广义特征值与极大极小原理

广义特征值与极大极小原理
广义特征值与极大极小原理

第二十一讲 广义特征值与极小极大原理

一、 广义特征值问题

1、定义:设A 、B 为n 阶方阵,若存在数λ,使得方程Ax Bx =λ存在非零解,则称λ为A 相对于B 的广义特征值,x 为A 相对于B 的属于广义特征值λ的特征向量。

● 是标准特征值问题的推广,当B =I (单位矩阵)时,广义特征值问题退化为标准特征值问题。 ● 特征向量是非零的 ● 广义特征值的求解

()A B x 0-λ= 或者 ()B

A x 0λ-=

特征方程 ()det A B 0-λ=

求得λ后代回原方程Ax Bx =λ可求出x

本课程进一步考虑A 、B 厄米且为正定矩阵的情况。 2、等价表述

(1) B 正定,1B -存在

→1

B A x x

-=λ,广义特征值问题化为了标准

特征值问题,但一般来说,1B A -一般不再是厄米矩阵。 (2) B 正定,存在Cholesky 分解,H B G G =,G 满秩 H A x G G x =λ 令H G x y = 则 ()

1

1

H

G A G

y y --=λ 也成为标准特征值问题。

(

)

1

1

H

G A G

--为厄米矩阵,广义特征值是实数,可以按大小顺序

排列12n λ≤λ≤≤λ ,一定存在一组正交归一的特征向量,即存在

12n y ,y ,y 满足

()

1

1

H

i i G A G

y y --=λ

H i

j ij 1i j y y 0

i j

=?=δ=?≠?

还原为()1

H i i x G y -= (i=1,2, ,n),则 ()()

H H H

H i

j i

j i

j ij 1

i j y y x G G x x Bx 0

i j

=?===δ=?

≠? (带权正交)

二、 瑞利商

A 、

B 为n 阶厄米矩阵,且B 正定,称()()H

H

x A x R x x 0x Bx

=≠为A

相对于B 的瑞利商。

12n x ,x ,x 线性无关,所以,n

x C

?∈,存在12n a ,a ,a C ∈ ,使

得 n

i

i

i 1

x a x ==

H

n

n n

n

2

H

H

i i i j j j i

j i

i 1j 1i ,j 1

i 1

x Bx a x B a x a a x Bx a ====????

==

=

? ?????

∑∑∑

n

n

n

2

H

H H i i j i

j j i

i j i i

i ,j 1

i ,j 1

i 1

x A x a a x A x a a x Bx a ====

=

λ=

λ∑

∴ ()n

2

i i i 1n

2

i

i 1

a R x a ==λ=

●()1x 0

min R x ≠=λ ()n x 0

max R x ≠=λ

证明:()()()()

()

H

H

H

H

kx A kx x A x R x x Bx

kx B kx =

=

k 为非零常数

可取1k x

=,

kx 1=

∴ ()H

H

x 1

x A x R x x B x

==

(闭区域)

当1x

x =或()i a 0i 2,3,,n == 时,()1R x =λ

i 1λ≥λ ()n

2

i i 11

1n

2

i

i 1

a R x a ==≥λ=λ∑

()1x 0

min R x ≠=λ

另一方面,i n λ≤λ ()n

2

i i 1n

n n

2

i

i 1

a R x a ==≤λ=λ∑

∴ ()n x 0

max R x ≠=λ

[证毕] 当B =I 时,标准特征值问题 A x x =λ (H A A =)

12n

H

i j ij

x x λ≤λ≤≤λ??=δ?

则 ()

H

1H

x 0x A x m in

x x

≠=λ

()

H

n H

x 0x Ax max

x x

≠=λ

进一步分析可得

()

12x 0

a 0

m in R x ≠==λ ()

n n 1x 0

a 0

m ax R x -≠==λ

()

