焦炉煤气利用途径分析

焦炉煤气利用途径分析
焦炉煤气利用途径分析

收稿日期:2010-05-19

李昊堃(1985- ),硕士生;100081北京市海淀区。

焦炉煤气利用途径分析

李昊堃 沙永志

(钢铁研究总院炼铁室)

摘 要 通过对焦炉煤气用于加热、发电,制造氢气、甲醇,生产直接还原铁和高炉喷吹进行比较,结合钢铁企业的实际情况,得出钢铁企业焦炉煤气的合理应用是用于高炉喷吹。关键词 焦炉煤气 喷吹 高炉

Analysis on the utilization of coke oven gas

L iH aokun Sha Yongzh i

(Cen tra l Iron and Steel Research I nstitute)

Abstract T he reasonab l e applica ti on of the coke oven gas i n stee l co m pany is to i nject it into t he b last furnace .T he coke oven gas can be appli ed to heati ng ,generati on ,mak i ng hydrogen gas ,producing carb i no ,l d irectly reduci ng iron and i njecti ng i nto b l ast f urnace .K eyword s COG

i n j esti on b last furnace

2009年全国累计生产焦炭3 45亿t 。按吨焦产420m 3

焦炉煤气计算,焦炉煤气产量为1449亿m 3

。如此之大的焦炭生产量,所产生的焦炉煤气如果能够得到充分合理的利用,所带来的经济效益和环境效益都将是巨大的。因此,对焦炉煤气的各种利用途径进行分析,使焦炉煤气发挥最大的价值已成为亟待解决的问题。焦炉煤气(简称COG )是炼焦过程中,在产出焦炭和焦油产品的同时所得到的可燃气体,是炼焦过程中最重要的副产品。其成分除大量的氢、甲烷外,其它组分相当复杂,随原料煤不同有较大变化,另外还与焦炉的操作等条件有关。宝钢典型的焦炉煤气组成(体积分数,%)如下:H 252 3~55 6,C H 427 1~30 4,CO 7 5,CO 22,O 20 1,C n H m 2 8,N 24 9,H 2O 饱和。微量杂质成分:H 2S <10m g /m 3

,焦油<5m g /m 3

,萘<200m g /m 3

,有机硫<200mg /m 3

,H C N <150mg /m 3

,含苯轻油<2000m g /m 3

,NH 3<

100mg /m 3,吸收油雾200~300mg /m 3[1]

1 焦炉煤气的利用途径分析

焦炉煤气可采用多种方式进行利用,目前主要的利用方式有如图1六种。1 1 加热燃料

焦炉煤气的传统利用方式是作为不同加热设备的气体燃料,与固体燃料相比较,有使用便捷、可以管道输送和传热效率高等优点,受到工业和民用的青睐。

工业燃气:焦炉煤气作为气体燃料,可用于焦炉加热、轧钢加热炉、高炉热风炉、烧结点火等。但随着企业内能量利用率的提高和替代燃料(如高炉煤气)的使用,加热所需要的焦炉煤气量将不断减少。

民用燃气:焦化厂生产的焦炉煤气经过净化后,作为燃气可供当地居民使用。但是,近几年来随着西气东输工程的实施,沿线大中城市作为民用燃料的焦炉煤气将逐渐被天然气替代(例如北京居民用燃气已全部采用天然气)。所以,

37

V ol 29 No 6

Nov 2010

冶 金 能 源

ENERGY FOR METALLURGI CAL I N DUSTRY

图1 焦炉煤气的主要利用途径

这部分焦炉煤气的需求量也在逐渐减少。

综上所述,虽然目前作为加热燃料仍是焦炉煤气的主要利用途径之一,但其焦炉煤气的需求量正在逐渐下降。

1 2 用于发电

将焦炉煤气用于发电,是近几年来焦炉煤气的主要利用途径之一。我国焦炉煤气发电一般有三种方式:蒸气发电、燃气轮机发电和内燃机发电[2]。

(1)蒸汽轮机发电

根据国内煤气锅炉对燃料的要求,当燃料的发热量 12 56M J/m3时,即可使锅炉稳定燃烧,一般的焦炉煤气均能满足这一要求[3]。其优点是对燃料气体要求比较低,缺点是工艺复杂,建设周期比较长,必须消耗大量的水资源,占地比较多,能源利用效率太低。因此,目前仍在使用这一技术发电的企业并不多。

(2)燃气轮机发电

燃气-蒸气联合循环发电技术(CCPP)是我国大中型钢铁联合企业正在积极推广的技术,其优点是可混烧高、焦、转炉煤气,发电效率高,停启灵活,建设周期短,占地少,用水量仅为燃煤电厂的1/3左右。缺点是对煤气的各项指标要求严格,特别是含杂质的转炉煤气燃烧后会对发电设备有很强的腐蚀性,而且低热值煤气燃气轮机设备复杂、控制严格、维护费用高,大大超出常规。以某燃气发电项目为例,甲、乙两站总投资25 5亿元,其中直接进口设备5 09亿元,由于进口设备多,特别是关键技术的引进,相应地增加了运行中的维护和备件备品费用,使发电成本居高不下[4]。

(3)燃气内燃机发电

燃气内燃机的工作原理与汽车发动机一样,需要火花塞点火,由于内燃机是将燃料的热能直接转换为机械能,所以在小型机组中其效率大大超过了蒸汽轮机和燃气轮机。比较常见的机型一般可以达到35%。燃气内燃机最突出的优点是发电效率比较高,其次是设备集成度高,安装快捷,对气体的品质要求不高,对于风扇水箱式机组用水量很少,设备的单位千瓦造价也比较低。

综上所述,对于独立焦化厂而言,在利用焦炉煤气发电时,多采用的是燃气内燃机技术,其设备投资较小且焦炉煤气成本低,所以经济效益显著。而对于国内大中型钢铁企业而言,在利用焦炉煤气发电时,多采用的是燃气-蒸气联合循环发电技术(CCPP),普遍存在设备一次性投资大、维护及备件费用高、电价居高不下等问题。由此看来,对于钢铁企业内部的焦化厂发电并不是利用焦炉煤气的最佳途径。

1 3 焦炉煤气生产纯氢

焦炉煤气中氢气资源相当丰富,氢气的体积百分含量超过50%。目前利用焦炉煤气制氢的方法主要有深冷法和变压吸附法。

深冷法是利用焦炉气中各主要成分冷凝温度的不同,以深度冷冻部分冷凝的方法使氢与其它气体组分分离,最后用液氮洗以脱除气体中剩余的CO和C H4,最终得到的气体中含有83%~ 88%的氢,其余为氮。深冷法是COG制氢应用最早、技术最成熟的方法,适宜于焦炉气的综合利用,它不仅能回收氢气,还能回收C H4、C O 等。但其缺点是所用设备复杂且需在高压下操作,这使得深冷装置投资大、运转费用高、投资

38

冶 金 能 源

ENERGY FOR M ETALLURG I C AL I NDUSTRY

Vo l 29 N o 6

Nov 2010

回收期长,因此难以被大多数焦化厂接受。

变压吸附法(PSA 法)是利用气体组分在固体材料上吸附特性的差异以及吸附量随压力变化而变化的特性,通过周期性的压力变换过程实现气体的分离或提纯。PSA 法利用焦炉煤气生产纯H 2,在我国已有多年的历史,其生产技术成熟,经济合理,特别是与水电解法制H 2比较,效益更显著。据统计,水电解法生产H 2耗电6 5k W h /m 3

,而利用焦炉煤气生产H 2,仅耗电0 5k W h /m 3

,生产规模为1000m 3

/h 的制氢装置,每年节约电费500~800万元,相当于1000m 3

/h PSA 法制H 2的总投资。但焦炉煤气生产纯H 2存在必须具备管道输送的固定用户的限制,一旦用户发生变化,很难维持正常生产,只能转产。目前国内利用PSA 法以焦炉煤气为原料生产氢气的钢铁公司如表1所示。

表1 利用PSA 法以焦炉煤气为

原料生产氢气的钢铁公司

公 司制氢量/m 3 h -1武汉钢铁集团公司1000,1000,1500

攀枝花钢铁集团公司600本溪钢铁集团公司1000,1200

鞍山钢铁集团公司1000,

1000,1000马鞍山钢铁集团公司1000济南钢铁集团总公司600邯郸钢铁集团公司

800

综上所述,虽然利用焦炉煤气生产氢气的技术成熟且经济合理,但受氢气产量的限制,其焦炉煤气消耗量并不大。因此,制氢气并不能作为钢铁企业利用焦炉煤气的主要途径。

1 4 合成甲醇

焦炉煤气组分中甲烷含量(体积分数)为24%~28%,只需将甲烷转化成一定比例的C O 和H 2,即可大体满足合成甲醇的合成气比例要求,合成甲醇的主要反应如下:

