实训报告:正弦波振荡器设计multisim

实训报告:正弦波振荡器设计multisim
实训报告:正弦波振荡器设计multisim

高频电路(实训)报告

项目:正弦波振荡器仿真设计

班级:2014级应电2班

姓名:周杰

学号: 1405220132

摘要

自激式振荡器是在无需外加激励信号的情况下,能将直流电能转换成具有一定波形、一定频率和一定幅值的交变能量电路。正弦波振荡器的作用是产生频率稳定、幅度不变的正弦波输出。基于频率稳定、反馈系数、输出波形、起振等因素的综合考虑,本次课程设计采用电容三点式振荡器,运用multisim软件进行仿真。根据静态工作点计算出回路的电容电感取值,得出输出频率与输出幅度有效值以达到任务书的要求。

关键词:电容三点式;振荡器;multisim;

目录

1、绪论 (1)

2、方案的确定 (2)

3、工作原理、硬件电路的设计和参数的计算 (3)

3.1 反馈振荡器的原理和分析 (3)

3.2. 电容三点式振荡单元 (4)

3.3 电路连接及其参数计算 (5)

4、总体电路设计和仿真分析 (6)

4.1组建仿真电路 (6)

4.2仿真的振荡频率和幅度 (7)

5、参数调整对比/结论 (8)

附录 (15)

附录Ⅰ元器件清单 (15)

附录Ⅱ电路总图 (16)

1、简介

振荡器是不需外信号激励、自身将直流电能转换为交流电能的装置。凡是可以完成这一目的的装置都可以作为振荡器。一个振荡器必须包括三部分:放大器、正反馈电路和选频网络。放大器能对振荡器输入端所加的输入信号予以放大使输出信号保持恒定的数值。正反馈电路保证向振荡器输入端提供的反馈信号是相位相同的,只有这样才能使振荡维持

下去。选频网络则只允许某个特定频率0f能通过,使振荡器产生单一频率的输出。

振荡器能不能振荡起来并维持稳定的输出是由以下两个条件决定的;一个是反馈电压

U和输入电压i U要相等,这是振幅平衡条件。二是f U和i U必须相位相同,这是相位f

平衡条件,也就是说必须保证是正反馈。一般情况下,振幅平衡条件往往容易做到,所以在判断一个振荡电路能否振荡,主要是看它的相位平衡条件是否成立。

本次课程设计我设计的是电容反馈三点式振荡器,电容三点式振荡器,也叫考毕兹振荡器,是自激振荡器的一种,这种电路的优点是输出波形好。电容三点式振荡器是由串联电容与电感回路及正反馈放大器组成。因振荡回路两串联电容的三个端点与振荡管三个管脚分别相接而得名。

本课题旨在根据已有的知识及搜集资料设计一个正弦波振荡器,要求根据给定参数设计电路,并利用multisim仿真软件进行仿真验证,达到任务书的指标要求,最后撰写课设报告。报告内容按照课设报告文档模版的要求进行,主要包括有关理论知识介绍,电路设计过程,仿真及结果分析等。

主要技术指标:输出频率9 MHz,输出幅度(有效值)≥5V。

2、方案的确定

正弦波振荡器分为LC振荡器、RC振荡器和晶体振荡器等类型。其中LC和晶体振荡器用于产生高频正弦波,RC振荡器用于产生低频正弦波。LC振荡器是一种能量转换器,由晶体管等有源器件和具有选频作用的无源网络及反馈网络组成

LC振荡器的电路种类比较多,根据不同的反馈方式,又可分为互感反馈振荡器,电感反馈三点式振荡器,电容反馈三点式振荡器,其中互感反馈易于起振,但稳定性差,适用于低频,而电容反馈三点式振荡器稳定性好,输出波形理想,振荡频率可以做得较高。

由课程设计的技术指标来看本次正弦波振荡器课程设计选择电容反馈三点式振荡器。

电容反馈的三点式振荡器主要是通过电容反馈,所以可减弱高次谐波的反馈,使振荡产生的波形得到改善,又适用于较高波段工作,目前已被广泛的应用于本振,调频,VCO 压控振荡器等高频电路中。

3、工作原理、硬件电路的设计和参数的计算

3.1 反馈振荡器的原理和分析

反馈振荡器原理方框图如图3.1所示。反馈型振荡器是由放大器和反馈网络组成的一个闭合环路,放大器通常是以某种选频网络(如振荡回路)作负载,是一个调谐放大器。

图3.1反馈振荡器方框图

为了能产生自激振荡,必须有正反馈,即反馈到输入端的自你好与放大器输入端的信号相位相同。定义A (S )为开环放大器的电压放大倍数:

)

()

()(S U S U S A i o =

F(S)为反馈网络的电压反馈系数:

)()

()('S U S U S F o i =

)(S A f 为闭环电压放大倍数:

)

()(1)

()()()(S F S A S A s U s U S A i o f ?-=

=

在振荡开始时,由于激励信号较弱,输出电压的振幅o U 则比较小,此后经过不断放大与反馈循环,输出幅度o U 开始逐渐增大,为了维持这一过程使输出振幅不断增加,应使反馈回来的信号比输入到放大器的信号大,即振荡开始时应为增幅振荡,即:

1)(>jw T

因此起振的振幅条件是:

1.

.

>?F A

起振的相位条件是:

π??n F A 2=+

要使振荡器起振必须同时满足起振的振幅条件和相位条件。其中起振的相位条件即为正反馈条件。

3.2. 电容三点式振荡单元

该单元由放大器、反馈网络和选频网络组成,放大单元由2N2923三极管构成放大电路,将反馈信号放大,反馈网络起正反馈,将信号反馈到放大单元输入,进一步放大,选频网络根据自身参数,在复杂的频谱中选取与自身谐振频率相同的频率将其反馈,所以此信号得以不断放大最终由输出端输出。其单元电路图如图3.2。

图3.2振荡电路

3.3 电路连接及其参数计算

如图3.3为电容反馈三点式原理电路,图中L,C4和C5组成振荡器回路,作为晶体管放大器的负载阻抗,反馈信号从C5两端取得,送回放大器输入端。

图3.3电容三点式振荡器

对于晶体管静态工作点,合理地选取振荡器的静态工作点,对振荡器的起振,工作的稳定性,波形质量的好坏有着密切的关系。一般小功率振荡器的静态工作点应选在远离饱和区而靠近截止区的地方。根据上述原则,一般小功率振荡器集电极电流 I CQ大约在

