合剂起粘结磨料的作用。常用的是陶瓷结合剂,其次是树脂结合剂。结合剂选料不同,影响砂轮的耐蚀性、强度、耐热性和韧性等。 磨粒粘结愈牢,就愈不容易从砂轮上掉下来,就称砂轮的硬度,即砂轮的硬度是指砂轮表面的磨粒在外力作用下脱落的难易程度。容易脱落称为软,反之称为硬。砂轮的硬度与磨料的硬度是两个不同的概念。被磨削工件的表面较软,磨粒的刃口(棱角)就不易磨损,这样磨粒使用的时间可以长些,也就是说可选粘接牢固些的砂轮(硬度较高的砂轮)。反之,硬度低的砂轮适合磨削硬度高的工件。 砂轮在高速条件下工作,为了保证安全,在安装前应进行检查,不应有裂纹等缺陷;为了使砂轮工作平稳,使用前应进行动平衡试验。 砂轮工作一定时间后,其表面空隙会被磨屑堵塞,磨料的锐角会磨钝,原有的几何形状会失真。因此必须修整以恢复切削能力和正确的几何形状。砂轮需用金刚石笔进行修整。 三、平面磨床的结构与磨削运动 磨床的种类很多,主要有平面磨床、外圆磨床、内圆磨床、万能外圆磨床(也可磨内孔)、齿轮磨床、螺纹磨床,导轨磨床、无心磨床(磨外圆)和工具磨床(磨刀具)等。这里介绍平面磨床及其运动。 1.平面磨床的结构(以M7120A为例,其中:M——磨床类机床;71——卧轴矩台式平面磨床;20——工作台面宽度为200mm;A——第一次重大改进。) 1)砂轮架——安装砂轮并带动砂轮作高速旋转,砂轮架可沿滑座的燕尾导轨作手动或液动的横向间隙运动。 2)滑座——安装砂轮架并带动砂轮架沿立柱导轨作上下运动。 3)立柱——支承滑座及砂轮架。

第四节 平面磨床的磨削方法

教师姓名授课形式讲授授课时数1授课日期年月日授课班级 授课项目及任务名称 第九章磨削 第四节平面磨床的磨削方法 教学目标知识目 标 掌握工件的装夹方法。 掌握平面磨削的方法。技能目 标 学会平面磨削方法。 教学重点磨削工件装夹方法、端磨和周磨的方法教学难点端磨和周磨的方法 教学方法教学手段 借助于多媒体课件和相关动画及视频,详细教授磨削工件装夹方法、端磨和周磨的方法基础知识。教师先通过PPT课件进行理论知识讲解,再利用相关动画和视频进行演示,让学生能够将理论知识转化成实践经验。同时学生根据所学内容,完成知识的积累,为以后的实践实训打下基础。 学时安排1.工件装夹约10分钟; 2.平面磨削约35分钟; 教学条件多媒体设备、多媒体课件。 课外作业查阅、收集平面磨削的相关资料。检查方法随堂提问,按效果计平时成绩。 教学后记

授课主要内容 第四节平面磨床的磨削方法 平面磨削是在铣、刨基础上精加工。经磨削后平面的尺寸精度可达公差等级IT6~IT5,表面粗糙度值达0.8~0.2μm. 一、工件的装夹方法 平面磨床上工件的装夹,需要根据工件的形状、尺寸和材料等因素来决定。 所有的钢、铸铁等磁性材料,且有两个平行平面的工件,一般都用电磁吸盘直接装夹。电磁吸盘体装有线圈,通入直流产生磁力,吸牢工件,对于非磁性材料或形状复杂的工件,应在电磁吸盘上安放一精密虎钳或简易夹具装夹,也可以直接在普通工作台上采用虎钳或简易夹具来安装。二、平面磨削方法 平面磨削可分为端磨和周磨两种。 1.端磨 端磨是在立轴平面磨床上利用砂轮的端面进行磨削。端磨平面时砂轮与零件的接触面积大,磨削力大,磨削热多,散热、冷却和排屑条件差,端磨精度比较差。但磨头悬伸长度短,可采用较大的磨削用量,生产效率较高,常用于大批量生产中代替铣削和刨削进行粗加工。 2.周磨 周磨则是在卧轴平面磨床上利用砂轮的外圆面进行磨削。周磨时砂轮与零件的接触面积小,磨削力小,磨削热少,散热、冷却和排屑条件好,砂轮磨损均匀,所以能获得高的精度和低的表面粗糙度,常用于各种批量生产中对中、小型零件的精加工。 任务小结 回顾本次任务所学知识,强调本节课的重点与难点,本课主要讲解磨削工件装夹方法、端磨和周磨的方法等基础知识。

