空气源热泵热水器国家标准

空气源热泵热水器国家标准
空气源热泵热水器国家标准

空气源热泵热水器国家标准

中华人民共和国国家质量监督检验检疫总局发布

中国国家标准化管理委员会

前言

本标准附录B为规范性附录、附录A为资料性附录。

本标准由中国机械工业联合会提出。

本标准由全国冷冻空调设备标准化技术委员会(SAC/TC 238)归口。

本标准主要起草单位:广州中宇冷气科技发展有限公司、合肥通用机械研究院、江苏天舒电器有限公司、、广东美的商用空调设备有限公司、合肥通用环境控制技术有限公司。

本标准准参加起草单位:大连冰山集团有限公司、重庆九龙韵新能源发展有限公司、北京同方洁净技术有限公司、广州恒星冷冻机械制造有限公司、艾欧史密斯(中国)热水器有限公司、浙江正理电子电气有限公司、北京华清融利空调科技有限公司、佛山市伊雷斯制冷科技有限公司、劳特斯空调(江苏)有限公司、浙江星星中央空调设备有限公司、泰豪科技股份有限公司、广东申菱空调设备有限公司、上海富田空调冷冻设备有限公司、艾默生环境优化技术(苏州)研发有限公司、(中外合资)滁州扬子必威中央空调有限公司、宁波博浪热能设备有限公司。

本标准主要起草人:覃志成、张秀平、张明圣、王天舒、舒卫民、李柏。

本标准参加起草人:俞乔力、朱勇、刘耀斌、袁博洪、邱步、凌拥军、黄国琦、区志强、丁伟、沙凤岐、黄晓儒、易新文、姚宏雷、文茂华、谢勇、王磊、钟瑜、王玉军、汪吉平。

本标准由全国冷冻空调设备标准化技术委员会负责解释。

本标准是首次制定。

商业或工业用及类似用途的热泵热水机

1、范围

本标准规定了商业或工业用及类似用途的热泵热水机(简称“热水机”)的术语和定义、型式与基本参数、要求、试验方法、检验规则、标志、包装、运输和贮存等。

本标准适用于采用电动机驱动,蒸汽压缩制冷循环,名义制热能力3000W以上,以空气、水为热源,以提供热水为目的热泵热水机,其他用途的热泵热水机也可参照使用。

2、规范性引用文件

下列文件中的条款通过本标准的引用而构成本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准。然而,鼓励根据本标准达成协议的各方研究是否使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。

GB/T 191包装储运图示标志(GB/T191—2000,eqv ISO 780:1997)

GB/T 1720 漆膜附着力测定法

GB/T 2423.17电工电子产品基本环境试验规程试验Ka:盐雾试验方法(GB/T 2423.17---1999,eqv IEC60068-2-11:1981)

GB/T2828.1计数抽样检验程序第1部分:按接收质量限(AQL)检索的逐批检验抽样计划(GB/T 2828.1—2003,ISO 2859:1999 IDT)

GB/T 6388 运输包装收发货标志

GB 8624建筑材料燃烧性能分级方法

GB/T 10870—2001容积式和离心式冷水(热泵)机组性能试验方法

GB/T 13306 标牌

GB/T 13384 机电产品包装通用技术条件

GB/T 17758单元式空气调节机

GB/T 18430.1蒸汽压缩循环冷水(热泵)机组第1部分:工商业用和类似用途的冷水(热泵)机组

JB/T 4330制冷和空调设备噪声的测定

JB/T 4750制冷装置用压力容器

JB/T 7249制冷设备术语

JB 8654容积式和离心式冷水(热泵)机组安全要求

3、术语和定义

JB/T 7249确立的以及下列术语和定义适用于本标准。

3.1热泵热水机heat pump water heater

一种采用电动机驱动,采用蒸气压缩制冷循环,将低品位热源(空气或水)的热量转移到被加热的水中用以制取热水的设备。

3.2空气源热泵热水机air-sorce heatpump water heater

以空气为热源的热泵热水机。

3.3水源热泵热水机water-source heat pump water heater

以水为直接热源或作为传热介质传递热量的热泵热水机

3.4一次加热式热水机one-time heating heat pump water heater

使用侧进水流过热泵热水机一次就达到设定终止温度的热水机

3.5循环加热式热水机circulate heating heat pump water heater

使用侧进水通过水泵多次流过热泵热水机逐渐达到设定终止温度的热水机

3.6辅助电加热式热水机additional electrical heating heat pump water heater

带辅助电加热器(包括后安装的电加热器)与热泵一起使用进行制热的热水机。

3.7初始水温度initial temperature of water

热水机开始加热前,在使用侧总进口处测得的水温度,单位:℃

3.8终止水温度termination temperature of water

a)对一次加热式热水机,指当加热稳定时热水机在使用侧最终出口处测得的水温度,单位:℃。

b)对循环加热式热水机,指热水机加热完成后在储热水箱中测得的平均水温度,单位:℃。

3.9制热量heating capacity

在规定试验工况下,热水机运行时间内提供热水的热量与运行时间之比,单位:KW。

3.10消耗功率heating consumed power

在规定试验工况下,热水机运行时所消耗的总电功与运行时间之比,单位:KW。

3.11性能系数(COP)coefficient of performance

制热量与消耗功率之比,其值用W/W表示。

3.12产水量heating water flow

在规定试验工况下,热水机单位时间内提供的热水流量,单位:m3/h。

3.13其他术语other terms

a)承压式水箱pressure-resistant water tank

指箱体密闭,不与大气相通,并能承受一定水压力的水箱,单位:L。

b)非承压式水箱free-surface water tank

指水箱顶部与大气相通,通过液位控制装置控制其水面的水箱,单位:L。

4、型式与基本参数

4.1型式

4.1.1热水机按使用电源形式分类:

a)单相电源式(220V,50Hz);

b)三相电源式(380V,50Hz)。

4.1.2热水机按制热方式分类:

a) 一次加热式;

b)循环加热式。

4.1.3热水机按机组结构型式分类:

a)自带水箱;

b)不带水箱。

4.1.4热水机按热源方式分类:

a)空气源式;

b)水源式。

4.1.5辅助电加热式

4.1.6热水机按使用气候环境分为:

类型普通型低温型

最高温度43℃38 ℃

电低温度0℃ -10℃

4.2热水机型号编制方法

热水机水箱的名义容量优选值、名义制热量优选值及型号编制方法见附录A。

4.3基本参数

4.3.1空气源热泵热水机的试验工况见表1,水源热泵热水机的试验工况见表2,融霜的试验条件下见表3。

表1空气源热泵热水机的试验工况单位为℃

表2 水源热泵热水机的试验工况单位为:℃

表3融霜的试验条件单位为:℃

4.3.3热水机名义工况时的性能系数(COP)限值见表4.