0.8-4mA 之间选取,故本设计电路中选取

I CQ=1mA V CEQ=I CQ*R2=0.001*2000=2Vβ=100

由图可知发射极与两个同性质电抗相连,集电极与基极间连接一个异性质电抗,满足了相位平衡条件。技术指标给出f0=9MHz,令L=4μH,通过学习可知电路的振荡频率公式f0为:

f0=1/2π[L(C2C1/ (C2+C1)]1/2

图3.3中的C4 与C5分别为公式中的C1和C2,通过计算可得出总电容C

C = C2C1/ (C2+C1)=7.83*10^-11F

令C1 =150pF,则通过公式C = C2C1/ (C2+C1)可以计算出C2 ≈150pF

由以上数值可以计算出电路的理论计算振荡器的频率为

f0≈9.19MHz

引起振荡频率不稳定的原因有谐振回路的参数随时间、温度和电源电压的变化而变化、晶体管参数的不稳定,以及振荡器负载的变化等。为了得到稳定的振荡频率,除选用高质量的电路原件、采用直流稳压电源以及恒温等措施外,还应提高振荡回路的品质因数Q值,因为Q值越大,相频特性曲线在0f附近的斜率也越大,选频特性就越好。

4、总体电路设计和仿真分析

4.1组建仿真电路

运用Multisim软件,在电子平台上组建仿真电路,连接如图4.1所示仿真电路

图4.1仿真电路

4.2仿真的振荡频率和幅度

(2)点击电源开关电路开始进行仿真,双击示波器,显示出如图4.2所示震荡波形。由波形可知振幅有效值大于5V。

图4.2振荡波形

(3)双击频率计,显示如图4.3所示的频率仿真值

图4.3频率仿真值

电路的理论计算振荡器的频率为计算得出

f0≈9.19MH z 而仿真的实际频率值f0=8.997MHz,与理论值稍有偏差。

4、参数调整对比/结论

1、当L1=4uH,C4=150pF,C5=150pF时,振荡波形和振荡频率为

当L1=8uH,C4=150pF,C5=150pF时,振荡波形和振荡频率为

上面这组对比说明了:

L1数值越大,输出频率越小、输出波形越宽。

2、当L1=4uH,C4=150pF,C5=150pF时,振荡波形和振荡频率为

当L1=4uH,C4=300pF,C5=300pF时,振荡波形和振荡频率为

上面这组对比说明了:

C4、C5越大,输出频率就越小。C4、C5越小,输出波形就越窄。

3、当L1=4uH,C4=150pF,C5=150pF时,反馈系数为: 1 振荡波形和振荡频率为

当L1=4uH,C4=300pF,C5=150pF时,反馈系数为: 2 振荡波形和振荡频率为

当L1=4uH,C4=150pF,C5=300pF时,反馈系数为:0.5 振荡波形和振荡频率为

上面这组对比说明了:

当C4的值越大的时候,输出来得波形也就高度也跟着增高,C4的值越小,输出来的波形的高度也跟着减小;C4越大、C5越小,反馈系数越大,C4越小、C5越小,反馈系数越小;当反馈等于1的时候,输出频率是最高,效果是最好的。

小结:

电容三点式振荡电路优缺点:

电容三点式振荡器的优点是输出波形好。这是由于反馈电压取自电容支路,而电容对高次谐波的阻抗很小,因而输出波形中因非线性产生的高次谐波的成分较小,当振荡器较高时,可以直接利用晶体管

三点式振荡电力的振荡频率。这种电路的缺点是改变电容来调节振荡频率时,反馈系数F 也会随之改变,严重时会影响输出电压的稳定和起振条件。

此次设计主要针对各种电容反馈三点式电路提出自己的设计方案,并利用仿真软件Multisim来实现自己的设计电路图。设计中用到了考毕兹振荡器,克拉波振荡器,西勒振荡器电路等在通信电子电路课程中学到的知识。。

通过对上述振荡器的设计与仿真,了解了正弦波振荡器在结构上的利与弊,是我们在选择正弦波振荡器时更加明确哪种振荡器更适合。这次技能训练,让我们更好的掌握了各种电路的测试与计算;熟悉了电子仿真的工作原理和其具体的使用方法.更深刻的理解课本知识。

附录

附录Ⅰ元器件清单

附录Ⅱ电路总图

压控振荡器实验报告

微波与天线实验报告 实验名称:压控振荡器 实验指导:黎鹏老师 一、实验目的: 1.了解变容二极管的基本原理与压控振荡器的设计方法。 2.利用实验模组的实际测量使学生了解压控振荡器的特性。 3.学会使用微波软件对压控振荡器进行设计和仿真,并分析结果。 二、预习内容: 1.熟悉VCO的原理的理论知识。 2.熟悉VCO的设计的有关的理论知识。

三、实验设备: 项次设备名称数量备注 1 MOTECH RF2000 测量仪1套亦可用网络分析仪 2 压控振荡器模组1组RF2KM9-1A 3 50Ω BNC及1MΩ BNC 连接线4条CA-1、CA-2 、CA-3、CA-4 4 直流电源连接线1条DC-1 5 MICROWAVE软件1套微波软件 四、实验步骤 1、硬件测量: 1.对MOD-9,压控振荡器的频率测量以了解压控振荡电路的特性。 2.准备电脑、测量软件、RF-2000,相关模组,若干小器件等。 3.测量步骤: MOD-9之P1端子的频率测量: ⑴设定 RF-2000测量模式:COUNTER MODE. ⑵用DC-1连接线将RF-2000后面12VDC 输出端子与待测模组之12VDC 输入端子连接起来。 ⑶针对模组P1端子做频率测量。 ⑷调整模组之旋钮,并记录所量测频率值: 最大_623_______ MHZ。 最小___876_____ MHZ。 4.实验记录:填写各项数据即可。 5.硬件测量的结果建议如下为合格: RF2KM9-1A MOD-9 fo 600-900MHZ Pout≥5dBm 6.待测模组方框图: 2、软件仿真: 1、进入微波软件。 2、在原理图上设计好相应的电路,设置好端口,完成频率设置、尺寸规范、 器件的加载、仿真图型等等的设置。

正弦波振荡器设计multisim(DOC)

摘要 自激式振荡器是在无需外加激励信号的情况下,能将直流电能转换成具有一定波形、一定频率和一定幅值的交变能量电路。正弦波振荡器的作用是产生频率稳定、幅度不变的正弦波输出。基于频率稳定、反馈系数、输出波形、起振等因素的综合考虑,本次课程设计采用电容三点式振荡器,运用multisim软件进行仿真。根据静态工作点计算出回路的电容电感取值,得出输出频率与输出幅度有效值以达到任务书的要求。 关键词:电容三点式;振荡器;multisim;

目录 1、绪论 (1) 2、方案的确定 (2) 3、工作原理、硬件电路的设计和参数的计算 (3) 3.1 反馈振荡器的原理和分析 (3) 3.2. 电容三点式振荡单元 (4) 3.3 电路连接及其参数计算 (5) 4、总体电路设计和仿真分析 (6) 4.1组建仿真电路 (6) 4.2仿真的振荡频率和幅度 (7) 4.3误差分析 (8) 5、心得体会 (9) 参考文献 (10) 附录 (10) 附录Ⅰ元器件清单 (10) 附录Ⅱ电路总图 (11)

