金属材料塑性变形与强韧化机制探索:层错能效应

金属材料塑性变形与强韧化机制探索:层错能效应
金属材料塑性变形与强韧化机制探索:层错能效应

金属材料塑性变形与强韧化机制探索:层错能效应2009-10-30 | 编辑:材料疲劳与断裂研究部| 【大中小】【打印】【关闭】

随着工业上对金属材料强度与韧性指标需求的逐步提高,人们采用了多种方法来强化金属材料,其中利用严重塑性变形(Severe Plastic Deformation-SPD)方法制备的超细晶/纳米晶金属材料由于具有极高的强度而得到材料学界的广泛关注。历经二十余年的研究与探索,材料科学工作者已可以成功利用SPD方法(例如:等通道转角挤压(Equal Channel Angular Pressing-ECAP)技术、高压扭转(High Pressure Torsion-HPT)技术等)制备大块、无残余孔隙、无界面污染的超细晶/纳米晶金属材料,并在微观结构与力学性能的关系方面有了深入的认识。然而,由于其加工硬化能力的缺失,超细晶/纳米晶金属材料普遍存在着强度高塑性低的问题。因此,目前研究的重点已从材料制备和结构表征,逐渐深入到微观组织的调整和新变形机制的探索,力图解决强度与塑性同步增长的难题。

我所张哲峰研究员及其课题组成员在国家自然科学基金重大项目“金属材料强韧化的多尺度结构设计与制备”的资助下,最近以单相Cu-Al合金为研究对象,通过改变Cu-Al合金中Al的含量来调整其层错能,随后利用ECAP方法制备超细晶材料,系统研究了层错能对Cu-Al合金微观结构演化、晶粒细化机制、强度与延伸率的影响。对于微米尺度晶粒材料,已经知道层错能作为材料重要的本征参数对其变形机制和力学行为有着重要影响。对于Cu-Al合金随着Al含量的增加层错能逐渐降低,因此在ECAP过程中的变形机制也会随着铝含量的不同而呈现明显的区别,从而会显著影响其晶粒细化机制。在对具有不同成分的Cu-Al合金经过一道次ECAP 挤压变形后,大量实验观察和统计结果表明:随着层错能的降低,变形孪晶和微观剪切带在承担严重塑性变形过程中起着越来越重要的作用,而且材料的滑移位错组态逐渐由波状滑移方式转变为平面滑移方式,微观剪切带从“铜型”剪切带转变为“黄铜型”剪切带,如图1(a)所示。由于微观变形机制的转变,在经过多道次ECAP 挤压后,Cu-Al合金的晶粒细化机制也逐步由位错分割机制转变为孪晶碎化机制,如图1(b)所示。同时结合前人关于形成超细晶均匀组织的研究结果,发现具有相对较高或较低层错能材料比具有中等层错能材料更容易形成均匀的微观变形结构。

利用ECAP制备的超细晶材料,晶粒并不能无限细化,研究表明:当晶粒细化到一定尺寸后会形成一个最小平衡晶粒尺寸(dmin),通过综合前人研究结果,发现对于不同材料归一化的层错能Y/Gb与其最小晶粒尺寸dmin/b之间遵循线性关系:dmin/b=K(Y/Gb)(K是一个无量纲参数;b是柏氏矢量;G是剪切模量),如图2所示。同时结合其它制备超细晶方法中得到的dmin,通过比较其K值发现,归一化层错能Y/Gb对最小平衡晶粒尺寸dmin/b的影响程度取决于外部变形条件的剧烈程度,外加变形条件愈剧烈,最小平衡晶粒尺寸对归一化层错能的影响程度愈小。其中ECAP变形程度在各种严重塑性变形方法中是相对较缓和的,这为通过改变合金的层错能来实现制备具有不同微观结构与力学性能的合金材料提供了新的研究思路。

随后通过对经各道次ECAP挤压的Cu-Al合金样品进行拉伸实验发现,Cu-Al合金的强度和均匀延伸率随着层错能的降低具有同步提高的趋势,如图3(a)所示。大多数金属材料,单纯通过增加位错和晶界密度获得超细晶结构,虽然其强度得到明显的提高,但是由于加工硬化能力的缺失必然会导致其塑性的降低。结合最近报道的生长孪晶强化法和孪生诱导塑性机制,对于通过增加孪晶和层错密度得到的超细晶Cu-Al合金材料,不仅能够有效地提高其强度,而且可以利用孪晶和层错来容纳更多的位错而改善材料的加工硬化能力,从而使材料的塑性在具有高强度的同时维持在较好水平,因而其强度与均匀延伸率表现出同步增长的趋势,如图3(b)所示。

此外,通过对ECAP制备态的超细晶Cu-Al合金进行了一系列的退火和硬度实验,发现随层错能降低,微观剪切带在细化晶粒和承担微观变形方面起着更为重要的作用,这使得低层错能的超细晶Cu-Al合金的微观结构中存在更多容易进行再结晶形核的位置,从而其热稳定性比之高层错能的Cu-Al合金稍差,如图4(a)所示。对经过不同温度退火的Cu-Al合金进行拉伸试验,发现具有高Al含量的Cu-Al合金的拉伸强度-均匀延伸率均高于具有低合金含量的合金,这进一步证实了层错能对合金强度与塑性的重要作用,如图4(b)所示。

以上研究结果不仅丰富了层错能对于超细晶金属材料塑性变形机制、晶粒细化与强韧化机制影响的理解,同时也加深和拓展了对超细晶金属材料组织与力学性能关系的理解,并对超细晶材料组织与性能的控制、优化具有一定的参考价值。相关研究结果陆续发表在Applied Physics Letters 92 (2008) 201915,Philosophical Magazine 88 (2008) 3011, Acta Materialia 57 (2009) 1586和Journal of Materials Research, 2009 in press等刊物上。

材料科学基础-材料的强韧化

1.强化金属材料的各种手段,考虑的出发点在于制造无缺陷的晶体或者制造位错运动的障碍

4.常见公式和相关计算题 公式一:霍尔-佩奇 d 21-0 s k +=σ σ 公式二:培莱-赫许公式ρ τ τ210 aGb += 题一:若平均晶粒直径为1mm 和0.04mm 的纯铁的屈服强度分别为100mpa 和250mpa,则平均晶粒直径为0,01mm 的纯铁的屈服强度为多少? 答:根据材料的屈服强度与晶粒尺寸的霍尔佩琪公式: d 21- s k +=σ σ

