大数据结构实验七 查找

大数据结构实验七 查找
大数据结构实验七 查找

实验七查找

一、实验目的

1. 掌握查找的不同方法,并能用高级语言实现查找算法;

2. 熟练掌握二叉排序树的构造和查找方法。

3. 熟练掌握静态查找表及哈希表查找方法。

二、实验内容

设计一个读入一串整数,然后构造二叉排序树,进行查找。

三、实验步骤

1. 从空的二叉树开始,每输入一个结点数据,就建立一个新结点插入到当前已生成的二叉排序树中。

2. 在二叉排序树中查找某一结点。

3.用其它查找算法进行排序(课后自己做)。

四、实现提示

1. 定义结构

typedef struct node

{ int key;

int other;

struct node *lchild, *rchild;

} bstnode;

void inorder ( t )

{ if (t!=Null)

{ inorder(t→lchild);

printf(“%4d”, t→key);

inorder(t→rchild);

} }

bstnode *insertbst(t, s)

bstnode *s, *t;

{ bstnode *f, *p;

p=t;

while(p!=Null)

{ f=p;

if (s→key= =p→key) return t;

if (s→key

else

p=p→rchild;

}

if(t= =Null) return s;

if (s→key

else

f→rchild=s;

return t;

}

bstnode *creatord( )

{ bstnode *t, * s;

int key;

t=Null;

scanf(“%d”,&key);

while (key!=0)

{ s=malloc(sizeof (bitree));

s→key=key;

s→lchild=Null;

s→rchild=Null;

scanf(“%d”, &data);

s→other=data;

t=insertbst(t, s);

scanf(“%d”,&key);

}

return t;

}

五、思考与提高

1. 用其它的查找方法完成该算法。

2.比较各种算法的时间及空间复杂度。

六、完整参考程序

1.折半查找

#include

#include

#define MAX 30 //定义有序查找表的最大长度

typedef struct{

char elem[MAX]; //有序查找表

int length; //length指示当前有序查找表的长度

}SSTable;

void initial(SSTable &); //初始化有序查找表

int search(SSTable,int); //在有序查找表中查找元素void print(SSTable); //显示有序查找表中所有元素void main()

{SSTable ST; //ST为一有序查找表

int ch,loc,flag=1;

char j;

initial(ST); //初始化有序查找表

while(flag)

{ printf("请选择:\n");

printf("1.显示所有元素\n");

printf("2.查找一个元素\n");

printf("3.退出\n");

scanf(" %c",&j);

switch(j)

{case '1':print(ST); break; //显示所有元素

case '2':{printf("请输入要查找的元素:");

scanf("%d",&ch); //输入要查找的元素的关键字

loc=search(ST,ch); //查找

if(loc!=0) printf("该元素所在位置是:%d\n",loc); //显示该元素位置

else printf("%d 不存在!\n",ch);//当前元素不存在

break;

}

default:flag=0;

}

}

printf("程序运行结束!按任意键退出!\n");

}

void initial(SSTable &v)

{//初始化有序查找表

int i;

printf("请输入静态表的元素个数:"); //输入有序查找表初始化时的长度

scanf("%d",&v.length);

printf("请从小到大输入%d个元素(整形数):\n",v.length);

getchar();

for(i=1;i<=v.length;i++) scanf("%d",&v.elem[i]); //从小到大输入有序查找表的各元素

}

int search(SSTable v,int ch)

{//在有序查找表中查找ch的位置,成功返回其位置,失败返回0

int low,high,mid;

low=1;high=v.length; //置区间初值

while(low<=high)

{mid=(low+high)/2;

if(v.elem[mid]==ch) return mid; //找到待查元素

else if(v.elem[mid]>ch) high=mid-1; //继续在前半区间进行查找

else low=mid+1; //继续在后半区间进行查找

}

return 0; //找不到时,i为0

}

void print(SSTable v) //显示当前有序查找表所有元素

{int i;

for(i=1;i<=v.length;i++) printf("%d ",v.elem[i]);

printf("\n");

}

2.二叉排序树的建立与查找

#include

#include

#include

#include

enum BOOL{False,True};

typedef struct BiTNode //定义二叉树节点结构

{char data; //为了方便,数据域只有关键字一项struct BiTNode *lchild,*rchild; //左右孩子指针域

}BiTNode,*BiTree;

BOOL SearchBST(BiTree,char,BiTree,BiTree&); //在二叉排序树中查找元素BOOL InsertBST(BiTree &,char); //在二叉排序树中插入元素

BOOL DeleteBST(BiTree &,char); //在二叉排序树中删除元素

void Delete(BiTree &); //删除二叉排序树的根结点

void InorderBST(BiTree); //中序遍历二叉排序树,即从小到大显示各元素

void main()

