FR607 快恢复二极管

FR607 快恢复二极管
FR607 快恢复二极管

6.0 AMP FAST RECOVERY RECTIFIERS

FR601 FR607

THRU JX

快恢复二极管

快恢复二极管 快恢复二极管 快恢复二极管(简称FRD)是一种具有开关特性好、反向恢复时间短特点的半导体二极管,主要应用于开关电源、PWM脉宽调制器、变频器等电子电路中,作为高频整流二极管、续流二极管或阻尼二极管使用。 快恢复二极管的内部结构与普通PN结二极管不同,它属于PIN 结型二极管,即在P型硅材料与N型硅材料中间增加了基区I,构成PIN硅片。因基区很薄,反向恢复电荷很小,所以快恢复二极管的反向恢复时间较短,正向压降较低,反向击穿电压(耐压值)较高。 通常,5~20A的快恢复二极管管采用TO–220FP塑料封装,20A 以上的大功率快恢复二极管采用顶部带金属散热片的TO–3P塑料封装,5A以下的快恢复二极管则采用DO–41、DO–15或DO–27等规格塑料封装。 采用TO–220或TO–3P封装的大功率快恢复二极管,有单管和双管之分。双管的管脚引出方式又分为共阳和共阴

1.性能特点 1)反向恢复时间 反向恢复时间tr的定义是:电流通过零点由正向转换到规定低值的时间间隔。它是衡量高频续流及整流器件性能的重要技术指标。反向恢复电流的波形如图1所示。IF为正向电流,IRM为最大反向恢复电流。Irr为反向恢复电流,通常规定Irr=0.1IRM。当t≤t0时,正向电流I=IF。当t>t0时,由于整流器件上的正向电压突然变成反向电压,因此正向电流迅速降低,在t=t1时刻,I=0。然后整流器件上流过反向电流IR,并且IR逐渐增大;在t=t2时刻达到最大反向恢复电流IRM 值。此后受正向电压的作用,反向电流逐渐减小,并在t=t3时刻达到规定值Irr。从t2到t3的反向恢复过程与电容器放电过程有相似之处。 2)快恢复、超快恢复二极管的结构特点 快恢复二极管的内部结构与普通二极管不同,它是在P型、N型硅材料中间增加了基区I,构成P-I-N硅片。由于基区很薄,反向恢复电荷很小,不仅大大减小了trr值,还降低了瞬态正向压降,使管子能承受很高的反向工作电压。快恢复二极管的反向恢复时间一般为几百纳秒,正向压降约为0.6V,正向电流是几安培至几千安培,反向峰值电压可达几百到几千伏。超快恢复二极管的反向恢复电荷进一步减小,使其trr可低至几十纳秒。

快速软恢复二极管的发展现状

快速软恢复二极管的发展现状 2005-1-19 清华大学核能设计研究院张海涛张斌 随着电力电子技术的发展,各种变频电路、斩波电路的应用不断扩大,这些电力电子电路中的主回路不论是采用换流关断的晶闸管,还是采用有自关断能力的新型电力电子器件,如GTO,MCT,IGBT等,都需要一个与之并联的快速二极管,以通过负载中的无功电流,减小电容的充电时间,同时抑制因负载电流瞬时反向而感应的高电压。由于这些电力电子器件的频率和性能不断提高,为了与其关断过程相匹配,该二极管必须具有快速开通和高速关断能力,即具有短的反向恢复时间trr,较小的反向恢复电流IRRM和软恢复特性。 在高压、大电流的电路中,传统的PIN二极管具有较好的反向耐压性能,且正向时它可以在很低的电压下就会导通较大的电流,呈现低阻状态。然而,正向大注入的少数载流子的存在使得少子寿命较长,二极管的开关速度相应较低,为提高其开关速度,可采用掺杂重金属杂质和通过电子辐照的办法减小少子寿命,但这又会不同程度的造成二极管的硬恢复特性,在电路中引起较高的感应电压,对整个电路的正常工作产生重要影响。因而,开发高频高压快速软恢复大功率二极管已成为一个非常重要和迫切的任务,具有重要的现实意义。 1.快速软恢复二极管的现状 目前,国内快速二极管的水平已达到3000A/4500V,5 s,但是各整流器生产单位在减小二极管的反向恢复时间的同时,一般并不注意提高其软恢复性能。现在这些二极管一般采用电子辐照控制少子寿命,其软度因子在0.35左右,特性很硬。国内快速软恢复二极管的研制现状如表1所示。 国际上快速二级管的水平已达到2500A/3000V,300ns,软度因子较小。采用外延工艺制作的快恢复二极管的软度因子较大(0.7),但它必须采用小方片串并联的方式使用,以达到大电流、高电压的目的。这样做不仅增加了工艺的复杂性,而且使产品的可靠性变差。我国的外延工艺水平较低,尚停留在研究阶段,成品率较低,相对成本较高;而采用电力半导体常规工艺制作的快恢复二极管的软度因子较小。国外快速软恢复二极管的研制现状如表2所示。 2.快速软恢复二极管的工作原理及影响因素 恢复过程很短的二极管,特别是反向恢复过程很短的二极管称为快速恢复二极管(Fast Recovery Diode)。高频化的电力电子电路