有: )(122 11 2 12 21121 1 s σσσσs s s d d d d ---+=- --- 所以:MPA 5.337)100250(1 110004 .001 .02 121s =---+=- - σ 题二:晶体滑移面上有一位错环,外力场在其柏士矢量方向的切应力为G 10 4 -= τ,柏士矢量 m 55.2b 1010 -?=此位错环在晶体中能扩张的半径为多大? 答:单位长度位错受力为: GN/m 55.255.2G b F 10101014 -10-4-?=??==τ 曲率半径为R 的位错因线张力而施加于单位长度位错线的力R 2G F b 2 ≈,当此力和外加应力 场对位错的力相等所对应的R 就是此位错环在晶体中能扩张的半径,所以: m GN /55.22R G 10b 14 2 -?=,即m 275.1R 106 -?= 5.合金强化包括固溶强化和沉淀相颗粒强化 6.陶瓷材料韧化机制为相变增韧和微裂纹增韧 7.位错在金属晶体中收到这些阻力: 8.复合材料的增韧机制有: 9.高温时细晶材料比粗晶材料软,与常温时的细晶强化作用相反.高温时可利用定向凝固来增大颗粒,而通过机械震动,添加不溶杂质,增加过冷度来细化晶粒 10.细晶强化能增大材料的韧性的原因是:晶粒越细,单位体积内晶粒越多,形变时同样的形变量分散到更多的晶粒中,产生均匀形变而不会产生应力集中,引起裂纹的过早产生和发展 11.弹性模量大一般强度和脆性大,弹性模量小不意味着不易变形,例如橡皮筋弹性模量较小但是变形大,因为机制不同 12.加工硬化应力-应变曲线一般有三个阶段:易滑移阶段,线性硬化阶段,抛物线硬化阶段 13.加工硬化原理类似与位错强化机制,是金属形变后的位错密度增加,起到了强化作用 14.形变后的屈服应力称为流变应力 15.替换式固溶强化作用小于填隙式固溶强化,但在高温时变得较为重要 16.可变形微粒的强化作用为切割机制,适用于第二相粒子较软并与基体共格的情形;不可变形微粒的强化作用为奥罗万机制(位错绕过机制),适用于第二相粒子较硬并与基体界面为非共格的情形。 17.高聚物的强化方法: (1)引入极性基 链上极性部分越多,极性越强,键间作用力越大; (2)链段交联 随着交联程度的增加,交联键的平均距离缩短,使材料的强度增加; (3)结晶度和取向 高聚物在高压下结晶或高度拉伸结晶性高聚物,可使材料的强度增加;

金属材料的强化机理讲解

材料结构与性能读书报告--金属材料的强化机理

摘要 综合论述金属材料强化原理,基本途径,文章从宏观性能—微观组织结构—材料强化三者的相互依存关系,叙述了材料强化的本质、原理与基本途径作了论述。金属的强化可以改善零件的使用性能,提高产品的质量,充分发挥材料的性能潜力,延长工件的使用寿命,在实际应用中,有着非常重要的意义。对工程材料来说,一般是通过综合的强化效应以达到较好的综合性能。具体方法有固溶强化、形变强化、沉淀强化和弥散强化、晶界强化、位错强化、复相强化、纤维强化和相变强化等。 关键词:强化;细晶;形变;固溶;弥散;相变

Abstract In this paper a summary is made on the principle of material strengthening,basis way and new technology of heat treatment.The essence,principle and basis ways of strengthening various materials were expounded in terms of their microscope properties,microstructure and material strengthening technology.:Metal strengthening can improve the performance of parts, improve the quality of products, give full play to the properties of materials, extend the use of workpiece potential life, in practical applications, has a very important significance. A systematic discussion was made about the explantation of the potential of materials.For engineering materials, it is usually by the strengthening effect comprehensive to achieve good comprehensive performance. Specific methods have solid-solution strengthening,distortion and deposition strengthening ,he complex phase strengthening,fiber reinforced and phase change aggrandizement, etc. Keywords:strengthen; fine grain; deformation; solution; dispersion; phase transition

金属材料学教学大纲

金属材料学 (Science of Metal Materials) 课程编号:07171390 学分:3 学时: 48 (其中:讲课学时:38 课堂讨论学时:10 ) 先修课程:金属学、热处理原理、热处理工艺、工程材料力学性能 适用专业:金属材料工程、材料成型加工、冶金专业。 教材:戴起勋主编.金属材料学.北京:化学工业出版社,2005.9 开课学院:材料科学与工程学院 一、课程的性质与任务: 《金属材料学》是一门综合性应用性较强的专业必修课。在金属学、金属组织控制原理及工艺和力学性能等课程的基础上,系统介绍金属材料合金化的一般规律及金属材料的成分、工艺、组织、性能及应用的关系。通过课堂讲授、实验等教学环节,使学生系统掌握有关金属材料学方面的知识,培养学生研究开发和合理应用金属材料的初步能力。 二、课程的基本内容及要求 绪论(金属材料的过去、现在和将来): 1.教学内容 (1)金属材料发展简史 (2)现代金属材料 (3)金属材料的可持续发展与趋势 2.基本要求 了解金属材料在国民经济中的地位与作用、金属材料的发展概况和本课程的性质、地位和任务。 第一章钢的合金化概论 1.教学内容 (1)钢中的合金元素:合金元素和铁基二元相图;合金元素对Fe-C相图的影响;合金钢中的相组成;合金元素在钢中的分布; (2)合金钢中的相变:合金钢加热奥氏体化,合金过冷奥氏体分解;合金钢回火转变; (3)金元素对强度、韧度的影响及其强韧化; (4)合金元素对钢工艺性能的影响; (5)微量元素在钢中的作用 (6)金属材料的环境协调性设计基本概念; (7)钢的分类、编号方法。 2.基本要求 (1)掌握钢中合金元素与铁和碳的作用;铁基固溶体、碳(氮)化合物的形成规律;合金元素在钢中的分布;合金元素对铁-碳状态图的影响(2)了解钢的分类、编号方法 (3)掌握合金元素对合金钢工艺过程的影响 (4)掌握合金元素对合金钢力学性能的影响规律 (5)理解微量元素在钢中的作用 (6)了解材料的环境协调性设计基本概念