1、绪论 振荡器是不需外信号激励、自身将直流电能转换为交流电能的装置。凡是可以完成这一目的的装置都可以作为振荡器。一个振荡器必须包括三部分:放大器、正反馈电路和选频网络。放大器能对振荡器输入端所加的输入信号予以放大使输出信号保持恒定的数值。正反馈电路保证向振荡器输入端提供的反馈信号是相位相同的,只有这样才能使振荡维持 下去。选频网络则只允许某个特定频率0f能通过,使振荡器产生单一频率的输出。 振荡器能不能振荡起来并维持稳定的输出是由以下两个条件决定的;一个是反馈电压 U和输入电压i U要相等,这是振幅平衡条件。二是f U和i U必须相位相同,这是相位f 平衡条件,也就是说必须保证是正反馈。一般情况下,振幅平衡条件往往容易做到,所以在判断一个振荡电路能否振荡,主要是看它的相位平衡条件是否成立。 本次课程设计我设计的是电容反馈三点式振荡器,电容三点式振荡器,也叫考毕兹振荡器,是自激振荡器的一种,这种电路的优点是输出波形好。电容三点式振荡器是由串联电容与电感回路及正反馈放大器组成。因振荡回路两串联电容的三个端点与振荡管三个管脚分别相接而得名。 本课题旨在根据已有的知识及搜集资料设计一个正弦波振荡器,要求根据给定参数设计电路,并利用multisim仿真软件进行仿真验证,达到任务书的指标要求,最后撰写课设报告。报告内容按照课设报告文档模版的要求进行,主要包括有关理论知识介绍,电路设计过程,仿真及结果分析等。 主要技术指标:输出频率9 MHz,输出幅度(有效值)≥5V。

LC振荡器的实验报告

河海大学计算机与信息学院高频电子电路课程实践报告西勒高频振荡器的制作 指导老师: 朱昌平、张秀平、殷明授课班号: 202601 姓名: 陈强 学号: 1062310211

我先通过上网寻找资料,找相关的原理图,再通过书本上的原理,进行一定的改进,电路除了采用两个将达的电容C3、C9以外,还把基本型的电容反馈线路集电极——基极支路改用LC并联回路再与C4串联,从而叫做西勒电路。 运用Multisim软件进行仿真,刚开始只出来8M左右的波形,后来我通过调节相应电容C5和电感L1的大小,提高了频率大小。最高可以达到22M左右,但同时导致的后果是电压幅值变小。再提高,就会出现波形失真。对于这个问题, 请教了老师与学长,到目前为止还没有解决。

对于电路图的绘制,由于我大一时就学习了Protel ,所以上手很快,仿照仿真图,把原理图规则清楚的画出来(见上图),对于西勒振荡器里面的一些元器件,都是很常见的,所以免去了自己画封装的步骤。然后转换成PCB ,通过排版,调整,设计,主要问题是对于贴片的处理,之前没有做过贴片的板子,所以问了学长如何处理,知道了这方面的知识。画板子的总体速度比较快。以上是最后得到的PCB 。

三.电路硬件制作与调试 元器件列表:LED、单排针、双排针、单插排、9V直流电源 贴片电阻:10K、47Ω、1K、4.7K、100K 电位器:503、102 贴片电容:103P、102P、104P、1PF、220PF、510PF 电解电容:47μF 三极管:9018NPN 电感:1μH定值电感、绕制电感 首先用油纸打印PCB,接着轧板子,打孔;然后对照着原理图和PCB焊接电路板。个人觉得最容易出错的一步是焊接贴片,电容贴片没有标注大小,特别容易错,所以一定要特别小心。由于我之前有过焊板子的经历,这一步骤相对比较顺利。 焊好板子后,就进行电路板的初步调试,用万用表依次测试板子的通断,排除虚短续断的出现,确保之后调试的成功。通过调试发现必须要把电位器102调成0Ω,即顺时针旋转调节集电极偏置电阻R20,听到有滑丝声(即电阻值为0Ω)时停止。然后就可以接通电源,进行下一步的调试——电压。插入1μH 电感,测集电极电压应该与电源电压大小相近,接着测试基极偏置电压,通过不断的调节发现,在电压值为5-6V左右时达到三极管9018的放大区工作点。所以需要旋转基极偏置电阻R2,调节基极偏置电压,用万用表测量,使其电压达到5-6V,这样,就可以用示波器测量输出端P21是否有高频振荡信号。

BZ振荡反应-实验报告

B-Z 振荡反应 实验日期:2016/11/24 完成报告日期:2016/11/25 1 引言 1.1 实验目的 1. 了解Belousov-Zhabotinski 反应(简称B-Z 反应)的机理。 2. 通过测定电位——时间曲线求得振荡反应的表观活化能。 1.2 实验原理 对于以B-Z 反应为代表的化学振荡现象,目前被普遍认同的是Field ,kooros 和Noyes 在1972年提出的FKN 机理,,他们提出了该反应由萨那个主过程组成: 过程A ① ② 式中 为中间体,过程特点是大量消耗。反应中产生的能进一步反应,使 有机物MA 如丙二酸按下式被溴化为BrMA, (A1) (A2) 过程B ③ ④ 这是一个自催化过程,在消耗到一定程度后, 才转化到按以上③、④两式 进行反应,并使反应不断加速,与此同时,催化剂氧化为。在过程B 的③和④中,③的正反应是速率控制步骤。此外, 的累积还受到下面歧化反应的制约。 ⑤ 过程C MA 和使离子还原为,并产生(由)和其他产物。 这一过程目前了解得还不够,反应可大致表达为: ⑥2++f +2+其他产物 式中f 为系数,它是每两个离子反应所产生的数,随着与MA 参加反应 的不同比例而异。过程C 对化学振荡非常重要。如果只有A 和B ,那就是一般的自催化反应或时钟反应,进行一次就完成。正是由于过程C ,以有机物MA 的消耗为代价,重新得到和,反应得以重新启动,形成周期性的振荡。 322BrO Br H HBrO HOBr --+++→+22HBrO Br H HOBr -+++→2 HBrO Br - HOBr 22HOBr Br H Br H O -+++→+2Br MA BrMA Br H -+ +→++32222BrO HBrO H BrO H O -++++342222222BrO Ce H HBrO Ce ++ ++→+Br - 2 HBrO 3Ce + 4Ce + 2 HBrO 232HBrO BrO HOBr H -+ →++BrMA 4Ce + 3Ce + Br - BrMA 4Ce + MA BrMA →Br - 3Ce + 4Ce + Br - BrMA Br - 3Ce +

