有限元方法在往复压缩机受力分析中的应用

有限元方法在往复压缩机受力分析中的应用
有限元方法在往复压缩机受力分析中的应用

matlab有限元分析实例

MATLAB: MATLAB是美国MathWorks公司出品的商业数学软件,用于数据分析、无线通信、深度学习、图像处理与计算机视觉、信号处理、量化金融与风险管理、机器人,控制系统等领域。 MATLAB是matrix&laboratory两个词的组合,意为矩阵工厂(矩阵实验室),软件主要面对科学计算、可视化以及交互式程序设计的高科技计算环境。它将数值分析、矩阵计算、科学数据可视化以及非线性动态系统的建模和仿真等诸多强大功能集成在一个易于使用的视窗环境中,为科学研究、工程设计以及必须进行有效数值计算的众多科学领域提供了一种全面的解决方案,并在很大程度上摆脱了传统非交互式程序设计语言(如C、Fortran)的编辑模式。 MATLAB和Mathematica、Maple并称为三大数学软件。它在数学类科技应用软件中在数值计算方面首屈一指。MATLAB可以进行矩阵运算、绘制函数和数据、实现算法、创建用户界面、连接其他编程语言的程序等。MATLAB的基本数据单位是矩阵,它的指令表达式与数学、工程中常用的形式十分相似,故用MATLAB来解算问题要比用C,FORTRAN等语言完成相同的事情简捷得多,并且MATLAB也吸收了像Maple等软件的优点,使MATLAB成为一个强大的数学软件。在新的版本中也加入了对C,FORTRAN,C++,JAVA的支持。 MATLAB有限元分析与应用:

《MATLAB有限元分析与应用》是2004年4月清华大学出版社出版的图书,作者是卡坦,译者是韩来彬。 内容简介: 《MATLAB有限元分析与应用》特别强调对MATLAB的交互应用,书中的每个示例都以交互的方式求解,使读者很容易就能把MATLAB用于有限分析和应用。另外,《MATLAB有限元分析与应用》还提供了大量免费资源。 《MATLAB有限元分析与应用》采用当今在工程和工程教育方面非常流行的数学软件MATLAB来进行有限元的分析和应用。《MATLAB有限元分析与应用》由简单到复杂,循序渐进地介绍了各种有限元及其分析与应用方法。书中提供了大量取自机械工程、土木工程、航空航天工程和材料科学的示例和习题,具有很高的工程应用价值。

有限元分析理论基础

有限元分析概念 有限元法:把求解区域看作由许多小的在节点处相互连接的单元(子域)所构成,其模型给出基本方程的分片(子域)近似解,由于单元(子域)可以被分割成各种形状和大小不同的尺寸,所以它能很好地适应复杂的几何形状、复杂的材料特性和复杂的边界条件 有限元模型:它是真实系统理想化的数学抽象。由一些简单形状的单元组成,单元之间通过节点连接,并承受一定载荷。 有限元分析:是利用数学近似的方法对真实物理系统(几何和载荷工况)进行模拟。并利用简单而又相互作用的元素,即单元,就可以用有限数量的未知量去逼近无限未知量的真实系统。 线弹性有限元是以理想弹性体为研究对象的,所考虑的变形建立在小变形假设的基础上。在这类问题中,材料的应力与应变呈线性关系,满足广义胡克定律;应力与应变也是线性关系,线弹性问题可归结为求解线性方程问题,所以只需要较少的计算时间。如果采用高效的代数方程组求解方法,也有助于降低有限元分析的时间。 线弹性有限元一般包括线弹性静力学分析与线弹性动力学分析两方面。 非线性问题与线弹性问题的区别: 1)非线性问题的方程是非线性的,一般需要迭代求解; 2)非线性问题不能采用叠加原理; 3)非线性问题不总有一致解,有时甚至没有解。 有限元求解非线性问题可分为以下三类:

1)材料非线性问题 材料的应力和应变是非线性的,但应力与应变却很微小,此时应变与位移呈线性关系,这类问题属于材料的非线性问题。由于从理论上还不能提供能普遍接受的本构关系,所以,一般材料的应力与应变之间的非线性关系要基于试验数据,有时非线性材料特性可用数学模型进行模拟,尽管这些模型总有他们的局限性。在工程实际中较为重要的材料非线性问题有:非线性弹性(包括分段线弹性)、弹塑性、粘塑性及蠕变等。 2)几何非线性问题 几何非线性问题是由于位移之间存在非线性关系引起的。 当物体的位移较大时,应变与位移的关系是非线性关系。研究这类问题一般都是假定材料的应力和应变呈线性关系。它包括大位移大应变及大位移小应变问题。如结构的弹性屈曲问题属于大位移小应变问题,橡胶部件形成过程为大应变问题。 3)非线性边界问题 在加工、密封、撞击等问题中,接触和摩擦的作用不可忽视,接触边界属于高度非线性边界。 平时遇到的一些接触问题,如齿轮传动、冲压成型、轧制成型、橡胶减振器、紧配合装配等,当一个结构与另一个结构或外部边界相接触时通常要考虑非线性边界条件。 实际的非线性可能同时出现上述两种或三种非线性问题。