金属材料热处理变形原因及防止变形的技术措施

金属材料热处理变形原因及防止变形的技术措施 摘要:在金属加工制造行业中,对热处理技术进行应用,能够从根本上实现对金属物理性质、化学性质的提升,满足了当前各项工业生产、制造事宜。在调查中发现,当前金属材料的热处理工作,主要山金属加热、保温和冷却等儿项工作流程所构成,但山于金属热处理工艺对于整体的工作环境、技术应用有着较高标准的要求,所以在实际操作的过程中,材料时常会发生变形的问题,这就需要相关工作人员在传统金属加工制造的基础上,实现热处理工艺技术的高效化应用,提升我国金属材料加工制造的整体质量与水平,进而推动社会的发展。 关键词:金属材料;热处理变形原因;防止变形 对于金属工件而言,基本的变形问题主要集中在尺寸变形以及形状变形两方面,但是,无论是哪种变形情况,都和热处理过程导致的工件内部应力息息相关。结合内应力的相关因素对问题因素进行分析,从而制定具有针对性的监督和管控措施,就能从根本上减少金属材料热处理变形和开裂导致的工件质量缺失性问题。 1金属材料性能分析 在当前的社会生产生活中,金属材料的应用范圉十分的广泛。曲于金属材料具有韧性强、塑性好以及高强度的特点,因此其在诸多行业中均有所应用。当前常用的金属材料主要包括两种:即多孔金属材料以及纳米金属材料。纳米金属材料:一般情况下,只有物质的尺寸达到了纳米的级别,那么该物质的物理性质和化学性质均会发生改变。在分析与研究金属材料性能的过程中,主要分析金属材料的如下两种性能:其一,硬度。一般情况下,金属材料的硬度主要指的是金属材料的抗击能力。其二,耐久性。耐久性能和腐蚀性是金属材料需要着重考虑的一对因素。在应用金属材料的过程中不可避免的会受到各种物质的腐蚀,山此就会导致金属材料出现缝隙等问题。 2金属材料热处理变形的影响因素 在对金属材料热处理变形的影响因素进行探究时,工作人员需要对金属材料热处理过程中各项工艺技术特点,进行全面化的掌握,并在此基础上,釆取一些具有针对性的改善措施,进而才能实现对金属材料变形的有效控制,也为金属材料热处理过程中变形控制工作的开展,起到了一定的促进作用。在对金属材料进行热处理的过程中,山于材料自身的密度构成、结构特点,以及在外界因素的影响下,材料本身可能会出现不等时性、冷热分布不均匀的问题。在金属材料受热的过程中,温度会发生较为明显的变化,这就会使金属材料内部结构的受力情况发生改变,金属材料变形的儿率增大,而这种山于内部应力分布所导致的变形,被称之为是内应力塑性变形。这种变形的特征性较为明显,会表现岀一定的方向性,且发生的频率较高,每一次对金属材料进行热加工,都会对其内部应力结构造成改变,进行热处理的频率越高,内部应力的变化情况越明显。在一般情况下, 金属材料的内应力一般被分成热应力和组织应力变形着两类,在相应的温度条件下,对金属材料展开加热、冷却操作后,可以获得纯热应力变形,组织应力变形和金属材料自身的性能、形状,以及加热冷却方式有着紧密的关联。从实际的操作流程中可以了解到,要想对金属材料的使用性能进行高效化的提升,整个热处理工序将会包含较多的工艺内容,并且在操作过程中,需要根据金属材料的种类、操作规范展开适当的调整,收集各项参数内容。但是在实际执行过程中,山于我国在温度控制、监测精度方面具备局限性,所以温度监测精度难以得到有效的把控,一旦在热处理过程中对温度的控制未能合理实现,那么就会导致比容变形的问题发生,增加金属材料变形儿率。 3金属材料热处理变形控制时需要遵循的原则

金属材料损坏与变形

金属材料与热处理陈健 晶体的缺陷第二章金属材料的性能 ⑴了解金属材料的失效形式, ⑵了解塑性变形的基本原理, ⑶提高对金属材料的性能的认识。 正确理解载荷,内力、应力的含义。 应力的应用意义。 ⑴与变形相关的概念 ⑵金属的变形 讲授、提问引导、图片展示、举例分析、

一,晶体的缺陷: 1点缺陷:间隙原子,空位原子,置代原子,在材料上表现为:使材料强度,硬度和电阻增加。 2线缺陷:刃位错(如图:P-6),在材料上表现为:使得金属材料的塑性变形更加容易。 3面缺陷:有晶界面缺陷和亚晶界面缺陷,表现为金属的塑性变形阻力增大,内部具有更高的强度和硬度。因此晶界越多,金属材料的力学性能越好。 第二章金属材料的性能 导入新课: 我们经常见到一些机械零件因受力过大被破坏,而失去了工作能力。大家能否举些身边的例子呢? ——如:弯曲的自行车辐条,断掉的锯条、滑牙的螺栓等。 机械零件常见的损坏形式有三种: 变形:如铁钉的弯曲。 断裂:如刀具的断崩。 磨损:如螺栓的滑扣。 本次课给大家介绍金属材料损坏的形式、变形概念与本质等等,首先我们来了解一些基本概念。

一、与变形相关的概念 ㈠、载荷 1、概念 金属材料在加工及使用过程中所受的外力。 2、分类:根据载荷作用性质分,三种: ⑴、静载荷:大小不变或变化过程缓慢的载荷。 ——如:桌上粉笔盒的受力,用双手拉住一根粉笔两端慢慢施力等。 ⑵、冲击载荷:突然增加的载荷。 ——如:用一只手捏住粉笔的一端,然后用手去弹击粉笔。 ⑶、变交载荷:大小、方向或大小和方向随时间发生周期性变化的载荷。 ——如:通过在黑板上绘图分析自行车轮转动时辐条的受力。 根据载荷作用形式分,载荷又可以分为拉伸载荷、压缩载荷、弯曲载荷、剪切载荷和扭曲载荷等。 拉伸载荷压缩载荷弯曲载荷 剪切载荷扭曲载荷 ㈡、内力 见车工工艺书 P32, 图2—20

金属材料性能知识大汇总(超全)

金属材料性能知识大汇总 1、关于拉伸力-伸长曲线和应力-应变曲线的问题 低碳钢的应力-应变曲线 a、拉伸过程的变形:弹性变形,屈服变形,加工硬化(均匀塑性变形),不均匀集中塑性变形。 b、相关公式:工程应力σ=F/A0;工程应变ε=ΔL/L0;比例极限σP;弹性极限σ ε;屈服点σS;抗拉强度σb;断裂强度σk。 真应变e=ln(L/L0)=ln(1+ε) ;真应力s=σ(1+ε)= σ*eε指数e为真应变。 c、相关理论:真应变总是小于工程应变,且变形量越大,二者差距越大;真应力大于工程应力。弹性变形阶段,真应力—真应变曲线和应力—应变曲线基本吻合;塑性变形阶段两者出线显著差异。