CO+2H 2=C H 3OH +Q CO 2+3H 2=C H 3OH +H 2O +Q

煤气中甲烷及高碳烃转化成合成气后,在6 0M Pa 压强下即可完成甲醇合成,流程短,反应速度快,焦炉煤气利用率高,一般2000~2200m

3

焦炉煤气生产1t 甲醇。云南曲靖大为炼焦制气

厂8万t/a 焦炉煤气制甲醇装置已投产4年多,目前国内在建项目有30余个,共计产能481万t 。

但是,目前利用焦炉煤气生产甲醇的焦化厂多为独立焦化厂。对于钢铁企业而言,要利用焦

炉煤气合成甲醇主要存在以下两方面问题:!需要有充足的焦炉煤气富余量。生产1t 甲醇需消耗2000~2200m 3

的焦炉煤气,一个年产10万t 甲醇的项目每小时焦炉煤气的消耗量为

25000m 3

。?投资规模较大。一个年产20万t 甲烷的项目,总投资高达4亿元。

1 5 生产直接还原铁

理论上讲,焦炉煤气不需要经过热裂解,就可直接供给气基竖炉生产海绵铁。其工艺过程为:将焦炉煤气和竖炉顶气混合而成的还原气在加热炉中加热,然后直接通入到直接还原炉中生产直接还原铁(DR I)。在此过程中,焦炉煤气作为还原过程的还原气,而高炉煤气则作为燃料用于加热还原气体[5]。

然而,利用焦炉煤气生产直接还原铁,虽然技术上可行,但距离规模化、产业化应用还有一定的距离。焦炉煤气生产DR I 没有发展起来,有两大主要原因:

(1)焦炉煤气资源问题

对于钢铁企业内部的焦化厂而言,焦炉煤气主要用于钢铁厂内热能平衡,其富余的焦炉煤气量不足以供应DR I 的生产需求。而对于独立焦化企业而言,焦炉煤气约40%~50%用于加热焦炉,其剩余气量也很难满足DR I 生产的需要。近几年来,虽然焦炭生产能力大幅度提高,产生了大量富余焦炉煤气。然而,根据M idrex 法换算,生产1t DR I 需要约700m 3

焦炉煤气,年产100万t DR I 需7亿m 3

焦炉煤气,相当于一个300万t 的焦化厂一年产生的全部焦炉煤气量。无论是钢铁厂中的焦化厂还是独立焦化厂,目前都很难在一个地点集中7亿m 3

的焦炉煤气。

(2)富铁矿资源问题

生产DR I 是固态还原,与高炉炼铁相比,不能排渣,因此要求铁矿品位在66%以上。中国没有高品位铁矿,要生产直接还原铁必须依赖人造富矿或进口高品位铁矿,而这大幅增加了生产DR I 的成本,为焦炉煤气生产直接还原铁制造了障碍。

39

V ol 29 No 6

Nov 2010

冶 金 能 源

ENERGY FOR METALLURGI CAL I N DUSTRY

综上所述,在目前的原料、燃料条件下,要将焦炉煤气生产直接还原铁技术规模化、产业化仍有一段较长的路要走。

1 6 高炉喷吹焦炉煤气

高炉喷吹焦炉煤气是指将焦炉产生的多余的焦炉煤气经过净化处理,通过设备加压至高于风口压力,然后利用类似喷煤的喷吹设施,通过各个支管喷入高炉风口。高炉喷吹焦炉煤气的主要工艺特点如下:!为高炉提供更好的还原剂;?还原产物环保;#提高焦炉煤气价值,改善能量利用率;?喷吹工艺简便,技术成熟,设备投资小。

(1)高炉喷吹焦炉煤气技术的发展

事实上,高炉喷吹焦炉煤气已有很长的历史。在20世纪80年代初,前苏联已在多座高炉上完成了喷吹焦炉煤气的试验研究,掌握了1 8 ~2 2m3焦炉煤气替代1m3天然气的冶冻技术,喷吹量达到了227m3/t。20世纪80年代中期,法国索尔梅厂2号高炉开始进行喷吹焦炉煤气的作业,喷吹量达21000m3/h,焦炉煤气与焦炭的置换比为0 9kg/kg,喷吹装置的投资费用可在10个月左右收回。奥钢联LI N Z厂自2002年二季度起开始在两座高炉(BF5,BF6,炉缸直径8m)喷吹焦炉煤气替代重油。其最大喷吹量12500m3/h(50kg/t),将重油消耗从70kg/t降低到20kg/t。美国钢铁公司的MON VALLEY厂的两座高炉(容积分别为1598m3和1381m3)自1994年起一直喷吹焦炉煤气,2005年的喷吹总量为14 16万,t吨铁喷吹量约65kg。据该厂报道,喷吹焦炉煤气后,降低了天然气的喷吹量,消除了焦炉煤气的放空燃烧,降低了能源成本,年节省开支超过610万美元[6]。

因此,在高炉中喷吹焦炉煤气的工艺技术已经十分成熟,而且喷吹焦炉煤气主要是气体的处理过程,包括加压、输送以及喷吹。该系统设备投资低,计量控制简便易行,而且控制灵活,精度高。

(2)焦炉煤气的来源

目前高炉喷吹焦炉煤气的最大问题是焦炉煤气的来源。作为优质燃料的焦炉煤气在各钢铁厂普遍存在着供应紧缺的现象。然而,从国内总体状况和各企业的实际情况分析,仍然存在许多规模和数量不等的焦炉煤气供应源。对于有焦化厂的钢铁联合企业,自产焦炉煤气基本得到利用,主要用于焦炉加热、轧钢加热炉、高炉热风炉、烧结点火以及燃烧发电等。但是,随着企业内能量利用率的提高和替代燃料的使用,加热所需要的焦炉煤气将不断减少,焦炉煤气会有一定的富裕量供高炉喷吹。另外,基于上面的分析,将焦炉煤气用于发电的成本远远高于将焦炉煤气用于高炉喷吹,所以将用于发电的焦炉煤气也改用高炉喷吹,则能更好地体现焦炉煤气的价值和使用效果。因此,对钢铁联合企业来说,应尽可能多地将焦炉煤气供给高炉喷吹。

综上所述,高炉喷吹焦炉煤气具有工艺成熟、设备技术投资小、运行成本低等优点。但是需要特别指出的是,在焦炉煤气的供应量相对并不多,且存在一定的波动的情况下,高炉喷吹焦炉煤气不是喷煤的替代品,而是喷煤的补充和完善,以期获得最佳的经济效益。

2 结论

(1)焦炉煤气用作加热燃料,仍是目前焦炉煤气的主要利用途径之一,但焦炉煤气的需求量正在逐渐下降。

(2)对于独立焦化厂而言,利用焦炉煤气发电时经济效益显著。而对于国内大中型钢铁企业而言,利用焦炉煤气发电时,普遍存在设备一次性投资大、维护及备件费用高、电价居高不下等问题。

(3)利用焦炉煤气生产氢气的技术成熟且经济合理,但受氢气产量的限制,其并不能作为钢铁企业利用焦炉煤气的主要途径。

(4)目前利用焦炉煤气生产甲醇的焦化厂多为独立焦化厂。对于钢铁企业而言,其主要存在的问题是,没有充足的焦炉煤气富余量且投资规模较大。

(5)利用焦炉煤气生产直接还原铁技术,虽然在技术上可行,但在目前的原料、燃料条件下,要将其规模化、产业化仍有一段较长的路要走。

(6)高炉喷吹焦炉煤气技术具有工艺成熟、设备技术投资小、运行成本低等优点。而且,其最终还原产物为水,这样就减少了高炉的CO2排放,对于高炉的节能减排具有十分重要的意义。

(下转第44页)

response o f turbu lent pre m i xed fl ames to no r ma l acous

ti c exc itati on.Proceed i ng of the Combusti on Institute.