RC正弦波振荡器电路设计及仿真

《电子设计基础》 课程报告 设计题目: RC正弦波振荡器电路设计及仿真学生班级: 学生学号: 学生姓名: 指导教师: 时间: 成绩: 西南xx大学 信息工程学院

一.设计题目及要求 RC正弦波振荡器电路设计及仿真,要求: (1)设计完成RC正弦波振荡器电路; (2)仿真出波形,并通过理论分析计算得出频率。 二.题目分析与方案选择 在通电瞬间电路中瞬间会产生变化的信号且幅值频率都不一样,它们同时进入放大网络被放大,其中必定有我们需要的信号,于是在选频网络的参与下将这个信号谐振出来,进一步送入放大网络被放大,为了防止输出幅值过大所以在电路中还有稳幅网络(如图一中的两个二极管),之后再次通过选频网络送回输入端,经过多次放大稳定的信号就可以不断循环了,由于电路中电容的存在所以高频阻抗很小,即无法实现放大,且高频在放大器中放大倍数较小。 三.主要元器件介绍 10nf电容两个;15kΩ电阻一个;10kΩ电阻三个;滑动变阻器一个;2.2k Ω电阻一个;二极管两个;运算放大器;示波器 四.电路设计及计算 电路震荡频率计算: f=1/2πRC

起振的复制条件:R f/R i>=2 其中R f=R w+R2+R3/R d 由其电路元件特性 R=10KΩ C=10nF 电路产生自激震荡,微弱的信号1/RC 经过放大,通过反馈的选频网络,使输出越来越大,最后经过电路中非线性器件的限制,使震荡幅度稳定了下来,刚开始时A v=1+R f/R i >3。 平衡时A v=3,F v=1/3(w=w0=1/RC) 五.仿真及结果分析 在multisim中进行仿真,先如图一连接好电路,运行电路,双击示波器,产生波形如下图 图2 刚开始运行电路时,输出波形如图2,几乎与X轴平行,没有波形输出。

RC正弦波振荡器设计实验

综合设计 正弦波振荡器的设计与测试 一.实验目的 1. 掌握运用Multisim 设计RC 振荡电路的设计方法 2. 掌握RC 正弦波振荡器的电路结构及其工作原理 3. 熟悉RC 正弦波振荡器的调试方法 4. 观察RC 参数对振荡器的影响,学习振荡器频率的测定方法 二.实验原理 在正弦波振荡电路中,一要反馈信号能够取代输入信号,即电路中必须引入正反馈;二要有外加 的选频网络,用以确定振荡频率。正弦波振荡的平衡条件为:.. 1AF = 起振条件为.. ||1A F > 写成模与相角的形式:.. ||1A F = 2A F n πψ+ψ=(n 为整数) 电路如图1所示: 1. 电路分析 RC 桥式振荡电路由RC 串并联选频网络和同相放大电路组成,图中RC 选频网络形成正反馈电路, 决定振荡频率0f 。1R 、f R 形成负反馈回路,决定起振的幅值条件,1D 、2D 是稳幅元件。 该电路的振荡频率 : 0f =RC π21 ① 起振幅值条件:311 ≥+ =R R A f v ② 式中 d f r R R R //32+= ,d r 为二极管的正向动态电阻 2. 电路参数确定 (1) 根据设计所要求的振荡频率0f ,由式①先确定RC 之积,即 RC= 21f π ③ 为了使选频网络的选频特性尽量不受集成运算放大器的输入电阻i R 和输出电阻o R 的影响,应使

R 满足下列关系式:i R >>R>>o R 一般i R 约为几百千欧以上,而o R 仅为几百欧以下,初步选定R 之后,由式③算出电容C 的值,然后再算出R 取值能否满足振荡频率的要求 (2) 确定1R 、f R :电阻1R 、f R 由起振的幅值条件来确定,由式②可知f R ≥21R , 通常 取f R =(2.1~2.5)1R ,这样既能保证起振,也不致产生严重的波形失真。此外,为了减小输入失调电流和漂移的影响,电路还应满足直流平衡条件,即: R=1R //f R (3) 确定稳幅电路:通常的稳幅方法是利用v A 随输出电压振幅上升而下降的自动调节作用实 现稳幅。图1中稳幅电路由两只正反向并联的二极管1D 、2D 和电阻3R 并联组成,利用二极管正向动态电阻的非线性以实现稳幅,为了减小因二极管特性的非线性而引起的波形失真,在二极管两端并联小电阻3R 。实验证明,取3R ≈d r 时,效果最佳。 三.实验任务 1.预习要求 (1) 复习RC 正弦波振荡电路的工作原理。 (2) 掌握RC 桥式振荡电路参数的确定方法 2. 设计任务 设计一个RC 正弦波振荡电路。其正弦波输出要求: (1) 振荡频率:接近500Hz 或1kHz 左右,振幅稳定,波形对称,无明显非线性失真 (2)* 振荡频率:50Hz~1kHz 可调,其余同(1) 四.实验报告要求 1. 简述电路的工作原理和主要元件的作用 2. 电路参数的确定 3. 整理实验数据,并与理论值比较,分析误差产生的原因 4. 调试中所遇到的问题以及解决方法 五.思考题 1. 在RC 桥式振荡电路中,若电路不能起振,应调整哪个参数?若输出波形失真应如何调整? 2. 简述图-1中21D D 和的稳幅过程。 六.仪器与器件 仪器: 同实验2 单管 器件: 集成运算放大器μA741 二极管 1N4001 电阻 瓷片电容 若干

高频答案第五章

第五章 正弦波振荡器 5-1 把题图5-1所示几个互感反馈振荡器交流等效电路改画成实际电路,并注明变压器的同名端(极性)。 5-9 用相位平衡条件的判断规则说明题5-2所示几个三点振荡器交流等效电路中,哪个电路是正确的(可能振荡),哪个电路是错误的(不可能振荡)。 [解]: (a )、(b )、(c )不能振荡。(d )、(e )、(f )可能振荡,但(e )应满足 11011C L g = >ωω (f )应满足11221 1 C L C L > 使0201ωωω<>; (2)332211C L C L C L <<; (3 ) 332211C L C L C L ==; (4 ) 332211C L C L C L >=; (5 ) <11C L ;3322C L C L = (6 ) ;113322C L C L C L << 试问哪个情况可能振荡?等效为哪种类型的振荡器?其振荡频率与个回路的固有频率之间有什么关系? [解]: (1)、(2)、(4)可能振荡;(3)、(5)、(6)不可能振荡。 (1)321ωωωω<<

实训报告正弦波振荡器设计multisim

实训报告正弦波振荡器设计multisim

高频电路(实训)报告 项目:正弦波振荡器仿真设计班级:级应电2班 姓名:周杰 学号: 14052 2 摘要

自激式振荡器是在无需外加激励信号的情况下,能将直流电能转换成具有一定波形、一定频率和一定幅值的交变能量电路。正弦波振荡器的作用是产生频率稳定、幅度不变的正弦波输出。基于频率稳定、反馈系数、输出波形、起振等因素的综合考虑,本次课程设计采用电容三点式振荡器,运用multisim软件进行仿真。根据静态工作点计算出回路的电容电感取值,得出输出频率与输出幅度有效值以达到任务书的要求。 关键词:电容三点式;振荡器;multisim;