表4热水机名义工况时的性能系数(COP)单位为W/W

5、要求

5.1一般要求

5.1.1热水机应符合本标准的规定,并按经规定程序批准的图样和技术文件制造。

5.1.2热水机的黑色金属制件,表面应进行防锈蚀处理。

5.1.3热水机涂装件,不应有明显的气泡、皱纹、流痕、漏涂、底漆外露等缺陷及其他损伤。

5.1.4热水机电镀件表面不应有剥落、露底、针孔、明显的花斑和划伤等缺陷。

5.1.5热水机内部与制冷剂和润滑油接触的表面应保持清洁、干燥,机组外表面应清洁,管路附件安装应美观大方。

5.1.6热水机装饰性塑料件不得有裂痕、气泡和明显缩孔等缺陷,塑料件按相关标准规定的热老化和机械强度试验后,不应有明显的碎裂、变形等缺陷。

5.1.7热水机的铭牌和装饰板应经久耐用,经型式试验后不得变形、脱落,其图案和字迹应清晰。

5.1.8热水机的紧固件及其他组件应符合有关标准规定,其易损件应便于更换。

5.1.9热水机的保温层应有良好的保温性能,机组表面不应凝露。保温材料应无毒、无异味且为难燃材料,并应符合GB 8624的要求。

5.1.10热水机承压式水箱进出水管如直接安装于公共供水系统时,进出水管应符合国家有关水管接头标准的要求。

5.1.11电气控制设备

热水机各种控制设备应能正常工作,各种保护器件应符合要求并灵敏可靠。

5.1.12热水机主机各零部件的安装应牢固、可靠,压缩机应具有防振动措施。热水机运转时无异常声响,管路与零部件间不应有相互摩擦和碰撞,热水机的电磁换向阀动作应灵敏、可靠。

5.1.13热水机配置的循环水泵其流量、扬程应保证热水机的正常工作;热水机配置的热源换热器和热水换热器均应满足热水的相关要求。

5.1.14电镀件耐盐雾性

按6.4.11的方法试验后,金属镀层上的每个锈点锈迹面积不应超过1mm 2 ,试件镀层每100cm 2面积上不应有超过2个锈点、锈迹,小于100 cm 2时,不应有锈点和锈迹。

5.1.15涂装件涂层附着力

涂装件的涂层应牢固,按6.4.12的方法试验,其附着力应达到GB/T 1720规定的二级以上。

5.2安全要求

热水机的安全要求应符合JB 8654的有关规定。

5.3 性能要求

5.3.1 制热系统气密性要求

热水机热泵系统各部分应密封,按6.4.1的方法试验,热水机热泵系统各部分不应有制冷剂泄漏现象。

5.3.2 液压要求

5.3.2.1 按

6.4.2.1的方法试验时,热水机使用侧各部位应无异常变形和泄漏。

5.3.2.2 热水机自带承压式水箱的设计压力应不小于0.7MPa,按

6.4.2.2的方法试验时,水箱各部位及接头处不应有异常变形和泄漏现象。

5.3.3 热水机的名义工况性能

5.3.3.1 按

6.4.4.1方法试验时,热水机的实测制热量应不小于名义制热量的95%。

5.3.3.2 按

6.4.4.2方法试验时,热水机的实测制热消耗功率应不大于名义制热消耗功率的110%。

5.3.3.3 性能系数(COP)

按6.4.4.1 方法实测制热量与按6.4.4.2方法实测制热消耗功率的比,应不小于明示值的92%且应不小于表4的规定值。

5.3.3.4 辅助电加热式热水机,按

6.4.4.3方法试验,对其电加热器的实测制热消耗功率要求为:辅助电加热器的消耗功率允差为名义值的-10%~+5%。

5.3.3.5 按

6.4.4.4测定,水源热水机热源侧和不提供水泵热水机使用侧的水侧压力损失应不大于机组明示值的115%。

5.3.4 最大负荷工况要求

按6.4.5的方法试验时,热水机各部件不应损坏,过载保护器不应跳开,热水机应能正常运行。

5.3.5 低温工况要求

按6.4.6的方法试验时,空气源热泵热水机制热各部件不应损坏,高压、防冻及过载保护器不应跳开,机组应能正常运行。

5.3.6 自动融霜

空气源热泵热水机按6.4.7的方法进行融霜试验时,应符合以下要求:

---安全保护元、器件不应动作而停止运行;

---融霜功能正常,融霜彻底,融霜时的融化水应能正常排放;

---在最初融霜结束后的连续运行中,融霜所需的时间总和不应超过运行周期时间的20%,两个以上独立制冷循环的机组,各独立循环融霜时间的总和不应超过各独立循环总运转时间的20%。

5.3.7 最小负荷工况要求

水源热泵热水机应在热源侧采用低温保护,按6.4.8的方法试验时,应符合以下要求:

---保护装置不允许跳开,热水机不能损坏;

---低温保护功能正常,热源水温度等于或高于允许低温温度时热水机应能正常工作。

5.3.8 变工况性能

热水机变工况性能温度条件如表1、表2所示。按6.4.9方法进行试验并绘制性能曲线图或表。

5.3.9 噪声

热水机应进行噪声测量,按6.4.10的规定进行测量,实测最大噪声值应不大于表5的规定值,且不应大于机组明示值,允差+3dB(A)。

表5 噪声限值

5.4其他要求

对于自带水箱的热水机,热水贮存性能(保温及使用)见表6.

表6 自带水箱的热水机保温及使用性能试验要求

注:T2为终止水温度。

5.4.1保温性能

按6.6.2.1方法试验时,放置13h后热水的温度应符合表6规定。

5.4.2使用性能

按6.6.2.2的方法试验时,放水量同水箱额定容量比值不低于65%。

5.4.3热水机水箱容量

按6.6.2.3的方法试验时,热水机水箱容量允许偏差为±10%。

6 、试验方法

6.1 试验条件

6.1.1 温度条件:空气源式热水机的水温及空气干、湿球温度偏差按表1的规定;水源式热水机的水温偏差按表2的规定。

6.1.2 电源条件:热水机应其铭牌规定的额定电压和额定频率下运行,其偏差不应大于名义值的±1%。

6.2 试验用仪器仪表

6.2.1 试验用仪器仪表应经法定计量检验部门检定合格,并在有效期内。

6.2.2 测量仪表精度:按GB/T 10870—2001附录A的规定。

6.2.3 测量规定如下:

a)测量仪表的安装和使用按GB/T 18870的规定。

b)热水机的空气干、湿球温度按GB/T 18430.1规定的机组空气干、湿球温度的测量方法测量。

6.3 试验的一般要求

6.3.1 热水机所有试验应按铭牌上的额定电压和额定频率进行。

空气源热泵施工组织

空气源热泵工程组织方案第一章:编制依据第二章:工程简况第三 章:施工目标及现场组织机构第四章:质量及安全保证措施、施工准备(设备、人员、材料)1 、材料采购内控措施2 、工程质量保证措施3 、安全生产保证措施4 第五章:施工工期施工进度计划及保证措施第六章:实施方案 1、机组安装 2、机组单台安装 3、机组多台安装 4、空调设备主要施工工艺流程、风机与管道施工方法及主要技术措施5 、系统调试6. 第七章:安装工程突发事件处理机制与预案第八章:用户售后服务承诺 1、技术维护计划及保证措施 2、保修期的保修工作、保修期后的回访保修3 、技术维护资料编制及移交4. 施工组织设计总述:空气源热泵(空调)安装工程是现代化工业与民用建筑不可缺少的部分,在国民经济中占有重要的地位。制冷设备长期安全经济运行,安装质量是一个很重要的方面。我公司不仅依托优良产品的优势,更有从事空气源热泵(空调)安装工程安装丰富经验的技术人员、管理人员和施工人员。为了提高系统施工管理水平,科学地安排施工程序,在保证质量的基础上,缩短工期,加快工程进度,特编制此方案。明确施工任务的目标及主要施工技术方法和相应的保证措施,并以最佳的施工班子,精心组织、科学管理采取有效的技术措施,进一步完善、落实质量保证体系。我们对该项工程建设单位明确承诺,以优良的工程质量,最科学的施工方法,高效率按期竣工,做好文明施工,环境保护,全面完成此项工程任务。第一章:编制依据 1.1 国家及地方现行有关图集、规范、标准。 1.2 设计空调施工图(依据空调图纸) 1.3 国家现行有关法规 1.4空气源热泵(空调)安装工程系统调试工程有关说明第二章:工程简况工程简况2.1 工程名称:空气源热泵工程2.2 2.3采购人名称:元氏县交通警察大队九套安装工程量:空气源热泵机组2.4 第三章:施工目标及现场组织机构 3.1 施工目标响应建设单位提出的工期要求及结合实际情况,保证在合同期内安3.1.1 装、调试完备。 3.1.2 质量目标:合格标准。施工安全目标3.2 施工工亡,重伤事故为零。3.2.1 杜绝重大设备,火灾事故。3.2.2 4%负伤率控制在以下。3.2.3 3.3 文明施工目标按文明施工要求进行现场管理,保证现场文明施工,达到安全文明3.3.1 施工标准要求。环境保护达到建设施工无污染,符合环保标准,创一流施工环境,3.3.2 各项施工行为均满足《建设工程施工现场管理》规定要求,噪声控制为白天不。55bd 65bd大于,夜间不大于我公司具备良好的资信、资金状况和履约能力,我公司安排专款专3.3.3 用,并保证该工程所需资金,保证资金合理有效发挥最大效益。. 3.4 现场组织机构为了能使本工程按期优质完成施工任务,我们将根据本工程的实际情况和特点,选派具有同类工程施工管理经验的优秀工程管理人员组成工程部,以工程经理为核心,充分发挥企业的整体优势,以全面质量管理为中心,

空气能热泵中央空调与传统中央空调对比

空气能热泵中央空调与传统中央空调对比 地源热泵中|央空调与传统中|央空调对比:环境保护 从土壤源热泵的整个运行原理来看,土壤源热泵系统实际是真正意义的绿色环保空调,不管是冬季还是夏季的运行,都不会对建筑外大气环境造成不良影响。而普通中|央空调系统,将废热气或水蒸气排向室外环境,无一例外的都对环境造成了极大的污染。以地球表面浅层地热资源作为冷热源,利|用清洁的、近乎无限可再生的能源,符合可持续发展的战略要求。 地源热泵中|央空调与传统中|央空调对比:运行效率 对于普通中|央空调系统,不管是采用风冷热泵机组还是采用冷却塔的冷水机组,无一例外的要受外界天气条件的限|制,即空调区越需要供冷或供热时,主机的供冷量或供热量就越不足,即运行效率下降,这在夏热冬冷地区的使用就受到了影响。而土壤源热泵机组与外界的换热是通|过大地,而大地的温度很稳定,不受外界空气的变化而影响运行效率,因此,土壤源热泵的运行效率是最高的。 地源热泵中|央空调与传统中|央空调对比:经济方面 地源热泵系统还可以集采暖、空调制冷和提|供生活热水于一体。一套热泵系统可以替换原有的供热锅炉、制冷空调和生活热水加热的三套装置或系统,从而减少使用成本,十分经济。 地源热泵中|央空调与传统中|央空调对比:运行费用 地源热泵系统在运行中的节能特点也是显而易见的:通常地源热泵消耗1kW的能量,用户可以得到4kW以上的热量或冷量,其制冷、制热系数可达4以上,与传统的空气源热泵相比,要高出40%,其运行费用为普通中|央空调的50%~60%。达到相同的制冷制热效率,土壤源热泵主机的输入功率较小,即为业主提|供了较低运行费的空调系统,在全年时间使用空调的场所,这种效果尤为明显。锅炉只能将70%~90%的燃料内能为热量,因此地源热泵要比电锅炉加热节省三分之二以上的电能,比燃料锅炉节省约二分之一的能量。 地源热泵中|央空调与传统中|央空调对比:主机设置 对于普通中|央空调系统,若设置风冷热泵机组进行冷热空调,则风冷热泵主机的设置必须要与外界通风良好,要么设置于屋顶,要么设置于地面,这对别墅空调受限就更严重。而土壤源热泵主机的设置就非常灵活,可以设置在建筑物的任何位置,而不受考虑位置设置的限|制。若设置冷水机组+锅炉进行冷热空调,冷却塔和锅炉的位置就更受限|制。因此,就主机的设置而言,地源热泵系统的主机设置是非常灵活的。 地源热泵中|央空调与传统中|央空调对比:系统简单 一机多用,节约设备用房,应用范围广。地源热泵可供暖、空调,还可用于生活热水供应系统,一套系统可替代锅炉加空调的两套系统,因此一机多用,节省了建筑空间及设备的初投资,机组紧凑,节省设备用房空间,由此而产生的经济效益相当可观。 地源热泵中|央空调与传统中|央空调对比:无需除霜 大地土壤温度一年四季相对保持恒定,冬季也能保持在15℃以上,埋地换热器不会结霜,可节省因结霜、除霜而消耗的能量。 通|过详细对比,我们很容易发现地源热泵中|央空调优势非常明显,从这里我们也可以看出,为什么政|府会大力推|广地源热泵系统,地源热泵的普及不仅关系到家庭用户的切身利益,也很大程度上降低建筑能耗,缓解环境能源压力,优化生态环境。绿邦积极响应政|府号召,一直倡导舒适健康、节能环保的室内舒适家居生活,已经成功安装多套家用地源热泵系统。 传统热水器以燃气、电和太阳能为主。燃气热水器安全性较差,燃|烧不充分和水压不

我国的太阳能热水器技术标准

我国的太阳能热水器技术标准 经过二十多年的研究和开发,我国太阳能热利用取得了很大成就,已达到世界领先水平。其中,太阳能热水器作为节能、环保、低成本的绿色能源产品,已成为中国可再生能源领域发展最快、规模最大、市场成熟最早的行业。 经过二十多年的研究和开发,我国太阳能热利用取得了很大成就,已达到世界领先水平。其中,太阳能热水器作为节能、环保、低成本的绿色能源产品,已成为中国可再生能源领域发展最快、规模最大、市场成熟最早的行业。特别是“九五”以来,在企业规模化、产品标准化、技术国产化、市场规范化的产业发展指导思想的引导下,我国的太阳能热水器产业迅速发展,初步形成了原材料加工、生产、制造和销售、安装服务相配套的产业化体系。随着太阳能热水器产业的逐渐形成和发展,相应的标准化工作也在不断发展之中。 一、我国太阳能热水器产业的现状 中国的太阳能热水器产业,从无到有,从小到大,随着市场需求的迅速增长和公众环保意识的不断加强而不断发展,目前已形成真空管、平板型和闷晒型三大技术主流。截止到2001年年底,我国太阳能热水器保有量约3300万平方米,占世界保有量的70%,年产量达到780万平方米,形成了年节约500万吨标准煤的能力;全行业实现总产值近100亿元,从业人员超过15万人,产品年销售量是欧洲的10倍,太阳能热水器产品的出口额近年来以40%-50%的速率增长,我国已成为太阳能热水器的第一使用国和生产国。但同时也应看到,中国太阳能热水器市场目前只开发出了很小的一部分,热水器的户用比例只有3%,与日本的20%和以色列的80%相比差距甚远,因此中国的市场容量还非常巨大。目前,我国太阳能热水器正处于一个关键的发展阶段,主要表现在:太阳能热水器技术的开发由传统技术向高新技术发展;太阳能热水器的生产已经从小规模生产向大规模工业化发展;太阳能热水器从满足国内需要向国际市场发展;太阳能热水器正在向高品质、高性能发展。在太阳能生产企业中,争夺中国驰名商标和知名品牌已成为一种时尚和企业发展目标。在太阳能热水器产业