2005,30:1749-1756

[17]H.Y oshida,M.K oda,Y.O o ish,i K.P.K obayash,i

M.Sa ito,Super m i x i ng co m busti on enhanced by reso

nance bet ween m icro s hear laye r and acoustic ex cita

ti on.Internationa l Journa l o f H eat and F l uid F lo w,

2001,22:372-379

[18]Y. C.Chao,Y.W.H uang, D.C.W u,E ffects of

fl ame lifti ng and acousti c exc itati on on the reduction of

NO

x

e m https://www.360docs.net/doc/707035810.html,bustion Sc i ence and T echno l ogy,

2000,158:461-484

[19]N.Kur i m oto,Y.Suzuk i and N.K asag.i A ctive contro l o f

lifted d iffusi on fla m es w ith a rrayed m icro actuators.Ex

peri m ents in F l u i ds.2005,39(6):995-1008

[20]John C.W agne r,NO

x

e m ission reducti on by osc ill a

ti ng combusti on.G as T echno l ogy Instit ute,F i nal re

port for U.S.D epart m ent o f Energy,2004

万 雪 编辑

(上接第36页)

[16]李 伟,祁海鹰,由长福等 蜂巢蓄热体传热性

能的数值研究[J].工程热物理学报,2001,22

(5):658-660

[17]杜礼明,解茂昭 预混气体在多孔介质中往复式

超绝热燃烧的数值研究[J].燃烧科学与技术,

2005,11(3):232-235

[18]杜礼明,解茂昭 往复式多孔介质超绝热燃烧中

辐射传热有限体积法[J].大连理工大学学报

2006,46(5):673-678

[19]史俊瑞,解茂昭 考虑弥散效应的多孔介质中超

绝热燃烧的数值模拟[J].工程热物理学报,

2006,27(3):515-518

[20]赵平辉,陈义良,刘明侯等 多孔介质内层预混

燃烧的数值模拟[J].燃烧科学与技术,2006,

12(1):46-50

[21]赵平辉,叶桃红,丁 敏等 多孔介质燃烧器的

辐射输出效率和污染物[J].燃烧科学与技术,

2007,13(6):549-553

[22]凌忠钱,周 昊,李国能等 自由堆积多孔介质

超绝热燃烧的试验研究[J].浙江大学学报(工

学版),2008,42(2):282-286

[23]郑 斌,刘永启,刘瑞祥等 煤矿乏风的蓄热逆流

氧化[J].煤炭学报,2009,34(11):1475-1478

[24]褚金华 渐变型多孔介质燃烧器的研究与开发

[D].杭州:浙江大学,2005

[25]张根烜,陈义良,刘明侯等 堆积床内非驻定过

滤燃烧的一维研究[J].计算物理,2006,23

(2):217-223

万 雪 编辑

(上接第40页)

参考文献

[1]张建伟 变压吸附原理在工业制氢中的应用[J].

制冷技术,2001,(3):41

[2]种振宇,刘智伟,李怀斌 莱钢焦炉煤气综合利用

方式分析[J].莱钢科技,2006,(2):45-46 [3]张凤辰 焦炉煤气的综合利用途径[J].煤矿机

电.2005,(2):61-63

[4]薛惠锋 %二次能源&回收利用???钢铁企业可持

续发展的有效途径[J].节能与环保,2007,

(12):10-11

[5]Peter D ie m er,H ans J rgen K illi ch,K l aus K nop.Po

tentials for U tilizati on of Coke O ven G as in Integrated I ron and Stee lW orks[J].Stahl und E isen,2004,

124(7):21

[6]沙永志,刁岳川 高炉喷吹焦炉煤气???节能减排

新方向[N].中国冶金报,2008-10-16(1)

万 雪 编辑

2019年焦炉煤气综合利用项目可行性研究报告

2019年焦炉煤气综合利用项目可行性研究报告 2019年12月

目录 一、项目概况 (3) 二、项目实施的背景 (3) 1、焦炉煤气综合利用符合国家政策与发展战略 (3) 2、本项目是对公司焦炉气制甲醇项目的综合利用和延伸 (4) 三、项目实施的必要性和可行性 (4) 1、符合国家产业政策及地方政府产业发展规划的要求 (4) 2、甲醇产品市场广阔、需求旺盛 (5) 3、有助于企业进一步发展升级,提升企业整体核心竞争力 (6) 4、完善的配套设施与丰富的人员技术储备为本项目的实施提供可靠的保障 7 (1)园区配套设施完善 (7) (2)公司拥有经验丰富的生产管理和技术团队 (7) 四、项目投资概算及效益测算 (8) 五、项目环保情况 (8) 1、废气处理 (9) 2、废水处理 (9) 3、噪声处理 (9) 4、固体废物处理 (10)

一、项目概况 焦炉煤气综合利用项目系在对公司一、二期焦炉气制甲醇弛放气综合利用的基础上,实现年产50万吨甲醇的生产规模,项目主要建设内容包括:气化工艺装置、变换冷却工艺装置、低温甲醇洗工艺装置、压缩制冷工艺装置、合成气压缩工艺装置、甲醇合成工艺装置、甲醇精馏工艺装置、氢回收工艺装置、厂房仓库、公用工程等。本项目建设期为24个月,项目总投资168,747.30万元。 二、项目实施的背景 1、焦炉煤气综合利用符合国家政策与发展战略 2019年,工信部、国家发改委等八部委发布的《关于在部分地区开展甲醇汽车应用的指导意见》(工信部联节[2019]61号),明确指出“鼓励资源综合利用生产甲醇,充分利用低质煤、煤层气、焦炉煤气等制备甲醇,探索捕获二氧化碳制备甲醇工艺技术及工程化应用”。 国家发改委为贯彻落实《国务院关于发布实施促进产业结构调整暂行规定的决定》(国发[2005]40号)和《国务院关于加快推进产能过剩行业结构调整的通知》(国发[2006]11号)的要求,发布的《关于加快焦化行业结构调整的意见的通知》确定鼓励符合国家产业政策要求的大中型焦化企业进行煤气综合利用的项目建设。 焦炉气综合利用制甲醇项目,系在对公司一、二期焦炉气制甲醇弛放气综合利用的基础上,实现年产50万吨甲醇的生产规模,属于资

焦炉煤气常识培训资料

煤气基础知识 一、煤气基本常识 1、煤气:是指煤或焦碳经热化学加工而产生的可做为燃料或 化工原料的气体。 2、煤气是可燃气体与不可燃气体的机械混合物。 可燃气体成分:一氧化碳CO、甲烷CH4、氢气H2、硫化氢 H2S、碳氢化合物CnHm。 不可燃气体成分:二氧化碳CO2、氮气N2、氧气O2 3、各种成分的性质: 氢气H2—无色无味,比空气轻1.45倍。热值为2612大卡/标立与空气混合遇明火易暴炸。爆炸范围4.1-74.2%,无毒,但浓度较大时易引起窒息。 甲烷CH4—无色但有葱味,比空气轻1.8倍,热值为8699大卡/标立,爆炸范围5.3-15%无毒,但浓度大时易引起窒息。 硫化氢H2S—无色,剧烈臭味,比空气轻1.2倍,燃烧热值为5600大卡/标立。空气中安全标准为0.01克/标立,克中毒含量0.04克/标立。 碳氢化合物CnHm—无色,有毒,在空气中含有0.08%时就会引起中毒。 氧气O2—无色无味,比空气轻1.1倍,可助燃,空气中含量21%。 氮气N2—无色无味的毒性气体,比空气轻,具有窒息作用,空气中含量79%。

二氧化碳CO2—无色无味,比空气重1.5倍,有窒息作用。 一氧化碳CO—无色无味,比空气轻,热值3056大卡/标立,空气中爆炸范围12.5—75%,着火温度610C°,空气中安全浓度30mg/m3(24ppm),可中毒致死浓度500ppm 4、煤气种类: 高炉煤气BFG、转炉煤气LDG、焦炉煤气COG CO CO2 H2 CH4 N2 O2 CnH m 着 火 点 密 度 爆 炸 极 限 发 热 值 高炉煤气25- 27 13- 15 1.2 -2. 0.2 -0. 4 57- 59 0.2 -0. 5 - 750 1.2 9-1 .30 35- 72 800 -90 转炉煤气55- 57 18- 19 1.5 - 2 2. 4-1 9 <2. 650 -70 1.3 96 12. 5-7 4 180 0-2 200 焦炉煤气 8-9 2.8 -3. 4 45- 58 23- 30 3-7 0.4 -0. 6 2-3 550 -65 0.4 5-0 .50 5.6 -30 .4 420 0-4 500 以上数据对比,得出焦炉煤气具有可燃组分比重大、着火点 低、发热值高、毒性稍低(CO)的优越性,工业上广泛使用,但

中国焦炉煤气利用现状及发展前景(1)

