涂层检测方法

涂层检测方法
涂层检测方法

涂层检测方法

检测项目检测方法

流平性(外观)①肉眼观察涂层是否有缩孔、缩边、橘皮等不平整的现象,无异

常现象,涂层分布均匀,则为合格。

②滴水观察是否水滴不扩散、或扩散慢、水滴不园,如水滴扩散

且性状规则,合格。

附着力(划格法) 用划格器在样片的涂层上十字划格,划出间隙为1mm的网格;

再用透明胶完全贴附在网格上,手持胶带的一端与涂面垂直,迅速

地将胶带撕下,重复三次,观察涂层是否有脱落,考察涂层与铝材、

涂层与涂层之间的附着力。

无色涂层(包括面漆涂层)的脱落判断办法:通过继续考察涂

层耐高温黄变性观察黄变的颜色判断涂层有无脱落——即将涂层

置于300℃烘烤5min后取出观察涂层外观,底涂涂层如有脱落将

会露出基材的颜色(面涂脱落将会露出底涂的颜色)。

杯突裁切出约5cm宽的样片,把样片涂层向上放在杯突仪冲头上方夹

紧,逆时针匀速旋转,直至仪器表盘的数字显示为“5.00”为止。

取出样板,用指甲轻刮拉伸处,观察涂层是否脱落。

冲击裁切出约5cm宽的样片,样片待测涂层向上放在冲击仪凹槽处,将

冲头提高置于50cm 处,让冲头自然下降进行冲制;取出后观察涂

层是否脱落,如无脱落现象,则为“合格”

初期亲水性用微量进样器吸取5μl的纯水,滴在样板表面,在1min内用数显

卡尺测量水滴直径。水滴不圆的以椭圆计,量取水滴最长与最短

的直径取平均值。每张样板取3个不同位置用接触角测定仪测量样

板的接触角值,求平均值。

耐挥发油取三小张样板:用挥发油AF-3R浸泡5min,取出放入150℃烘箱

烘5min,冷却以后,放入纯水里浸5min,然后再放入150℃烘箱

烘5min,冷却后测量样板浸油的部位的水滴直径,取三点求平均

值。

持续亲水性干湿循环取3张样片,挂在干湿循环机上进行实验测试(浸泡2min,吹干6min为一个循环)300 个循环后取出晾干,用接触角测定仪测量

样板的接触角值,取三点求平均值。

水冲取3张样片,浸在流动的自来水(流速1-3 L/min)中100h后,取出晾干,用接触角测定仪测量样板的接触角值,取三点求平均值。

水煮将样片置于沸腾的水中,保持15分钟取出吹干。1. 观察涂层是否

有鼓泡、脱落等不正常现象; 2. 用胶头滴管吸取少量纯水,直接

滴在涂层上,肉眼观察水滴是否扩散;根据2,可判断涂料是否

固化充分,如底、面固化不充分,水煮后可能失去亲水性,水滴不

扩散。

耐碱20%NaOH 裁切出约5cm宽的样片,折成一个小凹槽,用20%NaOH滴数滴在

凹槽处,使其充满液体,同时记录开始时间,观察3分钟内有无

气泡(允许少量气泡),再用水冲洗后观察有无腐蚀点,如白色的

点或黑色的点。

耐溶剂性用乙酸乙酯(丁酮)润湿包裹好5-6层棉布的1Kg铁锤,垂直置于

板面中部处,水平用力来回平推保持乙酸乙酯润湿棉布,一个来回

记一次,观察被乙酸乙酯平推的涂层是否受破坏以及受破坏的程

度。共平推30次。A.≤30次时涂层被破坏,记录露出基材表

面时的次数以及受破坏的程度。B.平推30次后,涂层如无脱

落现象,则为合格。注意事项:用铁锤平推时不要向下用力推,

保持铁锤与板面自然垂直。可用于在线检测涂层固化程度。

盐雾裁成10×15 cm2 的3张样片,放置在中性盐雾箱中(试验箱温度:

35℃)进行测试,按照规定的时间(100h或500h),到期取出洗干

净、晾干,按板面的腐蚀程度根据等级标准手册评级。中性盐

雾盐水的配制:称取500g 氯化钠(化学纯),溶于10kg水中,摇

匀。浓度为50±10 g/L。

涂层膜重 g/m2 将涂层样板裁成10×10cm2的正方形,150℃左右烘烤5min冷却

后在千分天秤上称出总重,放入电阻炉在500-600℃烘烤碳化5min

左右,取出用干净的纱布将涂层擦拭干净,

称出铝板的重量,并且计算膜重,计算公式如下:

膜重(g/m2)=(总重 g-铝板重g)/ 面积(10×10 cm2)×10-4

随着包装技术和涂料工业的飞速发展,马口铁包装的应用范围越来越广,已经广泛应用于食品罐头、饮料、化妆品和石油化工产品的包装。在食品饮料行业,很多产品具有较强的酸性,如番茄酱、酸黄瓜等,有些食品含有大量的蛋白质,在高温杀菌时会产生S2离子和H离子等,对罐内壁具有较强的腐蚀性,不但影响了罐头的货架寿命,而且会影响产品的风味,严重的易使产品腐败变质。化妆品和石油化工产品也一样,大部分对罐内壁具有较强的腐蚀性,因此其对罐的内涂层都有较高的要求。为了防止大气和环境介质对罐外壁的腐蚀,避免或减少外表的机械损伤,保护印刷面,提高罐的光泽度等,罐外壁一般有外涂层。为了增强罐内外涂层的防腐蚀能力,真正实现涂层的功能,就必须预防涂层的各种缺陷。不良的涂层会使其失去保护作用甚至加速罐的腐蚀,有些还会影响罐的外观。

1.原材料选用不当产生的缺陷

马口铁的质量指标有很多,其中镀锡量、调质度、杯突值等指标对机械加工质量的影响较大。这些指标与产品的机械加工适应性不符时,由于铁皮本身的变形不均会拉裂涂层,出现涂层起皱现象。马口铁的表面状况与表面质量是影响涂层附着力的主要因素,如果马口铁

表面存在伤痕、凹坑、折皱、灰尘、锈迹等缺陷,涂布质量将受到较大影响,会产生涂层厚度不均、附着力不够等缺陷,煮水、煮酸时会产生泛白、起泡、脱落等现象。

为了防止锡层被空气氧化变黄和马口铁生锈,马口铁表面常有一层油膜,这层油膜的存在,会使涂层的附着力大大降低。在涂布时如果油膜去除不干净,光油层与铁表面的粘附力不够,会产生涂层龟裂脱落。

马口铁的表面粗糙度也是影响因素之一。马口铁的供货状态主要有光面、石纹面和麻面等几种。虽然有些有机涂料在表面越光滑时附着力越强,但由于石纹面和麻面的比表面积增大,有利于涂层与铁皮表面的机械结合和粘附结合,大部分涂料与石纹面或麻面的结合力较强。如果产品需要进行高温蒸煮、高温杀菌、深冲、反复弯曲等方面的加工,并对涂层附着力要求较高时,需谨慎考虑马口铁表面与涂层的适应性,否则会出现涂层龟裂脱落现象。

涂料品种繁多,构成各异。根据使用的场合不同,可分为内涂料和外涂料。根据涂料的性能,可分为抗酸涂料、抗硫涂料、防粘涂料、耐高温蒸煮涂料、耐高温杀菌涂料、耐深冲涂料和其它专用涂料等等。生产时必须根据产品的用途和机械加工要求选择适宜的涂料,否则即使涂膜量、固化状态符合要求,涂层也起不到相应的保护作用,会出现各种各样的缺陷。

涂料的粘度是涂料内部阻碍其相对流动的一种特性,当粘度较大时,涂层在相同的涂布系统下可产生涂层过厚现象,同时涂料的流平性能差,容易导致涂层厚度不均匀,起皱或局部堆积,有时会出现“桔皮”现象。在局部堆积区域还有可能产生局部固化不完全,从而产生局部附着力不好,煮水泛白、脱落等现象。稀释涂料时,也应选用与涂料相适应的稀释溶剂:溶剂使用不当,涂层会产生“小气泡”、“针孔”和“起皱”现象。涂料的粘度太低时,一方面涂膜的厚度低,涂层的致密性差,涂层导电值升高。另一方面,在涂布时,由于涂料与涂布滚筒的粘附力差,在离心力作用下,涂料会直接滴在铁皮上,产生滴状堆料现象。