目录 1、绪论.................................................................................... 错误!未定义书签。 2、方案的确定 ........................................................................ 错误!未定义书签。 3、工作原理、硬件电路的设计和参数的计算 ..................... 错误!未定义书签。 3.1 反馈振荡器的原理和分析.............................................. 错误!未定义书签。 3.2. 电容三点式振荡单元 .................................................... 错误!未定义书签。 3.3 电路连接及其参数计算 ................................................. 错误!未定义书签。 4、总体电路设计和仿真分析................................................. 错误!未定义书签。 4.1组建仿真电路................................................................. 错误!未定义书签。 4.2仿真的振荡频率和幅度 ................................................. 错误!未定义书签。 5、参数调整对比/结论........................................................... 错误!未定义书签。附录.......................................................................................... 错误!未定义书签。附录Ⅰ元器件清单 .................................................................. 错误!未定义书签。附录Ⅱ电路总图 ...................................................................... 错误!未定义书签。

555多谐震荡器-实验报告

实验题目:用555定时器设计一个时钟信号源,频率为f=1KHz,占空比为60%。 实验报告: 一、实验相关信息 1、实验日期: 2、实验地点: 二、实验内容 用555定时器设计一个时钟信号源,频率为f=1KHz,占空比为60%。 三、实验目的 1、了解555定时器的工作原理和电路结构; 2、掌握555定时器的典型应用。 三、实验设备、元器件 1、实验仪器:(写清型号) 2、实验元器件: 四、理论计算 (1)555多谐震荡器电路结构 图1 多谐振荡器 (2)工作波形

(3)工作过程简述 接通电源后,电容C 被充电,νc 上升,当νc 上升到 Vcc 32 时,触发器被复位,同时 放电T 导通,此时 νo 为低电平,电容C 通过R 2 和T 放电,使νc 下降,当νc 下降到Vcc 31 时,触发器又被复位,νo 为高电平。电容C 放电所需时间为 C R C R t PL 227.02ln ≈= (1) 当电容C 放电结束时,T 截止,Vcc 将通过R 1、R 2向电容C 充电,νc 由Vcc 31上升到Vcc 32所需时间为 C R R C R R t PH )(7.02ln )(2121+≈+= (2) 当νc 上升到Vcc 32 时,触发器由发生翻转,如此周而服始,在输出端就得到一个周期 性的方波,其频率为 C R R t t f PH PL )2(43.1121+≈+= (3) %100)2((%)212 1X R R R R t t t q PH PL PH ++=+= (4) (4)占空比可调电路结构 对于图1电路结构占空比固定不变,要得到占空比可调的周期方波,对其电路改进,如图2所示。 由(4)式可知,占空比始终大于50%,要得到占空比小于50%的方波,只要在输出端加一个反向器即可。

三点式正弦波振荡器(高频电子线路实验报告)

三点式正弦波振荡器 一、实验目的 1、 掌握三点式正弦波振荡器电路的基本原理,起振条件,振荡电路设计及电路参数计 算。 2、 通过实验掌握晶体管静态工作点、反馈系数大小、负载变化对起振和振荡幅度的影 响。 3、 研究外界条件(温度、电源电压、负载变化)对振荡器频率稳定度的影响。 二、实验内容 1、 熟悉振荡器模块各元件及其作用。 2、 进行LC 振荡器波段工作研究。 3、 研究LC 振荡器中静态工作点、反馈系数以及负载对振荡器的影响。 4、 测试LC 振荡器的频率稳定度。 三、实验仪器 1、模块 3 1块 2、频率计模块 1块 3、双踪示波器 1台 4、万用表 1块 四、基本原理 实验原理图见下页图1。 将开关S 1的1拨下2拨上, S2全部断开,由晶体管N1和C 3、C 10、C 11、C4、CC1、L1构成电容反馈三点式振荡器的改进型振荡器——西勒振荡器,电容CCI 可用来改变振荡频率。 ) 14(121 0CC C L f += π 振荡器的频率约为4.5MHz (计算振荡频率可调范围) 振荡电路反馈系数 F= 32.0470 220220 3311≈+=+C C C 振荡器输出通过耦合电容C 5(10P )加到由N2组成的射极跟随器的输入端,因C 5容量很小,再加上射随器的输入阻抗很高,可以减小负载对振荡器的影响。射随器输出信号经

N3调谐放大,再经变压器耦合从P1输出。 图1 正弦波振荡器(4.5MHz ) 五、实验步骤 1、根据图1在实验板上找到振荡器各零件的位置并熟悉各元件的作用。 2、研究振荡器静态工作点对振荡幅度的影响。 (1)将开关S1拨为“01”,S2拨为“00”,构成LC 振荡器。 (2)改变上偏置电位器W1,记下N1发射极电流I eo (=11 R V e ,R11=1K)(将万用表红 表笔接TP2,黑表笔接地测量V e ),并用示波测量对应点TP4的振荡幅度V P-P ,填于表1中,分析输出振荡电压和振荡管静态工作点的关系,测量值记于表2中。 3、测量振荡器输出频率范围 将频率计接于P1处,改变CC1,用示波器从TP8观察波形及输出频率的变化情况,记录最高频率和最低频率填于表3中。 六、实验结果 1、步骤2振荡幅度V P-P 见表1.

lc压控振荡器实验报告doc

lc压控振荡器实验报告 篇一:实验2 振荡器实验 实验二振荡器 (A)三点式正弦波振荡器 一、实验目的 1. 掌握三点式正弦波振荡器电路的基本原理,起振条件,振荡电路设计及电路参数计算。 2. 通过实验掌握晶体管静态工作点、反馈系数大小、负载变化对起振和振荡幅度的影响。 3. 研究外界条件(温度、电源电压、负载变化)对振荡器频率稳定度的影响。 二、实验内容 1. 熟悉振荡器模块各元件及其作用。 2. 进行LC振荡器波段工作研究。 3. 研究LC振荡器中静态工作点、反馈系数以及负载对振荡器的影响。 4. 测试LC振荡器的频率稳定度。 三、基本原理 图6-1 正弦波振荡器(4.5MHz) 【电路连接】将开关S2的1拨上2拨下, S1全部断开,由晶体管Q3和C13、C20、C10、CCI、L2构成电容反馈三点式振荡器的改进型振荡器——西勒振荡器,电容CCI可用来改变振 荡频率。振荡频率可调范围为:

?3.9799?M??f0??? ? ?4.7079?M? CCI?25p CCI? 5p 调节电容CCI,使振荡器的频率约为4.5MHz 。振荡电路反馈系数: F= C1356 ??0.12 C20470 振荡器输出通过耦合电容C3(10P)加到由Q2组成的射极跟随器的输入端,因C3容量很小,再加上射随器的输入阻抗很高,可以减小负载对振荡器的影响。射随器输出信号Q1调谐放大,再经变压器耦合从J1输出。 四、实验步骤 根据图6-1在实验板上找到振荡器各零件的位置并熟悉各元件的作用。 1. 调整静态工作点,观察振荡情况。 1)将开关S2全拨下,S1全拨下,使振荡电路停振 调节上偏置电位器RA1,用数字万用表测量R10两端的静态直流电压UEQ(即测量振荡管的发射极对地电压UEQ),使其为5.0V(或稍小,以振荡信号不失真为准),这时表明振荡管的静态工作点电流IEQ=5.0mA(即调节W1使

高频正弦波振荡器地设计

农林大学学院 课程设计报告 课程名称:数字信号处理课程设计 课程设计题目:高频正弦波振荡器设计与仿真姓名: 系:计算机系 专业:电子信息工程 年级: 学号: 指导教师: 职称: 2015年12月30日

高频正弦波振荡器的设计 目录 目录 (1) 摘要: (2) 一、设计要求 (3) 二、总体方案设计 (3) 三、工作原理说明 (3) 1、振荡器概念 (3) 2、静态工作点的确定 (4) 3、振荡器的起振检查 (4) 4、高频功率放大器 (5) 5、电路设计原理框图如图1所示。 (5) 四、电路设计 (6) 1、正弦波振荡器的设计 (6) 2、高频功率放大器的设计 (9) 五、性能的测试 (11) 1振荡器振荡频率为2MHz (11) 2振荡器振荡频率为4MHz (11) 3高频功率放大器电路 (12) 4输出功率 (13) 六、结论、性价比 (13) 七、课设体会及合理化建议 (14) 八、参考文献 (14)

摘要: 本次课程设计通过对课本知识的运用,简单介绍了高频正弦波振荡器的设计方法,主要应用LC振荡电路产生正弦波,再经高频功率放大器进行功率放大,并用仿真软件进行仿真,以及对其性能进行测试,经过反复的调试最终得到满足课题要求的电路。 关键词:正弦波;振荡器;高频功率放大器。

一、设计要求 设计要求: 1. 选择合适的高频正弦波振荡器形式; 2. 从理论上分析振荡器的各个参数及起振条件; 3. 设计高频振荡器,选取电路各元件参数,使其满足起振条件及振幅条件。 主要技术指标:电源电压12V,工作频率2M-4MHz,输出电压1V,频率稳定度较高。 二、总体方案设计 该课程设计主要涉及了振荡器的相关容还有高频功率放大器的容,正弦波振荡器非常具有实用价值,通过该课题的研究,可以加深对振荡器以及丙类高频功率放大器的了解。 三、工作原理说明 1、振荡器概念 振荡器主要分为RC,LC振荡器和晶体振荡器。其中电容器和电感器组成的LC回路,通过电场能和磁场能的相互转换产程自由振荡。要维持振荡还要有具有正反馈的放大电路,LC振荡器又分为变压器耦合式和三点式振荡器,现在很多应用石英晶体的石英晶体振荡器,还有用集成运放组成的LC振荡器。 振荡器的作用主要是将直流电变交流电.它有很多用途.在无线电广播和通信设备中产生电磁波.在微机中产生时钟信号.在稳压电路中产生高频交流电.。 题目要求产生高频正弦波,所以选用电容三点式电路,进一步考虑从而选用并联改进型电容三点式振荡器(西勒电路),因为它具有输出波形不易失

正弦波振荡器的设计

第一章 设计内容 第一节:设计题目:正弦波振荡电路的设计与实现 第二节:设计指标 振荡频率: f=7MHZ ; 频率稳定度:小时/105/30-?≤?f f ; 电源电压:V=12V ; 波形质量 较好; 第三节: 方案设计与选择 LC 振荡器的电路种类比较多,根据不同的反馈方式,又可分为互感反馈振荡器,电感反馈三点式振荡器,电容反馈三点式振荡器,其中互感反馈易于起振,但稳定性差,适用于低频,而电容反馈三点式振荡器稳定性好,输出波形理想,振荡频率可以做得较高。 所以选择电容反馈三点式振荡器是不容置疑的,而电容反馈三点式振荡器又分为考毕兹振荡器,克拉波振荡器,西勒振荡器。本次课程设计我们选择考毕兹振荡器,因为此振荡电路适用于较高的工作频率。 第二章 设计原理 第一节 自激振荡的工作原理 正弦波振荡器:一种不需外加信号作用,能够输出不同频率正弦信号的自激振荡电路。 LC 回路中的自由振荡如图1(a)所示。 自由振荡——电容通过电感充放电,电路进行电能和磁能的转换过程。 阻尼振荡——因损耗等效电阻R 将电能转换成热能而消耗的减幅振荡。图1(b)所示。

等幅振荡——利用电源对电容充电,补充电容对电感放电的振荡过程,图1(c) 所示。这种等幅正弦波振荡的频率称为LC 回路的固有频率,即 LC f π= 210 图1 LC 回路中的电振荡 一、自激振荡的条件 振荡电路如图2所示。 振荡条件:相位平衡条件和振幅平衡条件。 1.相位平衡条件 反馈信号的相位与输入信号相位相同,即为正反馈,相位差是180?的偶数倍,即 ?=2n π 。其中,? 为vf 与vi 的相位差,n 是整数。vi 、vo 、vf 的相互关系参见图3。 2.振幅平衡条件 反馈信号幅度与原输入信号幅度相等。即 AVF=1 图2 变调谐放大器为振荡器 图3 自激振荡器方框图 二、自激振荡建立过程 自激振荡器:在图2中,去掉信号源,把开关S 和点“2”相连所组成的电路。

RC振荡电路实验报告(特选资料)

广州大学学生实验报告 院(系)名称 物理与信息工程系 班别 姓名 专业名称 学号 实验课程名称 模拟电路实验 实验项目名称 RC 串并联网络(文氏桥)振荡器 实验时间 实验地点 实验成绩 指导老师签名 【实验目的】 1.进一步学习RC 正弦波振荡器的组成及其振荡条件。 2.学会测量、调试振荡器。 【实验原理】 从结构上看,正弦波振荡器是没有输入信号的,带选频网络的正反馈放大器。若用R 、C 元件组成选频网络,就称为RC 振荡器, 一般用来产生1Hz ~1MHz 的低频信号。 RC 串并联网络(文氏桥)振荡器 电路型式如图6-1所示。 振荡频率 RC 21 f O π= 起振条件 |A &|>3 电路特点:可方便地连续改变振荡频率,便于加负反馈稳幅,容易得到良好的振荡波形。 图6-1 RC 串并联网络振荡器原理图 注:本实验采用两级共射极分立元件放大器组成RC 正弦波振荡器。 【实验仪器与材料】 模拟电路实验箱 双踪示波器 函数信号发生器 交流毫伏表 万用电表 连接线若干