中国焦炉煤气利用现状及发展前景 范良忠 (新地能源工程技术有限公司石家庄能源化工技术分公司,河北石家庄050000) 众所周知,当今我国是世界上最大的焦炭生产国,近几年以来,我国的焦炭产量逐年增长。只是一零年,我国的焦炭产量就差不多约4.0亿吨,我国焦炭的产量大约有全世界的焦炭总产量的百分之六十左右,所以,焦炉煤气的回收利用有很大的前景。焦炉煤气主要是指焦炉炉煤在焦炉的炭化过程中干馏而产生的一种黄褐色的汽气混合物。它的组成比较复杂,它可以用作工业的能源用在钢铁企业中,或者其它的工业部门。 1我国焦炉煤气的利用现状简述 伴随着我国的钢铁企业的不断发展,近几年,由钢铁行业所产生的焦化行业也逐渐有了突飞猛进的发展。人们开始越来越关注对焦炉煤气进行综合的回收和利用。这种方式不仅符合我国当前的产业政策,而且可以建设节约型的社会,有利于我国打造一种循环经济从而实现我国工业的绿色发展。随着我国环保部门的要求不断提高,以及我国对资源综合利用的水平也在逐渐的提高。所以人们对焦炉煤气的回收利用这项工作的关注程度越来越大。在这种大趋势的发展和驱动之下,我国逐渐产生了一些新的对焦炉煤气进行利用的方法和途径。 1.1燃烧焦炉煤气,从而提供能量 焦炉煤气用作燃料的方面可以分为工业利用和民用方面。在工业利用方面,焦炉煤气主要利用在以下的几个方面:(1)焦炉煤气的生产企业在化学产品的回收和净化过程中,可以作为一种高效的加热燃料。(2)焦化企业可以利用剩余的那些焦炉煤气用来发电,为发电提供燃料。(3)焦炉煤气可以作为钢铁企业的炼钢,轧钢等工序的燃料。焦炉煤气在民用燃料利用方面主要体现在经过净化之后的焦炉煤气可以通入我国城市的供气管网,从而可以作为居民的生活用气来使用。因为工业生产的焦炉煤气具有热值相对较高,而且一氧化碳的含量相对较低等优点,所以是一种很适合作为民用燃气的一种气体。虽然我国的西气东输的发展已经为一些地区使用天然气提供了相当便利的条件。虽然焦炉煤气在和天然气相比的情况下,仍然存在着一些缺点,比如焦洁净度方面不如天然气。但是在天然气输送不到的地方,或者西气东输没有覆盖的城市,焦炉煤气依然可以作为一种主要的民用燃气来供给居民使用。 1.2可以利用焦炉煤气用来生产氮肥或者甲醇等化学产品 近年来,因为我国的焦化产业公司,主要都是注重焦炭的生产而忽视焦炭的综合利用。所以有很多的焦化生产企业都在利益的驱动下,忽视建设焦炉煤气的回收和利用装置,从而导致了大量的焦炉煤气直接排放到了大气中。有的焦炭生产企业甚至采取了燃烧等方式来处理焦炉煤气。造成了资源的极大浪费,而且同时对环境造成了很大的污染。焦炉煤气除了用于民用燃料和用于发电等用途之外,还可以利用焦炉煤气来生产很多种化工产品。比如利用焦炉煤气可以生产碳铵化肥和甲醇等,用焦炉煤气生产化肥和甲醇的工艺技术已经不断地发展而趋于成熟。这种技术已经在我国取得阶段性的成功。虽然我们用焦炉煤气来生产化肥和甲醇等化学产品的成本,相当于用无烟煤为原料生产化肥和甲醇的成本相比低,而且生产的产品性能相对比较稳定,具有一定的市场竞争能力。但是,由于焦炉煤气生产化肥和甲醇的工艺相对比较复杂,它对企业的技术和企业的管理水平都有较高的要求,而且市场也相对比较饱满,所以投资还应该相对谨慎。 1.3利用焦炉煤气制造氢燃料 众所周知,氢能是一种绝对清洁,而且没有任何污染的能源,它燃烧只会形成水,而且它的热能很大。氢能代表着世界未来能源的发展方向。其实利用焦炉煤气来制造氢能,在我国已经有了很多年的历史,它的生产技术也相对比较成熟,而且氢能也具有较高的经济性能,特别是和水电解法制造氢能相比,这种方法的经济效益比较显著。利用焦炉煤气来制造氢能,有很多优点。 1.4利用焦炉煤气可以生产还原铁 利用焦炉煤气可以直接还原铁。而且焦炉煤气是电炉炼钢的一种重要原料,它不仅可以代替原先的废钢,而且可以很大程度上的减小废钢中的有害杂质。所以利用焦炉煤气炼钢可以有利于冶炼优质钢。 1.5用焦炉煤气制天然气 焦炉煤气可以用于合成天然气。这种合成天然气的技术是焦炉煤气利用的一个新领域,合成天然气这项技术也相对比较成熟。如果用制造液化的天然气和焦炉煤气制甲醇等工艺来比较,焦炉煤气制造天然气的这项技术具有原料的利用效率高和工程工艺简单的特点。 2焦炉煤气利用的发展前景 我国是世界生产焦炭最多的国家,所以我国拥有很大数量的可焦炉煤气资源,如何充分的利用焦炉煤气资源对保护我国的环境和促进我国经济快速发展都具有重大的作用。 2.1在未来,我国将会走上以甲醇为原料的新型化工的发展之路 在未来,我国将会充分的利用甲醇作为化工原料来生产低碳烯烃。这种技术已经成为了发展新型煤化工产业的重要途径。在未来我国将会实现以煤代油的这种战略。 2.2焦炉煤气利用实现清洁化 伴随着人们的环保意识在不断地增强,国家也提出了可持续发展的伟大战略。所以我国将会对每年焦炉气的排空量作出严格的限制。今年来以来,随着雾霾席卷中华大地,国家更加会注重环境保护工作。现在的钢铁产业发展政策明确的规定,新上的焦炉必须配备配套的焦炉煤气回收装置,所以,焦化行业将会逐渐迈入清洁化的生产。这对环境保护,以及我国未来的发展都有很大的作用。2.3未来焦炉煤气利用将会实现多联产 因为相对于传统的焦炉煤气的利用工艺而言,最新发展出来的多联产系统,不仅可以实现焦炉煤气的科学化,合理化使用,而且同时可以大幅度的提高焦炉煤气资源的利用效率。所以,我们可以知道焦炉煤气的多联产系统发展将会成为我国能源领域中的热点系统,热点技术。 3结束语 我国的焦炉煤气资源相当丰富,所以焦炉煤气的综合利用问题,现在已经成为了炼焦企业生存和发展的关键。但是在焦炉煤气的回收和利用问题上,企业不能仅仅局限于某一个行业或者局限于某一个产品。我国的焦化企业应该充分的、大力的发掘焦炉煤气这种资源的潜能,争取实现因地制宜发展,从而让焦炉煤气的利用逐渐走向清洁化发展的道路。 参考文献 [1]张永发.中国焦化工业实现可持续发展的思考[J].山西能源与节 能,2005,2:13-17. [2]李琼玖.油头氨生产装置扩能改造成天然气制氨和甲醇装置的设 计方案[J].石油化工动态,2008,30(8):20-29. [3]焦化设计资料编写组.焦化设计手册[M].北京:冶金工业出版社,2009(2):22-44. 摘要:伴随着我国工业化的不断发展,焦炉煤气的回收利用的工作也在不断地发展当中。众所周知,焦炉煤气是工业发展使用的重要能源,同时焦炉煤气也是重要的化工原料。所以,为了实现资源的综合利用,同时为了积极响应国家的“节能减排”的号召,积极保护我国的生态环境。为了更好地利用工业焦炉煤气,文章就如何充分利用焦炉煤气所的现状及发展前景做出了一定的诠释,并且提出了见解。 关键词:中国;焦炉煤气;利用现状;发展前景 99--

焦炉煤气综合利用项目环境影响报告表

概述 1. 前言 1.1 项目背景简介 ××省××市拥有较为丰富的煤炭资源,是以煤兴市的资源型老工业城市。长期以来,作为能源生产和供应基地,××市为国家,尤其是××省的经济社会发展做出了重大贡献。但是,由于资源结构单一,××市经济社会发展中的问题也日益凸显,主要体现在经济结构失衡、能源接续替代产业发展较慢、生态环境破坏严重等方面,使××市经济社会可持续发展面临严峻挑战。因此,充分发挥现有资源优势,探索××市资源枯竭城市转型之路,是实现××市可持续发展的迫切要求。 ××(××)新型煤化工合成材料基地(原××××临涣工业园)位于××市濉溪县韩村镇境内,距离××市区约50公里。该基地于2005年启动建设,2010年3月,××省人民政府以皖政秘[2010]53号《关于同意筹建××××临涣工业园的批复》,同意临涣工业园比照省级开发区筹建,规划为煤基合成材料和循环经济为战略发展方向的高新技术产业园区,是××市推进资源型经济转型的重要平台,是××省重点建设的四大化工产业基地之一,基地批复规划建设面积为20.4平方公里。 2012年3月,国家工业和信息化部批准园区为第一批国家级“循环经济示范园区”;2012年7月,××省经济和信息化委员会批准园区为“××省新型工业化产业示范基地”;2014年10月,原××省环境保护厅以皖环函[2014]1338号《××省环保厅关于××××临涣工业园规划环境影响报告书审查意见的函》,同意园区规划方案;2015年4月,××××临涣工业园正式更名为××(××)新型煤化工合成材料基地。 ××矿业(集团)有限责任公司(简称××矿业集团)是××省以煤炭和煤化工产品生产为主,多种经营、综合发展的特大型国有企业集团;××煤矿是国家十三大煤炭基地之一。××矿业集团依据“依托煤炭、延伸煤炭、超越煤炭”的战略规划、组织实施了“临涣焦化焦炉煤气综合利用项目”。该项目是××省“861行动计划”的重点项目、是振兴皖北经济1号工程“煤化-盐化一体化”工