涂料的固含量也是涂料的一个重要性能指标。固含量较大时,成膜物质多,在同样的涂布条件下,涂层厚度较大,提高了涂层的保护性能,但机械加工性能会降低,同时一次性涂布量较大时,由于固化条件很难保证,容易出现固化不良、附着力不够、涂层龟裂和脱落现象。固含量高,涂料的流平性能会有一定程度的降低,相应会出现“起皱”等缺陷。

2.涂布不良所引起的缺陷

涂布时,为了固化良好,增强涂层的附着力,涂层厚度应尽量均匀一致,减少厚度的同板差。涂布不良分为几种情形:一种是涂布不均匀,涂膜厚度的同板差较大,这样固化条件很难满足各种厚度的要求,容易出现局部因厚度过大而固化不良,附着力下降。这样,会出观煮水煮酸泛白、脱落现象。产生这种现象的原因是涂布系统有缺陷,涂布滚筒的胶体硬度

不适中,传递性能不佳。胶筒的圆柱度太大、滚筒运转不平稳;安装调试滚筒时、亡下两个滚筒的轴线不平行,沿轴线方向上,两滚筒之间的间隙不一致等原因都会造成这一现象。

第二种情况是一次性涂布的涂膜量太大,涂层厚度大甚至行“桔皮”现象,即使升高固化温度、延长固化时间,都不能达到完全固化状态,涂层煮水煮酸泛白、附着力低甚至有脱落现象。产生这一现象的原因除工艺设定不当外,上下两涂布滚筒的间隙太大(如修整胶筒后,重新安装时末认真调节间隙):涂料粘度太高都会造成这…—现象。生产前,应先做涂料性能试验,确定涂料的最仕使用粘度,并仔细调节滚筒间隙就能有效防止这一现象的发生。

第三种情形是存在漏涂点,涂膜导电值高,涂层耐蚀力下降,甚至失去保护作用。滚筒不干净有异物如油污、固体尘埃颗粒,胶体硬化脱落;铁皮本身有异物如

固体尘埃颗粒,传动系统的润滑油渗漏滴在铁皮或胶辊上;涂料本身有异物等等都是造成这一现象的原因。生产过程中应认真观察胶辊、铁皮及涂料是否有异物存在,必要时应认真擦拭或过滤涂料。

第四种情形是涂层太薄,导电值高,耐蚀力低。形成的原因与第二种情形正好相反,主要是上下滚筒的间隙太小或涂料粘度太低等原因造成的。

第五种情形是“带涂”,是指由于滚筒刮刀不锋利或刮刀安装位置不正确,滚筒上的剩余涂料没有刮干净,当涂下一张铁皮时将铁皮的反面污染了,反面也带有涂料变样。当发现这种现象时,应认真检查刮刀的状况。

第六种情形是“留空污染”,由刁:焊接的需要,涂布时有些地方需要留空,由于铁皮的侧定位系统和后推爪调节刁;当,铁皮与滚筒刁;同步而造成留空污染。

第七种情形是吸杯痕,由于空气湿度大等原因,铁皮吸杯潮湿,吸铁时在吸杯接触处留有水迹,涂布时有水迹处涂料吸附力差而形成:吸杯痕。由刁:吸杯痕的存在而使导电值升高。

第八种情形是滚筒痕,主要是由刁:涂料粘度大,流平性能差或者是滚筒胶表面硬化造成的。涂布不良造成的缺陷还有很多,只要在平时认真观察就能发现。

3.固化不良产生的缺陷

良好的固化条件是保证涂层质量的重要因素。固化条件包括固化温度和固化时间。在预热阶段,若温度过高或预热时间过短,涂层表面干燥过快,在表面易形成固化膜,阻碍了内层的进一步固化,使固化速率大大降低,就会产生固化不完全和“针孔”现象,煮水或煮酸试验时,会出现鼓泡脱落或龟裂现象。在恒温固化阶段,温度过高,会产生“过烘”现象,涂层变色变脆,机械加工性能降低,附着力下降,耐冲击性差;温度低于固化要求时,固化刁;

完全,煮水或煮酸试验泛白,耐蚀性能差,机械加工或高温杀菌时会产生涂层龟裂、脱落现象。在生产过程中,由于烘炉结构、风速等原因,可能会存在同板温差偏大的现象,这样虽然设定温度符合要求,但在低温区仍有可能存在局部固化不完全的现象。

生产前,必须根据涂料性质、涂膜量和烘炉特性设定固化时间,铁皮在恒温固化区的时间必须在一定的范围内。时间太长,和温度过高一样,会产生“过烘”现象,涂层变色变脆。时间低于必要固化时间,就与温度低于固化温度值一样,会出现固化不完全现象。

在固化冷却阶段,要注意废气的排放和充分的冷却时间、冷却温度。冷却时间太短、冷却温度过高,涂层表面没有完全硬化,呈现“融软”状态,铁皮收集在一起后,铁皮与铁皮会粘结在一起,这种现象有人称作“反粘”,该现象在光油涂层中很容易发生。铁皮“反粘”后,会使涂层失去光泽,附着力降低,这实际上是一种冷却阶段产生的固化不完全现象。

为了避免产生上述缺陷,在设定固化温度时,首先应实际测定在固化温度下铁皮的同板温差值、表温与实际炉温的偏差,炉温的波动范围,保证铁皮的低温区应在最低固化温度以上。同时应定期检测烘炉在固温度下的温度曲线,在高温区,炉温应基本平稳,不能有大的波动,一般不应超过5℃。炉温不能达到设定温度时,应检查烘炉的加热系统和通风系统,如油料、火焰、炉膛、风机等。当炉温波动较大时,应检查生产速度是否太快,炉温监测控制系统是否异常等。

4.烘炉设备运行不良所引起的缺陷

烘炉设备运行不良所引起的缺陷主要表现为“支架伤”,支架擦伤涂膜层,严重的会产生露铁点,涂层的导电值升高,使涂层失去保护作用。产生“支架伤”的原因是多方面的,支架本身损坏,支架运行导轨弯曲变形,导轨轮不均匀磨损变形等到机械原因使铁皮在支架上抖动,是产生“支架伤”主要原因。铁皮刚进入支架时,铁皮与支架的运行不同步,铁皮与支架有较大的碰撞力,破坏了涂层,这样也会产生“支架伤”。总之,只要支架和铁皮之间有碰撞力或相对运动,或者涂料与支架之间产生了较大的吸附力,都会产生“支架伤”。

烘炉设备运行不良所引起的另一个缺陷为铁皮“铲伤”。主要是因为出口收集装置的输送皮带的速度不够,使铁皮的初速度太低,铁皮不能输送至收集框的前端,而是落在前面一张铁皮的上面,从而产生“铲伤”。还有一个原因是收集装置中向上吹气的气压太小,不能有效地托起铁皮,使铁皮前端不能达到收集框前端,前端提前落下而擦伤前面一张铁皮。此外,烘炉出口处,由于支架与输送带的位置的同步,铁皮未完全从支架上脱离时,前端部分已经落在皮带上而被皮带拖走,铁皮与支架之间也会产生“拖伤”。

5.结束语

印铁涂层缺陷的表现形式多种多样,有的表现为外观缺陷;有的表现为固化不完全,附着力下降,煮水煮酸泛白,在高温蒸煮和杀菌过程中出现龟裂、脱落;有的表现为涂层脆裂、脱落;有的表现为露铁点较多或致密性不够,导电值增大,耐蚀性能差等等。引起涂层缺陷的因素也有很多,原材料、工艺制定、设备状况、操作水平、生产环境等各个方面的不适宜因素均会造成涂层缺陷。在生产过程中发现涂层缺陷时,应根据缺陷性质确定其产生的原因并予以解决,避免造成更大的损失。

