一类非线性偏微分方程的改进的Jacobi椭圆函数精确解

一类非线性偏微分方程的改进的Jacobi椭圆函数精确解
一类非线性偏微分方程的改进的Jacobi椭圆函数精确解

偏微分方程数值解法试题与答案

一.填空(1553=?分) 1.若步长趋于零时,差分方程的截断误差0→lm R ,则差分方程的解lm U 趋近于微分方 程的解lm u . 此结论_______(错或对); 2.一阶Sobolev 空间{} )(,,),()(21 Ω∈''=ΩL f f f y x f H y x 关于内积=1),( g f _____________________是Hilbert 空间; 3.对非线性(变系数)差分格式,常用 _______系数法讨论差分格式的_______稳定性; 4.写出3 x y =在区间]2,1[上的两个一阶广义导数:_________________________________, ________________________________________; 5.隐式差分格式关于初值是无条件稳定的. 此结论_______(错或对)。 二.(13分)设有椭圆型方程边值问题 用1.0=h 作正方形网格剖分 。 (1)用五点菱形差分格式将微分方程在内点离散化; (2)用截断误差为)(2 h O 的差分法将第三边界条件离散化; (3)整理后的差分方程组为 三.(12)给定初值问题 x u t u ??=?? , ()10,+=x x u 取时间步长1.0=τ,空间步长2.0=h 。试合理选用一阶偏心差分格式(最简显格式), 并以此格式求出解函数),(t x u 在2.0,2.0=-=t x 处的近似值。 1.所选用的差分格式是: 2.计算所求近似值: 四.(12分)试讨论差分方程 ()h a h a r u u r u u k l k l k l k l ττ + - = -+=++++11,111 1 逼近微分方程 0=??+??x u a t u 的截断误差阶R 。 思路一:将r 带入到原式,展开后可得格式是在点(l+1/2,k+1/2)展开的。 思路二:差分格式的用到的四个点刚好是矩形区域的四个顶点,可由此构造中心点的差分格 式。

(完整版)偏微分方程的MATLAB解法

引言 偏微分方程定解问题有着广泛的应用背景。人们用偏微分方程来描述、解释或者预见各种自然现象,并用于科学和工程技术的各个领域fll。然而,对于广大应用工作者来说,从偏微分方程模型出发,使用有限元法或有限差分法求解都要耗费很大的工作量,才能得到数值解。现在,MATLAB PDEToolbox已实现对于空间二维问题高速、准确的求解过程。 偏微分方程 如果一个微分方程中出现的未知函数只含一个自变量,这个方程叫做常微分方程,也简称微分方程;如果一个微分方程中出现多元函数的偏导数,或者说如果未知函数和几个变量有关,而且方程中出现未知函数对几个变量的导数,那么这种微分方程就是偏微分方程。 常用的方法有变分法和有限差分法。变分法是把定解问题转化成变分问题,再求变分问题的近似解;有限差分法是把定解问题转化成代数方程,然后用计算机进行计算;还有一种更有意义的模拟法,它用另一个物理的问题实验研究来代替所研究某个物理问题的定解。虽然物理现象本质不同,但是抽象地表示在数学上是同一个定解问题,如研究某个不规则形状的物体里的稳定温度分布问题,由于求解比较困难,可作相应的静电场或稳恒电流场实验研究,测定场中各处的电势,从而也解决了所研究的稳定温度场中的温度分布问题。 随着物理科学所研究的现象在广度和深度两方面的扩展,偏微分方程的应用范围更广泛。从数学自身的角度看,偏微分方程的求解促使数学在函数论、变分法、级数展开、常微分方程、代数、微分几何等各方面进行发展。从这个角度说,偏微分方程变成了数学的中心。

一、MATLAB方法简介及应用 1.1 MATLAB简介 MATLAB是美国MathWorks公司出品的商业数学软件,用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境,主要包括MATLAB和Simulink两大部分。 1.2 Matlab主要功能 数值分析 数值和符号计算 工程与科学绘图 控制系统的设计与仿真 数字图像处理 数字信号处理 通讯系统设计与仿真 财务与金融工程 1.3 优势特点 1) 高效的数值计算及符号计算功能,能使用户从繁杂的数学运算分析中解脱出来; 2) 具有完备的图形处理功能,实现计算结果和编程的可视化; 3) 友好的用户界面及接近数学表达式的自然化语言,使学者易于学习和掌握; 4) 功能丰富的应用工具箱(如信号处理工具箱、通信工具箱等) ,

五点差分法(matlab)解椭圆型偏微分方程教学文稿

用差分法解椭圆型偏微分方程 -(Uxx+Uyy)=(pi*pi-1)e^xsin(pi*y) 0kmax) break; end if(max(max(t))