浅析焦炉煤气的利用现状及发展前景

浅析焦炉煤气的利用现状及发展前景 冯路叶 摘要:焦化是我国煤炭化工转化的最主要方式,焦炉煤气是重要的能源和化工原料。本文重点分析了我国焦化行业及焦炉煤气的利用现状, 介绍焦炉煤气的综合利用途径, 提出了以焦炉煤气为基础发展化工、工业燃料、热电联产等项目的广阔前景。 关键词:焦炉煤气; 现状; 综合利用;发展前景 1 炼焦工业和焦炉煤气利用现状 1.1 炼焦工业概况 我国是世界上焦炭产量最大的国家,2010年焦炭产量约为3.8亿t,约占世界焦炭总产量的60%,全国约有焦化企业2000多家,其中1/3为钢铁联合企业,2/3为独立焦化企业,而独立焦化企业主要分布在山西、河南、山东、云南、内蒙等地,为焦炉煤气综合利用市场提供了良好发展环境。所产生的焦炉煤气量巨大,如何高效、合理地利用这些煤气,是关系环保、资源综合利用、节能减排的重大课题。 1.2焦炉煤气利用现状 焦化是我国煤炭化工转化的最主要方式。2010年我国新投产焦炉57座,新增产能约3371万吨。其中炭化室高6米及以上的顶装焦炉和炭化室高5.5米及以上的捣固焦炉48座、产能3020万吨,占新增总产能的89.59%。以2010年我国焦炭产量为例进行估算,按吨焦产420 m3焦炉煤气计算,2010年我国焦化产业产生的焦炉煤气产量约为1596亿m3,除去焦炉用于自身加热所消耗的40% (约638亿m3),剩余958亿m3,基本用作燃料进行各种加热或燃烧产生蒸汽发电或简单地进行化产回收处理。有许多非钢焦化企业所产的焦炉煤气无法利用被“点天灯”浪费(这些企业一般远离城市),约有300亿m3被白白排放掉。同时, 随着国家西气东输工程的实施, 城市民用焦炉煤气将被天然气取代, 这一部分焦炉煤气也将成为待利用的资源。 2 焦炉煤气的组成与净化 2.1焦炉煤气的组成 焦炉煤气的组成非常复杂,典型焦炉煤气各组分的体积分数见表1,从表中数据可以看出:焦炉煤气含H2量高, 还含有部分CH4, CO2 和N2等,其它组分还有( g/ m3): NH3 0.05, H2S 0.2~0.02,BTX 3.0 ,焦油0.05,萘0.3等等。 表1 焦炉煤气组成 2.2焦炉煤气的净化 一般的焦化企业在焦炉煤气净化流程中,只对H2S、NH3、萘、苯、焦油的含量有一定的要求。常规的净化流程是:焦炉煤气经过冷凝鼓风、电捕焦油、脱硫、脱氨、脱苯流程后,就作为产品向外输送。 3 目前焦炉煤气的利用途径 焦炉煤气的组成特性决定其利用途径主要有以下几个方面: 燃料气、化工原料、制氢、制甲醇、多晶硅和多联产技术。

焦炉煤气综合利用技术探讨

焦炉煤气综合利用技术探讨 摘要:我国的煤炭资源丰富,是世界上焦炭产量最大的国家,约占世界焦炭生 产总量的百分之六十,在生产焦炭的过程中会产生大量的焦炉煤气,是一种非常 丰富的能源,如何高效利用焦炉煤气是各国研究的重要课题,对于营造低碳环境,创造经济效益具有很大的推动作用,实现资源的循环利用,对于我国经济的可持 续发展具有很大的积极意义。因此,本文对焦炉煤气综合利用技术进行探讨。 关键词:焦炉煤气;综合利用;技术 焦炉煤气是炼焦过程中产出焦炭和焦油产品的同时得到的可燃气体,是炼焦 副产品。每生产1t焦炭,约副产400m3焦炉煤气,除一半用于焦炉自身加热外,还会剩余约200m3。若不合理利用,既造成巨大的资源浪费,又造成严重的环境 污染。随着我国能源结构的调整及排放法规的日益严格,如何合理、高效、无污 染地利用焦炉煤气,已成为目前社会关注的热点之一。 1焦炉煤气综合利用技术分析 1.1传统的利用方式——加热燃料 焦炉煤气的传统利用方式普遍用于燃料,作为不同加热设备的气体燃料,延 用近百年的历史。与固体燃料比较,有使用便捷、管道输送和传热效率高等优点,受到工业和民用的青睐。 利用焦炉煤气生产炭黑新工艺的研究就是以焦炉煤气为燃料,以煤焦油为原料,采用油——气技术路线。工艺特点:采用新型反应炉,利用在线高温空气预热 器和油预热器,强化反应条件,提高产品质量和收率,降低一次消耗。利用焦炉 煤气特性,结合炭黑生产技术特点,研究开发利用焦炉煤气作燃料生产炭黑的新 工艺技术,扩大了炭黑生产的燃料范围;高效焦炉煤气喷嘴的研制,结合焦炉煤气 特点,加长燃烧器长度,在燃烧器的配风结构上采用同向双旋流沟槽,两风道入风,增大燃烧器燃烧喷嘴的配风湍流程度,使燃烧火焰更加稳定;开发研制新型煤 气型反应炉,加大反应面积,结合煤气燃烧均匀的特点,改进燃烧室结构。 1.2利用焦炉煤气发电 利用富余焦炉煤气,选择可靠性高、可连续性生产的直燃式航空发电机组进 行发电,减少能源浪费,减少温室气体甲烷的排放,保护环境。焦炉煤气发电后 的尾气余热进行回收,建立空调中心,夏天向井下和办公楼等地点供冷,冬天向 井口和办公楼等地点供暖。 中国平煤神马集团朝川焦化公司采用的燃气轮机发电,由粗苯来的净化后的 煤气经煤气压缩机加压到0.9MPa送往六台2000kW的QDR2型燃气轮发电机组,燃气轮机尾气余热设置六台6.5t/h的余热锅炉,机组装机容量为15000kW,自耗 电量达9.97%,每小时能外供13489kW,运行情况良好。 1.3焦炉煤气生产甲醇 甲醇是一种很好的液体燃料,也是一种重要的化工原料,随着技术的发展, 甲醇应用的拓宽,其前景市场更加广阔。焦炉煤气中的甲烷含量在24%~28%左右,在6.0MPa压强下即可合成甲醇,反应速度快,流程短,相较于天然气、煤 制作甲醇成本要低,合成甲醇也是目前高效利用焦炉煤气的重要方式之一。焦炉 煤气合成甲醇技术的关键步骤是将焦炉煤气深度净化,然后将焦炉煤气中的甲烷 及少量多碳烃转化为一氧化碳和氢气,以满足甲烷转化催化剂和甲醇合成催化剂 的要求,提高其催化能效和使用寿命。目前,焦炉煤气甲烷转化工艺主要有催化 氧化转化法、非催化转化法、蒸汽转化法三种,催化氧化转化法因其流程短、投

焦炉的结构和设备知识

《焦炉结构与设备》 一、教学内容: (一)、焦炉整体结构概述 (二)、护炉铁件 (三)、焦炉加热设备 (四)、荒煤气导出设备 (五)、焦炉机械 (六)、附属设备和修理装置 二、学习目的: 了解焦炉的整体结构,掌握护炉铁件、蓄热室、燃烧室、炭化室及荒煤气导出道的结构。 目录 第一章焦炉整体构造 一、焦炉炉型的分类 二、现代焦炉的结构 1.1 炭化室 1.2 燃烧室 1.3 斜道区 1.4 蓄热室 1.5 小烟道 1.6 炉顶区 1.7 焦炉基础平台、烟道、烟囱 第二章炼焦炉的机械与设备

2.1 护炉铁件 2.1.1 护炉铁件的作用 2.1.2 保护板和炉门框 2.1.3 炉柱、拉条和弹簧 2.1.4 炉门 2.2 焦炉加热设备 2.2.1 加热煤气设备 2.2.2 焦炉的煤气管系 2.2.3 交换设备 2.2.4 废气设备 2.3 荒煤气导出设备 2.3.1 高压氨水及水封上升管盖装置2.3.2 上升管与桥管 2.3.3 集气管与吸气管 2.4 焦炉机械 2.4.1 装煤车 2.4.2 拦焦车 2.4.3 推焦车 2.4.4 熄焦车和电机车 2.5 附属设备和修理装置 2.5.1 炉门修理站 2.5.2 余煤单斗机和埋刮板提升机2.5.3 悬臂式起重机和电动葫芦