2、关于弹性变形的问题 a、相关概念 弹性:表征材料弹性变形的能力 刚度:表征材料弹性变形的抗力 弹性模量:反映弹性变形应力和应变关系的常数,E=σ/ε;工程上也称刚度,表征材料对弹性变形的抗力。 弹性比功:称弹性比能或应变比能,是材料在弹性变形过程中吸收变形功的能力,评价材料弹性的好坏。 包申格效应:金属材料经预先加载产生少量塑性变形,再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。 滞弹性:(弹性后效)是指材料在快速加载或卸载后,随时间的延长而产生的附加弹性应变的性能。 弹性滞后环:非理想弹性的情况下,由于应力和应变不同步,使加载线与卸载线不重合而形成一封闭回线。 金属材料在交变载荷作用下吸收不可逆变形功的能力,称为金属的循环韧性,也叫内耗 b、相关理论: 弹性变形都是可逆的。 理想弹性变形具有单值性、可逆性,瞬时性。但由于实际金属为多晶体并存在各种缺陷,弹性变形时,并不是完整的。 弹性变形本质是构成材料的原子或离子或分子自平衡位置产生可逆变形的反映

金属材料与热处理第六版习题册答案

金属材料与热处理习题册答案 绪论 一、填空题 1、成分、组织、热处理、性能之间。 2、石器时代、青铜器时代、铁器时代、钢铁时代、 人工合成材料时代。3、成分、热处理、性能、性能。 二、选择题: 1、A 2、B 3、C 三、简答题 1、掌握金属材料与热处理的相关知识对机械加工有什么现实意义? 答:机械工人所使用的工具、刀夹、量具以及加工的零件大都是金属材料,所以了解金属材料与热处理后相关知识,对我们工作中正确合理地使用这些工具,根据材料特点正确合理地选择和刃磨刀具几何参数;选择适当的切削用量;正确选择改善零件工艺必能的方法都具有非常的现实意义。 2、如何学好《金属材料与热热处理》这门课程? 答:在学习过程中,只要认真掌握重要的概念和基本理论,按照材料的成分和热处理决定组织,组织决定其性能,性能又决定其用途这一内在关系进行学习和记忆;注意理论联系实际,认真完成作业和实验等教学环节,是完全可以学好这门课程的。 第一章金属的结构和结晶 1-1金属的晶体结构 一、填空题 1、非晶体晶体晶体 2、体心立方面心立方密排立方体心立方面心立方密排立方 3、晶体缺陷点缺陷面缺陷 二、判断题 1、√ 2、√ 3、× 4、√ 三、选择题 1、A 2、C 3、C 四、名词解释 1、晶格与晶胞:P5 答:将原子简化为一个质点,再用假想的线将它们连接起来,这样就形成了一个能反映原子排列规律的空间格架,称为晶格;晶胞是能够完整地反映晶体晶格特征的最小几何单元。 3、单晶体与多晶体 答:只由一个晶粒组成称为单晶格,多晶格是由很多大小,外形和晶格排列方向均不相同的小晶格组成的。 五、简答题书P6 □ 1-2纯金属的结晶 一、填空题

【材料强韧化与断裂】复习思考题

【材料的强韧化与断裂】复习思考题 1、什么是弹性对称面和弹性主轴?假设一弹性体只有一个下xoy弹性对称面,请推导出其刚度矩阵表达式。 2、对均匀各向同性体,有哪些经典宏观强度理论?其适用范围如何?为什么? 3、在材料强度分析中有哪几种常用的统计分布函数 4、如何应用Peach-Koehler公式计算平行位错之间的弹性交互作用力? 5、位错有哪些典型组态?层错的宽度主要取决于什么?它对塑性变形有什么影响? 6、溶质原子与位错有哪几种基本交互作用?哪种交互作用最强烈? 7、简要说明应力场强度因子、裂纹扩展能量释放率、J积分和裂纹尖端张开位移的概念与意义,以及它们在线弹 性状态下的相互关系? 8、复杂裂纹状态下的断裂判据是什么? 9、裂纹尖端塑性区对断裂有何影响?金属材料的强度与断裂韧度有什么关系? 10、在起始塑性变形阶段,位错之间的相互作用有哪几种基本类型?位错平衡间距(自由程)与位错密度有什么关 系? 11、什么是可逆流变应力和不可逆流变应力?不同温度下的可逆流变应力有什么关系?? 12、加工硬化的本质是什么?有哪些基本理论? 13、简述细晶强化的效果及原因。 14、什么是固溶强化?固溶强化有哪些主要机制? 15、氮(N)原子在α-Ti和α-Fe中形成的Cottrell气团有何差异? 16、什么是时效硬化?什么是弥散硬化?两者有何区别? 17、位错在何种情况下绕过颗粒,又在何种情况下切过颗粒?切过颗粒时的障碍力为多少?它可来自哪及个方面的 贡献? 18、对于钢、硬铝和(α+β)钛合金,生产上最常采用什么强化工艺,其实质是什么? 19、断裂类型有哪几种常见的分类方法?各有何特点? 20、试用位错理论分析解理裂纹的萌生过程。 21、工程金属材料中裂纹萌生及裂纹扩展有什么规律? 22、材料的本质韧、脆性与什么有关? 23、在服役条件下,有哪些因素会影响材料的韧性?是如何影响的? 24、金属材料有哪些基本的增韧方法?其原理是什么? 25、在循环应力作用下,金属材料的微观结构有什么变化和特征? 26、金属的组织特征对疲劳抗力有什么影响? 27、什么是疲劳裂纹闭合效应?有那些裂纹闭合机制? 28、什么是应变速率效应? 29、在高速载荷下材料的变形有何特点? 30、在高速载荷下材料的损伤和破坏有何特点? 31、什么是迟屈服? 32、金属的蠕变蠕变律和本构方程有什么特征? 33、影响金属蠕变速率的因素有那些? 34、金属蠕变机制有哪些?分别在什么条件下起主要作用? 35、金属蠕变断裂与常温静载断裂有什么差别?