12k k 1x 0

a a a 0

m in R x +≠=====λ ()

n n 1n k n k 1x 0

a a a 0

m ax R x ----≠=====λ

定理1.设{}r r 1s L span x ,x ,,x += ()r r 1s +λ≤λ≤≤λ ,则 ()r x 0x L

m in R x ≠∈=λ ()s x 0x L

m ax R x ≠∈=λ

这一结果不便于应用,希望对上述结果进行改造,改造成不依赖于i x 的一种表达方式。

1a 0=和n a 0=的情况均对应于

x 在(n-1)维的子空间内变动,

x 在L 中变动是在一个(s-r+1)维子空间中变化。

一般的,x 在n C 的(n-1)维子空间n 1V -中变动时,

()n 1

2x 0

x V m in R x -≠∈≤λ ()n 1

n 1x 0x V m ax R x --≠∈≥λ

即,对于不同的n 1V -,()R x 的最小值及最大值有可能不同,其中各个最小值中最大者为2λ,各个最大值中的最小者为n 1-λ

()n n 1n 12x 0V C x V m ax m in R x --≠∈∈??

=λ??????

()n n 1n 1n 1x 0V C x V m in m ax R x ---≠∈∈??

=λ??????

定理2. 设k V 是n C 的一个k 维子空间,则

()n

k k n k 1x 0V C x V m ax m in R x -+≠∈∈??

=λ??????

()n k k k x 0V C x V m in m ax R x ≠∈∈??

=λ??????

以上两式称为广义特征值的极小极大原理。 ● B =I 时,标准特征值问题同样存在上述关系。

● 矩阵奇异值问题:()()2

H

A A A ??σ=λ??

(非零) ()()

H

H

2

H

2

x

A

A x

A x R x x x

x

=

=

n

k k

2

n k 1

x 0V C x V 2A x m ax m in x -+≠∈∈??σ=??????

n k k

2

k x 0V C x V 2A x m in m ax

x ≠∈∈??

σ=??????

变分原理与变分法

第一章 变分原理与变分法 1.1 关于变分原理与变分法(物质世界存在的基本守恒法则) 一、 大自然总是以可能最好的方式安排一切,似乎存在着各种安排原理: 昼/夜,日/月,阴/阳,静止/运动 等矛盾/统一的协调体; 对静止事物:平衡体的最小能量原理,对称/相似原理; 对运动事物:能量守恒,动量(矩)守恒,熵增原理等。 变分原理是自然界静止(相对稳定状态)事物中的一个普遍适应的数学定律,获称最小作用原理。 Examples : ① 光线最短路径传播; ② 光线入射角等于反射角,光线在反射中也是光传播最短路径(Heron ); ③ CB AC EB AE +>+ Summary : 实际上光的传播遵循最小能量原理; 在静力学中的稳定平衡本质上是势能最小的原理。 二、变分法是自然界变分原理的数学规划方法(求解约束方程系统极值的数学方 法),是计算泛函驻值的数学理论 数学上的泛函定义 定义:数学空间(集合)上的元素(定义域)与一个实数域间(值域)间 的(映射)关系 特征描述法:{ J :R x R D X ∈=→?r J )(|} Examples : ① 矩阵范数:线性算子(矩阵)空间数域 ‖A ‖1 = ∑=n i ij j a 1 max ;∑=∞=n j ij i a A 1max ;21 )(11 2 2∑∑===n j n i ij a A ② 函数的积分: 函数空间数域

D ?=?n b a n f dx x f J )( Note : 泛函的自变量是集合中的元素(定义域);值域是实数域。 Discussion : ① 判定下列那些是泛函: )(max x f f b x a <<=; x y x f ??) ,(; 3x+5y=2; ?+∞∞-=-)()()(00x f dx x f x x δ ② 试举另一泛函例子。 物理问题中的泛函举例 ① 弹性地基梁的系统势能 i. 梁的弯曲应变能: ?=∏l b dx dx w d EJ 02 22)(21 ii. 弹性地基贮存的能量: dx kw l f ?=∏0 221 iii. 外力位能: ?-=∏l l qwdx 0 iv. 系统总的势能: 00 0;})({2 2122202 1===-+=∏?dx dw w x dx qw kw dx w d EJ l 泛函的提法:有一种梁的挠度函数(与载荷无关),就会有一个对应的系 统势能。 泛函驻值提法:在满足位移边界条件的所有挠度函数中,找一个w (x ),使 系统势能泛函取最小值。 ② 最速降线问题 问题:已知空间两点A 和B ,A 高于B ,要求在两点间连接一条曲线,使 得有重物从A 沿此曲线自由下滑时,从A 到B 所需时间最短(忽略摩擦力)。 作法: i. 通过A 和B 作一垂直于水平面的平面,取坐标系如图。B 点坐标(a , b ),设曲线为y = y (x ),并已知:x = 0,y = 0;x = a ,y = b ii. 建立泛函: x