常见的微生物检测方法

常见的微生物检测 方法

摘要:微生物的检测,无论在理论研究还是在生产实践中都具有重要的意义,本文分生长量测定法,微生物计数法,生理指标法和商业化快速微生物检测简要介绍了利用微生物重量,体积,大小,生理代谢物等指标的二十余种常见的检测方法,简要介绍了这些方法的原理,应用范围和优缺点。 概述: 一个微生物细胞在合适的外界条件下,不断的吸收营养物质,并按自己的代谢方式进行新陈代谢。如果同化作用的速度超过了异化作用,则其原生质的总量(重量,体积,大小)就不断增加,于是出现了个体的生长现象。如果这是一种平衡生长,即各细胞组分是按恰当的比例增长时,则达到一定程度后就会发生繁殖,从而引起个体数目的增加,这时,原有的个体已经发展成一个群体。随着群体中各个个体的进一步生长,就引起了这一群体的生长,这可从其体积、重量、密度或浓度作指标来衡量。微生物的生长不同于其它生物的生长,微生物的个体生长在科研上有一定困难,一般情况下也没有实际意义。微生物是以量取胜的,因此,微生物的生长一般指群体的扩增。微生物的生长繁殖是其在内外各种环境因素相互作用下的综合反映。因此生长繁殖情况就可作为研究各种生理生化和遗传等问题的重要指标,同

时,微生物在生产实践上的各种应用或是对致病,霉腐微生物的防治都和她们的生长抑制紧密相关。因此有必要介绍一下微生物生长情况的检测方法。既然生长意味着原生质含量的增加,因此测定的方法也都直接或间接的以次为根据,而测定繁殖则都要建立在计数这一基础上。微生物生长的衡量,能够从其重量,体积,密度,浓度,做指标来进行衡量。 生长量测定法 体积测量法:又称测菌丝浓度法。 经过测定一定体积培养液中所含菌丝的量来反映微生物的生长状况。方法是,取一定量的待测培养液(如10毫升)放在有刻度的离心管中,设定一定的离心时间(如5分钟)和转速(如5000 rpm),离心后,倒出上清夜,测出上清夜体积为v,则菌丝浓度为(10-v)/10。菌丝浓度测定法是大规模工业发酵生产上微生物生长的一个重要监测指标。这种方法比较粗放,简便,快速,但需要设定一致的处理条件,否则偏差很大,由于离心沉淀物中夹杂有一些固体营养物,结果会有一定偏差。 称干重法:

关于磷化处理原理

金属磷化处理 在各类制造业中对钢、镀锌钢、锌和铝等金属作磷化处理是表面处理中的重要步骤。在油漆前的金属表面预处理中作磷化处理的目的是为了增强材料的抗腐蚀能力、帮助冷成形、改善部件在滑动接触时的摩擦性能。本文将用实例来加以说明。 磷酸锌是一种在金属基材上生成的晶型转化膜,这种膜是利用了那些先让溶于酸的金属离子起反应然後经水稀释而成的磷化液来处理生成的。传统的电镀法是利用电流在金属上生成镀膜,磷化则是让金属与磷化液接触发生酸蚀反应而生成磷化膜的。硝酸和磷酸是常用的用于溶解金属的无机矿物酸。 依照工艺要求可以在磷化液中添加锌、镍和锰等金属离子。为了得到特殊的效果,也可加一些其它金属离子,磷化液中加镍能提高材料的抗腐力加快磷化反应。近年来所发展的无镍工艺的效果已经也可在各方面与含镍工艺相竞争。 在磷化液中加入促进剂可以提高磷化反应速度、消除氢气的影响和控制磷化渣的生成。促进剂可以是单一的物质、也可以为取得最佳效果而将几种物质混合一起使用。可以选用的促进剂有亚硝酸盐/硝酸盐、氯酸盐、溴酸盐、过氧化物和一些有机物(如:硝基苯磺酸钠)。 在对热浸镀锌板或铝板作磷化处理时还常添加游离或络合的氟化物。图1是使用不同的磷化工艺所生成的各种磷酸盐晶体。 一,磷化反应机理: 1. 酸蚀反应 金属表面与磷化液发生的第一个反应是将某些金属从表面溶解下来的酸蚀反应。不同的磷化液对钢的酸蚀速度约1-3 g/m2;作厚膜磷化时,酸蚀反应速度还要求高许多。酸蚀反应对形成涂膜是非常重要的,因为它既可净化金属表面、又能提高漆膜的附著力。在酸蚀反应发生时,由于金属表面的溶解,所以紧靠表面的磷化液中的游离酸被消耗,金属离子进入磷化液,所溶入的金属离子类型与所处理的基材有关。在磷化液中添加氧化促进剂可减少酸蚀反应时所生成的氢气: 钢表面: Fe + 2H+1 + 2Ox →Fe+2 + 2HOx 镀锌钢表面: Zn + 2H+1 + 2Ox →Zn+2 + 2HOx 铝表面: Al + 3H+1 + 3Ox →Al+3 + 3HOx 2. 磷化反应: 在磷化液中所发生的第二个反应是磷化。由于在金属与溶液的界面上的游离酸度的降低、PH升高,金属阳离子就不再以可溶离子形式存在,它们与溶液中的磷酸盐反应后以磷酸锌的形式沉淀结晶在金属表面。 依据不同的工艺方法,这种晶体可有不同的组成和结构: 3Zn+2 + 2H2PO4-1 + 4H2O →Zn3(PO4)2·4H2O

钯碳含量检测方法

钯炭的含量检测方法 稀王水溶液:盐酸∶硝酸∶水= 3∶1∶1 取供试品约5g置于250ml烧杯中,加入50ml盐酸溶液(1∶1)煮沸10分钟清洗其表面。再用水煮沸洗涤三次。将表面处理好的供试品转移到称量瓶内,放入干燥箱,110℃干燥1小时,取出放入干燥器中,放冷至室温。精密称取处理好的供试品1.0g,置于250ml烧杯中,加入20ml稀王水,置于带调压器的电炉上加热至近沸,直至供试品全部溶解,再继续加热,使溶液体积浓缩至约5ml,然后分三次加入浓盐酸(每次4ml),分别蒸至近干,加入14ml 10%氯化钠溶液,蒸至近干,加入200ml 7%(V/V)盐酸溶液,在搅拌下缓慢加入20ml 1%丁二酮肟乙醇溶液。待沉淀完全后,用已在110℃干燥至恒重的四号石英砂芯漏斗抽滤,用7%(V/V)盐酸溶液洗涤至滤液无色,再用水洗涤至滤液呈中性。将石英砂芯漏斗抽干后,置干燥箱内110℃干燥1小时。取出放入干燥器冷却0.5小时称 重,直至恒重。 Pd含量按下式计算: Pd% = [(W1-W0)×0.3161/W]×100% W1为沉淀与四号石英砂芯漏斗恒重的重量,g; W0为四号石英砂芯漏斗恒重的重量,g; W为供试品重,g; 0.3161为丁二酮肟钯对钯的换算系数。 允许差:两次平行测定结果之差应不大于0.1%,取其算术平均值为测定 结果。

仅供个人用于学习、研究;不得用于商业用途。 For personal use only in study and research; not for commercial use. Nur für den pers?nlichen für Studien, Forschung, zu kommerziellen Zwecken verwe ndet werden. Pour l 'étude et la recherche uniquement à des fins personnelles; pas à des fins commerciales. толькодля людей, которые используются для обучения, исследований и не должны использоваться в коммерческих целях. 以下无正文

纯锰磷化技术原理及应用介绍

纯锰磷化技术原理及应用介绍 技术原理:我公司2002年为上海通用的F15变速箱齿轮开发了纯锰磷化工艺,至今已经在通用、大众、上汽的多款变速箱内的齿轮及其它各种传动件上使用,实践证明,纯锰磷化工艺能够显著的降低噪音,并能解决由于疲劳和应力点蚀造成的齿轮工作寿命不达标的问题。对纯锰磷化的性能,欧洲和美国的汽车行业认识较为深刻,为此制订了纯锰磷化的欧洲工程标准,对结晶的尺寸和形状有着严格的规定(请看附件)。纯锰磷化不同于我们常用的锌锰系、纯锌系、锌钙系、铁系等磷化,纯锰系磷化的结晶是层叠的半球状,而其它磷化的结晶是叶状或者针状,在钢铁连接件的表面,半球状的层叠结晶能够极好的储存润滑油,在经受工件应力相互挤压的过程中,半球状不会象针状一样被轻易拉断,半球内的润滑油可以保证工件表面一直处于完全的有油润滑状态,其功能相当于“膜轴承”。这也是为什么在我们汽车齿轮上一直无法解决的点蚀可以用纯锰磷化来解决,点蚀是金属材料在冶炼及机械加工过程中产生的金属晶格缺陷,在热处理和机械加工过程中这种缺陷被放大。在工件工作状态下,如果有晶格缺陷的表面有纯锰的磷化膜存在,就可以减缓冲击和受力强度,显著的延长缺陷晶格失效的时间。由于纯锰磷化是一种反应型化学过程,金属基材表面的不平整其反应速率不同,一般突起处反应较剧烈其受到的腐蚀更多,所以磷化后的平整度有提高。目前国内掌握纯锰磷化技术的公司还很少,大部分国内公司都是以锌锰磷化来冒充纯锰磷化,他们的加工温度只有80几度,真正的纯锰磷化要92度以上。 图一纯锰磷化膜层放大600倍显微照片