整流管与快恢复二极管区别

整流电路由于频率很低,故只对耐压有要求,只要耐压能满足,肯定是可以代用的,且快恢复二极管也有用于整流的情况,就是在开关电源次级整流部份,由于频率较高,只能使用快恢复二极管整流,否则由于二极管损耗太大会造成电源整体效率降低,严重时会烧毁二极管。另外快恢复二极管的价格较整流二极管贵很多,耐压越高越贵,所以一般是不会拿快恢复二代管使用的。当然,如果你手头上只有快恢复二极管而没有一般整流管时,想怎么用就怎么用,只要耐压足够即可。 提问者评价 首先谢谢你的回答!!! 是的,没有刚好合适耐压的整流二极管。所有用快恢复代替的 肖特基二极管和快恢复二极管的区别 快恢复二极管是指反向恢复时间很短的二极管(5us以下),工艺上多采用掺金措施,结构上有采用PN结型结构,有的采用改进的PIN结构。其正向压降高于普通二极管(1-2V),反向耐压多在1200V以下。从性能上可分为快恢复和超快恢复两个等级。前者反向恢复时间为数百纳秒或更长,后者则在100纳秒以下。 肖特基二极管是以金属和半导体接触形成的势垒为基础的二极管,简称肖特基二极管(Schottky Barrier Diode),具有正向压降低(0.4--0.5V)、反向恢复时间很短(10-40纳秒),而且反向漏电流较大,耐压低,一般低于150V,多用于低电压场合。 这两种管子通常用于开关电源。 肖特基二极管和快恢复二极管区别:前者的恢复时间比后者小一百倍左右,前者的反向恢复时间大约为几纳秒~! 前者的优点还有低功耗,大电流,超高速~!电气特性当然都是二极管阿~! 快恢复二极管在制造工艺上采用掺金,单纯的扩散等工艺,可获得较高的开关速度,同时也能得到较高的耐压.目前快恢复二极管主要应用在逆变电源中做整流元件. 肖特基二极管:反向耐压值较低40V-50V,通态压降0.3-0.6V,小于10nS 的反向恢复时间。它是具有肖特基特性的“金属半导体结”的二极管。其正向起始电压较低。其金属层除材料外,还可以采用金、钼、镍、钛等材料。其半导体材料采用硅或砷化镓,多为N型半导体。这种器件是由多数载流子导电的,所以,其反向饱和电流较以少数载流子导电的PN结大得多。由于肖特基二极管中少数载流子的存贮效应甚微,所以其频率响仅为RC时间常数限制,因而,它是高频和快速开关的理想器件。其工作频率可达100GHz。并且,MIS(金属-绝缘体-半导体)肖特基二极管可以用来制作太阳能电池或发光二极管。

肖特基二极管和快恢复二极管

肖特基二极管和快恢复二极管又什么区别 快恢复二极管是指反向恢复时间很短的二极管(5us以下),工艺上多采用掺金措施,结构上有采用PN结型结构,有的采用改进的PIN结构。其正向压降高于普通二极管(1-2V),反向耐压多在1200V以下。从性能上可分为快恢复和超快恢复两个等级。前者反向恢复时间为数百纳秒或更长,后者则在100纳秒以下。 肖特基二极管是以金属和半导体接触形成的势垒为基础的二极管,简称肖特基二极管(Schottky Barrier Diode),具有正向压降低(0.4--0.5V)、反向恢复时间很短(10-40纳秒),而且反向漏电流较大,耐压低,一般低于150V,多用于低电压场合。 这两种管子通常用于开关电源。 肖特基二极管和快恢复二极管区别:前者的恢复时间比后者小一百倍左右,前者的反向恢复时间大约为几纳秒~! 前者的优点还有低功耗,大电流,超高速~!电气特性当然都是二极管阿~! 快恢复二极管在制造工艺上采用掺金,单纯的扩散等工艺,可获得较高的开关速度,同时也能得到较高的耐压.目前快恢复二极管主要应用在逆变电源中做整流元件. 肖特基二极管:反向耐压值较低40V-50V,通态压降0.3-0.6V,小于10nS的反向恢复时间。它是具有肖特基特性的“金属半导体结”的二极管。其正向起始电压较低。其金属层除材料外,还可以采用金、钼、镍、钛等材料。其半导体材料采用硅或砷化镓,多为N型半导体。这种器件是由多数载流子导电的,所以,其反向饱和电流较以少数载流子导电的PN结大得多。由于肖特基二极管中少数载流子的存贮效应甚微,所以其频率响仅为RC时间常数限制,因而,它是高频和快速开关的理想器件。其工作频率可达100GHz。并且,MIS(金属-绝缘体-半导体)肖特基二极管可以用来制作太阳能电池或发光二极管。 快恢复二极管:有0.8-1.1V的正向导通压降,35-85nS的反向恢复时间,在导通和截止之间迅速转换,提高了器件的使用频率并改善了波形。快恢复二极管在制造工艺上采用掺金,单纯的扩散等工艺,可获得较高的开关速度,同时也能得到较高的耐压.目前快恢复二极管主要应用在逆变电源中做整流元件