{BiTree T,p;

char ch,keyword,j='y';

BOOL temp;

T=NULL;

while(j!='n')

{printf("1.display\n");

printf("2.search\n");

printf("3.insert\n");

printf("4.delete\n");

printf("5.exit\n");

scanf(" %c",&ch); //输入操作选项

switch(ch)

{case '1':if(!T) printf("The BST has no elem.\n");

else {InorderBST(T);printf("\n");}

break;

case '2':printf("Input the keyword of elem to be searched(a char):"); scanf(" %c",&keyword); //输入要查找元素的关键字

temp=SearchBST(T,keyword,NULL,p);

if(!temp) printf("%c isn't existed!\n",keyword); //没有找到

else printf("%c has been found!\n",keyword); //成功找到

break;

case '3':printf("Input the keyword of elem to be inserted(a char):"); scanf(" %c",&keyword); //输入要插入元素的关键字

temp=InsertBST(T,keyword);

if(!temp) printf("%c has been existed!\n",keyword); //该元素已经存在else printf("Sucess to inert %c!\n",keyword); //成功插入

break;

case '4':printf("Input the keyword of elem to be deleted(a char):");

scanf(" %c",&keyword); //输入要删除元素的关键字

temp=DeleteBST(T,keyword);

if(!temp) printf("%c isn't existed!\n",keyword); //该元素不存在

else printf("Sucess to delete %c\n",keyword); //成功删除

break;

default: j='n';

}

}

printf("The program is over!\nPress any key to shut off the window!\n"); getchar();getchar();

}

void InorderBST(BiTree T)

{//以中序方式遍历二叉排序树T,即从小到大显示二叉排序树的所有元素if(T->lchild) InorderBST(T->lchild);

printf("%2c",T->data);

if(T->rchild) InorderBST(T->rchild);

}

BOOL SearchBST(BiTree T,char key,BiTree f,BiTree &p)

{//在根指针T所指二叉排序树中递归的查找其关键字等于key的元素,若查找成功

//则指针p指向该数据元素,并返回True,否则指针指向查找路径上访问的最后一

//个结点并返回False,指针f指向T的双亲,其初始调用值为NULL

BOOL tmp1,tmp2;

tmp1=tmp2=False;

if(!T) {p=f;return False;} //查找不成功

else if(key==T->data) {p=T;return True;} //查找成功

else if(keydata) tmp1=SearchBST(T->lchild,key,T,p); //在左子树中继续查找

else tmp2=SearchBST(T->rchild,key,T,p); //在右子树中继续查找

if(tmp1||tmp2) return True; //若在子树中查找成功,向上级返回True

else return False; //否则返回False

}

BOOL InsertBST(BiTree &T,char e)

{//当二叉排序树T中不存在元素e时,插入e并返回True,否则返回False BiTree p,s;

if(!SearchBST(T,e,NULL,p)) //查找不成功

{s=(BiTree)malloc(sizeof(BiTNode));

s->data=e;

s->lchild=s->rchild=NULL;

if(!p) T=s; //被插结点*s为新的根结点

else if(edata) p->lchild=s; //被插结点*s为左孩子

else p->rchild=s; //被插结点*s为右孩子

return True; //成功插入

}

else return False; //树中已存在关键字为e的数据元素

}

BOOL DeleteBST(BiTree &T,char key)

{//若二叉排序树T中存在关键字等于key的数据元素时,则删除该数据元素结点

//并返回True,否则返回False

BOOL tmp1,tmp2;

tmp1=tmp2=False;

if(!T) return False; //不存在关键字等于key的数据元素

else

{if(key==T->data) {Delete(T); return True;}

//找到关键字等于key的数据元素并删除它

else if(keydata) tmp1=DeleteBST(T->lchild,key); //继续在左子树中删除

else tmp2=DeleteBST(T->rchild,key); //继续在右子树中删除

if(tmp1||tmp2) return True; //在子树中删除成功,返回True

else return False; //不存在该元素

}

}

void Delete(BiTree &p)

{//在二叉排序树中删除结点p,并重接它的左或右子树BiTree s,q;

if(!p->rchild) //右子树空,只需重接它的左子树{q=p;

p=p->lchild;

free(q);

}

else if(!p->lchild) //左子树空,只需重接它的右子树{q=p;

p=p->rchild;

free(q);

}

else //左右子树均不空

{q=p;

s=p->lchild;

while(s->rchild)

{q=s;s=s->rchild;} //转左,然后向右走到尽头

p->data=s->data; //s指向被删结点的“前驱”

if(q!=p) q->rchild=s->rchild; //重接*q的右子树else q->lchild=s->lchild; //重接*q的左子树free(s);