Maab求解微分方程组及偏微分方程组

第四讲 Matlab 求解微分方程(组) 理论介绍:Matlab 求解微分方程(组)命令 求解实例:Matlab 求解微分方程(组)实例 实际应用问题通过数学建模所归纳得到的方程,绝大多数都是微分方程,真正能得到代数方程的机会很少.另一方面,能够求解的微分方程也是十分有限的,特别是高阶方程和偏微分方程(组).这就要求我们必须研究微分方程(组)的解法:解析解法和数值解法. 一.相关函数、命令及简介 1.在Matlab 中,用大写字母D 表示导数,Dy 表示y 关于自变量的一阶导数,D2y 表示y 关于自变量的二阶导数,依此类推.函数dsolve 用来解决常微分方程(组)的求解问题,调用格式为: X=dsolve(‘eqn1’,’eqn2’,…) 函数dsolve 用来解符号常微分方程、方程组,如果没有初始条件,则求出通解,如果有初始条件,则求出特解. 注意,系统缺省的自变量为t 2.函数dsolve 求解的是常微分方程的精确解法,也称为常微分方程的符号解.但是,有大量的常微分方程虽然从理论上讲,其解是存在的,但我们却无法求出其解析解,此时,我们需要寻求方程的数值解,在求常微分方程数值解方面,MATLAB 具有丰富的函数,我们将其统称为solver ,其一般格式为: [T,Y]=solver(odefun,tspan,y0) 说明:(1)solver 为命令ode45、ode23、ode113、ode15s 、ode23s 、ode23t 、ode23tb 、ode15i 之一. (2)odefun 是显示微分方程'(,)y f t y =在积分区间tspan 0[,]f t t =上从0t 到f t 用初始条件0y 求解. (3)如果要获得微分方程问题在其他指定时间点012,,,,f t t t t L 上的解,则令tspan 012[,,,]f t t t t =L (要求是单调的). (4)因为没有一种算法可以有效的解决所有的ODE 问题,为此,Matlab 提供了多种求解器solver ,对于不同的ODE 问题,采用不同的solver.

偏微分方程数值解法

一、 问题 用有限元方法求下面方程的数值解 2 u u u f t ?-?+=? in (]0,T Ω? 0u = on []0,T ?Ω? ()00,u x u = in Ω 二、 问题分析 第一步 利用Green 公式,求出方程的变分形式 变分形式为:求()()21 00,;u L T H ∈Ω,使得 ()())(2 ,,,,u v u v u v f v t ???+??+= ???? ()10v H ?∈Ω (*) 以及 ()00,u x u =. 第二步 对空间进行离散,得出半离散格式 对区域Ω进行剖分,构造节点基函数,得出有限元子空间:()12,,,h NG V span ???=???,则(*)的Galerkin 逼近为: []0,t T ?∈,求()()1 0,h h u t x V H ∈?Ω,使得 ()()()()() () )(2 ,,,,h h h h h h h d u t v u t v u t v f v dt +??+= h h v V ?∈ (**) 以及()0,0h h u u =,0,h u 为初始条件0u 在h V 中的逼近,设0,h u 为0u 在h V 中的插值. 则0t ?≥,有()()1 N G h i i i u t t ξ? == ∑,0,h u =01 N G i i i ξ?=∑,代人(**)即可得到一常微分方程组. 第三步 进一步对时间进行离散,得到全离散的逼近格式 对 du dt 用差分格式.为此把[]0,T 等分为n 个小区间[]1,i i t t -,其长度1i i T t t t n -?=-= ,n t T =. 这样把求i t 时刻的近似记为i h u ,0 h u 是0u 的近似.这里对(**)采用向后的欧拉格式,即 ()()() () )(2 11 11 1 ,,,,i i i i h h h h h h h i h u u v u v u v f v t ++++-+??+ = ? h h v V ?∈ (***) i=0,1,2…,n-1. 0 h u =0,h u 由于向后欧拉格式为隐式格式且含有非线性项,故相邻两时间步之间采用牛顿迭代,即:

偏微分方程数值解法

“十二五”国家重点图书出版规划项目 信息与计算科学丛书 67 偏微分方程数值解法 陈艳萍鲁祖亮刘利斌编著

内 容 简 介 本书试图用较少的篇幅描述偏微分方程的几种数值方法. 主要内容包括:Sobolev空间初步, 椭圆边值问题的变分问题, 椭圆问题的有限差分方法, 抛物型方程的有限差分方法, 双曲型方程的有限差分方法, 椭圆型方程的有限元方法, 抛物及双曲方程的有限元方法, 椭圆型方程的混合有限元方法, 谱方法等. 本书内容丰富, 深入浅出, 尽可能地用简单的方法来描述一些理论结果, 并根据作者对有限差分、有限元、混合有限元、谱方法的理解和研究生教学要求, 全面、客观地评价各种数值计算方法,并列举一些数值计算的例子, 阐述许多新的学术观点. 本书可作为高等学校数学系高年级本科生和研究生的教材或参考书, 也可作为计算数学工作者和从事科学与工程计算的科研人员的参考书. 图书在版编目(CIP)数据 偏微分方程数值解法/陈艳萍, 鲁祖亮, 刘利斌编著. —北京:科学出版社, 2015.1 (信息与计算科学丛书67) ISBN 978-7-03-000000-0 Ⅰ. ①偏… Ⅱ. ①陈… ②鲁… ③刘… Ⅲ. ① Ⅳ.① 中国版本图书馆CIP数据核字(2014) 第000000号 责任编辑: 王丽平/责任校对: 彭涛 责任印制: 肖钦/封面设计: 陈敬 出版 北京东黄城根北街16号 邮政编码: 100717 https://www.360docs.net/doc/703274170.html, 印刷 科学出版社发行 各地新华书店经销 * 2015年1月第一版开本: 720×1000 1/16 2015年1月第一次印刷印张: 14 字数: 280 000 定价: 88.00元 (如有印装质量问题, 我社负责调换)

用五点有限差分格式求解椭圆型方程(偏微分方程) 程序2

用五点有限差分格式求解椭圆型方程(偏微分方程)程序2 2010-04-29 10:33 function varargout=liu(varargin) a=0;b=2;c=0;d=1;h1=1/16;h2=1/16; f=inline('(pi^2-1)*exp(x)*sin(pi*y)','x','y'); g1x=inline('0'); g2x=inline('0'); g1y=inline('sin(pi*y)'); g2y=inline('exp(2)*sin(pi*y)'); [X,Y,Z]=chfenmethed(f,g1x,g2x,g1y,g2y,a,b,c,d,h1,h2); mesh(X,Y,Z); shading flat; xlabel('X','FontSize',14); ylabel('Y','FontSize',14); zlabel('error','FontSize',14); title('误差图'); function [X,T,Z]=chfenmethed(f,g1x,g2x,g1y,g2y,a,b,c,d,h1,h2) %求解下问题 %-(u_xx+u_yy)=f(x,y) x,y 在区域内x in a

%h2离散y方向的步长 N=10000; x=a:h1:b; y=c:h2:d; m=length(x); n=length(y); ee=0.00001; [X,T]=meshgrid(x,y); Z=zeros(n,m); U=zeros(n,m); for i=2:m-1 U(1,i)=feval(g1x,x(i)); U(n,i)=feval(g2x,x(i)); end for j=1:n U(j,1)=feval(g1y,y(j)); U(j,m)=feval(g2y,y(j)); end %while true %下为高斯赛德尔迭代法 %---------------------------------------------------------------------- for k=1:N

椭圆型偏微分方程边值问题的一种数值解

椭圆型偏微分方程边值问题的一种数值解 为了解不规则区域上的椭圆型偏微分方程边值问题, 首先要对区域进行剖分,这样做使得在整个解题过程中进行了两次边值问题的求解。在学习中得到启发看到了一个方法,它将区域剖分的问题及求解的问题结合起来进行, 使整个求解过程得到简化这个方法求得的是未知函数的一组等值线,这在某些物理问题中是方便的。 (1) 其中Ω是区域;Γ 1、 Γ 2、 Γ 3、 Γ4Ω的边界。且Γ 1、 Γ3相对,Γ 2、 Γ4相对。 公式的系数分别是Ω上的连续函数。φ1φ2是单调函数但可以不连续。u 0,u n 是常数。又设d>0,c<=0,u n >u 0.特殊的,Γ1、Γ2、Γ3、Γ4中至多有两个可以退化为一点。为了求解上式,引入辅助问题 (2) 00:;m m v v v v <其中、是常数且 34??、是单调函数, 也可以不连续, 034m v v ??、、、可按解题方便来选取作变换 (3) 变换(3)区域Ω变为Ω`由椭圆型方程的性质可见(3)是可逆的。 设(3)的逆变换是 (4) 变换(3)将(1)(2)中的方程变为

(5) (6) 其中: ,易见仍有即式(3)和(6)是一个拟线性椭圆型方程组。设曲线的几何方程分别是 解下面四组联立方程 并分别记它们的解为 于是(3)将(1)(2)、中的边界条件变为 (7)现将方程(5)(6)加上边界条件(7)称为问题(1`)向题(1`), 虽然方程复杂, 但定解区域是矩形,用差分法离散, 迭代法求解是很方便的。(1`) 的解形如(4).将u 视为常数, v是参数, (4)就是u的等值线的参数方程。 参考文献 1、刘家琦。应用求解拉普拉斯方程的边值问题建立有限元网格。计算数学1988,5(1):1~9 2、李子才。具有奇点的Laplace方程边值问题的原始能量有限元结合法。计算数学,1980,2(4):319~328