常用二极管型号及参数大全

1.塑封整流二极管 序号型号IF VRRM VF Trr 外形 A V V μs 1 1A1-1A7 1A 50-1000V 1.1 R-1 2 1N4001-1N4007 1A 50-1000V 1.1 DO-41 3 1N5391-1N5399 1.5A 50-1000V 1.1 DO-15 4 2A01-2A07 2A 50-1000V 1.0 DO-15 5 1N5400-1N5408 3A 50-1000V 0.95 DO-201AD 6 6A05-6A10 6A 50-1000V 0.95 R-6 7 TS750-TS758 6A 50-800V 1.25 R-6 8 RL10-RL60 1A-6A 50-1000V 1.0 9 2CZ81-2CZ87 0.05A-3A 50-1000V 1.0 DO-41 10 2CP21-2CP29 0.3A 100-1000V 1.0 DO-41 11 2DZ14-2DZ15 0.5A-1A 200-1000V 1.0 DO-41 12 2DP3-2DP5 0.3A-1A 200-1000V 1.0 DO-41 13 BYW27 1A 200-1300V 1.0 DO-41 14 DR202-DR210 2A 200-1000V 1.0 DO-15 15 BY251-BY254 3A 200-800V 1.1 DO-201AD 16 BY550-200~1000 5A 200-1000V 1.1 R-5 17 PX10A02-PX10A13 10A 200-1300V 1.1 PX 18 PX12A02-PX12A13 12A 200-1300V 1.1 PX 19 PX15A02-PX15A13 15A 200-1300V 1.1 PX 20 ERA15-02~13 1A 200-1300V 1.0 R-1 21 ERB12-02~13 1A 200-1300V 1.0 DO-15 22 ERC05-02~13 1.2A 200-1300V 1.0 DO-15 23 ERC04-02~13 1.5A 200-1300V 1.0 DO-15 24 ERD03-02~13 3A 200-1300V 1.0 DO-201AD 25 EM1-EM2 1A-1.2A 200-1000V 0.97 DO-15 26 RM1Z-RM1C 1A 200-1000V 0.95 DO-15 27 RM2Z-RM2C 1.2A 200-1000V 0.95 DO-15 28 RM11Z-RM11C 1.5A 200-1000V 0.95 DO-15 29 RM3Z-RM3C 2.5A 200-1000V 0.97 DO-201AD 30 RM4Z-RM4C 3A 200-1000V 0.97 DO-201AD 2.快恢复塑封整流二极管 序号型号IF VRRM VF Trr 外形 A V V μs (1)快恢复塑封整流二极管 1 1F1-1F7 1A 50-1000V 1.3 0.15-0.5 R-1 2 FR10-FR60 1A-6A 50-1000V 1. 3 0.15-0.5 3 1N4933-1N4937 1A 50-600V 1.2 0.2 DO-41 4 1N4942-1N4948 1A 200-1000V 1.3 0.15-0. 5 DO-41 5 BA157-BA159 1A 400-1000V 1.3 0.15-0.25 DO-41 6 MR850-MR858 3A 100-800V 1.3 0.2 DO-201AD

肖特基二极管和快恢复二极管有什么区别

肖特基二极管和快恢复二极管有什么区别 肖特基二极管的基本原理是:在金属(例如铅)和半导体(N型硅片)的接触面上,用已形成的肖特基来阻挡反向电压。肖特基与PN结的整流作用原理有根本性的差异。其耐压程度只有40V 左右。其特长是:开关速度非常快:反向恢复时间特别地短。因此,能制作开关二极管和低压大电流整流二极管。 肖特基二极管(Schottky Barrier Diode) 它是具有肖特基特性的“金属半导体结”的二极管。其正向起始电压较低。其金属层除钨材料外,还可以采用金、钼、镍、钛等材料。其半导体材料采用硅或砷化镓,多为型半导体。这种器件是由多数载流子导电的,所以,其反向饱和电流较以少数载流子导电的PN结大得多。由于肖特基二极管中少数载流子的存贮效应甚微,所以其频率响仅为RC时间常数限制,因而,它是高频和快速开关的理想器件。其工作频率可达100GHz。并且,MIS(金属-绝缘体-半导体)肖特基二极管可以用来制作太阳能电池或发光二极管。 肖特基二极管(Schottky Diodes):肖特基二极管利用金属与半导体接触所形成的势垒对电流进行控制。它的主要特点是具有较低的正向压降(0.3V至0.6V);另外它是多子参与导电,这就比少子器件有更快的反应速度。肖特基二极管常用在门电路中作为三极管集电极的箝位二极管,以防止三极管因进入饱和状态而降低开关速度。 肖特基势垒二极管SBD(Schottky Barrier Diode,简称肖特基二极管)是近年来间世的低功耗、大电流、超高速半导体器件。其反向恢复时间极短(可以小到几纳秒),正向导通压降仅0.4V 左右,而整流电流却可达到几千安培。这些优良特性是快恢复二极管所无法比拟的。中、小功率肖特基整流二极管大多采用封装形式。 1.结构原理 综上所述,肖特基整流管的结构原理与PN结整流管有很大的区别通常将PN结整流管称作结整流管,而把金属-半导管整流管叫作肖特基整流管,近年来,采用硅平面工艺制造的铝硅肖特基二极管也已问世,这不仅可节省贵金属,大幅度降低成本,还改善了参数的一致性。 肖特基整流管仅用一种载流子(电子)输送电荷,在势垒外侧无过剩少数载流子的积累,因此,不存在电荷储存问题(Qrr→0),使开关特性获得时显改善。其反向恢复时间已能缩短到10ns 以内。但它的反向耐压值较低,一般不超过去时100V。因此适宜在低压、大电流情况下工作。利用其低压降这特点,能提高低压、大电流整流(或续流)电路的效率。 快恢复二极管是指反向恢复时间很短的二极管(5us以下),工艺上多采用掺金措施,结构上有采用PN结型结构,有的采用改进的PIN结构。其正向压降高于普通二极管(1-2V),反向耐压多在1200V以下。从性能上可分为快恢复和超快恢复两个等级。前者反向恢复时间为数百纳秒或更长,后者则在100纳秒以下。 肖特基二极管是以金属和半导体接触形成的势垒为基础的二极管,简称肖特基二极管(Schottky Barrier Diode),具有正向压降低(0.4—1.0V)、反向恢复时间很短(0-10纳秒),而且反向漏电流较大,耐压低,一般低于150V,多用于低电压场合。