空气源热泵应用汇总

第一章空气源热泵技术介绍 所谓热泵,就是靠电能拖动,迫使热量从低位热源流向高位热源的装置。也就是说,热泵可以把不能直接利用的低品位热能(空气、土壤、井水、河水、太阳能、工业废水等转换为可以利用的高位能,从而达到节约部分高位能(煤、石油、燃气、电能等的目的。类似于人们把水自低水头压送至高水头的机械称为“水泵”,把气体自低压区送至高压区的机械称为“气泵”(在我国习称气体压缩机),因而把这种输送热能的机械称为“热泵”。因此,在矿物能源逐渐短缺、环境问题日益严重的当今世界,利用低位能的热泵技术已引起人们的关注和重视。 空气源热泵的历史以压缩式最悠久。它可追溯到18世纪初叶,可以说1824年卡诺循环的发表即奠定了热泵研究的基础。热泵的发展受制于能源价格与技术条件,所以其历史较为曲折,有高潮有低潮,但热泵发展的前景肯定是光明的。当前热泵研究的方向是向高温高效发展,即开发高温热泵并最大限度提高COP (性能系数 Coefficient of Performance)值,同时积极发展吸收和化学热泵等。 空气源热泵热水机组的制造、推广和使用在我国只是最近10年的事,但由于其相对传统制取热水设备的高效节能、环保、安全、智能化控制、不占用永久性建筑空间等优点而引起了市场日益广泛的关注。 热泵热水机组以清洁再生原料(空气+电)为能源,既不使用也不产生对人体有害的气体,同时也减少了温室效应和大气污染。目前,在我国电力资源短缺的前提下,采用热泵热水机组制取热水,既能以最小的电力投入获得最大的供热效益。将热泵热水机组放在建筑物的顶层或室外平台即可工作,省却了专用锅炉房。在设备结构上真正实现了水、电分离,确保了用户的安全。 第一节热泵工作原理 热泵技术是基于逆卡诺循环原理实现的。通俗的说,如同在自然界中水总是由高处流向低处一样,热量也总是从高温传向低温。但人们可以用水泵把水从低处提升到高处,从而实现水的由低处向高处流动,热泵同样可以把热量从低温热源传递

生能空气源方案样本

方案提供单位: 浙江正理电子电气有限公司联系人: 黄建生 联系电话 :

目录 第一章项目概况................................... - 6 -第二章方案设计简介............................... - 7 - 2.1 系统原理图 ................................ - 7 - 2.2 整体方案说明............................... - 7 - 2.3 报价方案 .................................. - 7 - 2.4 该方案的经济效益........................... - 8 -第三章设计依据及标准............................ - 10 -第四章设计计算参数.............................. - 10 - 4.1 机组额定工作参数.......................... - 10 - 4.2 工程设计计算参数.......................... - 11 -第五章卫生热水系统设计.......................... - 11 -第六章酒店卫生热水系统设计….…................. - 12 - 6.1 热泵机组运行时间确定...................... - 12 - 6.2 日耗热量的确定............................ - 12 - 6.3 设备选型 ................................. - 13 - 6.3.1 冬季最冷工况下( -2.4℃) 设备选型........ - 13 - 6.3.2 冬季平均工况下( 4.2℃) 运行时间校核..... - 14 - 6.3.3 年平均工况下( 1 7.5℃) 运行时间校核...... - 14 - 6.3.3 夏季工况下( 29.7℃) 运行时间校核........ - 15 -

太阳能与空气源热泵技术要求

B8太阳能及热泵集中热水系统技术条款 一、招标范围: 1、按国家相关技术标准、规范、热水系统图纸和招标文件的要求完成太阳能供热及空气源热泵辅助加热系统的施工图深化设计、设备采购供应、安装、调试工程等所有项目。 2、供应设备包括但不限于:太阳能集热器、保温承压水罐、膨胀罐、循环水泵组、热水回水泵组、空气源热泵、不锈钢管、各种阀门、电磁阀、自动化仪表及控制系统、机房内设备连接管路以及管路保温。安装内容包括集热装置、热泵系统、热水循环管路及部件、储水箱、配套水泵的安装及其管道连接。自动化仪表及控制系统包括温度计、压力表、传感器、循环水泵和热水回水泵的控制系统及与楼控系统的接口。 2.总承包单位负责提供冷水补水管道及接驳,楼内热水系统热水供水管道及回水管道的设备、管材、附件(包含水表井内的热水供水总管、热水回水总管、给水管的安装和水表井至各住户的热水供水支管、给水支管)的安装和预留预埋(含各种套管、预埋铁等)、太阳能集中供热水及空气源热泵辅助加热系统工程的混凝土结构工程(含设备基础等);中标单位提供施工详图及现场校核配合。 3.给排水:室内生活热水供回水管道、冷水补水管道以进入太阳能及热泵机房内的第一个阀门为界,阀门之前的管道安装由总包负责,阀门之后的管道及设备安装由中标单位负责。太阳能及热泵系统的调试由中标人负责,生活热水系统的联合调试由中标人配合总包完成。机房的排水及照明、通风设施由总包负责。 4.电气:太阳能及热泵专用开关箱进线电缆的采购和安装由总承包单位负责;太阳能及热泵专用开关箱之后的配电箱、控制箱、电缆等的设计、采购、安装等由中标单位完成;中标人负责按总包图纸要求完成机房内设备与大楼防雷接地系统的连接。 5.其他未详界面由中标人严格按太阳能集中供热水及空气源热泵辅助加热系统设备采购、安装、调试施工图纸的整体配套集成要求进行完成。 二、技术要求:

空气源热泵与模块机对比

空气源热泵与模块机做中央空调、热水机的对比 一.节能 (1)热水 如果酒店一天需用40吨水,空气源热泵与65模块机费用对比:制40吨热水所需热量为: Q=CM△T=1Kcal/kg.℃*40T*1000Kg/T*(55-15)℃=1600000Kcal 1600000Kcal÷860 Kcal/(KW·h)=1860.5(KW·h) 空气源RSJ-380/S-820-C费用: 1860.5(KW·h)÷38.5KW×9.1KW=440(KW.h) 65模块机费用: 1860.5(KW·h)÷69KW×18.8KW=507(KW.h) 空气源RSJ-380/S-820-C比65模块机每天可以节约费用 507(KW.h)-440(KW.h)=67(KW.h) 虽然65模块机夏季可以得到热水,但春秋冬三季,比空气源费电,二者一年的热水费用总体相差无几。 (2)中央空调 我们现在中央空调配置是6台RSJ-1800/MS-820-B,制热量是152KW×6=912KW;制冷量是142KW×6=852KW 如果同样配置用130模块机制热需要:912KW÷138KW=6.6台;制冷需要852KW÷130KW=6.6台 就是说配置相同的情况下,RSJ-1800/MS-820-B节约了一台主机,每年都可以节约一台130模块机的运行费用.