偏微分方程组解法

偏微分方程组解法 某厚度为10cm 平壁原温度为20C ?,现其两侧面分别维持在20C ?和120C ?,试求经过8秒后平壁温度分布,并分析温度分布随时间的变化直至温度分布稳定为止。 22x t a t ??=??τ 式中a 为导温系数,/s m c 2;2=a 。 解: 模型转化为标准形式: 2 21x t t a ??=??τ 初始条件为: ()200,=x t 边界条件为: ()120,0=τt ,()20,1.0=τt 函数: pdefun.m %偏微分方程(一维动态传热) function [c,f,s]=pdefun(x,t,u,dudx) c=1/2e-4;f=dudx;s=0; icbun.m %偏微分方程初始条件(一维动态传热) function u0=icbun(x) u0=20; bcfun.m %偏微分方程边界条件(一维动态传热) function [pl,ql,pr,qr]=bcfun(xl,ul,xr,ur,t) pl=ul-120;ql=0;pr=ur-20;qr=0; 命令: x=linspace(0,10,20)*1e-2; t=linspace(0,15,16); sol=pdepe(0,pdefun,icfun,bcfun,x,t); mesh(x,t,sol(:,:,1)) %温度与时间和空间位置的关系图 %画1、2、4、6、8、15s 时刻温度分布图

plot(x,sol(2,:,1)) 1s时刻,(因为本题sol第一行为0时刻) hold on plot(x,sol(3,:,1)) plot(x,sol(5,:,1)) plot(x,sol(7,:,1)) plot(x,sol(9,:,1)) plot(x,sol(16,:,1)) 计算结果: %第8秒时温度分布 x sol(9,:,1) 经过8秒时的温度分布为: x/cm 0 0.5263 1.0526 1.5789 2.1053 2.6316 3.1579 t/C ?120.0000 112.5520 105.1653 97.8994 90.8100 83.9477 77.3562 x/cm 3.6842 4.2105 4.7368 5.2632 5.7895 6.3158 6.8421 t/C ?71.0714 65.1202 59.5200 54.2784 49.3930 44.8518 40.6338 x/cm 7.3684 7.8947 8.4211 8.9474 9.4737 10.0000 t/C ?36.7095 33.0419 29.5877 26.2982 23.1207 20.0000 或者求第8秒时,x=0,2,4,,6,8,10cm处的温度 [uout,duoutdx]=pdeval(0,x,sol(9,:,:),[0,2,4,6,8,10]*1e-2) 120.0000 92.2279 67.5007 47.5765 32.3511 20.0000

椭圆型偏微分方程的求解及其应用[文献综述]

毕业论文文献综述 信息与计算科学 椭圆型偏微分方程的求解及其应用 一、 前言部分 微积分产生以后,人们就开始把力学中的一些问题,归结为偏微分方程进行研究。早在18世纪初,人们已经将弦线振动的问题归结为弦振动方程,并开始探讨了它的解法。随后,人们又陆续了解了流体的运动、弹性体的平衡和振动、热传导、电磁相互作用、原子核和电子的相互作用、化学反应过程等等自然现象的基本规律,把它们写成偏微分方程的形式,并且求出了典型问题的解答,从而能通过实践,验证这些基本规律的正确性,显示了数学物理方程对于认识自然界基本规律的重要性。 有了基本规律,人们还要利用这些基本规律来研究复杂的自然现象和解决复杂的工程技术问题,这就需要求出数学物理方程中的许多特定问题的解答。随着电子计算机的出现及计算技术的发展,即使是相当复杂的问题,也有可能计算出解得足够精确的数值来,这对于预测自然现象的变化(如天气预报)和进行各种工程设计(如机械强度的计算)都有着很重要的作用[1]。 许多复杂的自然现象,其运动规律、过程和状态都是通过微分方程这种数学形式来描述的。当我们研究只有一个自变量的运动过程时出现的微分方程称为常微分方程。当一个微分方程除了含有几个自变量和未知数外,还含有未知数的偏导数时,称为偏微分方程[2]-[6]。在偏微分方程中,偏导数自然是不可缺少的。例如: ()(),,u u a x y f x y x y ??+=?? (1.1.1) 拉普拉斯方程 22232220u u u u x y z ????=++=??? (1.1.2) 热传导方程 ()222 ,,u u a f x t u t x ??=+??