(完整版)金属材料学复习文九巴

1.钢中的杂质元素:O H S P 2.合金元素小于或等于5%为低合金钢,在5%-10%之间为中合金钢,大于10%为高合金 钢 3.奥氏体形成元素:Mn Ni Co(开启γ相区)C N Cu(扩展γ相区) 4.铁素体形成元素:Cr V Ti Mo W 5.间隙原子:C N B O H R溶质/R溶剂<0.59 6.碳化物类型:简单间隙碳化物MC M2C 复杂间隙碳化物M6C M23C M2C3 7.合金钢中常见的金属间化合物有σ相、AB2相和B2A相 8.二次硬化:淬火钢在回火时在一定温度下,由于特殊碳化物的析出的初期阶段,形成 [M-C]偏聚团,硬度不降低,反而升高的现象。 9.二次淬火:淬火钢在回火时,冷却过程残余奥氏体转变为马氏体的现象。 10.合金元素对铁碳相图的影响 1.改变奥氏体相区位置 2.改变共析转变温度 3.改变S和E等零界点的含碳量 11.合金元素对退火钢加热转变的影响 1.对奥氏体形成速度的影响中强碳化物形成元素与碳形成难溶于奥氏体的合金碳化 物,减慢奥氏体的形成速度 2.对奥氏体晶粒大小的影响大多数合金元素都有阻止奥氏体晶粒长大的作用,影响 程度不同。V Ti强碳化物和适量的AL强烈阻碍晶粒长大,他们的碳化物或氮化物熔点高,高温下稳定,不易聚集长大,能强烈阻碍奥氏体晶粒长大。Wu Mo Cr中强碳化物也有阻碍作用,但是影响程度中等。Si Ni非碳化物形成元素影响不大。

Mn P等元素含量在一定限度下促进奥氏体晶粒长大 12.合金元素对淬火钢回火转变的影响 1.提高耐回火性合金元素在回火过程中推迟马氏体分解和残留奥氏体的转变;提高铁 素体在结晶温度,使碳化物难以聚集长大,从而提高钢的耐回火性。 2.淬火钢在回火时产生二次硬化和二次淬火,提高钢的性能。 3.对回火脆性的影响产生第一类回火脆性和第二类回火脆性,降低晶界强度,从而使 钢的脆性增加 13.钢的强化机制:固溶强化、细晶强化、形变强化和第二相强化 14.合金元素对钢在淬火回火状态下力学性能的影响 1.合金元素一般均能减缓钢的回火转变过程,特别是阻碍碳化物的聚集长大,相对的 提高钢中组成相的弥散度 2.合金元素溶解于铁素体,是铁素体强化,并提高了铁素体的再结晶温度。 3.强碳化物形成元素提高了钢的耐回火性,并产生沉淀强化的作用 4.钼、钨等有利于防止或消除第二类回火脆性 15.合金元素对钢高温力学性能的影响 1.可以净化晶界,使易熔杂质元素从晶界转移到晶界内,强化晶界 2.可以提高合金原子间的结合力,增大原子自扩散激活能 3.强碳化物形成元素的加入,可以对位错运动有阻碍作用,可提高合金的高温性能16.合金元素对钢热处理性能的影响 淬透性、淬硬性、变形开裂性、过热敏感性、氧化脱碳倾向和回火脆化倾向 17.合金元素对钢的焊接性能影响 1.钢的焊接性能主要由焊后开裂敏感性和焊接区的硬度来评价

金属材料学课程的性质和要求

金属材料学课程的性质和要求

一、课程的性质和要求 1、课程性质 金属材料学是一门综合性比较强的专业主干课。在学生学过材料科学基础(或金属学原理)、材料组织控制原理、材料组织控制工艺(或材料强韧化)及材料力学性能等课程的基础上,系统地介绍金属材料合金化的一般规律及各类主要金属材料的成分、工艺、组织和性能之间的关系。通过课堂讲授、综合性实验、综合性作业等环节,培养学生分析问题和解决问题的能力。 2、课程要求 1)掌握主要金属材料的合金化基本原理,了解材料成分设计和工艺设计的依据,为发掘材料潜力和开发新材料打下一个理论基础; 2)了解各种典型材料的成分、工艺、组织结构和性能之间的有机关系; 3)能初步从零件的服役条件出发,对材料提出合理的技术要求,正确地选择材料并合理制订工艺。 3、课程改革 《金属材料工程》专业是江苏省品牌专业。在新的专业内涵下,进行了课程体系的重构。专业主干课程内容和教学方法的改革也是品牌专业建设的重要内容。《金属材料学》是该专业主干课程中涉及综合性知识的一门课程,从知识结构来说,它是一门该专业最后的综合性主干课,也是学生在今后工作岗位上最有实践指导意义的一门课程。根据专业建设的情况和课程特点,对该课程的教学进行了改革。主要是精简和补充内容、编制多媒体电子课件、改革教学方法、开展

课堂讨论、增加综合性作业,选编习题和布置课堂思考题、设计综合性实验等。目的是使学生对专业有一个系统的认识,理解专业知识的主线、核心和思想,培养学生分析问题和解决问题的能力。编写《习题与思考题》是其中部分的内容。 结合20多年的教学经验和对课程内涵、重点和难点的深入理解,编写了具有特色的相应教材。 二、习题与思考题 绪论 01、1958年世界工业博览会在比利时召开,博览会大楼,是由9个巨大金属球组成,球直径为18米,8球位于立方体角,1球在中心。这象征什么? 说明什么意义? 02、为纪念世界第一位宇航员加加林,莫斯科列宁大街上建造了40英尺高的雕象,雕象材料是钛合金。为什么用钛合金做? 代表什么意义? 03、金子从古到今都作为世界上的流通货币,为什么? 铜是人类最早认识和使用的金属,为什么? 04、1983年在上海召开的第4届国际材料及热处理大会的会标是小炉匠锤打的图案,代表什么意义?为什么古代著名的刀剑都要经过反复锻打? 05、为什么要提出构筑循环型材料产业的发展方向? 钢合金化原理 1、为什么说钢中的S、P杂质元素在一般情况下总是有害的? 2、钢中常用的合金元素有哪些? 哪些是奥氏体形成元素? 哪些是铁素体形成元素? 3、哪些是碳化物形成元素? 哪些是非碳化物形成元素? 4、钢中的碳化物按点阵结构分为哪两大类? 各有什么特点? 什么叫合金渗碳体和特殊碳化物?