二.寿命 空气源热泵设计一年四季可以用,而模块设计是一年使用两季,冬夏二季。从热水方面来说,模块机由一年用两季改成一年用四季,寿命会降低;中央空调方面,空气源热泵由一年365天使用改为一年使用两季,使用年数会增加,比模块机要长。 三.效果 梧桐树酒店按四星标准打造,热水、空调都要让顾客感到舒适,力求达到顾客满意。两者相比让顾客感受也有不同。 一是热水方面,当酒店接待大规模会议时,会出现集中用热水的情况。如果顾客在很短的时间内用去四分之一热水时,两个系统的差别就是显示出来。模块机热水系统是直接往水箱内补冷水,水箱整体水温会下降,而此时正在洗澡的客人会感到水温慢慢变凉,有可能导致顾客投诉。而空气热水机直接往水箱内补的是55度的热水,对水箱温度不会产生影响。 二是中央空调方面,我们用的风机盘管多,这样热风或冷风分面均匀,顾客到什么地方感觉温度一样,整体感觉舒服。 四.机组配置 我们在系统上加入了软节,控制铜阀,当一个风盘出现问题时,关闭铜阀进行维修,不会影响其它风盘使用。

空气源热泵工作原理

主讲人:刘海棠 职务:技术部部长课题:空气源工作原理

㈠空气源热水器工作原理 一、空气源热水器的定义 空气源热泵热水器又称热泵热水器,由热泵吸收空气热源制取热水。空气源热水器就是 通过热泵用逆卡诺原理,以极少的电能,吸收空气中大量的低温热能,通过压缩机的压缩变为高温热能,传输至水箱,加热热水,这种通过热泵运动来获得加热的热水器叫做空气源热水器。 目前,空气能热泵热水生产厂家和市场集中分布在长江以南。主要生产厂家集中在珠江 三角洲的佛山、东莞、深圳、珠海以及长江三角洲的杭州、宁波地区。消费市场主要分布在长江以南的广东、广西、福建、江西、上海、浙江、安徽等省区,并逐步从长江以南向长江以北扩展。 二、空气源热水器的组成部分 热泵热水装置,主要由蒸发器、压缩机、冷凝器、膨胀阀、风机五大部件组成,通过让工质(制冷剂)不断完成蒸发(吸取环境中的热量)7压缩T冷凝(放出热量)7节流T再蒸发的热力循环过程,从而将环境里的热量转移到水中。 蒸发器直接从空气中吸取热量,将节流后的制冷剂吸热气化达到预期效果的设备。 压缩机是空气源热水器的心脏,把制冷剂从低压提升为高压,并使制冷剂不断循环流动。 冷凝器就是将压缩机排出的高温高压气体释放出热量后冷凝成低温高压液体的换热设备。 膨胀阀是一种节流装置,控制制冷剂的流量,可提高系统的能效比和可靠性。 风机主要是起加强气体流通量的作用,是依靠输入的机械能,提高气体压力并排送气体 的设备。 制冷剂是热泵系统中实现制热循环的工作介质,也称冷媒。作为一种特殊的物质,制冷 剂的物质状态在热泵循环过程中不断发生变化:在蒸发器中,制冷剂在较低的压力状态下吸 收热能由液态变为气态;压缩机将此低压的气态制冷剂压缩升温为高压气态制冷剂;在冷凝器中,制冷剂在较高压力状态下放出热能由气态便为液态。 三、空气源热水器的基本工作原理 热泵技术是基于逆卡诺循环原理实现的;如同在自然界中水总是由高处流向低处一样, 热量也总是从高温传向低温。但人们可以用水泵把水从低处提升到高处,从而实现水的由低处向高处流动,热泵同样可以把热量从低温热源传递到高温热源,所以热泵实质上是一种热 量提升装置。热泵的作用就是从周围环境中吸取热量(这些被吸取的热量可以是地热、太阳能、空气的能量),并把它传递给被加热的对象(温度较高的媒质)。 热泵热水机组工作时,蒸发器吸收环境热能,压缩机吸入常温低压介质气体,经过压缩

空气源热泵热水机组施工注意事项[详细]

空气源热泵热水机组施工注意事项 1天舒空气能热水器安装位置 (1)能提供足够的安装和维护空间. (2)进出风口无障碍和强风不可吹到处. (3)干燥通风处. (4)支撑面平坦、能承受机组重量,可以水平安装机组,且不会增加噪音及振动处. (5)运行噪音及排除空气不影响邻居处. (6)无可燃气体泄漏之处. (7)便于安装连接管和进行电器连接之处. 2、安装在下列场合可能会导致机器故障(如不能避免,请咨询): (1) 有诸如切削机油等矿物油的地方. (2) 有海边等空气中含有较多盐分的地方. (3) 在温泉地区等存在如硫磺气体等腐蚀性气体的地方. (4) 电源电压波动严重的工厂等地方. (5) 汽车或舱室内等地方. (6) 厨房等充满油气和油花的地方. (7) 存在强烈电磁波的地方. (8) 存在易燃气体和材料的地方. (9) 存在酸性和碱性气体蒸发的地方. (10) 其它特殊环境处. 3、空气源热水机组安装前注意事项 (1) 决定正确的搬入路径. (2) 尽量在原装情况下搬运本机. (3) 如果空气能热水器机组安装在建筑物的金属部分上,则必须做好电器绝缘工作,并须符合电器设备的相关技术标准. 4、机组安装施工重点 (1)安装:确认机型、编号、名称,避免发生误安装. (2)电气配线 电源容量、电线线径的选择,电气安装进行.机组的电源线径要大于一般电动机的电源线. 确认用户接地是否有效. (3)试运行 :热水机通电预热12小时以上方可进行试运行. (4)机组的管道连接安装 在连接机组的进出水管时,一定要使用两个管钳,分别钳住要连接的2个部分,保

证机组的进出水管不转动.

空气源热泵与锅炉的对比

空气源热泵与锅炉的对比 一、从投资成本来看 相同产热量的情况小,电锅炉要比空气源热泵稍微便宜一点,但是它需要的电功率要比空气源热泵大3倍作用。 二、从节能性来看 空气源热泵是通过吸收空气中热量,经过压缩机压缩产热的过程,比传统的电节能4倍左右;而电锅炉是直接产热的设备,中间没有经过任何的转换直接产热的过程,所以只能产生90%的热量,节能性空气源热泵比电锅炉节能。 1、空气源热泵常年可以实现1KW可以转化4KW的过程。 2、锅炉只能实现1KW实现0.95KW或者更低的过程。 三、工作原理的差异 1、空气源热泵运转基本原理根据是逆卡循环原理,液态工质首先在蒸腾器内吸收空气中的热量而蒸腾形成蒸汽(汽化),汽化潜热即为所回收热量,然后经压缩机压缩成高温高压气体,进入冷凝器内冷凝成液态(液化)把吸收的热量发给需求的加热的水中,液态工质经胀大阀降压胀大后从头回到胀大阀内,吸收热量蒸腾而完成一个循环,如此往复,不断吸收低温源的热而输出所加热的水中,直接达到预定温度。 2、电锅炉也称电加热锅炉、电热锅炉,望文生义,它是由电加热和相关的电控部件组成的,主要以电加热的形式,向外输出具 有必定热能的蒸汽、高温水或有机热载体的设备。 四、机构上的区别 1、空气源热泵机组比较复杂,主要由压缩机、冷凝器、蒸发器、膨胀阀、四大部件组成。 2、锅的机构比较简单,主要由大功率的电热线和绝缘的壳体组成。 五、安全性的区别 空气源热泵产热过程中,无压力,无漏电的危险,电锅炉产热的过程,主要绝缘的壳体,看是否有漏电的可能,有触电的危险。 六、电功率的要求 空气源热泵需要的电负荷要比电锅炉小1/3,对电网的要求小于传统的电锅炉。 七、功能上的区别 空气源热泵属于空调设备,在使用过程中可以根据用户的需求,实现取暖和制冷功能和日常的生活热水,实现了三合一;而电锅炉比较单一,只能实现取暖功能。 当然,由于投资成本方面的制约,用户得根据自己的经济条件来选取合适自己的取暖产品,由于电锅炉的安全系数比较低,所以在选购的时候,必选选用品