图二:普通锌系磷化放大500倍显微照片 纯锰磷化膜外观: 磷化前: 磷化后: 应用实例: 上汽集团齿轮厂 美国通用汽车赛欧变速箱齿轮 丰田汽车唐山爱信齿轮厂(变速箱齿轮) 常州溧阳齿轮厂(出口主减速齿轮) 浙江玉环汽车齿轮厂(出口星型齿轮) 浙江杭州昌杰机械厂(星型齿轮) 福建省同兴齿轮厂(变速箱齿轮) 江苏飞船齿轮股份有限公司(差速器齿轮)江苏太平洋精密锻造有限公司(差速器齿轮)检测报告: 1.纯锰磷化欧洲工程标准:

涂层镀层的检测方法

涂层镀层的检测方法 无损检测技术是一门理论上综合性较强,又非常重视实践环节的很有发展前途的学科。它涉及到材料的物理性质,产品设计,制造工艺,断裂力学以及有限元计算等诸多方面。 在化工,电子,电力,金属等行业中,为了实现对各类材料的保护或装饰作用,通常采用喷涂有色金属覆盖以及磷化、阳极氧化处理等方法,这样便出现了涂层、镀层、敷层、贴层或化学生成膜等概念,我们称之为“覆层”。 覆层的厚度测量已成为金属加工工业已用户进行成品质量检测必备的最重要工序。是产品达到优质标准的必备手段。目前,国内外已普遍按统一的国际标准测定涂镀层厚度,覆层无损检测的方法和仪器的选择随着材料物理性质研究方面的逐渐进步而更加至关重要。 有关覆层无损检测方法,主要有:楔切法、光截法、电解法、厚度差测量法、称重法、X 射线莹光法、β射线反射法、电容法、磁性测量法及涡流测量法等。这些方法中除了后五种外大多都要损坏产品或产品表面,系有损检测,测量手段繁琐,速度慢,多适用于抽样检验。 X射线和β射线反射法可以无接触无损测量,但装置复杂昂贵,测量范围小。因有放射源,故,使用者必须遵守射线防护规范,一般多用于各层金属镀层的厚度测量。 电容法一般仅在很薄导电体的绝缘覆层厚度测试上应用。 磁性测量法及涡流测量法,随着技术的日益进步,特别是近年来引入微处理机技术后,测厚仪向微型、智能型、多功能、高精度、实用化方面迈进了一大步。测量的分辨率已达0.1μm,精度可达到1%。又有适用范围广,量程宽、操作简便、价廉等特点。是工业和科研使用最广泛的仪器。超声波物位计,超声波液位计,超声波测厚仪。 采用无损检测方法测厚既不破坏覆层也不破坏基材,检测速度快,故能使大量的检测工作经济地进行。以下分别介绍几种常规测厚的方法。 磁性测量原理 一、磁吸力原理测厚仪 利用永久磁铁测头与导磁钢材之间的吸力大小与处于两者之间的距离成一定比例关系可测量覆层的厚度,这个距离就是覆层的厚度,所以只要覆层与基材的导磁率之差足够大,就

第一章 粉末涂料及其涂层性能检验

第一章粉末涂料及其涂层性能检验 第一节粉末涂料性能检验 一、取样 二、粒度 (一)筛余物 (二)激光粒度仪对粉末涂料的粒度的测定 (三)筛分法测定粒度分布 三、在容器中状态 四、密度 (一)表观密度的测定 (二)装填密度的测定 五、安息角 六、流出性 七、粉末涂料流动性 八、不挥发物含量 九、粉末涂料烘烤时质量损失的测定 十、软化温度 十一、熔融流动性 (一)水平流动性 (二)倾斜流动性 十二、胶化时间 十三、爆炸下限浓度 十四、贮存稳定性 十五、粉末涂料的电性能 (一)粉末涂料的介电常数 (二)电荷/质量比(q/m) 十六、沉积效率 十七、粉末涂料相容性 十八、粉末雾化及输送特性 十九、重金属含量的测试 二十、粉末涂料及涂层的热特性测定 第二节粉末涂层性能检验 一、标准试板底材及处理

二、涂膜制备 三、涂膜厚度 四、粉末涂料的固化条件测试 (一)炉温跟踪仪测试粉末涂料固化温度的方法(二)粉末涂料固化时间的测定 (三)粉末涂料固化程度的测定 五、涂料试样状态调节和试验的温湿度 六、边角覆盖率 七、涂膜外观 八、光泽 九、色差 十、柔韧性 十一、弯曲试验 十二、附着力(划格法) 十三、硬度 (一)铅笔硬度 (二)划痕硬度 (三)压痕硬度 十四、杯突试验 十五、耐冲击性 十六、耐湿热性 十七、耐中性盐雾性能 十八、耐液体介质性 十九、耐水试验 二十、耐人工气候老化性 二十一、涂层自然气候曝露试验 二十二、有色涂膜和清漆涂层老化的评级方法二十三、涂层气孔率(均匀性试验) 二十四、抗割穿性 二十五、耐溶剂擦试性测定 (一)手工擦拭法 (二)仪器擦拭法 二十六、耐磨性

生物检查法

1 1 0 0 生物检查法 1 1 0 1无菌检查法 无菌检查法系用于检査药典要求无菌的药品、生物制 品、医疗器具、原料、辅料及其他品种是否无菌的一种方法。若供试品符合无菌检查法的规定,仅表明了供试品在该检验条件下未发现微生物污染。 无菌检查应在无菌条件下进行,试验环境必须达到无菌 检査的要求,检验全过程应严格遵守无菌操作,防止微生物污染,防止污染的措施不得影响供试品中微生物的检出。单向流空气区、工作台面及环境应定期按医药工业洁净室(区)悬浮粒子、浮游菌和沉降菌的测试方法的现行国家标准进行洁净度确认。隔离系统应定期按相关的要求进行验证,其内部环境的洁净度须符合无菌检查的要求。日常检验还需对试验环境进行监控。 培养基 硫乙醇酸盐流体培养基主要用于厌氧菌的培养,也可用于 需氧菌的培养;胰酪大豆胨液体培养基用于真菌和需氧菌的培养。 培养基的制备及培养条件 培养基可按以下处方制备,亦可使用按该处方生产的符 合规定的脱水培养基或成品培养基。配制后应采用验证合格的灭菌程序灭菌。制备好的培养基应保存在2〖25°C、避光

的环境,若保存于非密闭容器中,一般在3 周内使用;若保存于密闭容器中,一般可在一年内使用。 1. 硫乙酵酸盐流体培养基 胰酪胨 15_ 0g 氣化钠 2. 5g 酵母浸出粉5. 0g 新配制的0. 1 % 刃天 无水葡萄糖 5.0g 青溶液1.0ml L-胱氨酸 0. 5g 琼脂0. 75g 硫乙醇酸钠0.5g 水1000ml (或硫乙醇酸)(0_3ml) 除葡萄糖和刃天青溶液外,取上述成分混合,微温溶 解,调节p H 为弱碱性,煮沸,滤清,加人葡萄糖和刃天青溶液,摇匀,调节p H , 使灭菌后在2 5 ° C的p H 值为 7.1 土0.2。分装至适宜的容器中,其装量与容器高度的比例应符合培养结束后培养基氧化层(粉红色)不超过培养基深度的1/2。灭菌。在供试品接种前,培养基氧化层的高度不得超过培养基深度的1/5,否则,须经100°C水浴加热至粉红 色消失(不释过2 0分钟),迅速冷却,只限加热一次,并防止被污染。 除另有规定外,硫乙醇酸盐流体培养基置3 0〖3 5 C 培养。 2.胰酪大豆胨液体培养基 胰酪胨1 7 .0g 氣化钠 5.0g