}

}

数据结构实验十一:图实验

一,实验题目 实验十一:图实验 采用邻接表存储有向图,设计算法判断任意两个顶点间手否存在路径。 二,问题分析 本程序要求采用邻接表存储有向图,设计算法判断任意两个顶点间手否存在路径,完成这些操作需要解决的关键问题是:用邻接表的形式存储有向图并输出该邻接表。用一个函数实现判断任意两点间是否存在路径。 1,数据的输入形式和输入值的范围:输入的图的结点均为整型。 2,结果的输出形式:输出的是两结点间是否存在路径的情况。 3,测试数据:输入的图的结点个数为:4 输入的图的边得个数为:3 边的信息为:1 2,2 3,3 1 三,概要设计 (1)为了实现上述程序的功能,需要: A,用邻接表的方式构建图 B,深度优先遍历该图的结点 C,判断任意两结点间是否存在路径 (2)本程序包含6个函数: a,主函数main() b,用邻接表建立图函数create_adjlistgraph() c,深度优先搜索遍历函数dfs() d,初始化遍历数组并判断有无通路函数dfs_trave() e,输出邻接表函数print() f,释放邻接表结点空间函数freealgraph() 各函数间关系如右图所示: 四,详细设计 (1)邻接表中的结点类型定义:

typedef struct arcnode{ int adjvex; arcnode *nextarc; }arcnode; (2)邻接表中头结点的类型定义: typedef struct{ char vexdata; arcnode *firstarc; }adjlist; (3)邻接表类型定义: typedef struct{ adjlist vextices[max]; int vexnum,arcnum; }algraph; (4)深度优先搜索遍历函数伪代码: int dfs(algraph *alg,int i,int n){ arcnode *p; visited[i]=1; p=alg->vextices[i].firstarc; while(p!=NULL) { if(visited[p->adjvex]==0){ if(p->adjvex==n) {flag=1; } dfs(alg,p->adjvex,n); if(flag==1) return 1; } p=p->nextarc; } return 0; } (5)初始化遍历数组并判断有无通路函数伪代码: void dfs_trave(algraph *alg,int x,int y){ int i; for(i=0;i<=alg->vexnum;i++) visited[i]=0; dfs(alg,x,y); } 五,源代码 #include "stdio.h" #include "stdlib.h" #include "malloc.h" #define max 100 typedef struct arcnode{ //定义邻接表中的结点类型 int adjvex; //定点信息 arcnode *nextarc; //指向下一个结点的指针nextarc }arcnode; typedef struct{ //定义邻接表中头结点的类型 char vexdata; //头结点的序号 arcnode *firstarc; //定义一个arcnode型指针指向头结点所对应的下一个结点}adjlist; typedef struct{ //定义邻接表类型 adjlist vextices[max]; //定义表头结点数组

数据结构实验七 查找

实验七查找 一、实验目的 1. 掌握查找的不同方法,并能用高级语言实现查找算法; 2. 熟练掌握二叉排序树的构造和查找方法。 3. 熟练掌握静态查找表及哈希表查找方法。 二、实验内容 设计一个读入一串整数,然后构造二叉排序树,进行查找。 三、实验步骤 1. 从空的二叉树开始,每输入一个结点数据,就建立一个新结点插入到当前已生成的二叉排序树中。 2. 在二叉排序树中查找某一结点。 3.用其它查找算法进行排序(课后自己做)。 四、实现提示 1. 定义结构 typedef struct node { int key; int other; struct node *lchild, *rchild; } bstnode; void inorder ( t ) { if (t!=Null) { inorder(t→lchild); printf(“%4d”, t→key); inorder(t→rchild); } } bstnode *insertbst(t, s) bstnode *s, *t; { bstnode *f, *p; p=t;

while(p!=Null) { f=p; if (s→key= =p→key) return t; if (s→key

数据结构实验

实验2 查找算法的实现和应用?实验目的 1. 熟练掌握静态查找表的查找方法; 2. 熟练掌握动态查找表的查找方法; 3. 掌握hash表的技术. ?实验内容 1.用二分查找法对查找表进行查找; 2.建立二叉排序树并对该树进行查找; 3.确定hash函数及冲突处理方法,建立一个hash表并实现查找。 程序代码 #include using namespace std; int main() { int arraay[10]={1,2,3,4,5,6,7,8,9,10}; int binary_search(int a[10],int t); cout<<"Enter the target:"; int target; cin>>target; binary_search(arraay,target); return 0; } int binary_search(int a[10],int t) { int bottom=0,top=9; while(bottom

cout<<"Not present!"; } return 0; } 结果 二叉排序树 #include #include #include using namespace std; typedef int keyType; typedef struct Node { keyType key; struct Node* left; struct Node* right; struct Node* parent; }Node,*PNode; void inseart(PNode* root, keyType key) { PNode p = (PNode)malloc(sizeof(Node)); p -> key = key;