各种加工方法的特点及比较

各种加工方法的特点分析及比较 学号:XXX 姓名:XXX 【摘要】随着机械加工工艺不断发展,企业间竞争的扩大,要求产品既节省成本又有可靠的性能。如何选择加工方法关系到竞争的胜败。本文从经济方面、质量方面、生产周期方面各种加工方法的特点总结,力求对“如何选择加工方法”有所用处。 【关键字】性能;生产周期;精度;加工;铸造;锻造;焊接;切削;钳工;数控加工 1.前言 希望本文通过对各种加工方法的分析能对制定工艺流程、降低机械加工的产品成本、提高产品质量等方面有帮助。灵活运用各种加工方法,才能在竞争中立于不败之地。 2.正文 2.1铸造、锻造、焊接、切削、钳工和数控加工的主要特点分别分析: 2.1.1铸造工艺 由于铸造采用液态下一次成形,所以对材料种类及零件形状、尺寸大小和生产批量的适应性非常广,特别适合复杂形状铸件的生产,且生产成本较低,在机械制造中具有重要的地位。铸造可直接利用成本低廉的废机件和切屑,设备费用较低。同时铸件加工余量小,节省金属,减少机械加工余量,从而降低制造成本。但液态成形的特点也使铸造工序多、铸件质量控制难度大、铸件力学性能差。 铸造车间一般工作环境差,容易对工人的健康有危害,而且对环境污染较严重。 铸造的应用范围:生产毛坯。如机床床身、内燃机等 2.1.2锻造工艺 由于金属材料经过锻造后,其内部组织更加致密、均匀,使同一种金属的锻件比铸件有更好的力学性能。

因此,各种承受重载荷及冲击载荷的重要零件,多以锻件作为毛坯,但由于锻造固态塑性成形的特点,无法获得形状(特别是内腔)复杂的锻件。 2.1.3焊接工艺 焊接是通过加热加压或加压或两者并用的方法,使金属达到原子结合的一种加工方法。与其它方法相比,焊接具有节省材料、接头密封性好、经济性好、生产周期短等优。但对工人的技术要求比较高。 焊接的应用范围在造船、电力设备生产、航天工业中广泛应用。 2.1.4车削工艺 车削加工是指在车床上应用刀具与工件作相对切削运动,用以改变毛坯的尺寸和形状等,使之成为零件的加工过程。车工在切削加工中是最常用的一种加工方法。车床占机床总数的一半左右,故在机械加工中具有重要的地位和作用。 车床应用范围:用来加工各种回转表面,如:内、外圆柱面;内、外圆锥面;端面;内、外沟槽;内、外螺纹;内、外成形表面;丝杆、钻孔、扩孔、铰孔、镗孔、攻丝、套丝、滚花等。 2.1.5铣削工艺 由于铣削的主运动是铣刀的旋转,铣刀又是多齿刀具,故铣削的生产效率高,刀具的耐用度高 铣床及其附件的通用性广,铣刀的种类很多,铣削的工艺灵活。 铣削的加工范围较广,铣削两样适用小批与大批量的生产。 2.1.6刨削工艺 在刨车上用刨刀加工工件的方法叫刨削。 常见的刨床有牛头刨、龙门刨。 刨削的适用范围主要有:加工平面、加工沟槽(如直槽、T形槽、燕尾槽)、母线为直线的成形面。 2.1.7磨削工艺 加工精度高,常用的磨削经济精度为IT6到IT5,表面粗糙度为0.8到0.2μm。同时适合于粗加工与精加工。磨削温度高,必须使用切削液。 适应范围广,不仅适用于一般的金属材料,而且适用于碳钢、铸铁、合金钢、淬火钢、合金。 2.1.8钳工工艺 钳工工作劳动强度大,生产效率低、对工人技术要求高,但所用工具简单,操作灵活简便。 因此,适应范围较为广泛。主要的操作包括:划线、锯削、锉削、錾削、钻孔、铰孔、攻丝、套扣、刮削、研磨、装配及修理。 2.1.9数控