偏微分方程数值解法答案

1. 课本2p 有证明 2. 课本812,p p 有说明 3. 课本1520,p p 有说明 4. Rit2法,设n u 是u 的n 维子空间,12,...n ???是n u 的一组基底,n u 中的任一元素n u 可 表为1n n i i i u c ?==∑ ,则,11 11()(,)(,)(,)(,)22j n n n n n n i j i j j i j j J u a u u f u a c c c f ???=== -=-∑∑是12,...n c c c 的二次函数,(,)(,)i j j i a a ????=,令 () 0n j J u c ?=?,从而得到12,...n c c c 满足1 (,)(,),1,2...n i j i j i a c f j n ???===∑,通过解线性方程组,求的i c ,代入1 n n i i i u c ?==∑, 从而得到近似解n u 的过程称为Rit2法 简而言之,Rit2法:为得到偏微分方程的有穷维解,构造了一个近似解,1 n n i i i u c ?== ∑, 利用,11 11()(,)(,)(,)(,)22j n n n n n n i j i j j i j j J u a u u f u a c c c f ???===-=-∑∑确定i c ,求得近似解n u 的过程 Galerkin 法:为求得1 n n i i i u c ? == ∑形式的近似解,在系数i c 使n u 关于n V u ∈,满足(,)(,) n a u V f V =,对任 意 n V u ∈或(取 ,1j V j n ?=≤≤) 1 (,)(,),1,2...n i j i j i a c f j n ???===∑的情况下确定i c ,从而得到近似解1 n n i i i u c ?==∑的过程称 Galerkin 法为 Rit2-Galerkin 法方程: 1 (,)(,)n i j i j i a c f ???==∑ 5. 有限元法:将偏微分方程转化为变分形式,选定单元的形状,对求解域作剖分,进而构 造基函数或单元形状函数,形成有限元空间,将偏微分方程转化成了有限元方程,利用 有效的有限元方程的解法,给出偏微分方程近似解的过程称为有限元法。 6. 解:对求解区间进行网格剖分,节点01......i n a x x x x b =<<<<=得到相邻节点1,i i x x -

偏微分方程数值解法试题与答案

x 1 ?若步长趋于零时,差分方程的截断误差 R m 0,则差分方程的解 U i m 趋近于微分方 程的解U m ?此结论 ________ (错或对); 1 2.一 阶 Sobolev 空间 H ( ) f (x,y) f , f x , f y L ?() 关于内积(f,g )1 _____________________________________ 是Hilbert 空间; 3 ?对非线性(变系数)差分格式,常用 ____________ 系数法讨论差分格式的 ________ 稳定性; 4?写出y x 3在区间[1,2]上的两个一阶广义导数: ______________________________________ _____ ____ ______________ _ ____ ________ ; 5 ?隐式差分格式关于初值是无条件稳定的 ?此结论 ________ (错或对)。 (13分)设有椭圆型方程边值问题 0.1作正方形网格剖分 。 (1) 用五点菱形差分格式将微分方程在内点离散化; (2) 用截断误差为 O (h 2)的差分法将第三边界条件离散化; (3) 整理后的差分方程组为 U C 三.(12)给定初值问题 u x,0 x 1 取时间步长 0.1,空间步长h 0.2。试合理选用一阶偏心差分格式(最简显格式) 2 u ~2 x 2 u ~2 y 0 x 0.3 0.2 x 0.3 2y 1, — u n 2x y 0.2

并以此格式求出解函数u(x,t)在x 0.2,t 0.2处的近似值。 x

1.所选用的差分格式是: 2 .计算所求近似值: 1 a k 1 四.(12分)试讨论差分方程 u l 1 k k k 1 u | r u | 1 u | , r h a 1 h 逼近微分方程 u a u 0 t x 的截断误差阶R 。 思路一:将r 带入到原式,展开后可得格式是在点( l+1/2,k+1/2 )展开的。 思路二:差分格式的用到的四个点刚好是矩形区域的四个顶点,可由此构造中心点的差分格 式。 2 —2 ,考虑 Du Fort-Frankel 格式 X 试论证该格式是否总满足稳定性的 Von-Neumann 条件? 六. (12分)(1 )由Green 第一公式推导 Green 第二公式: (2) 对双调和方程边值问题 n 2 选择函数集合(空间)为: 推导相应的双线性泛函和线性泛函: A (u,v ) F (v ) 相应的虚功问题为: 极小位能问题为 七. ( 12分)设有常微分方程边值问题 y y f (x ) , a x b y a 1, y b 1 五.(12分) 对抛物型方程 U |k1 U |k 2 |k 1 (U |k1 U |k1) U |k 1 ) 2 (u)vdxdy G (u) u vdxdy :[v v u ]ds n f (x,y) (x,y) g 1(x , y), g 2(x, y) (x,y),