有限单元法与有限元分析

有限单元法与有限元分析 1.有限单元法 在数学中,有限元法(FEM,Finite Element Method)是一种为求解偏微分方程边值问题近似解的数值技术。求解时对整个问题区域进行分解,每个子区域都成为简单的部分,这种简单部分就称作有限元。它通过变分方法,使得误差函数达到最小值并产生稳定解。类比于连接多段微小直线逼近圆的思想,有限元法包含了一切可能的方法,这些方法将许多被称为有限元的小区域上的简单方程联系起来,并用其去估计更大区域上的复杂方程。它将求解域看成是由许多称为有限元的小的互连子域组成,对每一单元假定一个合适的(较简单的)近似解,然后推导求解这个域总的满足条件(如结构的平衡条件),从而得到问题的解。这个解不是准确解,而是近似解,因为实际问题被较简单的问题所代替。由于大多数实际问题难以得到准确解,而有限元不仅计算精度高,而且能适应各种复杂形状,因而成为行之有效的工程分析手段。 随着电子计算机的发展,有限单元法是迅速发展成一种现代计算方法。它是50年代首先在连续体力学领域--飞机结构静、动态特性分析中应用的一种有效的数值分析方法,随后很快广泛的应用于求解热传导、电磁场、流体力学等连续性问题。 1.1.有限元法分析本质 有限元法分析计算的本质是将物体离散化。即将某个工程结构离散为由各种单元组成的计算模型,这一步称作单元剖分。离散后单元与单元之间利用单元的节点相互连接起来;单元节点的设置、性质、数目等应视问题的性质,描述变形形态的需要和计算精度而定(一般情况单元划分越细则描述变形情况越精确,即越接近实际变形,但计算量越大)。所以有限元中分析的结构已不是原有的物体或结构物,而是同新材料的由众多单元以一定方式连接成的离散物体。这样,用有限元分析计算所获得的结果只是近似的。如果划分单元数目非常多而又合理,则所获得的结果就与实际情况相符合。 1.2.特性分析 1)选择位移模式: 在有限单元法中,选择节点位移作为基本未知量时称为位移法;选择节点力作为基本未知量时称为力法;取一部分节点力和一部分节点位移作为基本未知量时称为混合法。位移法易于实现计算自动化,所以,在有限单元法中位移法应用范围最广。 当采用位移法时,物体或结构物离散化之后,就可把单元总的一些物理量如

Matlab有限元分析操作基础

Matlab 有限元分析20140226 为了用Matlab 进行有限元分析,首先要学会Matlab 基本操作,还要学会使用Matlab 进行有限元分析的基本操作。 1. 复习:上节课分析了弹簧系统 x 推导了系统刚度矩阵 11221 21200k k k k k k k k -????-????--+??

2. Matlab有限元分析的基本操作 (1)单元划分(选择何种单元,分成多少个单元,标号)(2)构造单元刚度矩阵(列出…) (3)组装系统刚度矩阵(集成整体刚度矩阵) (4)引入边界条件(消除冗余方程) (5)解方程 (6)后处理(扩展计算)

3. Matlab有限元分析实战【实例1】

分析: 步骤一:单元划分

步骤二:构造单元刚度矩阵 >>k1=SpringElementStiffness(100) >>…?

步骤三:构造系统刚度矩阵 a) 分析SpringAssemble库函数function y = SpringAssemble(K,k,i,j) % This function assembles the element stiffness % matrix k of the spring with nodes i and j into the % global stiffness matrix K. % function returns the global stiffness matrix K % after the element stiffness matrix k is assembled. K(i,i) = K(i,i) + k(1,1); K(i,j) = K(i,j) + k(1,2); K(j,i) = K(j,i) + k(2,1); K(j,j) = K(j,j) + k(2,2); y = K; b) K是多大矩阵? 今天的系统刚度矩阵是什么? 因为 11 22 1212 k k k k k k k k - ?? ?? - ????--+ ?? 所以 1000100 0200200 100200300 - ?? ?? - ?? ?? -- ?? ?

基于有限元分析的S195活塞的改进设计

[摘要] 本文针对将S195型柴油机的涡流室燃烧室改为直喷式燃烧室,对活塞的结构进行了改进设计。对改进后的发动机进行了热力计算和动力计算,将计算所求得的最高爆发压力和对应的加速度所产生的惯性力作为活塞最危险工作情况,利用有限元分析软件ANSYS对其进行机械应力分析,得出活塞应力云图和变形云图,根据分析结果,活塞的最大应力和最大位移并没有超出允许范围,本设计满足了改进后发动机的实际工况。 [关键词] 活塞;ANSYS;内燃机

The Design of Piston in S195 Diesel Engine Based on Finite Element Method Abstract To satify the new condition of swirl chamber being changed into direct injection combustion chamber and improve the fuel economy , the structure of piston in S195 Diesel Engine was redesigned. The thermodynamic and power calculation were done .The combustion chanber and piston ring etc were changed to adjust to the direct injection diesel engine. The maximum outbreak pressure obtained by calculation and the inertial force generated by the corresponding piston acceleration were recognized as the most dangerous working conditions, using ANSYS finite element analysis software for mechanical stress analysis , the piston stress and deformation cloud were obtained . According to the result of the analysis,the maximum stress and maximum displacement of the piston does not exceed the permissible range, the design can meet the actual engine operating conditions. Key words Piston ; ANSYS ; Internal Combustion Engine .