RS1G快速恢复二极管规格书

(RS1A~RS1M) SMA A Fast Recovery rectifiers Major Ratings and Characteristics I F(AV) 1.0 A V RRM50 V to 1000 V I FSM30 A t rr150nS, 250nS, 500nS V F 1.3 V T j max.150 °C Features ●Low profile package ●Ideal for automated placement ●Glass passivated chip junction ●Fast switching for high efficiency ●High forward surage capability ●High temperatrue soldering: 260℃/10 seconds at terminals ●Component in accordance to RoHS 2002/95/1 and WEEE 2002/96/EC Mechanical Date ●Case: JEDEC DO-214AC molded plastic over glass passivated chip ●Terminals: Solder plated, solderable per J-STD-002B and JESD22-B102D ●Polarity: Laser band denotes cathode end Maximum Ratings & Thermal Characteristics & Electrical Characteristics (TA = 25 °C unless otherwise noted) Symbol(RS1A)(RS1B)(RS1D)(RS1G)(RS1J)(RS1K)(RS1M)UNIT Maximum repetitive peak reverse voltage V RRM501002004006008001000V Maximum RMS voltage V RMS3570140280420560700V Maximum DC blocking voltage V DC501002004006008001000V Maximum average forward rectified current I F(AV)1A Peak forward surge current 8.3 ms single half sine-wave superimposed on rated load I FSM30A Maximum instantaneous forwad voltage at 1.0V F 1.3V Maximum DC reverse current T A = 25 ℃at Rated DC blocking voltage T A = 125℃I R 5.0μA 50μA Maximum reverse recovery time at I F = 0.5 A , I R = 1.0 A , I rr = 0.25 A t rr150250500nS Typical junction capacitance at 4.0 V ,1MHz C J118pF Thermal resistance from junction to ambient RθJA75℃/ W Operating junction and storage temperature range T J,T STG–55 to +150 ℃- 1 - https://www.360docs.net/doc/704901972.html,

稳压、快恢复二极管参数

常用稳压二极管技术数据
型号 Hz4B2 HZ4C1 HZ6 HZ6A HZ6C3 HZ7 HZ7A HZ7B HZ9A HZ9CTA HZ11 HZ12 HZ12B HZ12B2 HZ18Y HZ20-1 HZ27 HZT33-02 RD2.0E(B) RD2.7E RD3.9EL1 RD5.6EN1 RD5.6EN3 RD5.6EL2 RD6.2E(B) RD7.5E(B) RD10EN3 RD11E(B) RD12E RD12F RD13EN1 RD15EL2 RD24E RD24F RD36EL1 最 大 功 耗 稳定电压(V) (mW) 最小值 最大值 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 400 500 400 500 500 500 500 500 500 500 500 500 1000 500 500 400 400 500 3.8 4.0 5.5 5.2 6 6.9 6.3 6.7 7.7 8.9 9.5 11.6 12.4 12.6 16.5 18.86 27.2 31 1.88 2.5 3.7 5.2 5.6 5.5 5.88 7.0 9.7 10.1 11.74 11.19 12 13.8 22 24 32 4.0 4.2 5.8 5.7 6.4 7.2 6.9 7.3 8.5 9.7 11.9 14.3 13.4 13.1 18.5 19.44 28.6 33.5 2.12 2.93 4 5.5 5.9 5.7 6.6 7.9 10.0 11.8 12.35 11.77 12.7 14.6 25 28 34 代 换 型 号 电流(mA) 新型号 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 2 2 5 20 20 20 20 20 20 20 20 20 15 10 20 10 15 10 10 15 2CW102 2CW102 2CW103 2CW103 2CW104 2CW105 2CW105 2CW105 2CW106 2CW107 2CW109 2CW111 2CW111 2CW111 2CW113 2CW114 2CW117 2CW119 2CW100 2CW101 2CW102 2CW103 2CW104 2CW103 2CW104 2CW105 2CW108 2CW109 2CW110 2CW109 2CW110 2CW112 2CW116 2CW117 2CW119 国产稳压管 旧型号 2CW21 2CW21 2CW21A 2CW21A 2CW21B 2CW21C 2CW21C 2CW21C 2CW21D 2CW21E 2CW21G 2CW21H 2CW21H 2CW21H 2CW21J 2CW21K 2CW21L 2CW21M 2CW21P 2CW21S 2CW21 2CW21A 2CW21B 2CW21A 2CW21B 2CW21C 2CW21F 2CW21G 2CW21H 2CW21G 2CW21H 2CW21J 2CW21H 2CW21L 2CW21M 33-2 12A3 12C3 24-1 12A1 11A2 4B2 6A1 6B2 6B1 2B1 27-3 12B2 6C3 日立稳压 管 4B2 4C1 6B1