大连理工大学 高等数值分析 椭圆方程差分法

椭圆方程差分法 1 矩形网上差分方程 考虑二阶椭圆型偏微分方程的第一边值问题 (1.1) ()()()?????=∈=+++--Γy x y x u y x F Eu Du Cu u u y x yy xx ,,,αG 其中C ,E D ,是常数;0≥E ;()()G C 0,∈=y x F F ;(,)x y α是给定的光滑函数。假设(5.1)存在光滑的唯一解。 为简单起见,假设G 是矩形区域,其四个边与相应坐标轴平行。考虑矩形网格:1h 和2h 分别为x 和y 方向的步长,h G 为网格内点节点集合,h Γ为网格边界点集合,=h G h G h Γ。 对于内点()j i y x ,h G ∈用如下的差分方程逼近(1.1) (1.2) 21 ,1,12h u u u j i ij j i -++---221,1,2h u u u j i ij j i -++-+1,1,12h u u C j i j i -+-+21,1,2h u u D j i j i -+-+ij Eu =ij F 其中),(j i ij y x F F =。(1.2)通常称为五点差分格式。 用(1.1)的真解(,)u x y 在网点上的值(,)i j u x y 、1(,)i j u x y -等等分别替换(1.2)中的ij u 、1,i j u -等等,然后在(,)i j x y 点处作Tailor 展开,便知(1.2)逼近(1.1) 的截断误差阶为() 2221h h O +。 方程(1.2)可以改写为 (1.3) j i a ,1-j i u ,1-+j i a ,1+j i u ,1++1,-j i a 1,-j i u +1,+j i a 1,+j i u +j i a ,j i u ,ij F = 对每一内点都可以列出这样一个方程。遇到边界点时,因为边界点u 的函数值已知,将相应的项挪到右端去。最后,得到一个以u 的内点近似值为未知数的线性方程组。这个方程组是稀疏的,并且当1h 和2h 足够小时是对角占优的。 可以证明,五点差分格式关于右端和初值都是稳定的,收敛阶为2212()O h h +。

椭圆型偏微分方程实验报告

实验报告 实验项目名称椭圆型偏微分方程 实验室数学实验室 所属课程名称微分方程数值方法 实验类型算法设计 实验日期2014年6月6日 班级 学号 姓名 成绩 实验概述: 【实验目的及要求】 实验目的是通过分析Possion问题并用交替迭代法来求解其次边值问题,进一步了解交替迭代法的算法特点——即在矩形区域上的差分格式可以大大降低计算量。实验要求是利用Peaceman-Rachford迭代格式编写出相应的代

码解决Possion问题。 【实验原理】 对于简单的椭圆型偏微分方程 Poission 方程: 采用正方形网格剖分正方形区域Ω ,对 x 和 y 方向采用中心差分并记则对Poission方程离散后差分格式可写成; 改写为 由此得Peaceman-Rachford 迭代格式为 其分量形式为 将以上两步写成矩阵形式,第一步迭代为: 第二步迭代为:

这里的 gij 和 gij 分别为 迭代参数可取为: 实际上每个迭代步相当于解N ?1个系数矩阵为三对角阵的N ?1阶线性代数方程组,可用追赶法求解。 【实验环境】(使用的软硬件) 软件: MATLAB 2012a 硬件: 电脑型号:联想 Lenovo 昭阳E46A笔记本电脑 操作系统:Windows 8 专业版 处理器:Intel(R)Core(TM)i3 CPU M 350 @2.27GHz 2.27GHz 实验内容: 【实验方案设计】 利用Peaceman-Rachford迭代格式求解

求解域Ω : 0 ≤ x, y ≤ 1,其精确解为u = sin πx sin πy。 首先利用上述原理进行分析,从而利用Matlab软件编写出相应程序。 【实验过程】(实验步骤、记录、数据、分析) 我们首先编写一个m文件,包含交替方向迭代法程序如下: function u=alter(a0,b0,f,h) %输入-a0为x,y方向起始端点; %-b0为x,y方向终点; %-f为方程右端函数; %-h为网格步长; %输出-u为解矩阵。 p=200; N=fix((b0-a0)/h); u=zeros(N+1); v=zeros(N+1); g=zeros(N+1); x=a0:h:b0; y=x; tau=h*h/(2*sin(pi*h)); a=-tau*ones(1,N-2); c=a; d=(h*h+2*tau)*ones(1,N-1); for k=1:p err=0; for i=2:N for j=2:N g(i,j)=(h*h-2*tau)*u(i,j)+tau*(u(i,j+1)+u(i,j-1)+h*h*f(x(i),y(j))); end

五点差分法解椭圆型偏微分方程

用差分法解椭圆型偏微分方程 -(Uxx+Uyy)=(pi*pi-1)e^xsin(pi*y) 0kmax) break; end if(max(max(t))