淀粉含量检测方法

谷物中淀粉含量的测定 本方法参考GB/T5009.9-2008《食品中淀粉的测定》的第二法酸水解法。 适用范围:本方法适用于谷物原料中淀粉含量的测定。 原理:试样经除去脂肪及可溶性糖类后,其中淀粉用酸水解成具有还原性的糖,然后按还原糖测定,并折算成淀粉。 方法一 1 试剂和材料 1.1 酒石酸铜甲液:34.639g CuSO4溶于水,加入0.5mL浓H2SO4,稀释到 500mL; 酒石酸铜乙液:173g酒石酸钾钠,加50g NaOH,稀释到500mL; 1.2 氢氧化钠溶液:c(NaOH)=1mol/L; 1.3 硫酸铁溶液:50g/L(称取50g硫酸铁,加入200mL水后,慢慢加入100mL 硫酸,冷后加入稀释至1000mL); 1.4 高锰酸钾标准滴定溶液:c(1/5KMnO4)=0.1mol/L; 1.5 乙醇溶液:85% v/v; 1.6 HCL:1+1和1+3; 1.7 NaOH溶液:40%; 1.8 乙酸铅溶液:20%; 1.9 硫酸钠:10%。 2 仪器设备 2.1粉碎磨:粉碎样品,使其完全通过孔径0.45mm(40目)筛。 2.2锥形瓶:250mL。

2.3回流冷凝装置:能与250mL锥形瓶瓶口相匹配。 3操作步骤 称取样品(粉碎过40目筛)2.0g~5.0g,准确至0.0002g,置于放有慢速滤纸 的漏斗中,用50mL石油醚分5次洗去样品中脂肪,再用150mL85%乙醇溶液 分数次洗涤残渣,以除去可溶性糖类物质,滤干乙醇溶液,将滤纸连同残渣一 并转移至250mL锥形瓶中。 加100mL水、30mL(1+1)HCl,在沸水浴上回流2h,回流完毕后,立即在 流水中冷却,待样品水解液冷却完全后,加2滴甲基红指示剂,先用NaOH溶 液(400g/L)调至黄色,再用(1+1)的HCl调至水解液刚变红色。若水解液颜色 较深,可用pH试纸测试,使试样水解液的pH值约为7,然后加20mL的乙酸 铅溶液(200g/L),摇匀,放置10min,再加20mL的硫酸钠溶液(100g/L),以 除去过多的铅。摇匀后,将全部溶液及滤渣转入500mL容量瓶中,用水洗涤锥 形瓶,洗液合并于容量瓶中,定容,摇匀,过滤,弃去初滤液20mL,滤液供 测定用。 吸取25.00mL滤液于三角瓶中,加25mL酒石酸铜甲液,再加25mL酒石 酸铜乙液,在电炉上加热(在3min内煮沸)并煮沸2min,取下过滤,并用60℃ 水洗涤烧杯和沉淀至洗液不呈碱性为止,将漏斗连同滤纸一同放至前面使用过 的烧杯上,向滤纸内加入硫酸铁(50g/L)40mL,使氧化亚铜完全溶解,摇匀溶液,再加25mL水,用玻璃棒搅拌到看不见Cu2O,以0.1mol/l高锰酸钾标准滴定溶 液滴定至呈微红色,10s不褪色为终点。同样条件做空白。 方法二 1 试剂 1.1 碱性酒石酸铜甲液:称取15g硫酸铜(CuS04·5H2O)及0.050g亚甲蓝,加适量 水溶解,再加水稀释至1000mL。

硬度测试方法

1 引言 涂膜硬度是涂膜抵抗诸如碰撞、压陷、擦划等机械力作用的能力;是表示涂膜机械强度的重要性能之一;也是表示涂膜性能优劣的重要指标之一。涂膜硬度与涂料品种及涂膜的固化程度有关。油性漆及醇酸树脂漆的涂膜硬度较低,其它合成树脂漆的硬度较高。涂膜的固化程度直接影响涂膜的硬度,只有完全固化的涂膜,才具有其特定的最高硬度,在涂膜干燥过程中,涂膜硬度是干燥时间的函数,随着时间的延长,硬度由小到大,直至达到最高值。在采用固化剂固化的涂料中,固化剂的用量影响涂膜硬度,一般情况下提高固化剂的配比,使涂膜硬度增加,但固化剂过量则使涂膜柔韧性、耐冲击性等性能下降。一些自干型涂料,以适当的温度烘干,在一定程度上能提高涂膜硬度。涂膜硬度是涂料、涂装的重要指标,大多数情况下属于必须检测的项目。 2 铅笔硬度测定法 铅笔硬度法是采用已知硬度标号的铅笔刮划涂膜,以能够穿透涂膜到达底材的铅笔硬度来表示涂膜硬度的测定方法。国家标准GB/T 6739—1996《涂膜硬度铅笔测定法》规定了手动法和试验机法2 种方法,该标准等效采用日本工业标准JIS K5400-90-8.4《涂料一般试验方法———铅笔刮划值》。标准规定采用中华牌高级绘图铅笔,其硬度为9H、8H、7H、6H、5H、4H、3H、2H、H、F、HB、B、2B、3B、4B、5B、6B 共16 个等级,9H 最硬,6B 最软。测试用铅笔用削笔刀削去木质部分至露出笔芯约3 mm,不能削伤笔芯,然后将铅笔芯垂直于400# 水砂纸上画圆圈,将铅笔芯磨成平面、边缘锐利为止。试板为马口铁板或薄钢板,尺寸为50 mm×120mm×(0.2 ~0.3)mm 或70 mm×150 mm×(0.45 ~0.80)mm,按规定方法制备涂膜。

表面微生物检测方法[1]

空气、食品接触面微生物检验方法、检验标准 1、目的: 检测生产车间空气、操作人员手部、与食品有直接接触面的机械设备的微生物指标,生产区域环境当中病原微生物的监控,达到规定标准,以控制食品成品的质量。 2、参照标准: 中华人民共和国国家标准《一次性使用卫生用品卫生标准》GB15979-1995、《HACCP原理与实施》、中华人民共和国国家标准《公共场所空气微生物检验方法细菌总数测定》GB/T 18204.1-2000、中华人民共和国进出口商品检验行业标准SN 0169-92/SN 0172-92/ SN 0170-92、出入境检验检疫局二000四年《出入食品微生物检验培训教材》中《出入食品生产厂卫生细菌检验方法》、日本东京冷冻食品检验方法。 3、采样与检测方法: 3.1空气的采样与测试方法 3.1.1样品采集: (1)取样频率: a)车间转换不同卫生要求的产品时,在加工前进行采样,以便了解车间卫生清扫消毒情况。 b)全厂统一放长假后,车间生产前,进行采样。 c)产品检验结果超内控标准时,应及时对车间进行采样,如有检验不合格点,整改后再进行采样检验。 d)实验性新产品,按客户规定频率采样检验。 e)正常生产状态的采样,每周一次。 (2)采样方法 在动态下进行,室内面积不超过30 m2,在对角线上设里、中、外三点,里、外点位置距墙1 m;室内面积超过30 m2,设东、西、南、北、中五点,周围4点距墙1 m。采样时,将含平板计数琼脂培养基的平板(直