金属材料学复习思考题2016.5

金属材料学复习思考题 (2016.05) 第一章钢的合金化原理 1-1名词解释 (1)合金元素;(2)微合金化元素;(3)奥氏体稳定化元素;(4)铁素体稳定化元素;(5)杂质元素;(6)原位析出;(7)异位析出;(8)晶界偏聚(内吸附);(9)二次硬化;(10)二次淬火;(11)回火脆性;(12)回火稳定性 1-2 合金元素中哪些是铁素体形成元素?哪些是奥氏体形成元素?哪些能在α-Fe中形成无限固溶体?哪些能在γ-Fe 中形成无限固溶体? C相图的S、E点有什么影响?这种影响意味着什么? 1-3简述合金元素对Fe-Fe 3 1-4 为何需要提高钢的淬透性?哪些元素能显著提高钢的淬透性?(作业) 1-5 能明显提高钢回火稳定性的合金元素有哪些?提高钢的回火稳定性有什么作用?(作业) 1-6合金钢中V,Cr,Mo,Mn等所形成的碳化物基本类型及其相对稳定性。 1-7试解释含Mn和碳稍高的钢容易过热,而含Si的钢淬火温度应稍高,且冷作硬化率较高,不利于冷加工变形加工?(作业) 1-8 V/Nb/Ti、Mo/W、Cr、Ni、Mn、Si、B等对过冷奥氏体P转变影响的作用机制。 1-9合金元素对马氏体转变有何影响? 1-10如何利用合金元素来消除或预防第一次、第二次回火脆性? 1-11如何理解二次硬化与二次淬火两个概念的异同之处? 1-12钢有哪些强化机制?如何提高钢的韧性?(作业) 1-13 为什么合金化基本原则是“复合加入”?试举两例说明复合加入的作用机理?(作业) 1-14 合金元素V在某些情况下能起到降低淬透性的作用,为什么?而对于40Mn2和42Mn2V,后者的淬透性稍大,为什么?(作业) 1-15 40Cr、40CrNi、40CrNiMo钢,其油淬临界淬透性直径分别为25~30 mm、40~60mm和60~100mm,试解释淬透性成倍增大的现象。(作业) 1-16在相同成分的粗晶粒和细晶粒钢中,偏聚元素的偏聚程度有什么不同?(作业)

2020版《金属材料概论》

中国海洋大学本科生课程大纲 课程属性:公共基础/通识教育/学科基础/专业知识/工作技能,课程性质:必修、选修 一、课程介绍 1.课程描述:金属材料概论是高分子科学与工程专业专业知识教学层面的选修课,也是高分子专业学生认识金属材料的主要途径,更是理解材料在实际生活中应用的重要渠道。课程从工程应用角度出发,阐明金属材料的基本理论,使学生掌握金属材料的成分、加工工艺、组织结构与性能之间关系的基本规律;具备根据机械构建使用条件和性能要求,对结构件进行合理选材的初步能力,并了解金属材料的发展现状和趋势,对材料学科有更广泛深入的认识,为学生后续从事材料相关工作典型基础。此外,我国古今科学家先贤对金属材料发展的贡献,提高学生爱国情感和民族自豪感,激励他们努力学习报国。 Introduction to Metallic Materials, which is one of the optional courses for the Polymer Materials Science and Engineering, acts as the main methods for the students of the Polymer Materials Science and Engineering to understand the metallic materials and their application. The course demonstrates the basic theories about metallic materials from the view of engineering. The aim of the course is to make students understand the relationship between compositions, manufacturing, microstructure and properties of metallic materials, and the current situation and trend of metallic materials. In the meantime, the course could also - 1 -

钢的合金化原理

1 合金化原理 (1) 主要内容: (1) 1.1 碳钢概论 (1) 一、碳钢中的常存杂质 (1) 二、碳钢的分类 (2) 三、碳钢的用途 (2) 1.2 钢的合金化原理 (3) 一、合金元素的存在形式※ (3) 二、合金元素与铁和碳的相互作用及其对γ层错能的影响 (4) 三、合金元素对Fe-Fe3C相图的影响 (5) 四、合金元素对钢的热处理的影响 (6) 五、合金元素对钢性能的影响 (7) 1.3 合金钢的分类 (7) 1 合金化原理 主要内容: 概念: ⑴合金元素:特别添加到钢中为了保证获得所要求的组织结构、物理、化学和机械性能的化学元素。 ⑵杂质:冶炼时由原材料以及冶炼方法、工艺操作而带入的化学元素。 ⑶碳钢:含碳量在0.0218-2.11%范围内的铁碳合金。 ⑷合金钢:在碳钢基础上加入一定量合金元素的钢。 ①低合金钢:一般指合金元素总含量小于或等于5%的钢。 ②中合金钢:一般指合金元素总含量在5~10%范围内的钢。 ③高合金钢:一般指合金元素总含量超过10%的钢。 ④微合金钢:合金元素(如V,Nb,Ti,Zr,B)含量小于或等于0.1%,而能显著影响组织和性能的钢。 1.1 碳钢概论 一、碳钢中的常存杂质 1.锰(Mn )和硅(Si ) ⑴Mn:W %<0.8%①固溶强化②形成高熔点MnS夹杂物(塑性夹杂物),减Mn 少钢的热脆(高温晶界熔化,脆性↑) %<0.5%①固溶强化②形成SiO2脆性夹杂物, ⑵Si:W Si ⑶Mn和Si是有益杂质,但夹杂物MnS、SiO2将使钢的疲劳强度和塑、韧性下降。2.硫(S)和磷(P) ⑴S:在固态铁中的溶解度极小, S和Fe能形成FeS,并易于形成低熔点共晶。

金属材料与热处理习题答案

第一章金属的结构与结晶 $1-1 金属的晶体结构 一.填空题 1.非晶体晶体晶体 2.体心立方面心立方密排六方体心立方面心立方密排六 方 3.晶体缺陷点缺陷线缺陷面缺陷 二.判断题 1.对 2.对 3.错 4.错 三.选择 1.A 2.C 3.C 四.名词解释 1.答:晶格是假想的反映原子排列规律的空间格架.晶胞是能够完整地反映晶体晶格特征的最小几何单元。 2.答:只由一个晶粒组成的晶体称为单晶体。由很多大小、外形和晶格排列方向均不相同的晶粒所组成的晶体称为多晶体。 五.简答题

体心立方晶格面心立方晶格密排六方晶格$1-2 纯金属的结晶 一、填空题 1.液体状态固体状态 2.过冷度

3.冷却速度冷却速度低 4.形核长大 5.强度硬度塑性 二、判断题 l.X. 2.X 3.X 4.对 5.X 6.对 三、选择题 l.C B A 2.B 3.A 4.A 四、名词解释 答:结晶指金属从高温液体状态冷却凝固为原子有序排列的固体状态的过程。在结晶的过程中放出的热量称为结晶潜热。 2.答:在固态下,金属随温度的改变由一种晶格转变为另一种晶格的现象称为金属的同素异构转变。 五、简答题 1.答:冷却曲线上有一段水平线,是说明在这一时间段中温度是恒定的。结晶实际上是原子由一个高能量级向一个较低能量级转化的过程,所以在结晶时会放出一定的结晶潜热,结晶潜热使正在结晶的金属处于一种动态的热平衡状态,所以纯金属结晶是在恒温下进行的。 2.答:金属结晶后,一般晶粒越细,强度、硬度越高,塑性、韧性也越好,所以控制材料的晶粒大小具