快恢复二极管选型

快恢复二极管参数 型号品牌电流电压时间极性参考售价IN5817 GJ 1A 20V 10ns 0.40 IN5819 GJ 1A 40V 10ns 0.50 IN5819 MOT 1A 40V 10ns 1.00 IN5822 MOT 3A 40V 10ns 1.80 21D-06 FUI 3A 60V 10ns 1.20 SBR360 GI 3A 60V 10ns 0.80 C81-004 FUI 3A 40V 10ns 1.20 8TQ080 IR 8A 80V 10ns 单管 3.50 MBR1045 MOT 10A 45V 10ns 单管 1.50 MBR1545CT MOT 15A 45V 10ns 双管 3.00 MBR1654 MOT 16A 45V 10ns 双管 3.50 16CTQ100 IR 16A 100V 10ns 双管 5.50 MBR2035CT MOT 20A 35V 10ns 双管 4.00 MBR2045CT MOT 20A 45V 10ns 双管 4.00 MBR2060CT MOT 20A 60V 10ns 双管 6.50 MBR20100CT IR 20A 100V 10ns 双管7.50 025CTQ045 IR 25A 45V 10ns 双管 4.80 30CTQ045 IR 30A 45V 10ns 双管 6.00 C85-009* FUI 20A 90V 10ns 双管 2.50 D83-004* FUI 30A 40V 10ns 双管 4.80 D83-009* FUI 30A 90V 10ns 双管47.00 MBR4060* IR 40A 60V 10ns 双管 3.50 MBR30045 MOT 300A 45V 10ns 35.00 MUR120 MOT 1A 200V 35ns 1.80 MUR160 MOT 1A 600V 35ns 1.80 MUR180 MOT 1A 800V 35ns 2.80 MUR460 MOT 4A 600V 35ns 2.50 BYV95 PHI 1.5A 1000V 250ns 1.20 BYV27-50 PHI 2A 55V 25ns 0.60 BYV927-100 PHI 2A 100V 25ns 0.80 BYV927-300 PHI 2A 300V 25ns 1.20 BYW76 PHI 3A 1000V 200ns 1.20 BYT56G PHI 3A 600V 100ns 1.20 BYT56M PHI 3A 1000V 100ns 1.50 BYV26C PHI 1A 600V 30ns 0.60 BYV26E PHI 1A 1000V 30ns 0.90 FR607 GI 6A 1000V 200ns 1.80 MUR8100 MOT 8A 1000V 35ns 单管 4.50 HFA15TB60 IR 15A 600V 35ns 单管 3.50

阶跃恢复二极管特性

电子知识 2015年10月23日 深圳华强北华强集团2号楼7楼 电池管理系统能实时监控电池状态,延长电池续航时间、避免电池过充过放的情况出现,在电子产品中起着至关重要的作用。特别是可穿戴设备的兴起对电池管理系统提出新的挑战,此次“消费电子电池管理系统技术论坛”,我们将邀请业界领先的半导体厂商、方案设计商与终端产品制造商,共探消费电子电池管理系统市场发展趋势及创新技术,助力设计/研发工程师显著改进电池管理系统,进而从技术的层面为业界解决电子产品的电池续航问题。 立即报名>> IBIS模型是一种基于V/I曲线对I/O BUFFER快速准确建模方法,是反映芯片驱动和接收电气特性一种国际标准,它提供一种标准文件格式来记录如驱动源输出阻抗、上升/下降时间及输入负载等参数,非常适合做振荡和串扰等高频效应计算与仿真。 IBIS本身只是一种文件格式,它说明在一标准IBIS文件中如何记录一个芯片驱动器和接收器不同参数,但并不说明这些被记录参数如何使用,这些参数需要由使用IBIS模型仿真工具来读取。欲使用IBIS进行实际仿真,需要先完成四件工作:获取有关芯片驱动器和接收器原始信息源;获取一种将原始数据转换为IBIS格式方法;提供用于仿真可被计算机识别布局布线信息;提供一种能够读取IBIS和布局布线格式并能够进行分析计算软件工具。 IBIS模型优点可以概括为:在I/O非线性方面能够提供准确模型,同时考虑了封装寄生参数与ESD结构;提供比结构化

方法更快仿真速度;可用于系统板级或多板信号完整性分析仿真。可用IBIS模型分析信号完整性问题包括:串扰、反射、振荡、上冲、下冲、不匹配阻抗、传输线分析、拓扑结构分析。IBIS尤其能够对高速振荡和串扰进行准确精细仿真,它可用于检测最坏情况上升时间条件下信号行为及一些用物理测试无法解决情况;模型可以免费从半导体厂商处获取,用户无需对模型付额外开销;兼容工业界广泛仿真平台。 IBIS模型核由一个包含电流、电压和时序方面信息列表组成。IBIS模型仿真速度比SPICE快很多,而精度只是稍有下降。非会聚是SPICE模型和仿真器一个问题,而在IBIS仿真中消除了这个问题。实际上,所有EDA供应商现在都支持IBIS模型,并且它们都很简便易用。大多数器件IBIS模型均可从互联网上免费获得。可以在同一个板上仿真几个不同厂商推出器件。 IBIS模型是一种基于V/I曲线对I/O BUFFER快速准确建模方法,是反映芯片驱动和接收电气特性一种国际标准,它提供一种标准文件格式来记录如驱动源输出阻抗、上升/下降时间及输入负载等参数,非常适合做振荡和串扰等高频效应计算与仿真。 IBIS本身只是一种文件格式,它说明在一标准IBIS文件中如何记录一个芯片驱动器和接收器不同参数,但并不说明这些被记录参数如何使用,这些参数需要由使用IBIS模型仿真工具来读取。欲使用IBIS进行实际仿真,需要先完成四件工作:获取有关芯片驱动器和接收器原始信息源;获取一种将原始数据转换为IBIS格式方法;提供用于仿真可被计算机识别布局布线信息;提供一种能够读取IBIS和布局布线格式并能够进行分析计算软件工具。 IBIS模型优点可以概括为:在I/O非线性方面能够提供准