西安交通大学 往复式压缩机 期末考试

1.从原理、结构、用途上如何划分压缩机? 答:原理:容积式压缩机和动力式压缩机。 结构: 用途:①动力用压缩机②化工工艺用压缩机③制冷和气体分离用压缩机④气体输送用压缩机 2.为什么要定义级的理论循环?级的理论循环是如何定义的?说明研究分析压 缩机时理论循环的意义? 答:原因:? 如何定义:①无余隙容积②进排气过程无流动阻力损失③进排气过程无气流脉动④进排气过程无热交换⑤无泄漏⑥过程指数为常数 意义:是研究压缩机实际工作过程的基础。 3.级的实际循环与理论循环的差别是什么?为什么会有这些差别? 答:①存在气体膨胀线(存在余隙容积) ②进气过程线低于名义进气压力线,排气过程线高于名义排气压力线,且有非直线(存在进排气压力损失及压力脉动) ③压缩、膨胀过程的过程指数是变化的(由于泄漏、传热等的影响) 4.压缩机实际循环指示图? 答:

5.进气系数的意义是什么?在指示图中如何表示?理想气体的容积系数、压力 系数、温度系数关系式? 答:意义:实际进气量Vs与理论进气量Vh的比值称为进气系数。 在指示图如何表示:将折算到名义进气温度下的实际循环进气量Vs,Vh 在图中已表示。 容积系数:压力系数: 温度系数:其中,是将折算到名义压力P1下的容积。 补:分析影响容积系数的诸因素? 答:①相对余隙容积 ②压力比 ③膨胀系数(热交换起决定作用,m大趋向绝热。高转速来不及换热,趋近绝热;压比高因壁温高,m小;冷却好的,气体与气缸温差小,趋近绝热;气体漏入,m小;气体漏出,m大) ④实际气体 6.分析影响实际循环指示功的诸因素? 答:①进排气压力损失②泄漏和传热影响③进气系数影响 7.为什么要多级压缩?如何确定级数和各级压力比? 答:原因:①提高压缩机经济性 ②降低排气温度 ③提高容积效率 ④降低气体作用力 如何确定级数:①对于大型连续运转压缩机,省功最重要 ②对于微小型压缩机,成本低、价格低最重要 ③保证运转可靠,机器寿命高,各级压比不应过高 ④对温度要求严格的特殊压缩机,级数多少取决于排气温度 限制 如何确定压力比:实际压缩机中存在压力损失、回冷不完善、余隙容积、热 交换、泄漏等,实际压力比并非是等压比分配。按等压比 分配或等功原则分配压力比可以使压缩机总指示功最小。 (注:为使各级排气温度不致过高,应适当增加第一级压比

(完整版)有限元大作业matlab---课程设计例子

有限元大作业程序设计 学校:天津大学 院系:建筑工程与力学学院 专业:01级工程力学 姓名:刘秀 学号:\\\\\\\\\\\ 指导老师:

连续体平面问题的有限元程序分析 [题目]: 如图所示的正方形薄板四周受均匀载荷的作用,该结构在边界 上受正向分布压力, m kN p 1=,同时在沿对角线y 轴上受一对集中压 力,载荷为2KN ,若取板厚1=t ,泊松比0=v 。 [分析过程]: 由于连续平板的对称性,只需要取其在第一象限的四分之一部分参加分析,然后人为作出一些辅助线将平板“分割”成若干部分,再为每个部分选择分析单元。采用将此模型化分为4个全等的直角三角型单元。利用其对称性,四分之一部分的边界约束,载荷可等效如图所示。

[程序原理及实现]: 用FORTRAN程序的实现。由节点信息文件NODE.IN和单元信息文件ELEMENT.IN,经过计算分析后输出一个一般性的文件DATA.OUT。模型基本信息由文件为BASIC.IN生成。 该程序的特点如下: 问题类型:可用于计算弹性力学平面问题和平面应变问题 单元类型:采用常应变三角形单元 位移模式:用用线性位移模式 载荷类型:节点载荷,非节点载荷应先换算为等效节点载荷 材料性质:弹性体由单一的均匀材料组成 约束方式:为“0”位移固定约束,为保证无刚体位移,弹性体至少应有对三个自由度的独立约束 方程求解:针对半带宽刚度方程的Gauss消元法

输入文件:由手工生成节点信息文件NODE.IN,和单元信息文件ELEMENT.IN 结果文件:输出一般的结果文件DATA.OUT 程序的原理如框图:

Matlab有限元分析操作基础共11页

Matlab有限元分析20140226 为了用Matlab进行有限元分析,首先要学会Matlab基本操作,还要学会使用Matlab进行有限元分析的基本操作。 1. 复习:上节课分析了弹簧系统 x 推导了系统刚度矩阵

2. Matlab有限元分析的基本操作 (1)单元划分(选择何种单元,分成多少个单元,标号)(2)构造单元刚度矩阵(列出…) (3)组装系统刚度矩阵(集成整体刚度矩阵) (4)引入边界条件(消除冗余方程) (5)解方程 (6)后处理(扩展计算)

3. Matlab有限元分析实战【实例1】

分析: 步骤一:单元划分

>>k1=SpringElementStiffness(100)

a) 分析SpringAssemble库函数 function y = SpringAssemble(K,k,i,j) % This function assembles the element stiffness % matrix k of the spring with nodes i and j into the % global stiffness matrix K. % function returns the global stiffness matrix K % after the element stiffness matrix k is assembled. K(i,i) = K(i,i) + k(1,1); K(i,j) = K(i,j) + k(1,2); K(j,i) = K(j,i) + k(2,1); K(j,j) = K(j,j) + k(2,2); y = K; b) K是多大矩阵? 今天的系统刚度矩阵是什么? 因为 11 22 1212 k k k k k k k k - ?? ?? - ????--+ ?? 所以 1000100 0200200 100200300 - ?? ?? - ????-- ???