一维偏微分方程的pdepe(matlab)函数 解法

本文根据matlab帮助进行加工,根据matlab帮助上的例子,帮助更好的理解一维偏微分方程的pdepe函数解法,主要加工在于程序的注释上。 Examples Example 1.This example illustrates the straightforward formulation, computation, and plotting of the solution of a single PDE. This equation holds on an interval for times . The PDE satisfies the initial condition and boundary conditions It is convenient to use subfunctions to place all the functions required by pdepe in a single function. function pdex1 m = 0; x = linspace(0,1,20); %linspace(x1,x2,N)linspace是Matlab中的一个指令,用于产生x1,x2之间的N点行矢量。 %其中x1、x2、N分别为起始值、终止值、元素个数。若缺省N,默认点数为100 t = linspace(0,2,5); sol = pdepe(m,@pdex1pde,@pdex1ic,@pdex1bc,x,t);

% Extract the first solution component as u. u = sol(:,:,1); % A surface plot is often a good way to study a solution. surf(x,t,u) title('Numerical solution computed with 20 mesh points.') xlabel('Distance x') ylabel('Time t') % A solution profile can also be illuminating. figure plot(x,u(end,:)) title('Solution at t = 2') xlabel('Distance x') ylabel('u(x,2)') % -------------------------------------------------------------- function [c,f,s] = pdex1pde(x,t,u,DuDx) c = pi^2; f = DuDx; s = 0; % -------------------------------------------------------------- function u0 = pdex1ic(x) u0 = sin(pi*x); % -------------------------------------------------------------- function [pl,ql,pr,qr] = pdex1bc(xl,ul,xr,ur,t) pl = ul; ql = 0; pr = pi * exp(-t); qr = 1;

偏微分方程的数值解法

《偏微分方程数值解法》试题 (专业:凝聚态物理学号:2013201260 姓名:鄢建军) 1.考虑定解问题 (1)用迎风格式(P、45)求解 1,0 (,0) 0,0 t x u u x u x x += ? ? ≤ ? ? =? ?> ? ? 。 利用迎风格式编写Fortran程序语言,运行结果如下: Fig 1、迎风格式求解结果 (2)用Beam-Warming格式(P、51)求解。 利用Beam—Warming格式编写Fortran程序语言,运行结果如下 :

Fig 2、 Beam —Warming 格式求解结果 (3) 比较两种方法结果的异同。 将两种格式运行的结果绘制在一起,要求时间步长与空间步长在两种格式中都相同,运行结果如下图所示: Fig 3、 迎风格式与Beam-Warming 格式求解结果比较 从两种格式的运行结果来瞧,都存在边缘的误差现象,相比而言,Beam-Warming 格式的运行结果差一些。但就是理论上分析,迎风格式的截断误差为()h οτ+,而Beam-Warming 格式的截断误差为22()h h οττ++。稳定性上来分析,迎风格式的稳定性较好,要求1(/)a h λλτ≤=,Beam-Warming 格式的稳定性条件为2(/)a h λλτ≤=。 2. 考虑定解问题212 1110,04(,0)sin ,0(0,)(,)0u u a x l t t u x x x l l u t u l t π???-=<

偏微分方程数值解法

《偏微分方程数值解法》 课程设计 题目: 六点对称差分格式解热传导方程的初边 值问题 姓名: 王晓霜 学院: 理学院 专业: 信息与计算科学 班级: 0911012 学号: 091101218 指导老师:翟方曼 2012年12月14

日 一、题目 用六点对称差分格式计算如下热传导方程的初边值问题 222122,01,01(,0),01 (0,),(1,),01x t t u u x t t x u x e x u t e u t e t +???=<<<≤?????=≤≤??==≤≤??? 已知其精确解为 2(,)x t u x t e += 二、理论 1.考虑的问题 考虑一维模型热传导方程 (1.1) )(22x f x u a t u +??=??,T t ≤<0 其中a 为常数。)(x f 是给定的连续函数。(1.1)的定解问题分两类: 第一,初值问题(Cauch y 问题):求足够光滑的函数()t x u ,,满足方程(1.1)和初始条件: (1.2) ()()x x u ?=0,, ∞<<∞-x 第二,初边值问题(也称混合问题):求足够光滑的函数()t x u ,,满足方程(1.1)和初始条件: ()13.1 ()()x x u ?=0,, l x l <<- 及边值条件 ()23.1 ()()0,,0==t l u t u , T t ≤≤0 假定()x f 和()x ?在相应的区域光滑,并且于()0,0,()0,l 两点满足相容条件,则上述问题有唯一的充分光滑的解。 现在考虑边值问题(1.1),(1.3)的差分逼近 取 N l h = 为空间步长,M T =τ为时间步长,其中N ,M 是自然数,