太阳能热水器安全性问题解析(标准版)

Safety issues are often overlooked and replaced by fluke, so you need to learn safety knowledge frequently to remind yourself of safety. (安全管理) 单位:___________________ 姓名:___________________ 日期:___________________ 太阳能热水器安全性问题解析 (标准版)

太阳能热水器安全性问题解析(标准版)导语:不安全事件带来的危害,人人都懂,但在日常生活或者工作中却往往被忽视,被麻痹,侥幸心理代替,往往要等到确实发生了事故,造成了损失,才会回过头来警醒,所以需要经常学习安全知识来提醒自己注意安全。 在哥本哈根全球气候大会上,中国向全世界宣布中国太阳能热水器集热面积居全球首位,国家对太阳能热利用产业的高度评价给行业发展注入了信心,指明了方向,意味着太阳能热利用产业已经纳入国家新能源发展战略,太阳能光热产业迎来了发展的春天。 一、太阳能热水系统安全性缺失的表现 1.1太阳能热水系统的安全事故一般存在以下几个方面: 1.1.1跑水:太阳能热水器跑水问题是安全事故中的主要问题,全玻璃真空集热管炸管可引发跑水,用户忘记关闭阀门(或阀门失灵)可引起跑水,管道接头老化损坏也可造成跑水等。 1.1.2漏电:太阳能热水系统当中考虑到光电两用(也可以作为电热水系统)和防冻伴热才引入常规电能。电加热装置的引入带来了漏电的隐患。而电加热伴热带过热或短路则可能引发漏电等安全事故。 1.1.3塌架:太阳能热水系统一般安装在建筑物的屋顶和建筑外墙,太阳能集热器的安装则需要钢结构支架的支撑,支持系统的持久

空气源热泵空调系统设计方案

空气源热泵空调系统设计 方案 第1章绪论 改革开放以来,随着国民经济的迅速发展和人民生活水平的大幅度提高,能源的消耗越来越大,其中建筑能源占相当大的比例。据统计,我国历年建筑能耗在总能耗的比例是19%~20%左右,平均值为19.8%。其中,暖通空调的能耗约占建筑总能耗的85%。在发达城市,夏季空调、冬季采暖与供热所消耗的能能量已占建筑物总能耗的40%~50%。特别是冬季采暖用的燃煤锅炉、燃油锅炉的大量使用,给大气环境造成了极大的污染。因此,建筑物污染控制和节能已是国民经济发展的一个重大问题。热泵空调高效节能、不污染环境,真正做到了“一机两用”(夏季降温、冬季采暖),进入20世纪90年代以来在我国得到了长足的发展,特别是空气源热泵冷热水机组平均每年以20%的速度增长,成为我国空调行业又一个引人注目的快速增长点。 所谓热泵,就是靠电能拖动,迫使热量从低位热源流向高位热源的装置。也就是说,热泵可以把不能直接利用的低品位热能(空气、土壤、井水、河水、太阳能、工业废水等)转换为可以利用的高位能,从而达到节约部分高位能(煤、石油、燃气、电能等)的目的。类似于人们把水自低水头压送至高水头的机械称为“水泵”,把气体自低压区送至高压区的机械称为“气泵”(在我国习称气体压缩机),因而把这种输送热能的机械称为“热泵”。因此,在矿物能源逐渐短缺、环境问题日益严重的当今世界,利用低位能的热泵技术已引起人们的关注和重视。空气源热泵的历史以压缩式最悠久。它可追溯到18世纪初叶,可以说1824年卡诺循环的发表即奠定了热泵研究的基础。热泵的发展受制于能源价格与技术条件,所以其历史较为曲折,有高潮有低潮,但热泵发展的前景肯定是光明的。当前热泵研究的方向是向高温高效发展,即开发高温热泵并最大限度提高COP(性能系数 Coefficient of Performance)值,同时积极发展吸收和化学热泵等。空气源热泵热水机组的制造、推广和使用在我国只是最近10年的事,但由于其相对传统制取热水设备的高效节能、环保、安全、智能化控制、不占用永久性建筑空间等优点而引起了市场日益广泛的关注。 热泵热水机组以清洁再生原料(空气+电)为能源,既不使用也不产生对人体有害的气体,同时也减少了温室效应和大气污染。目前,在我国电力资源短缺

空气源热泵技术协议

集中供暖项目空气源热泵 技 术 协 议 甲方: 乙方: 2016年9月22日

一、总则 (甲方)与(乙方)经双方友好协商,就集中供暖项目空气源热泵的订货事宜及所涉及的技术问题达成共识,形成以下条款: 1.1本技术协议书适用于集中供暖项目空气源热泵及其附属设备的性能、结构、调试及售后服务等方面。 1.2本技术规范书所提出的是最低限度的技术要求,并未对一切技术细节做出规定,也未充分引述有关标准和规范的条文,乙方应保证提供符合现行技术规范书和现行工业标准的优质产品。 1.3本协议书所使用的标准与乙方所执行的标准所发生矛盾时,按较高标准执行。 1.4签订合同后,甲方保留对本协议书提出补充要求和修改的权利,乙方应予以配合,具体项目和条件由甲乙双方商定。 1.5乙方应严格按照甲方提供的技术资料、进行生产、严格执行甲方所提供的技术资料中的制造规范和检验标准。 1.6乙方负责履行设备制造和交货进度。乙方保证不能因正在履约的其它项目及其他任何原因,而影响到本投标设备按期保质保量的完成与交货。 1.7乙方在设备制造过程中发生侵犯专利权的行为时,

其侵权责任与甲方无关,应由乙方承担相应的责任,并不得影响甲方的利益。 二、技术规范及相关要求 2.1空气源热泵设备技术参数表如下:

2.2供暖系统机组全部正常运行供回水温差不低于8℃,或运行流量在满足8℃温差下能够正常启动机组。 2.3结合基础的承重能力,热泵机组在正常供暖运行情况下,重力负荷不超过0.5T/㎡。 2.4需提供设备具体详细的运行参数及运行曲线,所提供数据必须是设备运行或模拟运行的实际参数,不得为推论值。 2.5在国标工况下制热能效比不低于 3.5,以第三方的检测报告原件为准。 2.6在室外7℃、设备出水温度55℃、进出水温差不小于10℃时,能效比COP不得低于2.8; 在室外-5℃、设备出水温度55℃、进出水温差不小于10℃时,能效比COP不得低于2.4; 在室外-15℃、设备出水温度55℃、进出水温差不小于10℃时,能效比COP不得低于2.1;以上数据需提供国家权威机构检测报告原件或复印件加盖公章,作为设备质量验收依据。 2.7空气源热泵应提供降噪具体措施,降噪后满足《社会生活环境噪声排放标准》噪音标准要求(昼间60分贝,