变分原理及变分法

第一章 变分原理与变分法 1.1 关于变分原理与变分法(物质世界存在的基本守恒法则) 一、 大自然总是以可能最好的方式安排一切,似乎存在着各种安排原理: 昼/夜,日/月,阴/阳,静止/运动 等矛盾/统一的协调体; 对静止事物:平衡体的最小能量原理,对称/相似原理; 对运动事物:能量守恒,动量(矩)守恒,熵增原理等。 变分原理是自然界静止(相对稳定状态)事物中的一个普遍适应的数学定律,获称最小作用原理。 Examples : ① 光线最短路径传播; ② 光线入射角等于反射角,光线在反射中也是光传播最短路径(Heron ); ③ CB AC EB AE +>+ Summary : 实际上光的传播遵循最小能量原理; 在静力学中的稳定平衡本质上是势能最小的原理。 二、变分法是自然界变分原理的数学规划方法(求解约束方程系统极值的数学方 法),是计算泛函驻值的数学理论 数学上的泛函定义 定义:数学空间(集合)上的元素(定义域)与一个实数域间(值域)间 的(映射)关系 特征描述法:{ J :R x R D X ∈=→?r J )(|} Examples : ① 矩阵数:线性算子(矩阵)空间 ‖A ‖1 = ∑=n i ij j a 1 max ;∑=∞=n j ij i a A 1 max ;21 )(11 2 2 ∑∑===n j n i ij a A

② 函数的积分: 函数空间 数域 D ?=?n b a n f dx x f J )( Note : 泛函的自变量是集合中的元素(定义域);值域是实数域。 Discussion : ① 判定下列那些是泛函: )(max x f f b x a <<=; x y x f ??) ,(; 3x+5y=2; ?+∞∞-=-)()()(00x f dx x f x x δ ② 试举另一泛函例子。 物理问题中的泛函举例 ① 弹性地基梁的系统势能 i. 梁的弯曲应变能: ?=∏l b dx dx w d EJ 02 22)(21 ii. 弹性地基贮存的能量: dx kw l f ?= ∏02 2 1 iii. 外力位能: ?-=∏l l qwdx 0 iv. 系统总的势能: 00 0;})({221222 021 ===-+=∏?dx dw w x dx qw kw dx w d EJ l 泛函的提法:有一种梁的挠度函数(与载荷无关),就会有一个对应的系 统势能。 泛函驻值提法:在满足位移边界条件的所有挠度函数中,找一个w (x ),使系 统势能泛函取最小值。 ② 最速降线问题 问题:已知空间两点A 和B,A 高于B ,要求在两点间连接一条曲线,使得 有重物从A 沿此曲线自由下滑时,从A 到B 所需时间最短(忽略摩擦力)。 作法: i. 通过A 和B 作一垂直于水平面的平面,取坐标系如图。B 点坐标(a , b ),设曲线为y = y (x ),并已知:x = 0,y = 0;x = a ,y = b ii. 建立泛函: x

变分原理

变分原理 变分原理是自然界静止(相对稳定状态)事物中的一个普遍适应的数学定律,或称最小作用原理。 例如:实际上光的传播遵循最小能量原理: 在静力学中的稳定平衡本质上是势能最小的原理。 一、举一个例子(泛函) 变分法是自然界变分原理的数学规划方法(求解约束方程系统极值的数学方法),是计算泛函驻值的数学理论。 在理论上和实践上均需要放宽解的条件。因此,引入弱解以及边值问题的弱的形式即变分形式。在讨论二阶椭圆边值问题时的Lax-Milgram 定理。 Poisson 方程的Neumann 问题 设Ω是单连通域,考察Poisson 方程的Neumann 问题 (N) ??? ? ??? =??=?-Γ,g n u f u u ,在Ω内,,使得求函数 这里)(),(2/12Γ∈Ω∈-H g L f ,且满足 01 ,=+Γ Ω ? g f d x 其中的对偶积表示)()(,2/12/1Γ?Γ??-ΓH H . 问题(N )的解,虽然是不唯一的,但是,若把问题(N )局限于商空间)(V 1Ω=H 内求解,且赋予商范数 ΩΩ∈Ω=,1) (/)(1 1i n f ?v v H v R H ,V v ∈? 可以得到唯一解。实际上,由定理5.8推出R H v /)(1?Ω等价于半范Ω→,1?v v . 定义双线性泛函R V V →?: V v u v v u u v u v u B ∈∈∈???=?,?,?,?),,()?,?( 和线性泛函 V v v v u g fdx v l ∈∈?+→Γ Ω??,?,,?:. 其右端与v v ?∈无关。因此v ?中的元素仅仅相差一个任意常数,同时,可以判定'V l ∈,实际上 ,,2/1,2/1,0,0)?(ΓΓ -Ω Ω +≤v g v f v l