快速软恢复二极管

随着电力电子技术的发展,各种变频电路、斩波电路的应用不断扩大,这些电力电子电路中的主回路不论是采用换流关断的晶闸管,还是采用有自关断能力的新型电力电子器件,如GTO,MCT,IGBT等,都需要一个与之并联的快速二极管,以通过负载中的无功电流,减小电容的充电时间,同时抑制因负载电流瞬时反向而感应的高电压。由于这些电力电子器件的频率和性能不断提高,为了与其关断过程相匹配,该二极管必须具有快速开通和高速关断能力,即具有短的反向恢复时间trr,较小的反向恢复电流IRRM和软恢复特性。 在高压、大电流的电路中,传统的PIN二极管具有较好的反向耐压性能,且正向时它可以在很低的电压下就会导通较大的电流,呈现低阻状态。然而,正向大注入的少数载流子的存在使得少子寿命较长,二极管的开关速度相应较低,为提高其开关速度,可采用掺杂重金属杂质和通过电子辐照的办法减小少子寿命,但这又会不同程度的造成二极管的硬恢复特性,在电路中引起较高的感应电压,对整个电路的正常工作产生重要影响。 目前现状 目前,国内快速二极管一般采用电子辐照控制少子寿命,其软度因子在 0.35左右,特性很硬。国际上快速二级管的水平已达到2500A/3000V,300ns,软度因子较小。采用外延工艺制作的快恢复二极管的软度因子较大(0.7),但它必须采用小方片串并联的方式使用,以达到大电流、高电压的目的。这样做不仅增加了工艺的复杂性,而且使产品的可靠性变差。我国的外延工艺水平较低,尚停留在研究阶段,成品率较低,相对成本较高;而采用电力半导体常规工艺制作的快恢复二极管的软度因子较小。 工作原理及影响因素 恢复过程很短的二极管,特别是反向恢复过程很短的二极管称为快速恢复二极管(Fast Recovery Diode)。高频化的电力电子电路不仅要求快速恢复二极管的正向恢复特性较好,即正向瞬态压降小,恢复时间短;更要求反向恢复特性也较好,即反向恢复时间短,反向恢复电荷少,并具有软恢复特性。 开通特性 二极管的开通也有一个过程,开通初期出现较高的瞬态压降,经过一定时间后才能处于稳定状态,并具有很小的管压降。这就是说,二极管开通初期呈现出明显的“电感效应”,不能立即响应正向电流的变化。在正向恢复时间内,正在开通的二极管具有比稳态大的多的峰值电压UFP。当正向电流上升率超过50A/s时,在某些高压二极管中具有较高的瞬态压降。这一概念在缓冲电路中的快速应用时显得非常重要。 开通时二极管呈现的电感效应,除了器件内部机理的原因之外,还与引线长度、器件封装采用的磁性材料等因素有关。电感效应对电流的变化率最敏感,因此开通时二极管电流的上升率diF/dt越大,峰值电压UFP就越高,正向恢复时间也越长。 关断特性 所有的PN结二极管,在传导正向电流时,都将以少子的形式储存电荷。少子注入是电导调制的机理,它导致正向压降(VF)的降低,从这个意义上讲,它是有利的。但是当正在导通的二极管突然加一个反向电压时,由于导通时在PN结区有大量少数载流子存贮起来,故到截止时要把这些少数载流子完全抽出或是中和掉是需要一定时间的,即反向阻断能力的恢复需要经过一段时间,这个过程就是反向恢复过程,发生这一过程所用的时间定义为反向恢复时间

肖特基二极管与快恢复二极管区别

肖特基二极管和快恢复二极管又什么区别 (他们恢复时间都是很快的): 快恢复二极管是指反向恢复时间很短的二极管(5us以下),工艺上多采用掺金措施,结构上有采用PN结型结构,有的采用改进的PIN结构。其正向压降高于普通二极管(1-2V)(此处为什么不提是什么材料?),反向耐压多在1200V以下。从性能上可分为快恢复和超快恢复两个等级。前者反向恢复时间为数百纳秒或更长,后者则在100纳秒以下。 肖特基二极管是以金属和半导体接触形成的势垒为基础的二极管,简称肖特基二极管(Schottky Barrier Diode),具有正向压降低(0.4--0.5V)(用这个方法可以判断出该器件)、反向恢复时间很短(10-40纳秒),而且反向漏电流较大,耐压低,一般低于150V,多用于低电压场合。 这两种管子通常用于开关电源。 肖特基二极管和快恢复二极管区别:前者的恢复时间比后者小一百倍左右,前者的反向恢复时间大约为几纳秒~! 前者的优点还有低功耗,大电流,超高速~!电气特性当然都是二极管阿~! 快恢复二极管在制造工艺上采用掺金,单纯的扩散等工艺,可获得较高的开关速度,同时也能得到较高的耐压.目前快恢复二极管主要应用在逆变电源中做整流元件. 肖特基二极管:反向耐压值较低40V-50V,通态压降0.3-0.6V,小于10nS的反向恢复时间。它是具有肖特基特性的“金属半导体结”的二极管。其正向起始电压较低。其金属层除材料外,还可以采用金、钼、镍、钛等材料。其半导体材料采用硅或砷化镓,多为N型半导体。这种器件是由多数载流子导电的,所以,其反向饱和电流较以少数载流子导电的PN结大得多。由于肖特基二极管中少数载流子的存贮效应甚微,所以其频率响仅为RC时间常数限制,因而,它是高频和快速开关的理想器件。其工作频率可达100GHz。并且,MIS(金属-绝缘体-半导体)肖特基二极管可以用来制作太阳能电池或发光二极管。 快恢复二极管:有0.8-1.1V的正向导通压降,35-85nS的反向恢复时间,在导通和截止之间迅速转换,提高了器件的使用频率并改善了波形。快恢复二极管在制造工艺上采用掺金,单纯的扩散等工艺,可获得较高的开关速度,同时也能得到较高的耐压.目前快恢复二极管主要应用在逆变电源中做整流元件. 想问一下,为何会有反向恢复时间