径9 cm)置采样点(约桌面高度),并避开空调、门窗等空气流通处,打开平皿盖,使平板在空气中暴露5 min。采样后必须尽快对样品进行相应指标的检测,送检时间不得超过6h,若样品保存于0~4℃条件时,送检时间不得超过24h。 3.1.2菌落培养: (1)在采样前将准备好的平板计数琼脂培养基平板置37℃±1℃培养24 h,取出检查有无污染,将污染培养基剔除。 (2)将已采集样品的培养基在6 h内送实验室,细菌总数于37℃±1℃培养48h观察结果,计数平板上细菌菌落数。 (3)菌落计算: a) 记录平均菌落数,用“个/皿”来报告结果。用肉眼直接计数,标记或 在菌落计数器上点计,然后用5~10倍放大镜检查,不可遗漏。 b) 若培养皿上有2个或2个以上的菌落重叠,可分辨时仍以2 个或2个 以上菌落计数。 3.2工作台(机械器具)表面与工人手表面采样与测试方法: 3.2.1样品采集: (1)取样频率: a)车间转换不同卫生要求的产品时,在加工前进行擦拭检验,以便了解车 间卫生清扫消毒情况。 b)全厂统一放长假后,车间生产前,进行全面擦拭检验。 c)产品检验结果超内控标准时,应及时对车间可疑处进行擦拭,如有检验 不合格点,整改后再进行擦拭检验。 d)实验新产品,按客户规定擦拭频率擦拭检验。 e)对工作表面消毒产生怀疑时,进行擦拭检验。 f)正常生产状态的擦拭,每周一次。 (2)采样方法: a) 工作台(机械器具):用浸有灭菌生理盐水的棉签在被检物体表面(取 与食品直接接触或有一定影响的表面)取25cm2的面积,在其内涂抹10次,然后剪去手接触部分棉棒,将棉签放入含10mL灭菌生理盐水的

锰系磷化说明书

锰系磷化说明书 The manuscript was revised on the evening of 2021

高温锰系黑色磷化液说明书 一/本品能在钢铁上形成一种晶体状的锰系磷化膜,这层磷化膜能提高工件的耐磨性和耐腐蚀性能,磷化膜具有很强的吸附性,当浸泡了合适的油后具有高效的耐磨损效果,主要由磷酸铁和磷酸锰组成。这种处理工艺能降低工件如活塞,活塞环,衬垫,凸轮轴,推杠,马达座及类似承载表面的磨损。其他优点可归纳如下: 锰系磷化处理使运动工件迅速跑合,防止承载表面之间金属与金属的直接接触,不会出现划伤或粘结。 由于磷化膜吸油,增加了处理过的表面的润滑作用。消除了金属在机械加工中留下的刮痕。延缓了腐蚀作用,因此也可以用作防腐底层。可适用于汽车,摩托车,船舶,等高速运转零部件的减磨自润滑功能膜层处理。以及工具,刀刃及较高标准要求标准件的耐摩,耐腐蚀处理。 二.产品特性 1.高倍浓缩酸性液体。 2.用于钢铁表面的防腐耐摩处理。 3.也可以用于压铸件的处理。 4.在钢铁表面形成一层黑色的磷酸锰盐层。 5.符合甚至超过国标盐雾实验。 6..环保.安全,操作方便,废水处理简单/ 三.作业管理标准: 管理项目管理标准

1.皮膜建浴浓度:1比5(20%) 2.全酸度(TA) :祥见本公司内部说明 3.游离酸(FA):祥见本公司内部说明 4.温度(Temp) 92-98℃. 5.时间(Time) 8-20分钟 6.限更新周期 12个月 四.工艺流程: 1.除油(XH-400)--水洗—除锈—水洗—表调(XH-28)--磷化(XH-575)---水洗—干燥或脱水防锈油(XH-300) ? 五.及添加方法: 1.使用仪器及试剂:吸球、吸管、烧杯、 NaOH、 酚酞(PP)、溴酚蓝(BPB) 2.测量方法: (1)全酸度(TA):取槽处理10mL加酚酞(PP)指示剂3-5滴,再用 NaOH滴定,颜色由无色变至粉红5-10秒不褪色,即为其终点,此时所消耗 NaOH之毫升数,即为其全酸度之度数。 (2)游离酸(FA):取槽处理液10mL加溴酚蓝(BPB)指示剂3-5滴,再用 NaOH 滴定,颜色由浅黄色变至浅蓝色,5-10秒不褪色,即为其终点,此时所消耗NaOH之毫升数,即为其游离酸之度数。 六。注意事项和安全措施 1.注意事项:

检验方法验证方案(含量测定)

检验方法验证方案 目的:证明所采用的检验方法适于相应的检测要求,具有可靠的准确度、精密度。范围:含量的检定方法的前验证 编定依据:《药品生产质量管理规范》1998年修订版及验证管理办法 职责:验证小组人员 目录 1.概述 2.验证目的 3.职责 3.1验证小组 3.2品质部 3.3化验室 4.验证内容 4.1验证的准备工作 4.2适用性验证 4.2.1准确度试验 4.2.2精密度试验 4.3拟订验证周期 4.4验证结果评定与结论 5.附件

1. 概述 对小容量注射剂的含量测定,本公司采用福林酚测定法,该检验方法具有测量准确、精密度高、专属性强、定量准确可靠、方法简便易行的特点,可满足小容量注射剂含量测定的要求。检验方法标准操作规程。用本方法进行转移因子注射液、胸腺肽注射液的含量测定。 2. 验证目的 为确认对转移因子注射液、胸腺肽注射的含量测定的紫外分光光度法,适合相应的检测要求,特制订本验证方案,进行验证。 验证过程应严格按照本方案规定的内容进行,若因特殊原因确需变更时,应填写验证方案变更申请及批准书,报验证工作小组批准。 验证前,应首先对验证所需的仪器、设备进行验证,对所需仪器、仪表、量具等进行校正。 3. 职责 3.1 验证工作小组 负责验证方案的审批。 负责验证的协调工作,以保证本验证方案规定项目的顺利实施。 负责验证数据及结果的审核。 负责验证报告的审批。 负责发放验证合格证书。 负责再验证周期的确认。 3.2 品质部 负责验证所需仪器、设备的安装、调试,并做好相应的记录。 负责组织验证所需仪器、设备的验证。 负责仪器、仪表、量具等的校正。 负责拟订检验方法的再验证周期 3.3 化验室 负责验证所需的标准品、样品、试剂、试液等的准备。 负责验证方案指定的试验的实施。 负责收集各项验证、试验记录,并对试验结果进行分析后,报验证工作小组。 4. 验证内容 4.1 验证的准备工作 4.1.1 验证所需文件资料 品质部负责提供验证所需的文件资料,包括该检验方法的标准操作规程。以及负责提供验证所需仪器、设备的验证报告以及仪器、仪表、量具等的校正报告。 检查人:日期:

涂层性能测试方法

涂层性能测试方法 1盐雾试验 盐雾试验是将试验样板(件)放置于盐雾箱中,在一定温度、湿度条件下,保持电解质溶液成雾状,进行循环腐蚀的实验室技术。 1.1盐雾试验注意事项 (1)供试验用样板底材,必须彻底清除锈迹和润滑油脂。无论是经喷砂、打磨还是磷化过的底材,谨防暴露于潮湿空气中,以防底材表面形成水膜造成再度生锈或因此而降低涂层与底材间的附着力。特别强调的是严禁用手指触摸底材有效部位,因为手指上的油脂、汗渍会沾污板面,造成涂层局部起泡和生锈。 (2)盐雾试验的关键是配制电解质溶液的浓度,多种组分的溶质要按比例严格称量,以确保pH值的准确性。不然会直接影响检测结果。 (3)制备涂层后的样板(件),需用涂料封边和覆盖底材裸露部位,否则,造成锈痕流挂、污染板面,给评定等级工作带来困难。 (4)定期查板(件)时,应保持板面呈湿润状态,尽量缩短板面暴露于空气中的时间。 (5)完成试验后,应立即对板面做出客观评价,包括:起泡、变色、生锈、脱落。也可按客户要求增加附着力、划痕单边锈蚀距离的检测评定。 (6)板面如需要划痕,则应一次性划透涂膜,并露出底材。不应重复施刀,以免造成划痕处涂层翻边和加宽单边锈蚀距离。根据经验,板面划痕通常为交叉状(X),而圆柱工件则可划成平行线(Ⅱ)。但划痕距板(件)缘应大于20mm,并依据GB/T9286—1998标准推荐的方法,使用单刃切割器。 值得注意的是划痕处单边锈蚀距离的测定方法。根据作者多年工作经验,在试验过程中,周期性查板(件)应保持原始锈蚀状态记录单项等级评定结果。当试验结束后进行综合等级评定时,首先选择划痕单边锈蚀最严重部位进行测量,然后用一工具小心剥离锈斑,尽量保持不要破坏涂层,用水冲净后再测量锈蚀距离,测量结果可能有3种情况:①因涂层沿 中心以化工行业技术需求和科技进步为导向,以资源整合、技术共享为基础,分析测试、技术咨询为载体,致力于搭建产研结合的桥梁。以“专心、专业、专注“为宗旨,致力于实现研究和应用的对接,从而推动化工行业的发展。