平面磨床技能鉴定理论试题 含答案

一、选择题: 1.砂轮圆周转速很高,外圆磨削和平面磨削时其转速一般在(C)M/S左右。 A.10~15 B.20~25 C.30~35 D.40~45 2.砂轮静平衡时,若砂轮来回摆动不停,此时砂轮的不平衡量必在(C) A.上方 B.中间 C.下方 D.已经平衡 3.平面磨削中,当砂轮与工件有相对振动时,会出现(C)花纹。 A.直线 B.螺旋 C.菱 D.无花纹 4.平面磨削时,砂轮表面与工件之间有沙粒及脏物,最容易使工件表面(C) A.烧伤 B.成直线刮迹 C.拉毛、划伤 D.弄脏工件 5.磨削薄片工件时应采取(C)的工作台众向速度。???? ?A、较小????B、中等??????C、较大 D、均可 二、填空题: 1.平面磨床工作台的(两端或四周)应设防护栏板,以防被磨工件飞出。 2.砂轮结构的三要素是指:(磨粒)、(结合剂)、和(网状间隙)。 3. 切削液有以下四个作用:(冷却)、(润滑)、(清洗)、(防锈)。 4. 不平衡的砂轮高速旋转时会产生(离心)力,会引起机床(振动)、加速轴承(磨

损),严重的甚至造成(爆裂)。 5. 更换砂轮时,要按照安全操作规程进行。必须仔细检查砂轮的粒度和线速度是否符合要求,(表面无裂缝)、(声响要清脆)。 6. 作人员实施点检过程中依据“三好”、“四会”展开自主维护,其中“三好”指的是:(管好、用好、修好)、“四会”指的是(会使用、会保养、会检查、会排除故障) 三、判断题: 1.在平面磨削时,一般可采用提高工作台纵向进给速度的方法来改善散热条件,提高生产效率。(√) 2.平面磨削时,应采用硬度低、颗粒粗、组织疏松的砂轮。(X) 3.用横向磨削法磨削平面时,磨削宽度应等于横向进给量。(√) 4.发现有人触电,用手拉触电者,使其脱离电源。(X) 5.新砂轮可以直接上机使用。(X) 6.砂轮的硬度与磨料的硬度是一致的。(X) 7.砂轮粒度号越大,表示磨料的颗粒越大。(√) 8.磨削时,在砂轮与工件上作用的磨削力是不相等的。(X) 9.发现有人触电,用手拉触电者,使其脱离电源。(X)

平面磨床磨削砂轮的选择

平面磨床磨削砂轮的选择 砂轮磨具是磨削加工不可缺少的一种工具,砂轮选择合适与否,是影响磨削质量,磨削成本的重要条件。本公司生产一系列的平面磨床,需配置不同的砂轮来适应各种工件的平面加工。为方便用户及本公司设计、工艺人员选择,本文针对平面磨床磨削砂轮的选择,常用不同工件材料的砂轮选择进行汇总,以供大家使用参考(见附表)。 砂轮的种类很多,并有各种形状和尺寸,由于砂轮的磨料、结合剂材料以及砂轮的制造工艺不同,各种砂轮就具有不同的工作性能。每一种砂轮根据其本身的特性,都有一定的适用范围。因此,磨削加工时,必须根据具体情况(如所磨工件的材料性质、热处理方法、工件形状、尺寸及加工形式和技术要求等),选用合适的砂轮。否则会因砂轮选择不当而直接影响加工精度、表面粗糙度及生产效率。下面列出砂轮选择的基本原则以供参考。 一、普通砂轮的选择 1. 磨料的选择磨料选择主要取决于工件材料及热处理方法。 a. 磨抗张强度高的材料时,选用韧性大的磨料。 b. 磨硬度低,延伸率大的材料时,选用较脆的磨料。 c. 磨硬度高的材料时,选用硬度更高的磨料。 d. 选用不易被加工材料发生化学反应的磨料。 最常用的磨料是棕刚玉(A)和白刚玉(WA),其次是黑碳化硅(C)和绿碳化硅(GC),其余常用的还有铬刚玉(PA)、单晶刚玉(SA)、微晶刚玉(MA)、锆刚玉(ZA)。 棕刚玉砂轮:棕刚玉的硬度高,韧性大,适宜磨削抗拉强度较高的金属,如碳钢、合金钢、可锻铸铁、硬青铜等,这种磨料的磨削性能好,适应性广,常用于切除较大余量的粗磨,价格便宜,可以广泛使用。 白刚玉砂轮:白刚玉的硬度略高于棕刚玉,韧性则比棕刚玉低,在磨削时,磨粒容易碎裂,因此,磨削热量小,适宜制造精磨淬火钢、高碳钢、高速钢以及磨削薄壁零件用的砂轮,成本比棕刚玉高。 黑碳化硅砂轮:黑碳化硅性脆而锋利,硬度比白刚玉高,适于磨削机械强度较低的材料,如铸铁、黄铜、铝和耐火材料等。 绿碳化硅砂轮:绿碳化硅硬度脆性较黑碳化硅高,磨粒锋利,导热性好,适合于磨削硬质合金、光学玻璃、陶瓷等硬脆材料。 铬刚玉砂轮:适于磨削刀具,量具、仪表,螺纹等表面加工质量要求高的工件。 单晶刚玉砂轮:适于磨削不锈钢、高钒高速钢等韧性大、硬度高的材料及易变形烧伤的工件。 微晶刚玉砂轮:适于磨削不锈钢、轴承钢和特种球墨铸铁等,用于成型磨,切入磨,镜面磨削。