有重要的实际意义。生产中常用的细化晶粒的方法有增加过冷度、采用变质处理和采用振动处理等。 3.答: (1)铸成薄件的晶粒小于铸成厚件的晶粒。 (2)浇铸时采用振动措施的晶粒小于不采用振动措施的晶粒。 (3)金属模浇铸的晶粒小于砂型浇铸的晶粒。 $1-3观察结晶过程(实验) 1.答:由于液态金属的结晶过程难以直接观察,而盐类也是晶体物质,其溶液的结晶过程和金属很相似,区别仅在于盐类是在室温下依靠溶剂蒸发使溶液过饱和而结晶,金属则主要依靠过冷,故完全可通过观察透明盐类溶液的结晶过程来了解金属的结晶过程。 2·答:

金属强韧化原理

1金属材料强韧化的目的和意义? 目的:A.节约材料,降低成本,节约贵重的合金元素的使用,增加材料在使用过程中的可靠性和延长服役寿命。 B.希望所使用的材料既有足够的强度,又有较好的韧性,但通常的材料二者不可兼得。 意义:在于理解材料强韧化机理、组织形态、微观结构与金属的强度、韧性之间的确切关系,以便找出适宜的冶金技术途径来提高金属的强韧性,使之达到新的水平或研究出新的高强韧性的金属。这是一个具有重大的理论意义和经济价值的研究开发领域。理解材料强韧化机理,掌握材料强韧化现象的物理本质,是合理运用和发展材料强韧化方法从而挖掘材料性能潜力的基础。 2.金属材料强韧化的主要机制有哪些? 1)物理强韧化:所谓物理强韧化是指在金属内部晶体缺陷的作用和通过缺陷之间的相互作用,对晶体的力学性能产生一定的,进而改变金属性能。 2)化学强韧化:化学强韧化是指是元素的本质决定的因素以及元素的种类不同和元素的含量不同造成的材料性能的改变。 3)机械强韧化:就是除了结构、尺寸、形状方面的机械原因外,主要指界面作用造成的强韧化。 4)复合组织强韧化:即两种或两种以上的金属组织复合在一起,其中有的组织强度比较高,有的组织韧性比较高,复合后起到了既提高强度有提高韧性的作用。 3.如何理解强化和韧化的关系 强度是是在给定条件(温度/压力/应力状态/应变速率/周围介质)下材料达到给定变形量所需要的应力,或材料发生破坏的应力,研究变形及断裂是研究强度的重要手段和过程。 韧性是断裂过程的能量参量,是材料强度与塑性的综合表现,它是材料在外加负荷作用下从变形到断裂全过程吸收能量的能力,所吸收的能量愈大,则断裂韧性愈高。 一般情况下,材料的强度和韧性是不可兼得的,在提高金属材料强度的同时塑性必然会下降,反之,在改善金属的塑性的同时,强度也会下降。目前,晶粒细化是提高金属强韧化的有效方法,金属的晶粒变细后,强度提高,韧性又不显著降低。 4.试举出3种最新强韧化技术方法的例子。 1)细晶强化:它是常温下一种有效的材料强化手段。细化晶粒可以提高金属的强

金属材料学课程的性质和要求

一、课程的性质和要求 1、课程性质 金属材料学是一门综合性比较强的专业主干课。在学生学过材料科学基础(或金属学原理)、材料组织控制原理、材料组织控制工艺(或材料强韧化)及材料力学性能等课程的基础上,系统地介绍金属材料合金化的一般规律及各类主要金属材料的成分、工艺、组织和性能之间的关系。通过课堂讲授、综合性实验、综合性作业等环节,培养学生分析问题和解决问题的能力。 2、课程要求 1)掌握主要金属材料的合金化基本原理,了解材料成分设计和工艺设计的依据,为发掘材料潜力和开发新材料打下一个理论基础; 2)了解各种典型材料的成分、工艺、组织结构和性能之间的有机关系; 3)能初步从零件的服役条件出发,对材料提出合理的技术要求,正确地选择材料并合理制订工艺。 3、课程改革 《金属材料工程》专业是江苏省品牌专业。在新的专业内涵下,进行了课程体系的重构。专业主干课程内容和教学方法的改革也是品牌专业建设的重要内容。《金属材料学》是该专业主干课程中涉及综合性知识的一门课程,从知识结构来说,它是一门该专业最后的综合性主干课,也是学生在今后工作岗位上最有实践指导意义的一门课程。根据专业建设的情况和课程特点,对该课程的教学进行了改革。主要是精简和补充内容、编制多媒体电子课件、改革教学方法、开展课堂讨论、增加综合性作业,选编习题和布置课堂思考题、设计综合性实验等。目的是使学生对专业有一个系统的认识,理解专业知识的主线、核心和思想,培

养学生分析问题和解决问题的能力。编写《习题和思考题》是其中部分的内容。 结合20多年的教学经验和对课程内涵、重点和难点的深入理解,编写了具有特色的相应教材。 二、习题和思考题 绪论 01、1958年世界工业博览会在比利时召开,博览会大楼,是由9个巨大金属球组成,球直径为18米,8球位于立方体角,1球在中心。这象征什么? 说明什么意义? 02、为纪念世界第一位宇航员加加林,莫斯科列宁大街上建造了40英尺高的雕象,雕象材料是钛合金。为什么用钛合金做? 代表什么意义? 03、金子从古到今都作为世界上的流通货币,为什么? 铜是人类最早认识和使用的金属,为什么? 04、1983年在上海召开的第4届国际材料及热处理大会的会标是小炉匠锤打的图案,代表什么意义?为什么古代著名的刀剑都要经过反复锻打? 05、为什么要提出构筑循环型材料产业的发展方向? 钢合金化原理 1、为什么说钢中的S、P杂质元素在一般情况下总是有害的? 2、钢中常用的合金元素有哪些? 哪些是奥氏体形成元素? 哪些是铁素体形成元素? 3、哪些是碳化物形成元素? 哪些是非碳化物形成元素? 4、钢中的碳化物按点阵结构分为哪两大类? 各有什么特点? 什么叫合金渗碳体和特殊碳化物? 5、简述合金钢中碳化物形成规律。 6、合金元素对Fe-Fe3C相图上的S、E点有什么影响? 这种影响意味着什么? 7、试述钢在退火态、淬火态及淬火-回火态下,不同合金元素的分布状况? 8、有哪些合金元素强烈阻止奥氏体晶粒的长大? 阻止奥氏体晶粒的长大有