快速软恢复二极管(LLD)在PFC电路中的应用

快速软恢复二极管(LLD)在PFC电路中的应用 1、定义 PFC(Power Factor Correction) 意思是“功率因数校正”,功率因数指的是有效功率与总耗电量(视在功率)之间的关系,也就是有效功率除以总耗电量(视在功率)的比值。功率因素可以衡量电力被有效利用的程度,当功率因素值越大,代表其电力利用率越高。 2、解析与评价 (1)理想的二极管在承受反向电压时截止,不会有反向电流通过。而实际二极管正向导通时,PN结内的电荷被积累,当二极管承受反向电压时,PN结内积累的电荷将释放并形成一个反向恢复电流,它恢复到零点的时间与结电容等因素有关。反向恢复电流在变压器漏感和其他分布参数的影响下将产生较强烈的高频衰减振荡。因此,输出整流二极管的反向恢复噪声也成为开关电源中一个主要的干扰源。 (2)输出整流二极管会产生反向浪涌电流。二极管在正向导通时PN结内的电荷积累,二极管加反向电压时积累电荷将消失并产生反向电流。因为开关电流需经二极管整流,二极管由导通转变为截止的时间很短,在短时间内要让存储电荷消失就产生了反向电流的浪涌。由于直流输出线路中的分布电感,分布电容,浪涌引起了高频衰减振荡,这是一种差模噪声。 (3)在反向恢复期间,由于二极管的反向恢复特性,二极管的电流不能突变。此效应与一个电感等效。为了抑制二极管尖峰,需在二极管两端并联电容C或RC缓冲网络。 (4)开关电源中尖峰干扰主要来自功率开关管和二次侧整流二极管的开通和关断瞬间。具有容易饱和,储能能力弱等特点的饱和电感能有效抑制这种尖峰干扰。将饱和电感与整流二极管串联,在电流升高的瞬间,它呈现高阻抗,抑制尖峰电流,而饱和后其饱和电感量很小,损耗小。通常将这种饱和电抗器作为尖峰抑制器。 (5)输出整流二极管截止时有一个反向电流,其恢复到零点的时间与结电容等因素有关。它会在变压器漏感和其他分布参数的影响下产生很大的电流变化dirr/dt,产生较强的高频干扰,频率可达几十兆赫兹。 (6)一个好的PFC电路用的升压二极管,除了对自身功耗要低之外,更重要的是产生的尖峰电压要小。 APT的DQ系列二极管,在软恢复的处理上技术独特,反向恢复电流小,软度控制也很好,恢复无振荡,而且有出色的雪崩耐量,可靠性高。最适合用于PFC电路中做升压二极管。 DQ系列二极管的最大缺点Vf是略高,在PFC应用中并没有造成过大的功耗,不影响其软恢复优点的发挥。 APT快速软恢复二极管Qrr/VF的比较:APT15D60B(15A/600V/40ns)和APT15DQ60B(15A/600V/15ns)。

快恢复二极管(FRD)、超快恢复二极管(图文)

快恢复二极管FRD(Fast Recovery Diode)是近年来问世的新型半导体器件,具有开关特性好,反向恢复时间短、正向电流大、体积小、安装简便等优点。超快恢复二极管SRD (Super fast Recovery Diode),则是在快恢复二极管基础上发展而成的,其反向恢复时间trr值已接近于肖特基二极管的指标。它们可广泛用于开关电源、脉宽调制器(PWM)、不间断电源(UPS)、交流电动机变频调速(VVVF)、高频加热等装置中,作高频、大电流的续流二极管或整流管,是极有发展前途的电力、电子半导体器件。 1.性能特点 (1)反向恢复时间 反向恢复时间tr的定义是:电流通过零点由正向转换到规定低值的时间间隔。它是衡量高频续流及整流器件性能的重要技术指标。反向恢复电流的波形如图1所示。I F为正向电流,I RM为最大反向恢复电流。I rr为反向恢复电流,通常规定I rr=0.1I RM。当t≤t0时,正向电流I=I F。当t>t0时,由于整流器件上的正向电压突然变成反向电压,因此正向电流迅速降低,在t=t1时刻,I=0。然后整流器件上流过反向电流I R,并且IR逐渐增大;在t=t2时刻达到最大反向恢复电流IRM值。此后受正向电压的作用,反向电流逐渐减小,并在t=t3时刻达到规定值Irr。从t2到t3的反向恢复过程与电容器放电过程有相似之处。 (2)快恢复、超快恢复二极管的结构特点 快恢复二极管的内部结构与普通二极管不同,它是在P型、N型硅材料中间增加了基区I,构成P-I-N硅片。由于基区很薄,反向恢复电荷很小,不仅大大减小了t rr值,还降低了瞬态正向压降,使管子能承受很高的反向工作电压。快恢复二极管的反向恢复时间一般为几百纳秒,正向压降约为0.6V,正向电流是几安培至几千安培,反向峰值电压可达几百到几千伏。超快恢复二极管的反向恢复电荷进一步减小,使其t rr可低至几十纳秒。 20A 以下的快恢复及超快恢复二极管大多采用TO-220封装形式。从内部结构看,可分成单管、对管(亦称双管)两种。对管内部包含两只快恢复二极管,根据两只二极管接法的不同,又有共阴对管、共阳对管之分。图2(a)是C 20-04型快恢复二极管(单管)的外形及内部结构。(b)图和(c)图分别是C92-02型(共阴对管)、MUR1680A型(共阳对管)超快恢复二极管的外形与构造。它们均采用TO-220塑料封装,主要技术指标见表1。 几十安的快恢复二极管一般采用TO-3P金属壳封装。更大容量(几百安~几千安)的管子则采用螺栓型或平板型封装形式。 2.检测方法 (1)测量反向恢复时间 测量电路如图3。由直流电流源供规定的IF,脉冲发生器经过隔直电容器C加脉冲信号,利用电子示波器观察到的t rr值,即是从I=0的时刻到I R=I rr时刻所经历的时间。 设器件内部的反向恢电荷为Q rr,有关系式 t rr≈2Q rr/I RM (5.3.1)