【实验内容及步骤】 1.RC 串并联选频网络振荡器 (1)按图6-2组接线路 图6-2 RC 串并联选频网络振荡器 (2)接通RC 串并联网络,调节R f 并使电路起振,用示波器观测输出电压u O 波形,再细调节R f ,使获得满意的正弦信号,记录波形及其参数,即,测量振荡频率,周期并与计算值进行比较。 (3) 断开RC 串并联网络,保持R f 不变,测量放大器静态工作点,电压放大倍数。 (4)断开RC 串并联网络,测量放大器静态工作点及电压放大倍数。(输入小信号:f=1KHz,峰峰值为100mV 正弦波)用毫伏表测量u i 、u 0 就可以计算出电路的放大倍数。 (5)改变R 或C 值,观察振荡频率变化情况。 将RC 串并联网络与放大器断开,用函数信号发生器的正弦信号注入RC 串并联网络,保持输入信号的幅度不变(约3V ),频率由低到高变化,RC 串并联网络输出幅值将随之变化,当信号源达某一频率时,RC 串并联网络的输出将达最大值(约1V 左右)。且输入、输出同相位,此时信号源频率为 2πRC 1 f f ο== 【实验数据整理与归纳】 (1)静态工作点测量 U B (V ) U E (V ) U C (V) 第一级 2.48 2.96 4.66 第二级 0.84 11.51 1.01 (2)电压放大倍数测量: u i (mV) u o (V) Av 788 2.80 3.60

实验六RC正弦波振荡器的设计及调试

实验六 RC 正弦波振荡器的设计及调试 一、实验目的 1、进一步学习RC 正弦波振荡器的组成及其振荡条件; 2、学会测量、调试振荡器。 二、实验原理 从结构上看,正弦波振荡器是没有输入信号的,带选频网络的正反馈放大电路。若用R 、C 元件组成选频网络,就称为RC 振荡器,一般用来产生1Hz ~1MHz 的低频信号。 1、RC 移相振荡器 电路型式如图8.1所示,选择R >>R i 。 振荡频率:126O f RC 起振条件:放大电路A 的电压放大倍数|A |>29 电路特点:简便,但选频作用差,振幅不稳,频率调节不便,一般用于频率固定且稳定性要求不高的场合。 频率范围:几Hz ~数十kHz 。 2、RC 串并联网络(文氏桥)振荡器 电路型式如图8.2所示。 振荡频率:12O f RC 起振条件:|A |>3 电路特点:可方便地连续改变振荡频率,便于加负反馈稳幅,容易得到良好的振荡波形。 三、实验条件 1、12V 直流电源 2、函数信号发生器 3、双踪示波器 图8.1 RC 移相振荡器原理图 图8.2 RC 串并联网络振荡器原理图

4、频率计 5、直流电压表 6、3DG12×2或9013×2,电阻、电容、电位器等 四、实验内容 1、RC串并联选频网络振荡器 2、双T选频网络振荡器 3、RC移相式振荡器的组装与调试 五、实验步骤 1、RC串并联选频网络振 荡器 (1)按图8.4组接线路; (2)接通12V电源,调节 电阻,使得Vce1=7-8V, Vce2=4V左右。用示波器观察 图8.4 RC串并联选频网络振荡器有无振荡输出。若无输出或振 荡器输出波形失真,则调节Rf以改变负反馈量至波形不失真。并测量电压放大倍数及电路静态工作点。 (3)观察负反馈强弱对振荡器输出波形的影响。 逐渐改变负反馈量,观察负反馈强弱程度对输出波形的影响,并同时记录观察到的波形变化情况及相应的Rf值。 实验现象Rf值V o波形 停振 起振 幅值增加 波形失真 (4)改变R(10KΩ)值,观察振荡频率变化情况; (5)RC串并联网络幅频特性的观察。 将RC串并联网络与放大电路断开,用函数信号发生器的正弦信号注入RC

VCO压控振荡器实验报告

VCO压控振荡器实验报告 目录章节 设计要求及方案选择 (2) 框内电路设计(EWB仿真) (5) 总电路叙述 (10) 器件表 (12) 总电路图 (13) 问题及修改方案 (13) 体会 (14) 参考书目及文献资料 (17) 附录:总电路图 (17)

设计要求及方案选择 1.设计内容 V/F转换(VCO压控振荡器) 2. 设计要求 输入0—10V电压,输出0—20KHz脉冲波(或者0—10KHz 对称方波)。绝对误差在正负30Hz以内。 3. 设计方案 (1)RC压控振荡器

(2)双D触发器式的VCO电路 图片来源CIC中国IC网 如图所示为双D触发器式的VCO。电路输出一个占空比50%的方波信号,而消耗的电流却很小。当输入电压为5~12V 时,输出频率范围从20~70kHz。首先假设IC-A的初始状态是Q=低电平。此时VDl被关断,Vi通过Rl向Cl充电。当Cl 上的电压达到一定电平时,IC-A被强制翻转,其Q输出端变成高电平,Cl通过VDl放电。同时,IC-A的CL输入端也将变成低电平,强制IC-A再翻回到Q=低电平。由于R2和C2的延时作用,保证了在IC-A返回到Q为低电平以前,把Cl的电放掉。IC-A输出的窄脉冲电流触发IC-B,产生一个占空比为50%的输出脉冲信号。

(3)具有三角波和方波输出的压控振荡器 图片来源CIC中国IC网 如图所示为具有三角波和方波输出的压控振荡电路。该电路是一个受控制电压控制的振荡器。它具有很好的稳定性和极好的线性,并且有较宽的频率范围。电路有两个输出端,一个是方波输出端,另一个为三角波输出端。图中,A1为倒相器,A2为积分器,A3为比较器。场效应管Q1用来变换积分方向。比较器的基准电压是由稳压二极管D1、D2提供,积分器的输出和基准电压进行比较产生方波输出。电阻R5、R6用来降低Q1的漏极电压,以保证大输入信号时Q1能完全截止。电阻R7、R8和二极管D3、D4是为了防止A3发生阻塞。