数据结构实验报告图实验

图实验一,邻接矩阵的实现 1.实验目的 (1)掌握图的逻辑结构 (2)掌握图的邻接矩阵的存储结构 (3)验证图的邻接矩阵存储及其遍历操作的实现 2.实验内容 (1)建立无向图的邻接矩阵存储 (2)进行深度优先遍历 (3)进行广度优先遍历 3.设计与编码 MGraph.h #ifndef MGraph_H #define MGraph_H const int MaxSize = 10;

template class MGraph { public: MGraph(DataType a[], int n, int e); ~MGraph(){ } void DFSTraverse(int v); void BFSTraverse(int v); private: DataType vertex[MaxSize]; int arc[MaxSize][MaxSize]; int vertexNum, arcNum; }; #endif MGraph.cpp

#include using namespace std; #include "MGraph.h" extern int visited[MaxSize]; template MGraph::MGraph(DataType a[], int n, int e) { int i, j, k; vertexNum = n, arcNum = e; for(i = 0; i < vertexNum; i++) vertex[i] = a[i]; for(i = 0;i < vertexNum; i++) for(j = 0; j < vertexNum; j++) arc[i][j] = 0; for(k = 0; k < arcNum; k++) {

数据结构实验7实验报告

暨南大学本科实验报告专用纸 课程名称数据结构实验成绩评定 实验项目名称习题6.51 指导教师孙世良 实验项目编号实验7 实验项目类型实验地点实验楼三楼机房学生姓名林炜哲学号2013053005 学院电气信息学院系专业软件工程 实验时间年月日午~月日午温度℃湿度(一)实验目的 熟悉和理解二叉树的结构特性; 熟悉二叉树的各种存储结构的特点及适用范围; 掌握遍历二叉树的各种操作及其实现方式。 (二)实验内容和要求 编写一个算法,输出以二叉树表示的算术表达式,若该表达式中含有括号,则应该在输出时添上。 (三)主要仪器设备 实验环境:Microsoft Visual Studio 2012 (四)源程序 #include #include typedef struct bitnode{ char data; struct bitnode *lchild,*rchild; }bitnode,*bitree; void create(bitree &T){ char t; t=getchar();

if(t==' ') T=NULL; else{ if( !( T=(bitnode*)malloc(sizeof(bitnode)) ) ) exit(0); T->data=t; create(T->lchild); create(T->rchild); } } void middle_order(bitree &Node){ if(Node != NULL){ if((Node->data=='*'||Node->data=='/')&&(Node->lchild->data=='+'|| Node->lchild->data=='-')) printf("( "); middle_order(Node->lchild); if((Node->data=='*'||Node->data=='/')&&(Node->lchild->data=='+'|| Node->lchild->data=='-')) printf(") "); printf("%c ", Node->data); if((Node->data=='*'||Node->data=='/')&&(Node->rchild->data=='+'|| Node->rchild->data=='-')) printf("( "); middle_order(Node->rchild); if((Node->data=='*'||Node->data=='/')&&(Node->rchild->data=='+'|| Node->rchild->data=='-')) printf(") "); } } int main() { bitree y; printf("以先序遍历的方式输入二叉树:"); create(y); printf("输出表达式:"); middle_order(y); return 0; } (五)数据调试

数据结构实验报告

数据结构实验报告 一.题目要求 1)编程实现二叉排序树,包括生成、插入,删除; 2)对二叉排序树进行先根、中根、和后根非递归遍历; 3)每次对树的修改操作和遍历操作的显示结果都需要在屏幕上用树的形状表示出来。 4)分别用二叉排序树和数组去存储一个班(50人以上)的成员信息(至少包括学号、姓名、成绩3项),对比查找效率,并说明在什么情况下二叉排序树效率高,为什么? 二.解决方案 对于前三个题目要求,我们用一个程序实现代码如下 #include #include #include #include "Stack.h"//栈的头文件,没有用上 typedefintElemType; //数据类型 typedefint Status; //返回值类型 //定义二叉树结构 typedefstructBiTNode{ ElemType data; //数据域 structBiTNode *lChild, *rChild;//左右子树域 }BiTNode, *BiTree; intInsertBST(BiTree&T,int key){//插入二叉树函数 if(T==NULL) { T = (BiTree)malloc(sizeof(BiTNode)); T->data=key; T->lChild=T->rChild=NULL; return 1; } else if(keydata){ InsertBST(T->lChild,key); } else if(key>T->data){ InsertBST(T->rChild,key); } else return 0; } BiTreeCreateBST(int a[],int n){//创建二叉树函数 BiTreebst=NULL; inti=0; while(i