锅炉和空气热泵成本对比

广东工商职业学院室内泳池加热系统 空气源热泵与锅炉费用对比 一、广东工商职业学院室内比赛池和跳水池设计参数 室内跳水池:25m*25m、水深5.65m-5.85m,总水量3162.5m3,水温28° 室内跳水池:25m*25m、水深5.65m-5.85m,总水量3162.5m3,水温28° 二、设计能源参数表 三空气能热水系统设计 3.1 游泳池能耗计算 根据泳池性质结合上述标准,设计补充水量为总容积的1%。 游泳水容量为6475m3 ;游泳池水表面积为1875m2;每天补充水量为 64.75m3。 3.2 热量计算 游泳池水加热所需热量,应为下列各项耗热量的总和:(《游泳池和水上游乐池给水排水设计规程》CECS14:2002规定) A、水表面蒸发和传导损失的热量; B、池壁和池底传导损失的热量; C、管道的净化水设备损失的热量; D、补充水加热需要的热量。 3.3 详细热量计算过程 (1)水表面蒸发损失热量计算: Qz=a·r(0.0174Vi+0.0229)(Pb-Pc)A(760/B) 式中:Qz——游泳池水表面蒸发损失的热量(kJ/h); A——热量换算系数,a=4.18KJ/Kcal; r——与游泳池水温相等的饱和蒸汽的蒸发汽化潜热(Kcal/kg); Vi——游泳池水面上的风速(m/s)室内0.2~0.5m/s,室外 2~3m/s; Pb——与游泳池水温相等的饱和空气的水蒸汽压力(mmHg); Pc——游泳池的环境空气的水蒸汽压力(mmHg); A——游泳池的水表面面积(㎡); B——当地的大气压力(mmHg);

将数值代入计算得: Qz=a·r(0.0174Vi+0.0229)(Pb-Pc)A(760/B)=4.18×582.5×(0.0174×0.5+0.0 229)×(28.2-17)×1875×760/760=1605540(kJ/h)=446kw/h (1kw/h=3600kJ) (2)游泳池的水表面、池底、池壁、管道和设备等传导所损失的热量,应按游泳池水表面蒸发损失热量的20%计算确定,即: Qc=446×20%=89.2kw/h (1kw/h=3600kJ) (3)游泳池补充水加热所需的热量,按下式计算: Qb= qbr( tr-tb ) Qb——游泳池补充水加热所需的热量(KJ); 热量换算系数,a=4.18KJ/Kcal; Qb——游泳池每日的补充水量(L),qb=64.75m3; r——水的密度(kg/L),r=1kg/L; Tr——游泳池水的温度(℃),tr=28℃; tb——游泳池补充水水温(可参照土壤温度)(℃),tb=10℃; 代入数值计算如下: Qb=qb r( tr- tb )=4.18×64.75×1000×1×(28-10)= (kJ/h)=1354kw/h(1kw/h=3600kJ) (4)游泳池日用总热负荷计算: 将以上各项耗热量相加,即为每天需补充的热量。 ΣQh=(Qz+Qc)×24+Qb=(446+89.2)×24+1354=14201.8kw/h (5) 游泳池一次性冲击负荷(初次充水或换水)计算: 一次性冲击负荷(初次充水或换水),按照换水量以及水温差来计算其总用热负荷和单位(小时)热负荷(机器所需的制热功率)。自来水按水温10℃计算,换水周期根据实际情况设计,则: 一次性冲击负荷:Qzh=[1.1×V×(T2-T1)]÷0.86kwhr 小时热负荷:Pzh=Qzh÷T 式中:V- 游泳池的总容积m3;(V=6475m3) T2- 池水所需温度,℃;(T2=28℃) T1- 平均冷水温度,℃;(T2=10℃) T- 初次加热时间,h;(取T=48小时) 1.1- 考虑在换水周期内的热损失附加值。 代入数值计算如下: Qzh=1.1×6475m3×1×(28-10)℃÷0.86=149075kwh 四、根据上述热量计算结果,测算空气热源泵与燃气锅炉运行成本对比如下(一年按照270天计算):

太阳能热水器热水系统相关标准

太阳能热水器热水系统国家相关标准 太阳能热水器热水系统国家相关标准汇总 GB/T18713-2002太阳能热水系统设计、安装及工程验收技术规范 GB/T17581-1998真空管太阳集热器 NY/514-2002家用太阳热水器储水箱 GB/T18708-2002家用太阳热水系统热性能试验方式 NY/T343-1998家用太阳热水器技术条件 NY/T6510-2002家用太阳热水系统安装、运行维护技术规范 NY/T513-2002家用太阳热水器电辅助热源 GB/T50364-2005民用建筑太阳能热水系统应用技术规范 GB/T123936-1991太阳能热水用术语 06K503太阳能集热系统设计与安装 06SS128太阳能集中热水系统选用与安装 GB/T17049—2005全玻璃真空太阳集热管 NY/T343—1998家用太阳热水器技术条件 GB/T6424—2007平板型太阳能集热器 GB/T19141—2003家用太阳热水系统技术条件 GB/T18708—2002家用太阳热水系统热性能试验方法 GB/T18974—2003太阳集热器热性能室内试验方法 NY/T759—2003承压式家用太阳热水器技术条件 NY/T651—2002家用太阳热水系统安装、运行维护技术规范 HJ/T362-2007环境标志产品技术要求太阳能集热器

HJ/T363-2007环境标志产品技术要求家用太阳能热水系统 GB/T4271-2007太阳能集热器热性能试验方法 GB/T20095-2006太阳热水系统性能评定规范 GB50364-2005民用建筑太阳能热水系统应用规范 GB/T12915—91家用太阳能热水器热性能实验方法 GB/T50495—2009太阳能供热采暖工程技术规范

空气源热泵技术与应用

空气源热泵技术及其应用 建筑工程学院建筑环境与能源应用工程 B132班游诚 目录 摘要 --------------------------------------------2 关键词 --------------------------------------------2 前言 --------------------------------------------3 1.空气源热泵的简介 ----------------------------------4 1)概念 ----------------------------------------4 2)特点 ----------------------------------------4 3)发展历史 ----------------------------------------5 4)优点 ----------------------------------------6 5)工作原理 ----------------------------------------6 2.空气源热泵的应用 -----------------------------------9 1)空气源热泵在我国的应用 ------------------------9 2)空气源热泵的技术性分析 ------------------------9 3)空气源热泵的经济性分析 ------------------------10 4)空气源热泵的能量利用分析 ------------------------10 5)空气源热泵与能源价格的关系 ----------------------10 参考文献 -------------------------------------------11 word完美格式