椭圆型偏微分方程的求解及其应用开题报告

开题报告 信息与计算科学 椭圆型偏微分方程的求解及其应用 一、选题的背景、意义 早期建立的数学物理方程有根据牛顿引力理论而推导出的描述引力势的拉普拉斯方程和泊松方程。在连续介质力学中,从质量、动量、能量守恒定律出发,建立了流体力学中的纳维-斯托克斯方程组(有黏性)和欧拉方程组(无黏性)以及弹性力学中的圣维南方程组等。另外,像描述波的传播的波动方程;描述传热和扩散现象的热传导方程都是古典的数学物理方程。 随着现代科学和技术的进步,将会不断涌现新的数学物理方程,而其产生和应用的范围已经并且更多地超出了传统的物理学、力学、天文学等领域。例如,在化学、生命科学、经济学等自然科学和社会科学各个领域,以及在资源勘探与开发、大型建筑与水利工程、金属冶炼工程、通信工程、新能源开发、大气物理、气象预报、航天工程、医疗诊断与材料无损探伤、遗传工程等广泛的工程技术各个领域都涉及到数学物理方程的理论及其重要应用。 许多复杂的自然现象,其运动规律、过程和状态都是通过微分方程这种数学形式来描述的。当我们研究只有一个自变量的运动过程时出现的微分方程称为常微分方程。当一个微分方程除了含有几个自变量和未知数外,还含有未知数的偏导数时,称为偏微分方程[1]-[6]。 众所周知,偏微分方程可根据它的数学特征分为三大类型,即抛物型、双曲型、椭圆型。这三类偏微分方程描述了不同本质的物理现象,其应用是极其广泛的。对于理论研究和实际应用问题中提出的许多偏微分方程,由于其边界和边界条件复杂等原因,寻求解的解析表达式相当困难,有时甚至是不可能的,所以必须利用计算机研究偏微分方程的数值解。简而言之,这种研究的任务在实用中主要表现于两个方面。一是关于用有效地数值方法离散偏微分方程及其边界条件。对此,差分法和有限元法是目前被普遍认为行之有效的两类主要的数值方法。二是关于高效率高精度求解离散微分方程。对此,解同样的离散微分方程,采用好的算法与采用一般算法的计算效果往往相差很大,采用好的算法不但能使求解过程数值稳定、数值解的精度得到提高,而且能数十倍、数百倍地节省计算工作量[7]-[10]。 二、研究的基本内容与拟解决的主要问题

matlab偏微分方程组求解

MATLAB学习(序列1)偏微分方程组的求解 ode23 解非刚性微分方程,低精度,使用Runge-Kutta法的二三阶算法。 ode45 解非刚性微分方程,中等精度,使用Runge-Kutta法的四五阶算法。 ode113 解非刚性微分方程,变精度变阶次Adams-Bashforth-Moulton PECE算法。 ode23t 解中等刚性微分方程,使用自由内插法的梯形法则。 ode15s 解刚性微分方程,使用可变阶次的数值微分(NDFs)算法。 ode23s 解刚性微分方程,低阶方法,使用修正的Rosenbrock公式。 ode23tb 解刚性微分方程,低阶方法,使用TR-BDF2方法,即Runger-Kutta公式的第一级采用梯形法则,第二级采用Gear法。 [t,YY]=solver('F',tspan,Yo 解算ODE初值问题的最简调用格式。 solver指上面的指令。 tspan=[0,30]; %时域t的范围 y0=[1;0]; %y(1)y(2的初始值 [tt,yy]=ode45(@DyDt,tspan,y0; plot(tt,yy(:,1,title('x(t' function ydot=DyDt(t,y ydot=[y(2; 2*(1-y(1^2*y(2-y(1] 刚性方程:刚性是指其Jacobian矩阵的特征值相差十分悬殊。在解的性态上表现为,其中一些解变化缓慢,另一些变化快,且相差较悬殊,这类方程常常称为刚性方程,又称为Stiff方程。 刚性方程和非刚性方程对解法中步长选择的要求不同。 刚性方程一般不适合由ode45这类函数求解,而应该采用ode15s等。 如果不能分辨是否是刚性方程,先试用ode45,再用ode15s。 [t,YY,Te,Ye,Ie] = solver('F',tspan,Yo,options,p1,p2,… 解算ODE初值问题的最完整调用格式。 为了能够解出方程,要用指令odeset确定求解的条件和要求。在MATLAB中,求解方程组的指令都有默认的求解的条件和要求(由结构数组options表示),但可以用odeset修改或重新建立,也可以用odeget去获取已有的“优化选项”的信息。指令odeset和odeget用法介绍如下: 语句格式如下: options=odeset(‘name1’,value1,’name2’,value2,…

相关文档
最新文档