磨削加工的方法

用砂轮或涂覆磨具以较高的线速度对工件表面进行加工的方法称为磨削加工。一般在磨床上进行。磨削加工可分为普通磨削、无心磨削、高效磨削、低粗糙度磨削和砂带磨削等。 一、普通磨削 (1)机床:普通磨床 (2)加工范围:外圆、内圆、锥面、平面 (3)按照砂轮粒度号和切削用量的不同,普通磨削可分为粗磨和精磨。粗磨的尺寸公差等级为IT8~IT7,表面粗糙度Ra值为0.8~0.4μm;精磨的尺寸公差等级为IT6~IT5,表面粗糙度Ra值为0.4~0.2μm。 1.磨外圆 (1)机床:普通外圆磨床、万能外圆磨床 (2)磨削方法:纵磨法和横磨法 纵磨法:加工精度高,Ra值较小,生产率低,广泛用于各种类型的生产中; 横磨法:加工精度低,Ra值较大,生产率高,只适用于大批量生产中磨削刚度较好、精度较低、长度较短的轴类零件上的外圆表面和成形面。

2.磨内圆(包括内锥面) (1)机床:内圆磨床、万能外圆磨床 (2)特点: ①由于磨内圆砂轮受孔径限制,切削速度难以达到磨外圆的速度; ②砂轮轴直径小,悬伸长,刚度差,易弯曲变形和振动,且只能采用较小的背吃刀量; ③砂轮与工件成内切圆接触,接触面积大,磨削热多,散热条件差,表面易烧伤; ④磨内圆比磨外圆生产率低,加工精度和表面质量难以控制。 3.磨平面 (1)机床:平面磨床 (2)加工方法:周磨法、端磨法 ①周磨法:加工精度高,表面粗糙度Ra值小,但生产率较低,多用于单件小批生产中,大批大量生产中亦可使用。 ②端磨法:生产率较高,但加工质量略差于周磨法,多用于大批大量生产中磨削精度要求不太高的平面。

(1)机床:无心磨床 (2)加工方法:纵磨法、横磨法 1.无心纵磨法 大轮为工作砂轮,起切削作用。小轮为导轮,无切削能力。两轮与托板构成V形定位面托住工件。由于导轮的轴线与砂轮轴线倾斜β角(β=1°~6°),v导分解成v工和v 进。v工带动工件旋转,v进带动工件轴向移动。为使导轮与工件直线接触,把导轮圆周表面的母线修整成双曲线。无心纵磨法主要用于大批量生产中磨削细长光滑轴、销钉、小套等零件的外圆。 2.无心横磨法 导轮的轴线与砂轮轴线平行,工件不作轴向移动。无心横磨法主要用于磨削带台肩而又较短的外圆、锥面和成形面等。

相关文档
最新文档