数据结构实验报告图实验

邻接矩阵的实现 1. 实验目的 (1)掌握图的逻辑结构 (2)掌握图的邻接矩阵的存储结构 (3)验证图的邻接矩阵存储及其遍历操作的实现2. 实验内容 (1)建立无向图的邻接矩阵存储 (2)进行深度优先遍历 (3)进行广度优先遍历3.设计与编码MGraph.h #ifndef MGraph_H #define MGraph_H const int MaxSize = 10; template class MGraph { public: MGraph(DataType a[], int n, int e); ~MGraph(){ void DFSTraverse(int v); void BFSTraverse(int v); private: DataType vertex[MaxSize]; int arc[MaxSize][MaxSize]; }

int vertexNum, arcNum; }; #endif MGraph.cpp #include using namespace std; #include "MGraph.h" extern int visited[MaxSize]; template MGraph::MGraph(DataType a[], int n, int e) { int i, j, k; vertexNum = n, arcNum = e; for(i = 0; i < vertexNum; i++) vertex[i] = a[i]; for(i = 0;i < vertexNum; i++) for(j = 0; j < vertexNum; j++) arc[i][j] = 0; for(k = 0; k < arcNum; k++) { cout << "Please enter two vertexs number of edge: " cin >> i >> j; arc[i][j] = 1; arc[j][i] = 1; } }

数据结构实验报告七查找、

云南大学软件学院数据结构实验报告 (本实验项目方案受“教育部人才培养模式创新实验区(X3108005)”项目资助)实验难度: A □ B □ C □ 学期:2010秋季学期 任课教师: 实验题目: 查找算法设计与实现 姓名: 王辉 学号: 20091120154 电子邮件: 完成提交时间: 2010 年 12 月 27 日

云南大学软件学院2010学年秋季学期 《数据结构实验》成绩考核表 学号:姓名:本人承担角色: 综合得分:(满分100分) 指导教师:年月日(注:此表在难度为C时使用,每个成员一份。)

(下面的内容由学生填写,格式统一为,字体: 楷体, 行距: 固定行距18,字号: 小四,个人报告按下面每一项的百分比打分。难度A满分70分,难度B满分90分)一、【实验构思(Conceive)】(10%) 1 哈希表查找。根据全年级学生的姓名,构造一个哈希表,选择适当的哈希函数和解决冲突的方法,设计并实现插入、删除和查找算法。 熟悉各种查找算法的思想。 2、掌握查找的实现过程。 3、学会在不同情况下运用不同结构和算法求解问题。 4 把每个学生的信息放在结构体中: typedef struct //记录 { NA name; NA tel; NA add; }Record; 5 void getin(Record* a)函数依次输入学生信息 6 人名折叠处理,先将用户名进行折叠处理折叠处理后的数,用除留余数法构造哈希函数,并返回模值。并采用二次探测再散列法解决冲突。 7姓名以汉语拼音形式,待填入哈希表的人名约30个,自行设计哈希函数,用线性探测再散列法或链地址法处理冲突;在查找的过程中给出比较的次数。完成按姓名查询的操作。将初始班级的通讯录信息存入文件。 二、【实验设计(Design)】(20%) (本部分应包括:抽象数据类型的功能规格说明、主程序模块、各子程序模块的伪码说明,主程序模块与各子程序模块间的调用关系) 1抽象数据类型的功能规格说明和结构体: #include

数据结构实验八内部排序

实验八内部排序 一、实验目的 1、掌握内部排序的基本算法; 2、分析比较内部排序算法的效率。 二、实验内容和要求 1. 运行下面程序: #include #include #define MAX 50 int slist[MAX]; /*待排序序列*/ void insertSort(int list[], int n); void createList(int list[], int *n); void printList(int list[], int n); void heapAdjust(int list[], int u, int v); void heapSort(int list[], int n); /*直接插入排序*/ void insertSort(int list[], int n) { int i = 0, j = 0, node = 0, count = 1; printf("对序列进行直接插入排序:\n"); printf("初始序列为:\n"); printList(list, n); for(i = 1; i < n; i++) { node = list[i]; j = i - 1; while(j >= 0 && node < list[j]) { list[j+1] = list[j]; --j; } list[j+1] = node; printf("第%d次排序结果:\n", count++); printList(list, n); } } /*堆排序*/ void heapAdjust(int list[], int u, int v)