快恢复二极管与普通二极管的区别

下述说明只适用于需要“单向导电”特性的二极管应用(特殊二极管,如稳压、变容二极管等不适用) 二极管一般工作在交流下,粗划为高低频两类,低频以集中参数为主,高频以分布参数为主。在低频下,电路特性只与零件本身的物理参数有关,比如一颗二极管在直流时降压是0.7V,反向漏电流<0.1uA,那么它在低频时基本与直流下的状态基本一致。所以,可以认为,只要是二极管,无论它是什么类型,只要能满足耐压、电流等要求,在低频下都是可以相互代用的,正如你所说,它们在低频下没有任何区别(严格上说是有区别的,但是这些区别影响不大),除了厂家、型号、外型不一样,它们的作用都一致,只是个“单向导电”的二极管罢了。但是到了高频情况就完全不一样了,二极管的应用及划分就只是在高频领域里才会体现出来,因为高频时,集中参数影响随频率升高而减弱,分布参数参数开始发威。什么是分布参数?举个例子来说明,同样的一根铜走线,在低频时,它的电抗小于0.1欧,到了高频,它可能会变成100欧甚至无穷大。分布参数只在高频才会出现,它要求我们把平时并不在意的走线,排线、布局方式等都要考虑到设计里面,因为一段导线,在高频下它会表现出感抗及容抗的特性,而不单单只是纯阻性。同样,电子元件本身在高频下也存在分布参数,对于二极管,影响最严重的就是本身的垒式电容,简单来说,就是以“PN结”为绝缘体,P、N极为平板构成的一个电容器,这个电容与二极管并联。这个电容也是分布参数的一部份,现在来考虑,在高频工作的二极管,你希望这个电容是大一些还是小一些?答案当然是小一些,越小越好。因为频率越高,容抗越小,容抗越小,二极管的“单向导电”性就越来越不明显,到了一定频率时,二极管直接变成一个电容了,完全失去了它应有的作用。现在我有个1Mhz的应用,手里有两个二极管,二极管A在1Mhz时,它的分布电容<10pF,另一个B在同样频率下,分布容>0.1uF,噢,毫无疑问我应该用A。为了区分它们,我把A叫“开关”二极管,意思是它能在高频下像个开关一样正常工作,为了减小分布电容,开关二极管的内部结构与其它二极管也是大不相同的,具体你可以上网搜索。那B呢?它可能是一个普通的整流二极管,也可能是一个快恢复二极管。快恢复二极管,如果它的分布电容能小到与开关管一样的程度,那么它就是一个开关管了。既然它还叫快恢复二极管,那就说明它与开关管是有区别的。虽然它有“快恢复”三个字,但并不代表它就能用于高频,相反,此类二极管多数都是在几百Khz以下工作,比如开关电的整流。对于普通二极管来说,它的工作环境算是高频了,但是,它的“快恢复”并不是用来提升它的工作频率的,而是用来减小开关损耗的,主要是方波整流的损耗,比如开关电源里的整流,它整的就是一个方波。我们知道电子运动也是需要时间的,简单的说,假定方波的上升延很陡,是90度。经过二极管时,因为足够的载流子运动一个距离需要一个时间,这个时间越小,输出的上升延波形就越接近90度且平均损耗的功率越小(与斜率有关),这个时间称之为恢复时间。快恢复二极管使用的制造工艺使得它能在很短的时间内产生足够的载流子并且移动距离很短,用来满足低损耗的需求。所以恢复时间越短表示在相同频率下越小表示损耗越小,在相同损耗下,越小表示能应用的频率越高。当然,快恢复二极管也有高频或超高频的,它可以代替相同等级的开关管,但是开关二极管就没办法代替快恢复二极管,那全部都用快恢复得了,为什么还要分?因为价格!可以在相同频率下工作的快恢复二极管价格是开关管的N倍(具体看频率,越高N越大),如果是你,明明可以用开关管解决的电路你不可能全部都用快恢复吧,所以还是要区别对待。它们的名称主要还是跟它们的应用场合相关的:开关管,用于高频整流;普通管,低频整流;快恢复管,方波整流(高低频)。

相关文档
最新文档