基于matlab的有限元法分析平面应力应变问题刘刚

姓名:刘刚学号:15 平面应力应变分析有限元法 Abstruct:本文通过对平面应力/应变问题的简要理论阐述,使读者对要分析的问题有大致的印象,然后结合两个实例,通过MATLAB软件的计算,将有限元分析平面应力/应变问题的过程形象的展示给读者,让人一目了然,快速了解有限元解决这类问题的方法和步骤! 一.基本理论 有限元法的基本思路和基本原则以结构力学中的位移法为基础,把复杂的结构或连续体看成有限个单元的组合,各单元彼此在节点出连接而组成整体。把连续体分成有限个单元和节点,称为离散化。先对单元进行特性分析,然后根据节点处的平衡和协调条件建立方程,综合后做整体分析。这样一分一合,先离散再综合的过程,就是把复杂结构或连续体的计算问题转化简单单元分析与综合问题。因此,一般的有限揭发包括三个主要步骤:离散化单元分析整体分析。 二.用到的函数 1. LinearTriangleElementStiffness(E,NU,t,xi,yi,xj,yj,xm,ym,p) (K k I f) (k u) (k u A) (E NU t) 三.实例 例1.考虑如图所示的受均布载荷作用的薄平板结构。将平板离散化成两个线性三角元,假定E=200GPa,v=,t=0.025m,w=3000kN/m. 1.离散化 2.写出单元刚度矩阵

通过matlab 的LinearTriangleElementStiffness 函数,得到两个单元刚度矩阵1k 和2k ,每个矩阵都是6 6的。 >> E=210e6 E = >> k1=LinearTriangleElementStiffness(E,NU,t,0,0,,,0,,1) k1 = +006 * Columns 1 through 5 0 0 0 0 0 0 0 0 Column 6 >> NU= NU = >> t= t = >> k2=LinearTriangleElementStiffness(E,NU,t,0,0,,0,,,1)

柴油机活塞设计计算与分析

柴油机活塞设计计算与分析 来源:作者:时间:2010-05-17 [ 摘要 ] 应用ANSYS软件对柴油机重要部件—活塞原结构及其改进后的方案进行三维有限元分析。首先,对活塞进行热分析,得到它的温度场分布情况,并在此基础上计算其不同工况下的综合应力场. 分析结果表明:新方案活塞的强度、刚度以及可靠性均优于原结构。 [ 关键词 ]柴油机;活塞;有限元分析;温度场 Comparative Analysis on New and Old Piston of 16V280ZJH Di esel . [ Abstract ] By using software ANSYS,three-dimensional FEA is a pplied to the piston,an important parts of diesel,when it is in its original form and its modified structure. Fi rst of all,the thermal analysis is presented and the tem perature distribution of the piston is obtained. Based o n this condition,the integrative stress field is compute d in various working performanc e o f the piston. The resu lts of this analysis indicate that the strength,rigidity and reliability of the new structure of the piston are b etter than its original form. [ Keyword ] Diesel;Piston;FEA; temperature field 1前言 活塞是柴油机的主要受热零件,工作时,处于高温、高压、高负荷的恶劣环境下,经受周期性交变的机械负荷和热负荷的作用,容易发生故障。因此,活塞的结构是否合理,热负荷分布是否均匀,强度和刚度是否满足设计要求,一直是设计人员在柴油机研发和改进中十分关注的热点问题。 我厂16V280ZJH型大功率柴油机原活塞,在运用中暴露出可靠性严重不足的缺陷。为提高活塞的可靠性,保证柴油机整机的使用寿命,我厂针对出现的问题,对活塞原进行改进,开发出了新结构的柴油机活塞。为验证改进后的效果,并为活塞的进一步改进和优化提供依据,我们应用大型分析软件

制冷压缩机的基本性能参数计算

一、实际输气量(简称输气量) 在一定工况下,单位时间内由吸气端输送到排气端的气体质量称为在该工矿下的压缩机质量输气量,单位为。若按吸气状态的容积计算,则其容积输气量为,单位为。于是 二、容积效率? 压缩机的容积效率是实际输气量与理论输气量之比值 (4-2) 它是用以衡量容积型压缩机的气缸工作容积的有效利用程度。 三、制冷量 制冷压缩机是作为制冷机中一重要组成部分而与系统中其它部件,如热交换器,节流装置等配合工作而获得制冷的效果。因此,它的工作能力有必要直观地用单位时间内所产生的冷量一一制冷量来表示,单位为,它是制冷压缩机的重要性能指标之一。 (4-3) 式中-制冷剂在给定制冷工况下的单位质量制冷量,单位为; -制冷剂在给定制冷工况下的单位容积制冷量,单位为。 为了便于比较和选用,有必要根据其不用的使用条件规定统一的工况来表示压缩机的制冷量,表4-1列出了我国有关国家标准所规定的不同形式的单级小型往复式制冷压缩机的名义工况及其工作温度。根据标准规定,吸气工质过热所吸收的热量也应包括在压缩机的制冷量内。 表4-1小型往复式制冷压缩机的名义工况 四、排热量 排热量是压缩机的制冷量和部分压缩机输入功率的当量热量之和,它是通过系统中的冷凝器排出的。这个参数对于热泵系统中的压缩机来讲是一个十分重要的性能指标;在设计制冷系统的冷凝器时也是必须知道的。 图4-1实际制冷循环 从图4-1a所示的实际制冷循环或热泵循环图可见,压缩机在一定工况下的排热量 为: 从图4-1b的压缩机的能量平衡关系图上不难发现 上两式中 -压缩机进口处的工质比焓; -压缩机出口处的工质比焓; -压缩机的输入功率; -压缩机向环境的散热量。 表2-2列举了美国制冷协会ARI520-85标准所规定的用于热泵中的压缩机的名义工况。 表2-2热泵用压缩机的名义工况(美国制冷协会ARI520-85标准)环境温度35度