(完整word版)空气源热泵施工方案

附件六、售后服务承诺及保证 售后服务承诺及保证 河北德普瑞新能源科技有限责任公司是定州市重点企业.公司真诚服务的企业经营理念,高素质的运行操作队伍,完善的售后服务体系、规章制度,为用户免去一切后顾之忧,确保您的满意,公司在服务方面以积极保养、杜绝维修为理念,为您省却售后服务的烦恼,公司可做出如下优惠条件及承诺: 1、设备各项参数,达到并优于国家标准要求,否则无条件退换并赔偿损失。 2、设备运输过程中采取国标标准包装,妥善的保护措施,保证设备完好的到达工地。 3、免费为用户调试,安装完毕后,在条件具备后,按用户要求的日期免费进行开机调试及辅佐验收工作。 4、免费为用户培训操作人员,人员培训在开机成功以后,由我公司专门工程师为用户进行培训,免费为您培训运行管理人员,直到其能独立操作。 5、在保修期内,除因使用人员操作不当等不可预见因素造成的机组损坏外,我公司负责机组的保养和一切质量问题的解决,免收材料费和人工费。 6、保修期过后的设备维护期,公司负责终生维护,在此期间内,我公司对您的服务仅收成本费。 7、为将损失降到最低程度,我公司提供的空调一旦出现异常,我们会在接到通知后,即刻为用户予以解答,12小时内赶到现场为您服务。 8、最完善的用户回访检查制度,在机组运行前的一个月内,我们将派专门

的机组检修人员对您的设备进行全方位的检修保养,每年度不少于两次,进行设备试运行,为每位用户季节前开关机及运行作服务。 9、本部设有售后服务中心,主要负责售后服务工作,技术咨询等工作。保证随时都有工作人员提供各种技术服务。24小时开机的在线服务。24小时内可随时拔打技术咨询电话。全天24小时提供技术服务。 10、另外,我公司规定维护服务部门的工作人员必须不断学习,提高和完善自身的技术水平,为客户提供最好的服务,并严格按照有关公司制度和行为规范要求自己,做到“亲切、热情、响应迅速”。维护服务部门的工作人员做好维护记录,建立相关文档。能够更好的进行管理和便于统计。我公司将本着为客户提供最优服务的宗旨,不断地完善服务、维护及监督制度(后附)。作为监督制度的一个内容,维护部门领导将不定期地用电话访问地方式向被服务单位了解对维护人员地工作满意度,并作为考核地一个重要内容。

空气源热泵与电锅炉取暖的区别

空气源热泵与电锅炉取暖的区别 日期:2015-01-21 作者:西莱克热泵点击:535 空气源热泵与电锅炉都是使用电的设备,是北方目前煤改电政策的首选的取暖设备;它们之间有什么区别,它们的好处分别是什么?投资成本怎样,它们两者那种更好,更节能,都是用户选购之前必须了解清楚的。 一从投资成本来看。 相同产热量的情况小,电锅炉要比空气源热泵稍微便宜一点,但是它需要的电功率要比空气源热泵大3倍作用。 二、从节能性来看》 空气源热泵是通过吸收空气中热量,经过压缩机压缩产热的过程,比传统的电节能4倍左右;而电锅炉是直接产热的设备,中间没有经过任何的转换直接产热的过程,所以只能产生90%的热量,节能性空气源热泵比电锅炉节能。 1、、空气源热泵常年可以实现1KW可以转化4KW的过程。 2、锅炉只能实现1KW实现0.95KW或者更低的过程。 三、工作原理的差异: 1、空气源热泵运转基本原理根据是逆卡循环原理,液态工质首先在蒸腾器内吸收空气中的热量而蒸腾形成蒸汽(汽化),汽化潜热即为所回收热量,然后经压缩机压缩成高温高压气体,进入冷凝器内冷凝成液态(液化)把吸收的热量发给需求的加热的水中,液态工质经胀大阀降压胀大后从头回到胀大阀内,吸收热量蒸腾而完成一个循环,如此往复,不断吸收低温源的热而输出所加热的水中,直接达到预定温度。 2、电锅炉也称电加热锅炉、电热锅炉,望文生义,它是由电加热和相关的电控部件组成的,主要以电加热的形式,向外输出具 有必定热能的蒸汽、高温水或有机热载体的设备。 四、机构上的区别: 1、空气源热泵机组比较复杂,主要由压缩机、冷凝器、蒸发器、膨胀阀、四大部件组成。 2、锅的机构比较简单,主要由大功率的电热线和绝缘的壳体组成。 五、安全性的区别 空气源热泵产热过程中,无压力,无漏电的危险,电锅炉产热的过程,主要绝缘的壳体,看是否有漏电的可能,有触电的危险。 六、电功率的要求 空气源热泵需要的电负荷要比电锅炉小1/3,对电网的要求小于传统的电锅炉。 七、功能上的区别: 空气源热泵属于空调设备,在使用过程中可以根据用户的需求,实现取暖和制冷功能和日常的生活热水,实现了三合一;,而电锅炉比较单一,只能实现取暖功能。 当然,由于投资成本方面的制约,用户得根据自己的经济条件来选取合适自己的取暖产品,由于电锅炉的安全系数比较低,所以在选购的时候,必选选用品牌大,售后服务好的公司生产的;选用空气源热泵应当选用在行业比较知名的品牌厂家。 上一篇:空气源热泵制热量受哪些因素影响 下一篇:别墅安装什么样的取暖设备比较好

太阳能热水器安全性问题解析(最新版)

( 安全常识 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 太阳能热水器安全性问题解析 (最新版) Safety accidents can cause us great harm. Learn safety knowledge and stay away from safety accidents.

太阳能热水器安全性问题解析(最新版) 在哥本哈根全球气候大会上,中国向全世界宣布中国太阳能热水器集热面积居全球首位,国家对太阳能热利用产业的高度评价给行业发展注入了信心,指明了方向,意味着太阳能热利用产业已经纳入国家新能源发展战略,太阳能光热产业迎来了发展的春天。 一、太阳能热水系统安全性缺失的表现 1.1太阳能热水系统的安全事故一般存在以下几个方面: 1.1.1跑水:太阳能热水器跑水问题是安全事故中的主要问题,全玻璃真空集热管炸管可引发跑水,用户忘记关闭阀门(或阀门失灵)可引起跑水,管道接头老化损坏也可造成跑水等。 1.1.2漏电:太阳能热水系统当中考虑到光电两用(也可以作为电热水系统)和防冻伴热才引入常规电能。电加热装置的引入带来了漏电的隐患。而电加热伴热带过热或短路则可能引发漏电等安全事

故。 1.1.3塌架:太阳能热水系统一般安装在建筑物的屋顶和建筑外墙,太阳能集热器的安装则需要钢结构支架的支撑,支持系统的持久性影响到太阳能热水系统的安全性。同时,安装时的高空作业也可能引发人身安全事故。 1.1.4雷电:太阳能热水系统集热器及辅配件部分属于露天安装,一般容易暴露于建筑物的避雷范围外,可能在雷雨天气引发雷击造成损坏或传导伤人。 1.2太阳能热水系统安全事故多发地区一般在严寒地区,突出的问题是: 1.2.1真空管炸管,控制失灵。 全玻璃真空集热管在入冬前真空消失,入冬后没有及时更换新管而冻爆,造成系统跑水。控制器失灵多因传感器故障而引发跑水。 1.2.2农村建筑失火。 多数由于电伴热带质量低劣、安装不规范、接点过热引燃管道保温层,从而造成建筑物失火。

相关文档
最新文档