变分原理与变分法

第一章 变分原理与变分法 1、1 关于变分原理与变分法(物质世界存在的基本守恒法则) 一、 大自然总就是以可能最好的方式安排一切,似乎存在着各种安排原理: 昼/夜,日/月,阴/阳,静止/运动 等矛盾/统一的协调体; 对静止事物:平衡体的最小能量原理,对称/相似原理; 对运动事物:能量守恒,动量(矩)守恒,熵增原理等。 变分原理就是自然界静止(相对稳定状态)事物中的一个普遍适应的数学定律,获称最小作用原理。 Examples : ① 光线最短路径传播; ② 光线入射角等于反射角,光线在反射中也就是光传播最短路径(Heron); ③ 光线折射遵循时间最短的途径 CB AC EB AE +>+ Summary : 实际上光的传播遵循最小能量原理; 在静力学中的稳定平衡本质上就是势能最小的原理。 二、变分法就是自然界变分原理的数学规划方法(求解约束方程系统极值的数学 方法),就是计算泛函驻值的数学理论 数学上的泛函定义 定义:数学空间(集合)上的元素(定义域)与一个实数域间(值域)间的(映 射)关系 特征描述法:{ J :R x R D X ∈=→?r J )(|} Examples : ① 矩阵范数:线性算子(矩阵)空间 ‖A ‖1 = ∑=n i ij j a 1 max ;∑=∞=n j ij i a A 1max ;21 )(11 2 2∑∑===n j n i ij a A

② 函数的积分: 函数空间 D ?=?n b a n f dx x f J )( Note : 泛函的自变量就是集合中的元素(定义域);值域就是实数域。 Discussion : ① 判定下列那些就是泛函: )(max x f f b x a <<=; x y x f ??) ,(; 3x+5y=2; ?+∞∞-=-)()()(00x f dx x f x x δ ② 试举另一泛函例子。 物理问题中的泛函举例 ① 弹性地基梁的系统势能 i 、 梁的弯曲应变能: ?=∏l b dx dx w d EJ 02 22)(21 ii 、 弹性地基贮存的能量: dx kw l f ?= ∏02 2 1 iii 、 外力位能: ?-=∏l l qwdx 0 iv 、 系统总的势能: 00 0;})({221222 021 ===-+=∏?dx dw w x dx qw kw dx w d EJ l 泛函的提法:有一种梁的挠度函数(与载荷无关),就会有一个对应的系统 势能。 泛函驻值提法:在满足位移边界条件的所有挠度函数中,找一个w (x ),使系 统势能泛函取最小值。 ② 最速降线问题 问题:已知空间两点A 与B ,A 高于B ,要求在两点间连接一条曲线,使得有 重物从A 沿此曲线自由下滑时,从A 到B 所需时间最短(忽略摩擦力)。 作法: i 、 通过A 与B 作一垂直于水平面的平面,取坐标系如图。B 点坐标(a , b ),设曲线为y = y (x ),并已知:x = 0,y = 0;x = a ,y = b ii 、 建立泛函: x