matlab有限元分析实例

1.物理现象:这个对工程师来说是直观的物理现象和物理量,温 度多少度,载荷是多大等等。通常来说,用户界面中呈现的、用户对工程问题进行设置时输入的都是此类信息。 2.数学方程:将物理现象翻译成相应的数学方程,例如流体对应 的是NS方程,传热对应的是传热方程等等;大部分描述这些现象的方程在空间上都是偏微分方程,偶尔也有ODE(如粒子轨迹、化学反应等)。在这个层面,软件把物理现象“翻译” 为以解析式表示的数学模型。 3.数值模型:在定义了数学模型,并执行了网格剖分后,商业软 件会将数学模型离散化,利用有限元方法、边界元法、有限差分法、不连续伽辽金法等方法生成数值模型。软件会组装并计算方程组雅可比矩阵,并利用求解器求解方程组。这个层面的计算通常是隐藏在后台的,用户只能通过一些求解器的参数来干预求解。 有限元是一种数值求解偏微分方程的方法。 基本过程大致是设置形函数,离散,形成求解矩阵,数值解矩阵,后处理之类的。 MATLAB要把这些过程均自己实现,不过在数值求解矩阵时可以调用已有函数。可以理解为MATLAB是一个通用的计算器,当然它的功能远不止如此。

而ANSYS之类的叫做通用有限元软件,针对不同行业已经将上述过程封装,前后处理也比较漂亮,甚至不太了解有限元理论的人也能算些简单的东西,当然结果可靠性又另说了。 比较两者,ANSYS之类的用起来容易得多,但灵活性不如MATLAB。MATLAB用起来很困难,也有人做了一些模块,但大多数只能解决一些相对简单的问题。 对于大多数工程问题,以及某些领域的物理问题,一般都用通用有限元软件,这些软件还能添加一些函数块,用以解决一些需要额外设置的东西。但是对于非常特殊的问题,以及一般性方程的有限元解,那只能用MATLAB或C,Fortran之类的了。

基于Proe的活塞有限元分析实例

基于Proe的活塞有限元分析实例 目录 一、力边界下活塞的有限元分析 (1) 1.指定材料:点击材料分配工具,在弹出的对话框中点更多 (2) 2.约束确定 (4) 3.载荷施加 (5) 4.新建静力分析 (8) 5.结果查看及分析 (9) 二、热分析 (12) 1.概述 (12) 2.添加热边界条件 (14) 3.新建热分析 (16) 4.结果查看及分析 (17) 三、热力耦合 (20) 1.热载荷施加 (20) 2.静态分析 (21) 3.结果查看 (23) 四、敏感度分析 (25) 1.增加设计参数 (25) 2.定义敏感度分析 (27) 3.结果分析 (28) 4.温度敏感度分析 (30) 五、优化分析 (31) 1.新建优化设计 (31) 六、压力分析结果 (33) 七、热分析结果 (36) 八、敏感度分析结果 (38) 九、优化设计结果 (39) 一、力边界下活塞的有限元分析 建好模型后,进入分析模块

1.指定材料:点击材料分配工具,在弹出的对话框中点更多 弹出对话框中选择新建 对话框中输入如下ZL109材料的参数,并切换到热标签,输入参数

确定后返回到

材料出选择ZL109,点击确定将材料分配给活塞,因为文档中只有一个零件,所以自动分配好。 2.约束确定 选择位移约束工具,曲面选择销座圆孔面,将其三个平移自由度和三个旋转自由度设置为固定

3.载荷施加 柴油机活塞的顶部与环岸燃气爆发压力一般简化为均匀分布在其表面,所示,而且一般情况下施加于活塞的第一环槽底部的压力为气体压力的76%,而施加到第一环岸和第二道环槽上面及下面的压力为气体残压的25%,到第二道环槽底时只剩下20%的气体残压施加到其上,由于燃气不断膨胀,压力越来越小,能到达第二环槽以下的残余燃气压力变得特别的小,基本可以忽略不计。 选取最大爆发压力工况作为计算工况,所受载荷有最大爆发压力、活塞往复惯性力和活塞销座分布力的作用。按照前述计算,并选择面施加气压

三种压缩机性能特点、优缺点比较

螺杆式压缩机又称螺杆压缩机。20世纪50年代,就有喷油螺杆式压缩机应用在制冷装置上,由于其结构简单,易损件少,能在大的压力差或压力比的工况下,排气温度低,对制冷剂中含有大量的润滑油(常称为湿行程)不敏感,有良好的输气量调节性,很快占据了大容量往复式压缩机的使用X围,而且不断地向中等容量X围延伸,广泛地应用在冷冻、冷藏、空调和化工工艺等制冷装置上。 以它为主机的螺杆式热泵从20世纪70年代初便开始用于采暖空调方面,有空气热源型、水热泵型、热回收型、冰蓄冷型等。在工业方面,为了节能,亦采用螺杆式热泵作热回收。 离心式压缩机是一种叶片旋转式压缩机(即透平式压缩机)。在离心式压缩机中,高速旋转的叶轮给予气体的离心力作用,以及在扩压通道中给予气体的扩压作用,使气体压力得到提高。