数据结构实验报告

姓名: 学号: 班级: 2010年12月15日

实验一线性表的应用 【实验目的】 1、熟练掌握线性表的基本操作在顺序存储和链式存储上的实现。、; 2、以线性表的各种操作(建立、插入、删除、遍历等)的实现为重点; 3、掌握线性表的动态分配顺序存储结构的定义和基本操作的实现; 4、通过本章实验帮助学生加深对C语言的使用(特别是函数的参数调用、指针类型的 应用和链表的建立等各种基本操作)。 【实验内容】 约瑟夫问题的实现:n只猴子要选猴王,所有的猴子按1,2,…,n编号围坐一圈,从第一号开始按1,2…,m报数,凡报到m号的猴子退出圈外,如此次循环报数,知道圈内剩下一只猴子时,这个猴子就是猴王。编写一个程序实现上述过程,n和m由键盘输入。【实验要求】 1、要求用顺序表和链表分别实现约瑟夫问题。 2、独立完成,严禁抄袭。 3、上的实验报告有如下部分组成: ①实验名称 ②实验目的 ③实验内容:问题描述:数据描述:算法描述:程序清单:测试数据 算法: #include #include typedef struct LPeople { int num; struct LPeople *next; }peo; void Joseph(int n,int m) //用循环链表实现 { int i,j; peo *p,*q,*head; head=p=q=(peo *)malloc(sizeof(peo)); p->num=0;p->next=head; for(i=1;inum=i;q->next=p;p->next=head; } q=p;p=p->next; i=0;j=1; while(i

数据结构实验

实验1 (C语言补充实验) 有顺序表A和B,其元素值均按从小到大的升序排列,要求将它们合并成一 个顺序表C,且C的元素也是从小到大的升序排列。 #include main() { intn,m,i=0,j=0,k=0,a[5],b[5],c[10];/* 必须设个m做为数组的输入的计数器,不能用i ,不然进行到while 时i 直接为5*/ for(m=0;m<=4;m++)scanf("%d",&a[m]);// 输入数组a for(m=0;m<=4;m++)scanf("%d",&b[m]);// 输入数组b while(i<5&&j<5) {if(a[i]b[j]){c[k]=b[j];k++;j++;} else{c[k]=a[i];k++;i++;j++;}// 使输入的两组数组中相同的数只输出一 个 } if(i<5) for(n=i;n<5;n++) {c[k]=a[n];k++;} elseif(j<5) for(n=j;n<5;n++) {c[k]=b[n];k++;} for(i=0;i

求A QB #include main() { inti,j,k=0,a[5],b[5],c[5];//A=a[5],B=b[5],A n B=c[5] for(i=0;i<5;i++)scanf("%d",&a[i]);// 输入a 数组 for(i=0;i<5;i++)scanf("%d",&b[i]);〃输入b 数组 for(i=0;i<5;i++) {for(j=0;j<5;j++) if(a[i]==b[j]){c[k]=a[i];k++;}// 当有元素重复时,只取一个放入 c 中} for(i=0;i #defineN4 main() { inti,j,m,k,a[N+1];//k 为最后输出数组的长度变量

数据结构实验七图的创建与遍历

实验七图的创建与遍历 实验目的: 通过上机实验进一步掌握图的存储结构及基本操作的实现。 实验内容与要求: 要求: ⑴能根据输入的顶点、边/弧的信息建立图; ⑵实现图中顶点、边/弧的插入、删除; ⑶实现对该图的深度优先遍历; ⑷实现对该图的广度优先遍历。 备注:单号基于邻接矩阵,双号基于邻接表存储结构实现上述操作。算法设计: #include #include #define INFINITY 32767 #define MAX_VEX 20 //最大顶点个数 #define QUEUE_SIZE (MAX_VEX+1) //队列长度 using namespace std; bool *visited; //访问标志数组 //图的邻接矩阵存储结构 typedef struct{ char *vexs; //顶点向量 int arcs[MAX_VEX][MAX_VEX]; //邻接矩阵 int vexnum,arcnum; //图的当前顶点数和弧数 }Graph; //队列类 class Queue{ public: void InitQueue() { base=(int *)malloc(QUEUE_SIZE*sizeof(int)); front=rear=0;

. } void EnQueue(int e) { base[rear]=e; rear=(rear+1)%QUEUE_SIZE; } void DeQueue(int &e) { e=base[front]; front=(front+1)%QUEUE_SIZE; } public: int *base; int front; int rear; }; //图G中查找元素c的位置 int Locate(Graph G,char c) { for(int i=0;i