2.5.4 推焦杆更换装置 第一章焦炉整体结构 一、焦炉炉型的分类: 现代焦炉因火道结构,加热煤气种类及其入炉方式,实现高向加热均匀性的方法不同等分成许多型式。 因火道结构形式的不同,焦炉可分为二分式焦炉,双联火道焦炉及少数的过顶式焦炉。 根据加热煤气种类的不同,焦炉可分为单热式焦炉和复热式焦炉。 根据煤气入炉的方式不同,焦炉可分为下喷式焦炉和侧入式焦炉。 二、现代焦炉的结构: (一)、现代焦炉虽有多种炉型,但都有共同的基本要求: 1)焦并长向和高向加热均匀,加热水平适当,以减轻化学产品的裂解损失。 2)劳动生产率和设备利用率高。 3)加热系统阻力小,热工效率高,能耗低。 4)炉体坚固、严密、衰老慢、炉龄长。 5)劳动条件好,调节控制方便,环境污染少。 (二)、JN型焦炉及其基础断面 图1.1 JN型焦炉及其基础断面 现代焦炉主要由炉顶区、炭化室、燃烧室、斜道区、蓄热室、烟道区(小烟道、分烟道、总烟道)、烟囱、基础平台和抵抗墙等部分组成,蓄热室以下为烟道与基础。炭化室与燃烧室相间布置,蓄热室位于其下方,内放格子砖以回收废热,斜道区位于蓄热室顶和燃烧室底之间,通过斜道使蓄热室与燃烧室相通,炭化室与燃烧室之上为炉顶,整座焦炉砌在坚固平整的钢筋混凝土基础上,烟道一端通过废气开闭器与蓄热室连接,另一端与烟囱连接口根据炉型不同,烟道设在基础内或基础两侧。以下分别加以介绍: 1.1 炭化室 炭化室是煤隔绝空气干馏的地方,是由两侧炉墙、炉顶、炉底和两侧炉门合围起来的。炭化室的有效容积是装煤炼焦的有效空间部分;它等于炭化室有效长度、平均宽度及有效高度的乘积。炭化室的容积、宽度与孔数对焦炉生产能力、单位产品的投资及机械设备的利用率等均有重大影响。炭化室顶部还设有1个或2个上升管口,通过上升管、桥管与集气管相连。 炭化室锥度:为了推焦顺利,焦侧宽度大于机侧宽度,两侧宽度之差叫做炭化室锥度。炭化室锥度随炭化室的长度不同而变化,炭化室越长,锥度越大。在长度不变的情况下,其锥度越大越有利于推焦。生产几十年的炉室,由于其墙面产生不同程度的变形,此时锥度大就比锥度小利于推焦,从而可以延长炉体寿命。 1.2 燃烧室 双联式燃烧室每相邻火道连成一对,一个是上升气流,另一个是下降气流。双联火道结构具有加热均匀、气流阻力小、砌体强度高等优点,但异向气流接触面较多,结构较复杂,砖形多,我国大型焦炉均采用这种结构。每个燃烧室有28个或32个立火道。相邻两个为一对,组成双联火道结构。每对火道隔墙上部有跨越孔,下部除炉头一对火道外都有废气循环孔。砖煤气道顶部灯头砖稍高于废气循环孔的位置,使焦炉煤气火焰拉长,以改善焦炉高向加热均匀性和减少废气氮氧化物含量,还可防止产生短路。 图1.2 JN型焦炉斜道区结构图 1.3 斜道区 燃烧室与蓄热室相连接的通道称为斜道。斜道区位于炭化室及燃烧室下面、蓄热室上面,是焦炉加热系统的一个重要部位,进人燃烧室的焦炉煤气、空气及排出的废气均通过斜道,斜道区是连接蓄热室和燃烧室的通道区。由于通道多、压力差大,因此斜道区是焦炉中结构

焦炉煤气综合利用制取液化天然气

焦炉煤气综合利用制取液化天然气 1 问题提出 近年来, 我国对焦化行业实施“准入”制度,焦炉煤气的综合利用成为炼焦企业生存与发展的关键。一些大型的炼焦企业建设了焦炉煤气制甲醇项目,并取得了良好的经济效益,为大型炼焦企业综合利用焦炉煤气找到了新方法。但中小焦化企业生产规模相对较小,焦炉煤气产量少,成本优势不明显,多家企业联合又困难,影响了焦化企业对焦炉煤气的综合利用。 2 焦炉煤气生产LNG的技术特点 为了解决中小企业焦炉煤气综合利用的问题,中科院理化技术研究所改变利用思路,将有效成分甲烷和氢气作为两种资源综合利用,开发出了焦炉煤气低温液化生产LNG联产氢气技术(已申请专利),新技术具有以下特点: 1) 可以省去甲烷转化工序,大大节省投资成本。 2) 由于新工艺拥有独立的循环制冷系统,操作弹性非常大,适应性强,运行稳定。 3) 产生的氢气可以利用氢气锅炉为全厂提供动力和热力,这方面的技术已经非常成熟。有经济实力的企业还可以配套合成氨等装置,相对投资少,效益更高。并随着氢气利用技术的日益发展可以生产液氢产品等。 4) 产品市场好。预计未来15年中国天然气需求将呈爆炸式增长,到2010年,中国天然气需求量将达到1000×109 m3,产量约800×109 m3,缺口将达到200×109 m3;到2020年天然气需求量将超过2000×109m3,而产量仅有1000 ×109m3, 50%将依赖进口。 5) 整套方案中工艺流程短,操作简单。处理量1 ×106 m3 /d的生产装置,只需要40~50操作工,非常适合中小型焦化企业对焦炉煤气的综合利用。 3 焦炉煤气生产LNG联产氢气工艺路线 液化天然气是天然气经过预处理,脱除重质烃、硫化物、二氧化碳、水等杂质后,在常压下深冷到-162℃液化制成,液化天然气是天然气以液态的形式存在,

焦炉煤气常识指导

精心整理 煤气基础知识 一、 煤气基本常识 1、 煤气:是指煤或焦碳经热化学加工而产生的可做为燃料或化工原料的气 2、 、碳 3、 标立,大卡/标立。空气中安全标准为0.01克/标立,克中毒含量0.04克/标立。 碳氢化合物CnHm —无色,有毒,在空气中含有0.08%时就会引起中毒。 氧气O2—无色无味,比空气轻1.1倍,可助燃,空气中含量21%。

氮气N2—无色无味的毒性气体,比空气轻,具有窒息作用,空气中含量79%。 二氧化碳CO2—无色无味,比空气重1.5倍,有窒息作用。 一氧化碳CO—无色无味,比空气轻,热值3056大卡/标立,空气中爆炸范围12.5—75%,着火温度610C°,空气中安全浓度30mg/m3(24ppm),

工作人员进行安全技术培训,经考试合格后才准上过工作,以后每两年进行一次复检。并且煤气作业人员应每隔1-2年进行一次健康体检,不符合要求者,不应从事煤气作业”;“凡有煤气设施的单位应设专职或兼职的技术人员负责本单位的煤气安全安全管理工作”。

1、煤气区域工作必须确保两人以上,相互监护。煤气区域空气中的CO安全浓度不应超过24ppm,在超过安全浓度的地区工作时必须采取必要的安全措施。带煤气作业要佩戴正压式空气呼吸器,使用前要检查确认,保证空气压力28-30mpa,当压力低至5mpa或听到报警声,应立即撤出事故现场 2、CO浓度和可工作时间规定: 3 4 5 爆型。特别是焦炉煤气大量泄漏的现场严禁使用手机。 6、进行煤气设备检修检查,必须与煤气设备设施所属单位联系。取得允许后方可进行,工作完毕后应告知设备单位负责人。 7、进行带煤气的危险性作业,必须与焦化厂联系,请求救护人员进行现

焦炉煤气的处理与应用

焦炉煤气的处理与利用 彭云飞学号11721465 (上海大学材料科学与工程学院,上海) 摘要:焦炉煤气是炼焦过程中得到的重要副产品,近些年对焦炉煤气的组成成分的研究已经相当成熟。焦炉煤气属于中热值然气,其中包含巨大的利用价值。而我国作为世界钢铁大国之一,产焦量也位于世界前列,但焦炉煤气的利用方面却远远不及发达国家,造成了巨大的能源浪费。本文介绍了有关焦炉煤气的基本知识,重点介绍了利用焦炉煤气民用供气、发电、作为工业原料、生产化工产品、高炉喷吹工艺以及这些利用方式的经济效益分析。 关键词:焦炉煤气、处理、利用 Abstract: The cole oven gas is the most secondary product during coking processing, the study about the composition of the coke oven gas has become more devoloped. The coke oven gas is calorific value of fuel gas, containing great use value. But China is one of the world steel superpower, the using of the coke oven gas has falt behind of the devoloped country, making a great waste of energy. This paper give us some things about the coke oven gas, and focusing on the using of coke oven gas on town gas, generate electricity, as industrial raw material, producing chemical products, blast furnace injection process and the economic benefit of this using mathods. Keys: Coke oven gas, handling, using

焦炉煤气常识指导

焦炉煤气常识指导文件编码(GHTU-UITID-GGBKT-POIU-WUUI-8968)