早期,由于这种压缩机只适于低,中压力、大流量的场合,而不为人们所注意。由于化学工业的发展,各种大型化工厂,炼油厂的建立,离心式压缩机就成为压缩和输送化工生产中各种气体的关键机器,而占有极其重要的地位。随着气体动力学研究的成就使离心压缩机的效率不断提高,又由于高压密封,小流量窄叶轮的加工,多油楔轴承等技术关键的研制成功,解决了离心压缩机向高压力,宽流量X围发展的一系列问题,使离心式压缩机的应用X围大为扩展,以致在很多场合可取代往复压缩机,而大大地扩大了应用X围。 是各类压缩机中发展最早的一种,公元前1500年中国发明的木风箱为往复活塞压缩机的雏型。18世纪末,英国制成第一台工业用往复活塞空气压缩机。20世纪30年代开始出现迷宫压缩机,随后又出现各种无油润滑压缩机和隔膜压缩机。50年代出现的对动型结构使大型往复活塞压缩机的尺寸大为减小,并且实现了单机多用。

有限元分析的基本步骤

一个典型的ANSYS分析过程可分为以下6个步骤: 1定义参数 2创建几何模型 3划分网格 4加载数据 5求解 6结果分析 1定义参数 1.1指定工程名和分析标题 启动ANSYS软件,选择File→Change Jobname命令 选择File→Change Title菜单命令 1.2定义单位 (2) 设置计算类型 ANSYS Main Menu: Preference→Material Props →Material Models →Structural →OK (3) 定义分析类型 ANSYS Main Menu: Preprocessor →Loads →Analysis Type →New Analysis→STATIC →OK 1.3定义单元类型 选择Main Menu→Preprocessor→Element Type→Add/Edit/Delete命令 单击[Options]按钮,在[Element behavior]下拉列表中选择[Plane strs w/thk]选项,单击确定 1.4定义单元常数 在ANSYS程序主界面中选择Main Menu→Preprocessor→Real Constants→Add/Edit/Delete命令 单击[Add]按钮,进行下一个[Choose Element Type]对话框 1.5定义材料参数 在ANSYS程序主界面,选择Main Menu→Preprocessor→Material Props→Material Models命令 (1)选择对话框右侧Structural→Linear→Elastic→Isotropic命令,并单击[Isotropic]选项,接着弹出如下所示[Linear Isotropic Properties for Material Number 1]对话框。 在[EX]文本框中输入弹性模量“200000”,在[PRXY]文本框中输入泊松比“0.3”,单击OK 2创建几何模型 在ANSYS程序主界面,选择Main Menu→Preprocessor→Modeling→Creat→Areas→Rectangle →By 2Corners命令 选择Main Menu→Preprocessor→Modeling→Creat→Areas→Circle→Solid Circle命令 3网格划分(之前一定要进行材料的定义和分配) 选择Main Menu→Preprocessor→Modeling→Operate→Booleans→Subtract→Arears Circle命令 选择Main Menu→Preprocessor→Meshing→Mesh→Areas→Free命令,弹出实体选择对话框,单击[Pick All]按钮,得到如下所示网格 4加载数据 (1)选择Main Menu→Preprocessor→Loads→Define Loads→Apply→Structural→Displacement→On Lines命令, 出现如下所示对话框,选择约束[ALL DOF]选项,并设置[Displacement value]为0,单击OK。

国内外主要有限元分析软件比较

有限元分析是对于结构力学分析迅速发展起来的一种现代计算方法。它是50年代首先在连续体力学领域--飞机结构静、动态特性分析中应用的一种有效的数值分析方法,随后很快广泛的应用于求解热传导、电磁场、流体力学等连续性问题。有限元分析软件目前最流行的有:ANSYS、ADINA、ABAQUS、MSC四个比较知名比较大的公司。 常见软件 有限元分析软件目前最流行的有:ANSYS、ADINA、ABAQUS、MSC四个比较知名比较大的公司,其中ADINA、ABAQUS在非线性分析方面有较强的能力目前是业内最认可的两款有限元分析软件,ANSYS、MSC进入中国比较早所以在国内知名度高应用广泛。目前在多物理场耦合方面几大公司都可以做到结构、流体、热的耦合分析,但是除ADINA以外其它三个必须与别的软件搭配进行迭代分析,唯一能做到真正流固耦合的软件只有ADINA。 软件对比 ANSYS是商业化比较早的一个软件,目前公司收购了很多其他软件在旗下。ABAQUS专注结构分析目前没有流体模块。MSC是比较老的一款软件目前更新速度比较慢。ADINA是在同一体系下开发有结构、流体、热分析的一款软件,功能强大但进入中国时间比较晚市场还没有完全铺开。 结构分析能力排名:1、ABAQUS、ADINA、MSC、ANSYS 流体分析能力排名:1、ANSYS、ADINA、MSC、ABAQUS 耦合分析能力排名:1、ADINA、ANSYS、MSC、ABAQUS 性价比排名:最好的是ADINA,其次ABAQUS、再次ANSYS、最后MSC ABAQUS软件与ANSYS软件的对比分析 1.在世界范围内的知名度 两种软件同为国际知名的有限元分析软件,在世界范围内具有各自广泛的用户群。ANSYS软件在致力于线性分析的用户中具有很好的声誉,它在计算机资源的利用,用户界面开发等方面也做出了较大的贡献。ABAQUS软件则致力于更复杂和深入的工程问题,其强大的非线性分析功能在设计和研究的高端用户群中得到了广泛的认可。 由于ANSYS产品进入中国市场早于ABAQUS,并且在五年前ANSYS的界面是当时最好的界面之一,所以在中国,ANSYS软件在用户数量和市场推广度方面要高于ABAQUS。但随着ABAQUS北