变分原理与变分法

变分原理与变分法 1.1关于变分原理与变分法(物质世界存在的基本守恒法则) 一、大自然总是以可能最好的方式安排一切, 似乎存在着各种安排原理: 昼/夜,日/月,阴/阳,静止/运动 等矛盾/统一的协调体; 对静止事物:平衡体的最小能量原理,对称/相似原理; 对运动事物:能量守恒,动量(矩)守恒,熵增原理等。 变分原理是自然界静止(相对稳定状态)事物中的一个普遍适应的数学定律, 获称最小作用原理。 Exa mp les ① ② Summary:实际上光的传播遵循最小能量原理; 在静力学中的稳定平衡本质上是势能最小的原理。 二、变分法是自然界变分原理的数学规划方法(求解约束方程系统极值的数学方 法),是计算泛函驻值的数学理论 数学上的泛函定义 定义:数学空间(集合)上的元素(定义域)与一个实数域间(值域)间 的 (映射)关系 第一章 光线最短路径传播; 光线入射角等于反射角,光线在反射中也是光传播最短路径(Heron ); 光线折射遵循时间最短的途径(Fermat ); AE+ EB A AC +CB ③

特征描述法:{ J: X u D T R | J ( x ) = r € R } Exa mp les ① 矩阵范数:线性算子(矩阵)空间— 数域 泛函的提法:有一种梁的挠度函数(与载荷无关),就会有一个对应的系 统势能。 泛函驻值提法:在满足位移边界条件的所有挠度函数中,找一个 w (x ),使 i.梁的弯曲应变能: □b =-f' EJ (雪 2 P dx 2 ii.弹性地基贮存的能量: n f 1 J 2 =一 J kw dx 2 0 iii.外力位能: 口 l l =-0 qwdx iv.系统总的势能: )2dx 11 AII 1 = max 2 a j i4 ;|A L = max 2 a ij ; I A 2 仁 )12 ②函数的积分:函数空间i 数域 b J = a f n (X )dX fn U D Note:泛函的自变量是集合中的元素(定义域);值域是实数域。 Discussi on : ①判定下列那些是泛函: c f (x y) --- '—-3x+5y=2; J 6(x-x 0) f (x)dx = f (x 0) f i=ma 少(x )i ; ex ②试举另一泛函例子。 物理问题中的泛函举例 q(x) /■'■'I rmTrfT ① 弹性地基梁的系统势能 ■ d 丨 L l d 2 w 2 □卡E J( dxr) 2 Tkw - qW}dx; x = 0 d w = 0 dx x x = 0,固支;x =

变分原理与变分法

第一章变分原理与变分法 1.1关于变分原理与变分法(物质世界存在的基本守恒法则) 一、大自然总是以可能最好的方式安排一切,似乎存在着各种安排原理: 昼/夜,日/月,阴/阳,静止/运动 等矛盾/统一的协调体; 对静止事物:平衡体的最小能量原理,对称 /相似原理; 对运动事物:能量守恒,动量(矩)守恒,熵增原理等。 变分原理是自然界静止(相对稳定状态)事物中的一个普遍适应的数学定律, 获称最小作用原理。 Examples: ① 光线最短路径传播; ② 光线入射角等于反射角,光线在反射中也是光传播最短路径(Heron ); ③ 光线折射遵循时间最短的途径(Fermat ); , Summary 实际上光的传播遵循最小能量原理; 在静力学中的稳定平衡本质上是势能最小的原理。 、变分法是自然界变分原理的数学规划方法 (求解约束方程系统极值的数学方 法),是计算泛函驻值的数学理论 数学上的泛函定义 定义:数学空间(集合)上的元素(定义域)与一个实数域间(值域)间 的(映 射)关系 特征描述法:{ J: X D R|J (x ) r R } Examples: ① 矩阵范数:线性算子(矩阵)空间 = 数域 ② 函数的积分:函数空间数域 n II A II 1 = max a ij j i 1 max a ij i j 1 n n A 2 ( a ij 产 j 1 i 1 AE EB AC CB