含量测定方法学考察

含量测定方法学验证内容及可接受标准 1.准确度 可接受的标准为:各浓度下的平均回收率均应在98.0%-102.0%之间,9个回收率数据的相对标准差(RSD)应不大于2.0%。 2.线性 其主峰的面积,计算相应的含量。以含量为横坐标(X),峰面积为纵坐标(Y),进行线性回归分析。 可接受的标准为:回归线的相关系数(R)不得小于0.998,Y轴截距应在100%响应值的2%以内,响应因子的相对标准差应不大于2.0%。 3.精密度 1)重复性 件下进行测试,所得6份供试液含量的相对标准差应不大于2.0%。 2)中间精密度 4.专属性 可接受的标准为:空白对照应无干扰,主成分与各有关物质应能完全分离,分离度不得小于2.0。以二极管阵列检测器进行纯度分析时,主峰的纯度因子应大于980。 5.检测限

主峰与噪音峰信号的强度比应不得小于3。 6.定量限 主峰与噪音峰信号的强度比应不得小于10。另外,配制6份最低定量限浓度的溶液,所测6份溶液主峰的保留时间的相对标准差应不大于2.0%。 7.耐用性 方法:分别考察流动相比例变化±5%、流动相pH值变化±0.2、柱温变化±5℃、 可接受的标准为:主峰的拖尾因子不得大于2.0,主峰与杂质峰必须达到基线分离;各条件下的含量数据(n=6)的相对标准差应不大于2.0%。 8、系统适应性 应不大于2.0%,主峰保留时间的相对标准差应不大于1.0%。另外,主峰的拖尾因子不得大于2.0,主峰与杂质峰必须达到基线分离,主峰的理论塔板数应符合质量标准的规定。 有关物质测定方法学验证内容及可接受标准: 1.准确度 该指标主要是通过回收率来反映。验证时一般要求根据有关物质的定量限与质量标准中该杂质的限度分别配制三个浓度的供试品溶液各三份(例如某杂质的限度为0.2%,则可分别配制该杂质浓度为0.1%、0.2%和0.3%的杂质溶液),分别测定其含量,将实测值与理论值比较,计算回收率,并计算9个回收率数据的相对标准差(RSD)。该项目的可接受的标准为:各浓度下的平均回收率均应在80%-120%之间,如杂质的浓度为定量限,则该浓度下的平均回收率可放宽至70%-130%,相对标准差应不大于10%。 2.线性 线性一般通过线性回归方程的形式来表示。具体的验证方法为:在定量限至

黑色锰系磷化工艺文件定稿版

黑色锰系磷化工艺文件 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】

黑色磷化液工艺流程及使用方法 三、工艺流程: 1、本流程主要规定了钢铁制件在进行高温磷化时的表面处理工艺流程、工艺条件、工艺参数、槽液配制、槽液的分析化验及维护调整方法。 工艺流程 2、涂装前处理材料的选择: 2.1 选用TL-9687型常温快速脱脂清洗剂进行常温脱脂处理。 2.1.1产品特点:常温使用,节省能源,操作方便,脱脂时间短,使用寿命长等特点,是一种非常优良的脱脂清洗剂。 2.2 选用TL-003型黑色磷化专用表面调整剂。 2.3 选用TL-3107覆膜剂,进行磷化处理。 2.3.1 TL-3107覆膜剂A液。 3、工艺条件: 3.1 脱脂 3.1.1 产品型号:TL-9687 3.1.5 PH 值:12-14 3.1.6 温度: 常温(18℃-45℃) 3.1.7 时间: 10-15min(视工件表面油污程度而定) 3.2 水洗(溢流)

3.2.1 产品型号:新鲜自来水 3.2.2 PH 值:6-8 3.2.3 温度:常温 3.2.4 时间:1-3min 3.4 酸洗 3.4.1产品型号:工业盐酸 3.4.2TL-4酸洗添加剂(按5%添加) 3.4.3配比:盐酸配制成含量约20-25% 3.4.4温度:常温 3.4.5时间:10-15min(视工件表面锈蚀程度而定)3.5 水洗 (溢流) 3.5.1 产品型号:新鲜自来水 3.5.2 PH 值: 6-8 3.5.3 温度: 常温 3.5.4 时间: 1-3min 3.6 水洗 (溢流) 3.6.1 产品型号: 新鲜自来水 3.6.2 PH 值: 6-8

表面活性剂含量测定方法

表面活性剂含量测定方法 1.阴离子表面活性剂含量测定(两相滴定) 1.1主要试剂 (1)十六烷基三甲基溴化铵(CTAB),分析纯; (2)十二烷基磺酸钠,分析纯; (3)二氯甲烷(CH2Cl2)、硫酸钠、浓硫酸,百里酚蓝(T.B.)、次甲基蓝(M.B.)分析纯; (4)百里酚蓝(T.B.)贮藏液:称取0.05g百里酚蓝,溶于50ml20%乙醇中,待溶解后过滤,滤液用水稀释至500ml; (5)次甲基蓝(M.B.)贮藏液:称取0.036g次甲基蓝,用蒸馏水溶解合并,转入1L容量瓶中,加水稀释至刻度; (6)混合指示剂:混合225ml百里酚蓝(T.B.)贮藏液和30ml次甲基蓝(M.B.)贮藏液,用水稀释至500ml; (7)酸性硫酸钠溶液:称取100g硫酸钠和12.6ml浓硫酸,用蒸馏水溶解合并,转入1L容量瓶中,加水稀释至刻度; (8)十二烷基磺酸钠标准溶液:称取1.06~1.12g十二烷基磺酸钠(准确至0.0001g),用蒸馏水溶解,转入1L容量瓶中,加水稀释至刻度, 其浓度为C1=取样质量*样品纯度/272.38,单位mol/L; (9)C TAB阳离子表面活性剂标准溶液:称取CTAB0.36~0.37g(准确至 0.0001g),用蒸馏水溶解,转入1L容量瓶中,加水稀释至刻度,其 准确浓度C2可用十二烷基磺酸钠标准溶液标定; 1.2实验原理 阴离子型表面活性剂的测量,其原理是亚甲基蓝无机酸盐属于阳离子染料,溶于水而不溶于氯仿,但阴离子活性物与亚甲基蓝反应生成的络合物溶于氯仿。用CTAB阳离子表面活性剂标准溶液滴定溶液中的阴离子活性物,当接近终点时,

阳离子表面活性剂与络合物发生复分解反应,释放出亚甲基蓝,蓝色逐渐从氯仿层转移到水层,当氯仿层与水层为同一蓝色时为滴定终点。 1.3 实验步骤 取10ml阴离子表面活性剂溶液于100ml具塞量筒中(或碘量瓶、分液漏斗),加入混合指示剂及酸性硫酸钠各5ml,加水使水相保持在30ml,加入15ml二氯甲烷,摇匀后静置,用浓度为C2的CTAB标准溶液滴定,下相由浅紫灰色变为明亮的黄绿色即为终点,临近终点时上相逐渐变为无色,有助于避免滴定过量。 测定样品的浓度C=CTAB标准溶液体积*C2/10 注意:二氯甲烷具有弱毒性,且易于挥发,滴定过程应在通风橱中进行,操作人员需戴手套。 2.两性离子表面活性剂含量测定 2.1 所需试剂 (1)磷钨酸、盐酸、硝酸、硫酸、硝基苯均为分析纯; (2)乙醇95%; (3)海明1622、二硫化蓝VN-150; (4)十二烷基硫酸钠,分析纯; (5)溴化底米迪鎓; (6)刚果红指示剂; (7)苯并红紫4B指示剂(溶解0.1g苯并红紫4B(特级试剂)于纯水中,稀释至100mL)。 2.2.方法原理 在酸性条件下甜菜碱类两性活性剂和苯并红紫4B络合成盐。这种络盐溶在过量的两性表面活性剂中,即使酸性,在苯并红紫4B的变色范围也不呈酸性色。两性表面活性剂在等电点以下的pH溶液中呈阳离子性,所以同样能与磷钨酸定量反应,并生成络盐沉淀,而使色素不显酸性色。