往复式压缩机原理及结构

绪 论 绪 论本课程将系统地介绍往复式压缩机的工作原理、结构、受力分析等各方面的知识,使同学们充分了解往复式压缩机的特点。在教材的基础之上进一步加深同学们对压缩机的认识和了解,对将来走向工作岗位打下比较坚实的基础。当然,实践对于认识压缩机结构、设计优化的帮助是不能否认的。同学们只有将 所学理论与实践结合起来才能收到 良好的效果。 教学大纲 总 论 第一章 第二章 第三章 第四章 第五章 实 验 发展历程 总 论 压缩机的发展历程 从世界范围内看压缩机的发展历程和概况。压缩机的发展 历史悠久,具有丰富的设计、研究、制造和运行的经验,至今 在各个领域中依然被广泛采用、发展着。在其种类的多样性方 面,活塞式以外的各类压缩机机型,如离心式、螺杆式、滚动 转子式和涡旋式等均被有效地开发和利用,并各具特色,。

压缩机分类 压缩机 容机型速度型空气压缩机及 化工流程压缩机 往复式回转式离心式轴流式 往复式压缩机的优缺点 优点: 适应较广泛的压力范围 热效率高、单位耗电量少、加工方便 对材料要求低,造价低廉 生产、使用、设计、制造技术成熟 装置系统较简单 缺点: 转速受到限制 结构复杂、易损件多、维修工作量大 运转时有震动 输气不连续、气体压力有波动 第一章 热力过程 理论循环与实际循环之间的差别实际循环的压缩机的性能指标

?制冷压缩机指标 ?空气压缩机指标 一些重要概念 ?输气系数 ?压缩机功率、效率 ?运行特性曲线 ?排气温度 练习题 练习园地 第二章活塞式制冷压缩机动力学曲柄连杆机构的受力分析 曲柄连杆机构的惯性力 连杆惯性力的质量代替系统 往复惯性力 旋转惯性力 气体压力的作用力--气体力

有限元分析方法在工程中的应用

有限元分析方法在工程中的应用 Application of finite element analysis method in Engineering 一、引言 从20世纪50年代诞生到现在,有限元方法和技术经历了60年的发展历程,已经成为当今科学与工程领域中分析和求解微分方程的系统化数值计算方法。由于有限元分析方法适用性强、形式简单、理论可靠等众多优点,近年来已被推广应用到航空航天、土木建筑、机械等相关科学领域。本文以ANSYS软件为例,介绍其功能和应用,包括几何建模技术、网格划分与有限元建模技术、施加载荷与求解过程、结果后处理技术等。图1是用有限元方法分析工程问题时的具体步骤[1]。 本文以车轮钢的疲劳性能研究为例,介绍有限元分析方法在其中的应用。 图1. 有限元方法进行计算机辅助工程分析的步骤 二、ANSYS操作步骤 ANSYS的基本操作步骤包括建模、划分网格、加载求解和后处理等步骤。进入ANSYS系统后有六个系统,提供使用者和软件之间的交流凭借这六个窗口可以实现输入命令、检查模型的建立、观察分析结果及图形输出与打印。ANSYS

各窗口及工具条如图2所示。 图2. ANSYS的窗口及工具条 1、建立模型 首先必须指定作业名和分析标题,接着使用PREP7前处理器定义单元类型、单元实常数、材料特性,然后建立几何模型。需要注意的是,ANSYS的GUI界面下没有类似WORD中的后退操作按钮,所以就出现了一个常见问题:做错一步操作如何后退?这里可以采用三种方法:(1)建模阶段可以使用Delete(删除)图元命令,划分网格阶段可以使用Clear(清除)单元命令。(2)每完成一个模块的操作,都用SA VE AS保存数据到不同名的数据库文件中,出错后点击Resum Form恢复。(3)使用命令:UNDO,ON以便激活ANSYS内部的返回命令。 本文以车轮钢为例,建立好的模型与图2类似,只是未划分网格。 2、单元网格划分 一个实体模型进行网格划分(meshing)之前必须指定所产生的单元属性(element attribute)。ANSYS有限元网格划分是进行数值模拟分析至关重要的一步,它直接影响着后续数值计算分析结果的精确性。ANSYS软件平台提供了映射网格划分和自由网格划分的策略。映射网格划分用于曲线、曲面、实体的网格划分方法,自由网格划分方法用于空间自由曲面和复杂实体。