第5章 正弦波振荡器习题参考答案

第5章正弦波振荡器习题参考答案 5-2为什么晶体管LC振荡器总是采用固定偏置与自生偏置混合的偏置电路? 答:晶体管LC振荡器采用固定的正向偏置是为了使振荡器起振时为软激励状态,在无需外加激励信号时就能起振,也不致停振。而采用自生反向偏置则可以稳幅。若两者不结合,则两者优点不可兼而有之。 5-6LC振荡器的静态工作点应如何选择?根据是什么? 5-9试用相位条件的判断准则,判明题图5-1所示的LC振荡器交流等效电路,哪个可以振荡?哪个不可以振荡?或在什么条件下才能振荡? 答:题图5-1(a):可以起振。 题图5-1(b):不能起振(晶体管be与bc电抗性质相同了)。 题图5-1(c):考虑管子的极间电容C i时可能起振。 题图5-1(d):当L2C2>L1C1时可以起振。 5-12 试画出题图5-2各振荡器的交流等效电路,并判断哪些电路可以振荡?哪些电路不能产生振荡?若不能振荡,请改正。 答:题图5-2各振荡器的交流等效电路如图5-12所示。 5-14 已知某振荡器的电路如题图5-4所示,Lc是扼流圈,设L=1.5μH,振荡频率为49.5MHz,试求: (1)说明各元件的作用; (2)画出交流等效电路;

(3)求C 4的大小(忽略管子极间电容的影响); (4)若电路不起振应如何解决? 答:R b1、R b2是基极偏置电阻;R e 是射极偏置电阻;C 1、 C 2、C 3、C 4、L 是振荡回路的元件,C p 是输出耦合电路。 (2)交流等效电路如题图5-14所示。 (3) ()4321C C L f o +≈π ()4366105.121 105.49C C +?≈?-π 解得 ()pF C C 12431091.6-?=+ ()pF pF C 91.3391.64=-= (4)若电路不起振,可以改变偏置或加大C 3。 5-17 题图5-6(a )(b )分别为10MHz 和25MHz 的晶体振荡器。试画出交流等效电路,说明晶体在电路中的作用,并计算反馈系数。 答:题图5-6的交流等效电路分别如解题图5-17(a )、(b )所示,图5-17(a )中晶体等效为电感,反馈系数,5.0300150 == F 图5-17(b )中晶体等效为短路元件,反馈系数 16.027043 ==F 。

555仿真实验报告-多谐振荡器

仿真实验课程名称:数字电子技术实验仿真 仿真实验项目名称:基于555定时器的多谐振荡器的设计 仿真类型(填■):(基础□、综合□、设计■) 院系:物理与机电工程学院专业班级:13电子(2)班 姓名:学号: 指导老师:刘堃完成时间:成绩: 一、实验目的 1、熟悉555集成时基电路的电路结构、工作原理及其特点;掌握555集成时基电路的基本应用。 2、掌握Multisim10软件在数字电子技术实验中的应用。

二、实验设备 Multisim10软件。 三、实验原理 (1)555定时器 集成芯片555是一种能够产生时间延迟和多种脉冲信号的控制电路,是数字、模拟混合型的中规模集成电路。芯片引脚排列如图1所示,内部电路如图2所示。电路使用灵活、方便,只需外接少量的阻容元件就可以构成单稳、多谐和施密特触发器,广泛应用于信号的产生、变换、控制与检测。它的内部电压标准使用了三个5 k Ω的电阻,故取名555电路。电路类型有双极型和CMOS 型两大类,两者的工作原理和结构相似。几乎所有的双极型产品型号最后的三位数码都是555或556;所有的CMOS 产品型号最后四位数码都是7555或7556,两者的逻辑功能和引脚排列完全相同,易于互换。555和7555是单定时器,556和7556是双定时器。双极型的555电路电源电压为+5 V ~ +15 V ,输出的最大电流可达200 mA ;CMOS 型的电源电压是+3 V~+18 V 。 555内部电路有两个电压比较器、基本RS 触发器和放电开关管T 。比较器的参考电压由三只5 k Ω的电阻分压提供,比较器A 1同相端参考电平为CC V 3 2、比较器A 2的反相端参考电平为CC V 31。A 1和A 2的输出端控制RS 触发器状态和放电管开关状态。当输入信号超出CC V 3 2时,比较器A 1翻转,触发器复位,555的输出端○ 3脚输出低电平,开关管导通,电路充电。当输入信号低于CC V 3 1时,比较器A 2翻转,触发器置位,开关管截止,电路放电,555的○3脚输出高电平。 D R 是复位端,当其为0时,555输出低电平。应用时通常开路或接V CC 。 ○5脚是控制电压端,平时输出CC V 3 2作为比较器A 1的参考电平,当○5脚外接一个输入电压,即改变了比较器的参考电平,从而实现对输出的另一种控制,在不接外加电压时,通常接一个μF 的电容器至地,起滤波作用,以消除外来的干扰,以确保参考电平的稳定。 T 为放电管,当T 导通时,经过脚○ 7至电容器,提供低阻放电电路。 (2)555定时器构成多谐振荡器 如图3,由555定时器和外接元件R 1、R 2、C 构成多谐振荡器,脚○ 2与脚○6直接相连。 图1 555芯片引脚排列图 图2 555定时器内部电路

RC正弦波振荡器设计

四、RC正弦波振荡器设计(一)设计目的 1、进一步理解用集成运放构成的正弦波发生器的工作原理。 2、学习振荡器的调整和主要性能指标的测试方法。 (二)基础知识与能力层次要求 1、课程涉及课程 模拟电路 2、能力层次要求(四项中之一) (1)电子电路基础应用能力(基础)(第一级):√ (2)电类专业综合实践能力(综合)(第二级): (3)电类专业工程设计能力(设计)(第三级): (4)研究与创新设计能力(创新)(第四级): 3、指导教师 周妮、向腊 (三)设计技术指标与要求 1、设计要求 可以产生正弦波,频率范围为10Hz~100kHz,输出电压可调,带载能力强,波形尽量不失真。设计完成后可以利用示波器测量出其输出频率的上限和下限,还可以进一步测出其输出电压 的范围。 2、项目仪器、设备 信号发生器,双踪示波器,直流稳压电源,万用表,交流毫伏表,焊接工具,设计电 路所需的元器件,电路仿真软件等 (四)项目原理 1、基本原理 RC桥式正弦波振荡器(文氏电桥振荡器) 图4.1为RC桥式正弦波振荡器。其中RC串、并联电路构成正反馈支路,同时兼作选频网络, R、R、R及二极管等元件构成负反馈和稳幅环节。调节电位器R,可以改变负WW21反馈深度,以满足振荡的振幅条件和改善波形。利用两个反向并联二极管D、D正向电阻21的非线性特性来 实现稳幅。D、D采用硅管(温度稳定性好),且要求特性匹配,才能保证21输出波形正、负半 周对称。R的接入是为了削弱二极管非线性的影响,以改善波形失真。31f?电路的振荡频率O RC2πR f??1A≥3 起振的幅值条件f R1式中R=R+R+(R/ r),r 二极管正向导通电阻。—DD3 2Wf 调整反馈电阻R(调R),使电路起振,且波形失真最小。如不能起振,则说明负反Wf馈太强, 应适当加大R。如波形失真严重,则应适当减小R。ff改变选频网络的参数C或R,即可调节 振荡频率。一般采用改变电容C作频率量程切换,而调节R作量程内的频率细调。

相关文档
最新文档