数据结构实验

长春大学计算机学院网络工程专业 数据结构实验报告 实验名称:实验二栈和队列的操作与应用 班级:网络14406 姓名:李奎学号:041440624 实验地点:日期: 一、实验目的: 1.熟练掌握栈和队列的特点。 2.掌握栈的定义和基本操作,熟练掌握顺序栈的操作及应用。 3.掌握链队的入队和出队等基本操作。 4.加深对栈结构和队列结构的理解,逐步培养解决实际问题的编程能力。 二、实验内容、要求和环境: 注:将完成的实验报告重命名为:班级+学号+姓名+(实验二),(如:041340538张三(实验二)),发邮件到:ccujsjzl@https://www.360docs.net/doc/7115679603.html,。提交时限:本次实验后24小时之内。 阅读程序,完成填空,并上机运行调试。 1、顺序栈,对于输入的任意一个非负十进制整数,打印输出与其等值的八进制数 (1)文件SqStackDef. h 中实现了栈的顺序存储表示 #define STACK_INIT_SIZE 10 /* 存储空间初始分配量*/ #define STACKINCREMENT 2 /* 存储空间分配增量*/ typedef struct SqStack { SElemType *base; /* 在栈构造之前和销毁之后,base 的值为NULL */ SElemType *top; /* 栈顶指针*/ int stacksize; /* 当前已分配的存储空间,以元素为单位*/ }SqStack; /* 顺序栈*/ (2)文件SqStackAlgo.h 中实现顺序栈的基本操作(存储结构由SqStackDef.h 定义) Status InitStack(SqStack &S) { /* 构造一个空栈S */ S.base=(SElemType *)malloc(STACK_INIT_SIZE*sizeof(SElemType)); if(!S.base) exit(OVERFLOW); /* 存储分配失败*/ S.top=S.base; S.stacksize=STACK_INIT_SIZE; return OK; } int StackLength(SqStack S) { // 返回S 的元素个数,即栈的长度, 编写此函数

数据结构实验报告[3]

云南大学 数据结构实验报告 第三次实验 学号: 姓名: 一、实验目的 1、复习结构体、指针; 2、掌握链表的创建、遍历等操作; 3、了解函数指针。 二、实验内容 1、(必做题)每个学生的成绩信息包括:学号、语文、数学、英语、总分、加权平均分;采用链表存储若干学生的成绩信息;输入学生的学号、语文、数学、英语成绩;计算学生的总分和加权平均分(语文占30%,数学占50%,英语占20%);输出学生的成绩信息。 三、算法描述 (采用自然语言描述) 首先创建链表存储n个学生的成绩信息,再通过键盘输入学生的信息,创建指针p所指结点存储学生的成绩信息,从键盘读入学生人数,求出学生的总分和加权平均分,输出结果。 四、详细设计 (画出程序流程图)

五、程序代码 (给出必要注释) #include #include typedef struct score {int number; int chinese; int math; int english; int total; float average; struct score *next; } student; //创建链表存储n个学生的信息,通过键盘输入信息student*input_score(int n) {int i; student*stu,*p; for(i=0,stu=NULL;inumber);

数据结构实验报告(图)

附录A 实验报告 课程:数据结构(c语言)实验名称:图的建立、基本操作以及遍历系别:数字媒体技术实验日期: 12月13号 12月20号 专业班级:媒体161 组别:无 姓名:学号: 实验报告内容 验证性实验 一、预习准备: 实验目的: 1、熟练掌握图的结构特性,熟悉图的各种存储结构的特点及适用范围; 2、熟练掌握几种常见图的遍历方法及遍历算法; 实验环境:Widows操作系统、VC6.0 实验原理: 1.定义: 基本定义和术语 图(Graph)——图G是由两个集合V(G)和E(G)组成的,记为G=(V,E),其中:V(G)是顶点(V ertex)的非空有限集E(G)是边(Edge)的有限集合,边是顶点的无序对(即:无方向的,(v0,v2))或有序对(即:有方向的,)。 邻接矩阵——表示顶点间相联关系的矩阵 设G=(V,E) 是有n 1 个顶点的图,G 的邻接矩阵A 是具有以下性质的n 阶方阵特点: 无向图的邻接矩阵对称,可压缩存储;有n个顶点的无向图需存储空间为n(n+1)/2 有向图邻接矩阵不一定对称;有n个顶点的有向图需存储空间为n2 9

无向图中顶点V i的度TD(V i)是邻接矩阵A中第i行元素之和有向图中, 顶点V i的出度是A中第i行元素之和 顶点V i的入度是A中第i列元素之和 邻接表 实现:为图中每个顶点建立一个单链表,第i个单链表中的结点表示依附于顶点Vi的边(有向图中指以Vi为尾的弧) 特点: 无向图中顶点Vi的度为第i个单链表中的结点数有向图中 顶点Vi的出度为第i个单链表中的结点个数 顶点Vi的入度为整个单链表中邻接点域值是i的结点个数 逆邻接表:有向图中对每个结点建立以Vi为头的弧的单链表。 图的遍历 从图中某个顶点出发访遍图中其余顶点,并且使图中的每个顶点仅被访问一次过程.。遍历图的过程实质上是通过边或弧对每个顶点查找其邻接点的过程,其耗费的时间取决于所采用的存储结构。图的遍历有两条路径:深度优先搜索和广度优先搜索。当用邻接矩阵作图的存储结构时,查找每个顶点的邻接点所需要时间为O(n2),n为图中顶点数;而当以邻接表作图的存储结构时,找邻接点所需时间为O(e),e 为无向图中边的数或有向图中弧的数。 实验内容和要求: 选用任一种图的存储结构,建立如下图所示的带权有向图: 要求:1、建立边的条数为零的图;