利用Matlab进行有限元分析结果的可视化显示

利用Matlab进行有限单元法计算结果的可视化显示 摘要 本文用一个简单的例子给出了用Matlab进行有限单元法计算结果可视化显示的方法。采用Matlab进行可视化显示,可以在获得较好的可视化显示效果的基础上,节省科研人员的大量时间和精力。 关键字:有限元,后处理,可视化,Matlab 有限单元法是工程数值分析的有力工具,可以应用于固体力学、结构分析、温度场模拟等诸多领域。有限单元法一般可以分为前处理、计算以及后处理三部分,市场上现有的有限元商业软件都提供了这三部分功能模块。但有时,由于各种原因,科研人员必须自行编写有限元分析程序,作者通过自身实践,认为Matlab可以较好的进行有限单元法计算结果的可视化显示。 Matlab由美国MathWorks公司开发,历经二十多年的发展,现已成为国际公认的优秀科技应用软件之一,在机械、航天、医药等多个科研、工程领域有着广泛的应用。Matlab 本身具有丰富的可视化显示手段,但遗憾的是,目前对于Matlab的应用研究主要集中在其强大的科学计算能力方面,而对科学计算结果的可视化显示,尤其对由空间点云构成的形体的可视化显示研究涉及甚少,作者通过查阅相关资料,以及探索和实践,成功地进行了三维形体有限元分析结果的可视化显示。 1.准备数据 针对Matlab对空间点云构成形体的数据格式要求,必须重新编排有限元分析中前处理部分以及计算部分所获得的数据。下面以空间单位立方体为例,介绍Matlab对数据文件格式的要求。 若有空间单位正方体,将其划分为四面体网格,图1为该正方体的节点编号及其网格拓朴结构,表1为节点的坐标值以及节点处的有限元计算结果(此处为温度)。 表1:单位正方体顶点坐标及其温度 图1:空间立方体顶点编号及其网格拓朴结构

有限单元法matlab编程实例

主程序 E=210e6;A=2e-2;I=5e-5;L1=3;L2=4;L3=3; k1=PlaneFrameElementStiffness(E,A,I,L1,90); k2=PlaneFrameElementStiffness(E,A,I,L2,0); k3=PlaneFrameElementStiffness(E,A,I,L3,270); K=zeros(12,12); K=PlaneFrameAssemble(K,k1,1,2); K=PlaneFrameAssemble(K,k2,2,3); K=PlaneFrameAssemble(K,k3,3,4) k=K(4:9,4:9); f=[-20;0;0;0;0;12]; u=k\f U=[0;0;0;u;0;0;0] F=K*U u1=[U(1);U(2);U(3);U(4);U(5);U(6)]; u2=[U(4);U(5);U(6);U(7);U(8);U(9)]; u3=[U(7);U(8);U(9);U(10);U(11);U(12)]; f1=PlaneFrameElementForces(E,A,I,L1,90,u1) f2=PlaneFrameElementForces(E,A,I,L2,0,u2) f3=PlaneFrameElementForces(E,A,I,L3,270,u3)

需调用的函数和子程序 function y=PlaneFrameAssemble(K,k,i,j) %PlaneFrameAssemble This function assembles the element stiffness %matrix k of the plane frame element with nodes i and j into the global %stiffness matrix K .This function returns the global stiffness matrix K after %the element stiffness matrix k is assembled. K(3*i-2,3*i-2)=K(3*i-2,3*i-2)+k(1,1); K(3*i-2,3*i-1)=K(3*i-2,3*i-1)+k(1,2); K(3*i-2,3*i)=K(3*i-2,3*i)+k(1,3); K(3*i-2,3*j-2)=K(3*i-2,3*j-2)+k(1,4); K(3*i-2,3*j-1)=K(3*i-2,3*j-1)+k(1,5); K(3*i-2,3*j)=K(3*i-2,3*j)+k(1,6); K(3*i-1,3*i-2)=K(3*i-1,3*i-2)+k(2,1); K(3*i-1,3*i-1)=K(3*i-1,3*i-1)+k(2,2); K(3*i-1,3*i)=K(3*i-1,3*i)+k(2,3); K(3*i-1,3*j-2)=K(3*i-1,3*j-2)+k(2,4); K(3*i-1,3*j-1)=K(3*i-1,3*j-1)+k(2,5); K(3*i-1,3*j)=K(3*i-1,3*j)+k(2,6); K(3*i,3*i-2)=K(3*i,3*i-2)+k(3,1); K(3*i,3*i-1)=K(3*i,3*i-1)+k(3,2); K(3*i,3*i)=K(3*i,3*i)+k(3,3); K(3*i,3*j-2)=K(3*i,3*j-2)+k(3,4); K(3*i,3*j-1)=K(3*i,3*j-1)+k(3,5); K(3*i,3*j)=K(3*i,3*j)+k(3,6); K(3*j-2,3*i-2)=K(3*j-2,3*i-2)+k(4,1); K(3*j-2,3*i-1)=K(3*j-2,3*i-1)+k(4,2); K(3*j-2,3*i)=K(3*j-2,3*i)+k(4,3); K(3*j-2,3*j-2)=K(3*j-2,3*j-2)+k(4,4); K(3*j-2,3*j-1)=K(3*j-2,3*j-1)+k(4,5); K(3*j-2,3*j)=K(3*j-2,3*j)+k(4,6); K(3*j-1,3*i-2)=K(3*j-1,3*i-2)+k(5,1); K(3*j-1,3*i-1)=K(3*j-1,3*i-1)+k(5,2); K(3*j-1,3*i)=K(3*j-1,3*i)+k(5,3); K(3*j-1,3*j-2)=K(3*j-1,3*j-2)+k(5,4); K(3*j-1,3*j-1)=K(3*j-1,3*j-1)+k(5,5); K(3*j-1,3*j)=K(3*j-1,3*j)+k(5,6); K(3*j,3*i-2)=K(3*j,3*i-2)+k(6,1); K(3*j,3*i-1)=K(3*j,3*i-1)+k(6,2); K(3*j,3*i)=K(3*j,3*i)+k(6,3); K(3*j,3*j-2)=K(3*j,3*j-2)+k(6,4); K(3*j,3*j-1)=K(3*j,3*j-1)+k(6,5); K(3*j,3*j)=K(3*j,3*j)+k(6,6); y=K;

相关文档
最新文档