b J f n (X )dX f n D a Discussi on : ① 判定下列那些是泛函: ② 试举另一泛函例子。 物理问题中的泛函举例 ① 弹性地基梁的系统势能 泛函的提法:有一种梁的挠度函数(与载荷无关),就会有一个对应的系 统势能。 泛函驻值提法:在满足位移边界条件的所有挠度函数中,找一个 w (x ),使 系统势能 泛函取最小值。 ② 最速降线问题 问题:已知空间两点A 和B, A 高于B ,要求在两点间连接一条曲线,使 得有重物从A 沿此曲线自由下滑时,从 A 到B 所需时间最短(忽略摩擦 力)。 作法: i. 通过A 和B 作一垂直于水平面的平面,取坐标系如图。 B 点坐标(a, b ), 设曲线为 y = y (x ),并已知:x = 0, y = 0 ; x = a, y = b ii. 建立泛函: i.梁的弯曲应变能: 1 ' d 2 w 2 b o 0 EJ( 2 ) dx 2 0 dx ii.弹性地基贮存的能量: f — kw 2 dx 2 0 iii.外力位能: l I o qwdx iv.系统总的势能: 左Ej (d 丫)2 1 2 2 kw qw}dx; x 0 w 0削0 dx x = 0,固支;x = l, 自由 Note:泛函的自变量是集合中的元素(定义域) ;值域是实数域。 max f (x); a x b f(X,y) ; 3x+5y=2; x (x x °)f(x)dx f(X o ) q(x) con sts E 、J x

广义特征值与极大极小原理

第二十一讲 广义特征值与极小极大原理 一、 广义特征值问题 1、定义:设A 、B 为n 阶方阵,若存在数λ,使得方程Ax Bx =λ存在非零解,则称λ为A 相对于B 的广义特征值,x 为A 相对于B 的属于广义特征值λ的特征向量。 ● 是标准特征值问题的推广,当B =I (单位矩阵)时,广义特征值问题退化为标准特征值问题。 ● 特征向量是非零的 ● 广义特征值的求解 ()A B x 0-λ= 或者 ()B A x 0λ-= → 特征方程 ()det A B 0-λ= 求得λ后代回原方程Ax Bx =λ可求出x 本课程进一步考虑A 、B 厄米且为正定矩阵的情况。 2、等价表述 (1) B 正定,1B -存在 →1 B A x x -=λ,广义特征值问题化为了标准 特征值问题,但一般来说,1B A -一般不再是厄米矩阵。 (2) B 正定,存在Cholesky 分解,H B G G =,G 满秩 H A x G G x =λ 令H G x y = 则 () 1 1 H G A G y y --=λ 也成为标准特征值问题。 ( ) 1 1 H G A G --为厄米矩阵,广义特征值是实数,可以按大小顺序 排列12n λ≤λ≤≤λ ,一定存在一组正交归一的特征向量,即存在 12n y ,y ,y 满足

() 1 1 H i i G A G y y --=λ H i j ij 1i j y y 0 i j =?=δ=?≠? 还原为()1 H i i x G y -= (i=1,2, ,n),则 ()() H H H H i j i j i j ij 1 i j y y x G G x x Bx 0 i j =?===δ=? ≠? (带权正交) 二、 瑞利商 A 、 B 为n 阶厄米矩阵,且B 正定,称()()H H x A x R x x 0x Bx =≠为A 相对于B 的瑞利商。 12n x ,x ,x 线性无关,所以,n x C ?∈,存在12n a ,a ,a C ∈ ,使 得 n i i i 1 x a x == ∑ H n n n n 2 H H i i i j j j i j i i 1j 1i ,j 1 i 1 x Bx a x B a x a a x Bx a ====???? == = ? ????? ∑∑∑ ∑ n n n 2 H H H i i j i j j i i j i i i ,j 1 i ,j 1 i 1 x A x a a x A x a a x Bx a ==== = λ= λ∑ ∑ ∑ ∴ ()n 2 i i i 1n 2 i i 1 a R x a ==λ= ∑ ∑ ●()1x 0 min R x ≠=λ ()n x 0 max R x ≠=λ 证明:()()()() () H H H H kx A kx x A x R x x Bx kx B kx = = k 为非零常数 可取1k x =, kx 1=