2021涂料及涂层的性能检测方法

When the lives of employees or national property are endangered, production activities are stopped to rectify and eliminate dangerous factors. (安全管理) 单位:___________________ 姓名:___________________ 日期:___________________ 2021涂料及涂层的性能检测方法

2021涂料及涂层的性能检测方法导语:生产有了安全保障,才能持续、稳定发展。生产活动中事故层出不穷,生产势必陷于混乱、甚至瘫痪状态。当生产与安全发生矛盾、危及职工生命或国家财产时,生产活动停下来整治、消除危险因素以后,生产形势会变得更好。"安全第一" 的提法,决非把安全摆到生产之上;忽视安全自然是一种错误。 (1)涂料性能的测试。涂料性能是指涂料的黏度、密度、遮盖力、固体含量、流平性、干燥性。现将检测方法分述如下。 ①涂料黏度的测定液体涂料的黏度是分子间相互作用而产生阻碍其分子间相对运动的能力,即表示流体流动时产生的内摩擦力。 涂料最常用的黏度是涂-4杆黏度计。主要测试范围为15Os以下的涂料。 将涂料倒入杯中。测定时,将手指堵住漏斗嘴,涂料倒满时,将手指从漏嘴处移开,并同时开动秒表,流出全部涂料所用的时间(s)即涂料的黏废。测定温度为(25±1)℃。作两次测验,其误差不大于2%~3%。 黏度换算表见表6-9。 表6-9黏度换算表 绝对黏度(25℃)/P 恩格勒黏度(20℃)/s

涂-4杯黏度(25℃)/s 绝对黏度(25℃)/P 恩格勒黏度(20℃)/s 涂-4杯黏度(25℃)/s 0.50 8.1 19 2.25 36.3 55 1.00 16.2 30 3.00 44.1 74 1.40 22.5

分子生物学检测技术简介

分子生物学检测技术简介 分子生物学诊断技术是现代分子生物学与分子遗传学取得巨大进步的结晶,是在人们对基因的结构以及基因的表达和调控等生命本质问题的认识日益加深的基础上产生的。近年来,分子生物学诊断技术的方法学研究取得了很大进展,先后建立了限制性内切酶酶谱分析、核酸分子杂交、限制性片段长度多态性连锁分析等方法。1985年由美国Cetus公司人类遗传学研究室Mullis等创立并随后迅速发展起来的DNA 体外扩增技术(Polymerase Chain Reaction, PCR),以及90年代发展起来的DNA芯片技术(DNA Chip),又将分子生物学诊断技术提高到一个崭新的阶段。 一、核酸分子杂交 (一)概述:具有一定互补序列的核苷酸单链在液相或固相中按碱基互补配对原则缔合成异质双链的过程叫核酸分子杂交。应用该技术可对特定DNA或RNA序列进行定性或定量检测。到目前为止,分子杂交技术在基因诊断中仍占重要地位,它按反应支持物可分为固相杂交和液相杂交两种,前者应用较广,有Southern印迹杂交、点杂交、夹心杂交(三明治杂交)、原位杂交和寡核苷酸探针技术等。核酸分子杂交主要涉及两个方面:待测的DNA 或RNA,以及用于检测的DNA或RNA探针。探针标记的好坏决定检测的敏感性。 1、Southern印迹杂交是最经典和应用最广泛的杂交方法。根据基因探针与待测DNA限制酶酶解片段杂交的带谱,可以直接确定宿主基因的缺陷所在或病原体的存在状态。 2、Northern 印迹杂交基本原理与Southern印迹杂交相同,不同的是它检测mRNA而不是DNA,因此可分析和了解基因的表达状态。由于mRNA比DNA更易受到各种因素的降解,所以整个操作过程须特别小心。 3、斑点杂交将待测DNA或细胞裂解物变性后直接点在硝酸纤维素膜上(无需限制酶酶解),与探针进行杂交反应。该技术对于基因拷贝数多的样品很适合,具有简捷快速的特点,一次可做大批量样品的筛查,适于流行病学调查和感染性疾病外源性致病基因的检测。目前斑点杂交技术在各实验室中得到较普及的应用。该技术可用来分析待测核酸片段中是否存在与探针同源的序列,同时还可半定量反映样品中的模板含量。其原理包括将提取的核酸片段变性后转移并固定于支持膜上,通过预杂交以除去非特异位点,然后以标记探针进行杂交。标记物有多种,以同位素标记的探针杂交后,可通过放射自显影分析结果,而以非同位素(如生物素、地高辛等)标记的探针杂交后,需加入对应的酶标记物(如亲和素、地高辛抗体),再经过显色反应后,利用光密度扫描仪进行量化检测。本方法特异性可靠,但灵敏度偏低,而且操作复杂,因此大大限制了该技术的普及应用。 4、分支链DNA(bDNA)技术近几年,bDNA作为核酸直接量化检测技术已广泛应用于HBV、HCV和

磷化简介

磷化简介 磷化是金属材料防腐蚀的重要方法之一,其目的在于给基体金属提供防腐蚀保护、用于喷漆前打底、提高覆膜层的附着力与防腐蚀能力及在金属加工中起减摩润滑作用等。按用途可分为三类:1、涂装性磷化 2、冷挤压润滑磷化 3、装饰性磷化。按所用的磷酸盐分类有:磷酸锌系、磷酸锌钙系、磷酸铁系、磷酸锌锰系、磷酸锰系。根据磷化的温度分类有:高温(80 ℃以上)磷化、中温(50~70 ℃)磷化、低温磷化(40 ℃左右)和常温磷化( 10~30 ℃)。 一、磷化成膜机理 磷化主要有以下过程: (1)金属的溶解过程即金属与磷化液中的游离酸发生反应: M+H3PO4 = M(H2PO4)2+H2↑ (2)促进剂的加速过程为: M(H2PO4)2+Fe+[O]→M3(PO4)2+FePO 由于氧化剂的氧化作用,加速了不溶性盐的逐步沉积,使金属基体与槽液隔离,会限制甚至停止酸蚀的进行。 (3)磷酸及盐的水解磷化液的基本成分是一种或多种重金属的酸式磷酸盐, 其分子式为Me(H2PO4)2,这些酸式磷酸盐溶于水,在一定浓度及pH值下发生水解,产生游离磷酸: Me(H2PO4)2=MeHPO4+H3PO4 3MeHPO4=Me3(PO4)2+H3PO4 H3PO4=H2PO4-+H+= HPO2-4 + 2H+ =PO3-4 + 3H+ 由于金属工件表面的H+浓度急剧下降,导致磷酸根各级离解平衡向右移动,最终成为磷酸根。 (4 ) 磷化膜的形成当金属表面离解出的PO3-4与磷化槽液中的金属离子Zn2+、Mn2+、Fe2+达到饱和时,即结晶沉积在金属工件表面,晶粒持续增长,直到在金属工件表面生成连续不溶于水的牢固的磷化膜: 3M2 + + 2PO3 -4 + 4H2O = M3 ( PO4 ) 2·4H2O ↓ 2 M2 + + Fe2 + + 2PO 3 - 4 + 4H2O= M2 Fe ( PO4 ) 2· 4H2O 金属工件溶解出的Fe2+一部分作为磷化膜的组成部分被消耗掉,而残留在磷化槽液中的Fe2+则氧化成Fe3+,生成FePO4沉淀,即磷化沉渣的主要成分之一。 上述磷化原理可解释锌系磷化、锌钙系磷化、锰系磷化的成膜过程,也可解释锌件磷化、铝件磷化的成膜过程,但锌件磷化膜只有磷酸锌一种组成,铝件磷化还需加入较多的氟化物,以便形成AlF3、AlF3 -6 。 二、各种磷化用途 1、涂装打底磷化 由于金属是极性物质,而油漆是有机高分子化合物,是非极性的,如果直接在钢铁件表面刷涂油漆,结合不牢,油漆很容易剥落,在涂装前先进行磷化可解决这一问题,这是由于磷化时跟金属表面Fe反应,是磷酸盐牢固沉积在金属表面,同时由于磷化膜有细小的孔隙,当喷涂油漆时,油漆高分子渗入磷化膜孔隙中,增加了油漆的附着力,使油漆不容易剥落,从而增加防腐蚀时间,涂装磷化一般采用锌系或锌钙系磷化,采用优秀的常温磷化即可获得不错的效果

相关文档
最新文档