煤气基础知识 一、煤气基本常识 1、煤气:是指煤或焦碳经热化学加工而产生的可做为燃料或化工原料的气体。 2、煤气是可燃气体与不可燃气体的机械混合物。 可燃气体成分:一氧化碳CO、甲烷CH4、氢气H2、硫化氢H2S、碳氢化合物 CnHm。 不可燃气体成分:二氧化碳CO2、氮气N2、氧气O2 3、各种成分的性质: 氢气H2—无色无味,比空气轻1.45倍。热值为2612大卡/标立与空气混合遇明火易暴炸。爆炸范围4.1-74.2%,无毒,但浓度较大时易引起窒息。 甲烷CH4—无色但有葱味,比空气轻1.8倍,热值为8699大卡/标立,爆炸范围5.3-15%无毒,但浓度大时易引起窒息。 硫化氢H2S—无色,剧烈臭味,比空气轻1.2倍,燃烧热值为5600大卡/标立。空气中安全标准为0.01克/标立,克中毒含量0.04克/标立。 碳氢化合物CnHm—无色,有毒,在空气中含有0.08%时就会引起中毒。 氧气O2—无色无味,比空气轻1.1倍,可助燃,空气中含量21%。 氮气N2—无色无味的毒性气体,比空气轻,具有窒息作用,空气中含量79%。 二氧化碳CO2—无色无味,比空气重1.5倍,有窒息作用。 一氧化碳CO—无色无味,比空气轻,热值3056大卡/标立,空气中爆炸范围12.5—75%,着火温度610C°,空气中安全浓度30mg/m3(24ppm),可中毒致死浓度500ppm 4、煤气种类: 高炉煤气BFG、转炉煤气LDG、焦炉煤气COG

(CO)的优越性,工业上广泛使用,但因其着火点和爆炸下限偏低,因此控制泄漏、着火和爆炸尤为重要。 5、煤气的六大特性和三大危害 特性:燃烧爆炸性、毒害性、导电性、压缩膨胀性、扩散性、腐蚀性 危害:中毒、着火、爆炸 二、煤气使用 (一)煤气使用一般安全 1986年、2005年分别颁布和修订再版《工业企业煤气安全规程》(GB6222—2005),指导煤气生产、供应、使用的基本法规。其中明确规定:“应对煤气工作人员进行安全技术培训,经考试合格后才准上过工作,以后每两年进行一次复检。并且煤气作业人员应每隔1-2年进行一次健康体检,不符合要求者,不应从事煤气作业”;“凡有煤气设施的单位应设专职或兼职的技术人员负责本单位的煤气安全安全管理工作”。 1、煤气区域工作必须确保两人以上,相互监护。煤气区域空气中的CO安全浓度不应超过24ppm,在超过安全浓度的地区工作时必须采取必要的安全措施。带煤气作业要佩戴

焦炉煤气的综合利用技术分析

焦炉煤气的综合利用技术分析 随着我国焦化产业的不断发展和技术提升,焦炉煤气已经从焦化副产品逐步转变成为一种重要的资源,如何进行焦炉煤气的综合利用,实现焦炉煤气资源价值,是焦化行业共同关注的话题。本文对焦炉煤气的综合利用技术进行了探究,从焦炉煤气综合利用的必要性、综合利用技术、综合利用的优势前景等方面进行了分析和探索,以促进焦化产业的不断发展。 标签:焦炉煤气;综合利用;优势前景 1 焦炉煤气的组成及综合利用的必要性 1.1 焦炉煤气的组成 焦炉煤气(COG,Coke Oven Gas)是一种混合物,集中烟煤配置成炼焦用煤,炼焦用煤在高温(通常在950℃到1050℃之间)干馏之后会产出一种可燃性气体,这种可燃性气体即为焦炉煤气,其中二氧化碳、氮气以及氧气是不可燃组分,其他的为可燃组分。焦炉煤气的主要成分如表1所示: 其中二氧化碳、氮气以及氧气是不可燃组分,其他的为可燃组分。 1.2 焦炉煤气综合利用的必要性 焦炉煤气的综合利用是极为必要的,当前我国钢铁工业发展极为迅猛,焦炭产量也在持续增加,然而炼焦企业的焦炉煤气利用情况极为不佳,多数焦化厂出现“只焦不化”的状态没有实现充分的回收利用,不但资源浪费,而且还向大气输送大量的硫氧化物、氮氧化物以及粉尘,对自然环境造成影响。所以需要加强对焦炉煤气的综合利用,以充分利用资源,同时保护自然环境。 2 焦炉煤气的综合利用技术 2.1 焦炉煤气用于发电 焦炉煤气是中热值煤气,所以可以用于发热发电,焦炉煤气的发热值在17MJ/m3到19MJ/m3之间,故而可以被用来燃气轮机发电、内燃机发电以及蒸汽轮发电。具体来说,燃气轮机发电主要是通过压缩空气,使空气与焦炉煤气混合并通过压气机涡轮使空气在急剧膨胀中做功,从而使动力涡轮旋转,继而带动发电机让发电机发电。利用内燃机发电则是直接用煤气驱动燃气轮机,类似汽车发动机发电,在火花塞点火之后直接使焦炉煤气燃烧,从而使燃气轮机转动,继而发电,该种发电方式也是最为常用的一种发电方式。 2.2 焦炉煤气用于生产甲醇

焦炉煤气净化技术现状

焦炉煤气净化技术现状 在2004年国家公布的《焦化准入条件》中,明确规定新建或改造焦炉要同步配套建设煤气净化设施。至2006年底,经国家发改委核准的厂家仅108家,这些家的产能之合仅占当年焦炭总产能的30%左右。还有大量企业未被核准,其主要原因之一就是煤气净化设施配套不完善。煤气净化设施主要包括冷凝鼓风装置、脱硫脱氰装置、氨回收装置及苯回收装置。所谓配套不完善,是指缺某个或某些装置,特别是缺脱硫脱氰装置。 主流工艺技术 我国焦炉煤气净化工艺通过不断引进国外先进技术和创新发展,已经步入世界先进行列;煤气净化工艺已基本涵盖了当今世界上较为先进的各种工艺流程。目前,年产焦炭100万t以上的大型焦化厂全部设有煤气净化系统,对来自炼焦炉的荒煤气进行净化处理,脱除其中的硫化氢、氰化氢、氨、焦油及萘等各种杂质,使之达到国家或行业标准,供给工业或民用用户使用;同时,对化工副产品进行回收利用。 煤气净化工艺采用的主要技术包括:焦炉煤气的冷凝冷却及排送、焦油氨水分离、焦油、萘、硫化氢、氰化氢、氨等杂质的脱除以及粗苯的回收等。 焦炉煤气的冷凝冷却 焦炉煤气的冷凝冷却,即初步冷却,普遍采用了高效横管间冷工艺。其特点是:煤气冷却效率高,除萘效果好;当煤气温度冷却至20~22℃,煤气出口含萘可降至0.5g/m3,不需另设脱萘装置即可满足后续工艺操作需要。

高效横管间冷工艺通常分为二段式或三段式初冷工艺。当上段采用循环冷却水,下段采用低温冷却水对煤气进行冷却时,称为二段式初冷工艺。为回收利用荒煤气的余热,通常在初冷器上部设置余热回收段,即构成三段初冷工艺。采用三段初冷工艺,回收的热量用作冬季采暖或其它工艺装置所需的热源,不仅可以回收利用荒煤气的余热,同时也可节省大量循环冷却水,节能效果显著,应大力倡导采用。 除上述普遍采用的横管间冷工艺外,焦炉煤气的冷凝冷却也可采取先间冷,后直冷的“间直冷工艺”对焦炉煤气进行冷却。间直冷工艺的优点在于煤气在通过直冷塔冷却的同时,可对煤气中夹带的煤粉进行洗涤、净化,使去后续装置的煤气更加洁净;缺点是工艺流程较长,运行费用高,脱萘效果差,一般需单独设置后续脱萘装置。 焦炉煤气的排送 焦炉煤气的排送由煤气鼓风机完成。从焦炉来的荒煤气经初冷工艺冷凝冷却后,通常经电捕焦油器(当电捕设在负压侧)进入煤气鼓风机,由煤气鼓风机加压后,送至后续装置。 目前,国内焦化厂煤气鼓风机较多采用电动离心式煤气鼓风机,其流量调节通常采用液力偶合器调速、电机变频调速或鼓风机前导向技术完成上述三种煤气鼓风机流量调节技术均可根据煤气输送负荷的变化,对煤气流量进行自动调节、降低鼓风机的电能消耗、降低运行费用;其中,变频技术由于技术成熟,节能效果显著,在工业生产中应用广泛,因此值得广泛采用。 除电动煤气鼓风机外,蒸汽透平驱动的煤气鼓风机在国内外煤气排送工艺中也常采用。由于同电动鼓风机相比,汽动鼓风机具有能源利用率更高,更加节能