变分原理与变分法

第一章 变分原理与变分法 1.1关于变分原理与变分法(物质世界存在的基本守恒法则) 一、 大自然总是以可能最好的方式安排一切,似乎存在着各种安排原理: 昼/夜,日/月,阴/阳,静止/运动等矛盾/统一的协调体; 对静止事物:平衡体的最小能量原理,对称/相似原理; 对运动事物:能量守恒,动量(矩)守恒,熵增原理等。 变分原理是自然界静止(相对稳定状态)事物中的一个普遍适应的数学定律,获称最小作用原理。 Examples : ①光线最短路径传播; ②光线入射角等于反射角,光线在反射中也是光传播最短路径(Heron ); ③光线折射遵循时间最短的途径( CB AC EB AE +>+ Summary : 实际上光的传播遵循最小能量原理; 在静力学中的稳定平衡本质上是势能最小的原理。 二、变分法是自然界变分原理的数学规划方法(求解约束方程系统极值的数学方 法),是计算泛函驻值的数学理论 数学上的泛函定义 定义:数学空间(集合)上的元素(定义域)与一个实数域间(值域)间 的(映射)关系 特征描述法:{ J :R x R D X ∈=→?r J )(|} Examples : ‖A ‖1 = ∑=n i ij j a 1 max ;∑=∞=n j ij i a A 1max ;21 )(11 2 2∑∑===n j n i ij a A

D ?=?n b a n f dx x f J )( Note : 泛函的自变量是集合中的元素(定义域);值域是实数域。 Discussion : ①判定下列那些是泛函: )(max x f f b x a <<=; x y x f ??) ,(;3x+5y=2;?+∞∞-=-)()()(00x f dx x f x x δ ②试举另一泛函例子。 物理问题中的泛函举例 ① 弹性地基梁的系统势能 i.梁的弯曲应变能:?=∏l b dx dx w d EJ 02 22)(21 ii.弹性地基贮存的能量:dx kw l f ?=∏0 221 iii.外力位能:?-=∏l l qwdx 0 iv. 系统总的势能: 00 0;})({2 2122202 1 ===-+=∏?dx dw w x dx qw kw dx w d EJ l 泛函的提法:有一种梁的挠度函数(与载荷无关),就会有一个对应的系 统势能。 泛函驻值提法:在满足位移边界条件的所有挠度函数中,找一个w (x ),使系 统势能泛函取最小值。 ②最速降线问题 问题:已知空间两点A 和B,A 高于B ,要求在两点间连接一条曲线,使得有重 物从A 沿此曲线自由下滑时,从A 到B 所需时间最短(忽略摩擦力)。 作法: i. 通过A 和B 作一垂直于水平面的平面,取坐标系如图。B 点坐标(a , b ),设曲线为y = y (x ),并已知:x = 0,y = 0;x = a ,y = b ii.建立泛函: 设P (x , y )是曲线上的点,P 点的速度由能量守恒定律求得: x

极小值原理的一个实例

极小值原理的一个实例 背 景 最优控制主要用于对各种控制系统的优化。例如,导弹系统的最优控制,能保证用最少燃料完成飞行任务,用最短时间达到目标;再如飞机、船舶、电力系统等的最优控制,化工、冶金等工厂的最佳工况的控制。计算机接口装置不断完善和优化方法的进一步发展,还为计算机在线生产控制创造了有利条件。最优控制的对象也将从对机械、电气、化工等硬系统的控制转向对生态、环境以至社会经济系统的控制。 随着社会的进步和发展,特别是运输行业的大力发展,各种汽车数量不断增加,汽车拥有率已成为衡量人民生活水平的重要标志。近30年来,国内汽车销售量以超过年均15%的速度增长,汽车需求量已占有50% 上的全球份额。 在人们的生活中,汽车已经成为必不可少的部分,所以研究汽车的行驶,成为最优控制理论研究的必然要求。本文通过一道例题,来说明最优控制理论在汽车行驶中的作用。 最短时间问题 一般情况下,汽车从开始运行,到停止要经过加速、匀速和减速的过程,在这个过程中,速度从零开始先增加,然后保持不变,最后再减速到零。我们把汽车看成质点,且汽车的重量忽略不计。记汽车的位移为1x ,速度为2x ,汽车受到的力是u 。为了使问题简单化,我们假设电梯开始的位置是()100x =,开始的速度()202x =,通过控制电梯受到的力u ,且()1u t ≤。求电梯在最短时间T 内达到零态,即()()120,0x T x T ==。下面把这个问题转化为最优控制问题。 根据电梯的运动,得到其运动方程为 122 x x x u =??=? 初始条件为 ()() 1200 02x x =??? =?? 控制函数为()u t ,在约束条件()1u t ≤下,使系统以最短时间从给定初始状态转移到零态,即()()120,0x T x T ==。

相关文档
最新文档