钢的强韧化处理机制

钢的强韧化处理机制 王立洲 (辽宁工程技术大学材料科学与工程学院阜新123000) 本文根据钢的淬火组织特点,归纳了提高钢强韧性的途径,介绍了一些强韧化处理工艺。 随着工业的发展,各种机械对钢铁材料的机械性能要求逐渐增高。材料及热处理工艺的 研究得到迅速的发展。其中,利用现有材料,通过调整一般的热处理方法,在同时改善钢的强度和韧性指标方面的工作取得了显著的进步。它对充分发挥材料的性能潜力有着重要的意义。这些工艺方法通称为强韧化处理,是热处理发展的一个值得注意的方向。 强韧化处理的发展是建立在我们对钢中各种组织的特点,形成条件,机械性能,以及在外力作用下的破断过程的认识不断深入的基础之上的。 透射电子显微镜技术的应用,使我们对各种组织超显微精细结构的认识跨进了一大步, 开始有可能比较深入地研究组织和机械性能的关系。 另一方面,从材料断裂过程的研究中知道,在各种应力作用下,材料的破断是通过微裂纹的形成及扩展的方式进行的。钢铁材料的各种组织形态在各种应力状态下,抵抗微裂纹的形成和扩展的能力是不同的,因此表现出不同的性能指标。但是无论哪一种组织,只要它形成微裂纹的倾向比较小,或者微裂纹一旦形成后,在这类组织中扩张时消耗的功愈大,它就会有较高的强韧性。这样,我们就有可能采用适当的热处理工艺方法和调整工艺参数,能动地控制钢的组织,充分利用对钢强韧化有利的因素,排除不利的因素,更充分地发挥材料的强度和韧性的潜力。 目前发展的强韧化处理工艺有多种多样,归结起来,它们大多通过一种或几种途径达到强韧化效果的。 (1)充分利用位错型马氏体和下贝氏体组织形态,尽量减少或避免片状孪品马氏体的出现。 (2)细化钢的奥氏体晶粒和细化过剩碳化物。 (3)获得马氏体与具有良好塑性的第二相的复合组织。 (4)形变热处理。 下面将简要介绍这些强化处理的机理。 一位错型马氏体的扩大应用 很久以来就知道,在保证淬、回火零件强度指标的前提下,选用含碳量较低的钢,能够 使零件热处理后获得较高的韧性。改变热处理工艺参数,可以在中碳及高碳钢中获得以板条马氏体为主的淬火组织,显著改善中碳钢及高碳钢的强韧性。这种控制淬火组织形态的方法,已成为中、高碳钢强韧化的一条重要途径。 1、中碳钢的高温淬火 一般含碳量为0.35%一0.55%之间的中碳钢经正常温度淬火,获得片状和板条马氏体的混合组织。这两种淬火马氏体对钢强韧性的贡献是不同的。钢的含碳量愈高,正常淬火组织中片状马氏体的比例愈高,钢的强度虽然有所增加,但断裂韧度不断减小。断裂韧度的这种变 化是韧性较高的板条马氏体相对量减少的结果。但是,提高中碳钢淬火温度和延长淬火保温时间,则有利于在淬火后得到较多数量的板条马氏体,提高钢的断裂韧度。例如,将40CrNIMo 钢的淬火温度从570℃提高到1200℃,淬火后得到了板条马氏体和极少量残留奥氏体。在淬火不回火状态下,钢的断裂韧度提高70%,在淬火和低温200℃回火状态下,可提高20%。 我们将5CrMnMo热锻模具钢的淬火加热温度从830~850提高到900℃,淬火后将获得近乎单一的板条马氏体组织,图1给出了在500一520℃的高温回火状态下,淬火温度对强度、塑性和断裂韧度的影响。

金属塑性变形理论习题集

《金属塑性变形理论》习题集 张贵杰编 河北联合大学 金属材料与加工工程系 2013年10月

前言 《金属塑性变形理论》是关于金属塑性加工学科的基础理论课,也是“金属材料工程”专业大学本科生的主干课程,同时也是报考材料科学与工程专业方向硕士研究生的必考科目。 《金属塑性变形理论》总学时为72,内容上分为两部分,即“金属塑性加工力学”(40学时)和“塑性加工金属学”(32学时)。 为使学生能够学好本课,以奠定扎实的理论基础,提高分析问题和解决问题的能力,编者集20余年的教学经验特编制本习题集,一方面作为学生在学习本课程时的辅导材料,供课下消化课堂内容时使用,另一方面也可供任课教师在授课时参考,此外对报考研究生的学生还具有指导复习的作用。 本“习题集”在编写时,充分考虑了学科内容的系统性、学生学习的连贯性以及与教材顺序的一致性。该“习题集”中具有前后关联的一个个题目,带有由浅入深的启发性,能够引导学生将所学的知识不断深化。教师也可根据教学进程从中选题,作为课外作业指导学生进行练习。所有这些都会有助于学生理解和消化课堂上所学习的内容,从而提高课下的学习效率。 编者 2013年10月

第一部分 金属塑性加工力学 第一章 应力状态分析 1. 金属塑性加工中的外力有哪几种?其意义如何? 2. 为什么应力分量的表达需用双下标?每个下标都表示何物理意义? 3. 已知应力状态如图1-1所示,写出应力分量,并以张量形式表示。 4. 已知应力状态的六个分量7-=x σ,4-=xy τ,0=y σ,4=yz τ, 8-=zx τ,15-=z σ(MPa),画出应力状态图,写出应力张量。 5. 作出单向拉伸、单向压缩、三向等值压缩、平面应力、平面应变、 纯剪切应力状态的应力Mehr 圆。 6. 已知应力状态如图1-2所示,当斜面法线方向与三个坐标轴夹角余 弦31 ===n m l 时,求该斜面上的全应力S 、全应力在坐标轴上的 分量x S 、y S 、z S 及斜面上的法线应力n σ和切应力n τ。 图 1-1 ?? ?? ? ??------ =1548404847σT x y z 图 1-2 x 10

相关文档
最新文档