中国焦炉煤气利用现状及发展前景

龙源期刊网 https://www.360docs.net/doc/707035810.html, 中国焦炉煤气利用现状及发展前景 作者:范良忠 来源:《科技创新与应用》2014年第22期 摘要:伴随着我国工业化的不断发展,焦炉煤气的回收利用的工作也在不断地发展当 中。众所周知,焦炉煤气是工业发展使用的重要能源,同时焦炉煤气也是重要的化工原料。所以,为了实现资源的综合利用,同时为了积极响应国家的“节能减排”的号召,积极保护我国的生态环境。为了更好地利用工业焦炉煤气,文章就如何充分利用焦炉煤气所的现状及发展前景做出了一定的诠释,并且提出了见解。 关键词:中国;焦炉煤气;利用现状;发展前景 众所周知,当今我国是世界上最大的焦炭生产国,近几年以来,我国的焦炭产量逐年增长。只是一零年,我国的焦炭产量就差不多约4.0亿吨,我国焦炭的产量大约有全世界的焦炭总产量的百分之六十左右,所以,焦炉煤气的回收利用有很大的前景。焦炉煤气主要是指焦炉炉煤在焦炉的炭化过程中干馏而产生的一种黄褐色的汽气混合物。它的组成比较复杂,它可以用作工业的能源用在钢铁企业中,或者其它的工业部门。 1 我国焦炉煤气的利用现状简述 伴随着我国的钢铁企业的不断发展,近几年,由钢铁行业所产生的焦化行业也逐渐有了突飞猛进的发展。人们开始越来越关注对焦炉煤气进行综合的回收和利用。这种方式不仅符合我国当前的产业政策,而且可以建设节约型的社会,有利于我国打造一种循环经济从而实现我国工业的绿色发展。随着我国环保部门的要求不断提高,以及我国对资源综合利用的水平也在逐渐的提高。所以人们对焦炉煤气的回收利用这项工作的关注程度越来越大。在这种大趋势的发展和驱动之下,我国逐渐产生了一些新的对焦炉煤气进行利用的方法和途径。 1.1 燃烧焦炉煤气,从而提供能量 焦炉煤气用作燃料的方面可以分为工业利用和民用方面。在工业利用方面,焦炉煤气主要利用在以下的几个方面:(1)焦炉煤气的生产企业在化学产品的回收和净化过程中,可以作为一种高效的加热燃料。(2)焦化企业可以利用剩余的那些焦炉煤气用来发电,为发电提供燃料。(3)焦炉煤气可以作为钢铁企业的炼钢,轧钢等工序的燃料。焦炉煤气在民用燃料利用方面主要体现在经过净化之后的焦炉煤气可以通入我国城市的供气管网,从而可以作为居民的生活用气来使用。因为工业生产的焦炉煤气具有热值相对较高,而且一氧化碳的含量相对较低等优点,所以是一种很适合作为民用燃气的一种气体。虽然我国的西气东输的发展已经为一些地区使用天然气提供了相当便利的条件。虽然焦炉煤气在和天然气相比的情况下,仍然存在着一些缺点,比如焦洁净度方面不如天然气。但是在天然气输送不到的地方,或者西气东输没有覆盖的城市,焦炉煤气依然可以作为一种主要的民用燃气来供给居民使用。

煤焦化基础知识50题问答1

煤焦化基础知识50题问答 1、中国煤炭分哪几类?烟煤分哪些煤种? 答:中国煤炭分为:褐煤、烟煤、无烟煤三大类。 烟煤分为:贫煤、贫瘦煤、瘦煤、焦煤、肥煤、1/3焦煤、气肥煤、气煤、1/2中粘煤、弱粘煤、不粘煤、长焰煤十二个煤种。 2、原煤为什么经过洗选加工? 答:如果把煤比作工业的粮食,那么由地下采出的原煤只能算是“稻谷”,这种“稻谷”在许多情况下是不能直接利用的,需要对原煤进行洗选加工。 原煤灰分高,灰分是存在于煤中的主要有害杂质。炼焦时煤的灰分对焦炭质量影响很大。炼焦煤的灰分每降低1%,焦炭灰分降低1.33%。在高炉冶炼过程中,焦炭灰分每降低1%,则高炉焦炭消耗量可节约2.2%~2.3%。同时,高灰分的煤增大运输量,如果每年有2亿t煤炭需要经过铁路运输的话,当煤的灰分增加1%时,大约每年就得多装300万t矸石,需要6万多节50t的车皮,这是十分惊人的浪费。 无论是化工用煤、动力用煤、民用燃煤,灰分都是有百害而无一利的。煤燃烧时,矿物质(灰分)不仅不产生热量,而且会吸收一部分热随炉灰排出。有关生产实践表明,当动力用煤的灰分增加1%时,则燃煤消耗量将增加2.0%~2.5%。 除了灰分以外,硫含量也是十分有害的杂质。一般认为,1%(质量分数)硫分的危害程度不亚于8%灰分的危害程度。不仅炼焦用煤要求低硫炼焦,既是作为燃料使用,煤中的硫也是有害的,因为煤中硫的80%是可燃的,燃烧时产生SO2、SO3和H2S等有害气体,排入大气,污染环境,造成公害。 原煤洗选的主要任务是:降低煤的灰分,使混杂在煤中的矸石、煤矸共生的夹矸煤与煤炭按其相对密度、外形及物理性质方面的差别加以分离。同时,降低原煤中的无机硫含量,如煤中的黄铁矿硫(FeS2),它以单体混杂在煤中,且相对密度很大,在重力洗选过程中,容易将其去除。通过洗选加工以满足各种不同用户对煤炭质量指标的要求。 3、什么是煤的高温干馏?

焦炉煤气转化利用现状

焦炉煤气转化利用现状 摘要:焦炉煤气是大吨位能源资源和化工原料,充分利用对环境保护和经济发展有着重大作用。分析了我国焦化工业及焦炉煤气的利用现状,介绍了焦炉煤气作为燃料、合成气和苯加氢装置的氢源等面的使用现状: 指出了焦炉煤气在燃气发电、合成甲醇和生产海绵铁用还原性气体等领域的应用前景。 关键词:焦炉煤气转化利用现状 1 焦化工业和焦炉煤气利用现状 1.1 焦化工业概况 焦化是中国煤炭化工转化的最主要方式。在煤的非燃料利用中,炼焦用煤占70%以上,数量最大。中国从1991年焦炭产量达到7350万t跃居世界产焦第一位以来,焦化工业一直快速发展。2004年,中国焦炭产量2.09亿t,耗煤5.3亿t。中国焦炭产量占全球焦炭生产总量的49.7%。中国是世界上第一焦炭生产大国。 中国焦炭出口遍及世界主要地区,对世界焦炭市场影响较广。2003年从中国进口焦炭量在50万t以上的国家有:日本291万t、巴西214万t,印度118万t、意大利117万t、美国91万t、比利时76万t、荷兰72万t、法国64万t、南非61万t。2003年中国焦炭出口贸易量约占全球焦炭出口贸易量的56.44%左右。2004年中国出口焦炭1501万t,比2003年增长2.0%。几年来中国保持全球第一位焦炭贸易大国。

中国焦炭消费量稳定在 1.5~1.9亿t。2003年焦炭消费达 1.63亿t,2004年焦炭消费1.94亿t。中国焦炭消费居全球之首。焦炭是我国国民经济各部门尤其是钢铁工业的主要原材料。1999年钢铁工业消费的焦炭产量约占国民经济各部门焦炭消费总量的74%。2003年钢铁工业消费焦炭13580万t,占全国消费焦炭量的83.3%。中国是全球第一位焦炭消费大国。 2004年底中国焦炭生产企业1304家,焦炉2710座,总生产能力 2.4亿t,在建焦炉245座,总生产能力1.2亿t,焦炭总生产能力在近两年内将达到3.6亿t 。 2004年我国焦炭总消费量为 1.94亿t。根据2005年 1~4月份粗钢增产24.8%估算,2005年粗钢产量将达到3.39 亿t,按焦比0.674估计,2005年需焦炭量约2.28亿t。但是 2005年焦炭生产能力可能达到 3.3亿t,焦炭生产能力比需 求量超28.18%。近几年,焦化行业盲目扩张,产能过剩,焦化 行业面临压力,需认真调整。 1.2 焦炉煤气利用状况 随着焦化工业的迅速发展,焦炉煤气已成为一种大吨位 能源和化工资源。 焦炉煤气产率与入炉煤的挥发分相关,随挥发分增加焦炉煤气产量也增加,每吨干煤产生的净煤气量为300~400Nm3。一般情况下1.30~1.40t干煤生产1t焦炭。吨焦的产气量约为470Nm3。2004年全国焦炭产量达2.0873亿t,焦炉煤气的资源总产量达980亿Nm3。

相关文档
最新文档