数据结构图实验报告

数据结构教程 上机实验报告 实验七、图算法上机实现 一、实验目的: 1.了解熟知图的定义和图的基本术语,掌握图的几种存储结构。 2.掌握邻接矩阵和邻接表定义及特点,并通过实例解析掌握邻接矩阵和邻接表的类型定义。 3.掌握图的遍历的定义、复杂性分析及应用,并掌握图的遍历方法及其基本思想。 二、实验内容: 1.建立无向图的邻接矩阵 2.图的xx优先搜索 3.图的xx优先搜索 三、实验步骤及结果: 1.建立无向图的邻接矩阵: 1)源代码: #include "stdio.h" #include "stdlib.h" #define MAXSIZE 30 typedefstruct{charvertex[MAXSIZE];//顶点为字符型且顶点表的长度小于MAXSIZE intedges[MAXSIZE][MAXSIZE];//边为整形且edges为邻近矩阵

}MGraph;//MGraph为采用邻近矩阵存储的图类型 voidCreatMGraph(MGraph *g,inte,int n) {//建立无向图的邻近矩阵g->egdes,n为顶点个数,e为边数inti,j,k; printf("Input data of vertexs(0~n-1): \n"); for(i=0;ivertex[i]=i; //读入顶点信息 for(i=0;iedges[i][j]=0; //初始化邻接矩阵 for(k=1;k<=e;k++)//输入e条边{}printf("Input edges of(i,j): "); scanf("%d,%d",&i,&j); g->edges[i][j]=1; g->edges[j][i]=1;}void main(){inti,j,n,e; MGraph *g; //建立指向采用邻接矩阵存储图类型指针 g=(MGraph*)malloc(sizeof(MGraph));//生成采用邻接举证存储图类型的存储空间}2)运行结果: printf("Input size of MGraph: "); //输入邻接矩阵的大小scanf("%d",&n); printf("Input number of edge: "); //输入邻接矩阵的边数scanf("%d",&e);

数据结构实验报告及心得体会

2011~2012第一学期数据结构实验报告 班级:信管一班 学号:201051018 姓名:史孟晨

实验报告题目及要求 一、实验题目 设某班级有M(6)名学生,本学期共开设N(3)门课程,要求实现并修改如下程序(算法)。 1. 输入学生的学号、姓名和 N 门课程的成绩(输入提示和输出显示使用汉字系统), 输出实验结果。(15分) 2. 计算每个学生本学期 N 门课程的总分,输出总分和N门课程成绩排在前 3 名学 生的学号、姓名和成绩。 3. 按学生总分和 N 门课程成绩关键字升序排列名次,总分相同者同名次。 二、实验要求 1.修改算法。将奇偶排序算法升序改为降序。(15分) 2.用选择排序、冒泡排序、插入排序分别替换奇偶排序算法,并将升序算法修改为降序算法;。(45分)) 3.编译、链接以上算法,按要求写出实验报告(25)。 4. 修改后算法的所有语句必须加下划线,没做修改语句保持按原样不动。 5.用A4纸打印输出实验报告。 三、实验报告说明 实验数据可自定义,每种排序算法数据要求均不重复。 (1) 实验题目:《N门课程学生成绩名次排序算法实现》; (2) 实验目的:掌握各种排序算法的基本思想、实验方法和验证算法的准确性; (3) 实验要求:对算法进行上机编译、链接、运行; (4) 实验环境(Windows XP-sp3,Visual c++); (5) 实验算法(给出四种排序算法修改后的全部清单); (6) 实验结果(四种排序算法模拟运行后的实验结果); (7) 实验体会(文字说明本实验成功或不足之处)。

三、实验源程序(算法) Score.c #include "stdio.h" #include "string.h" #define M 6 #define N 3 struct student { char name[10]; int number; int score[N+1]; /*score[N]为总分,score[0]-score[2]为学科成绩*/ }stu[M]; void changesort(struct student a[],int n,int j) {int flag=1,i; struct student temp; while(flag) { flag=0; for(i=1;ia[i+1].score[j]) { temp=a[i]; a[i]=a[i+1]; a[i+1]=temp; flag=1; } for(i=0;ia[i+1].score[j]) { temp=a[i]; a[i]=a[i+1]; a[i+1]=temp; flag=1;

数据结构实验—图实验报告

精品文档数据结构 实 验 报 告

目的要求 1.掌握图的存储思想及其存储实现。 2.掌握图的深度、广度优先遍历算法思想及其程序实现。 3.掌握图的常见应用算法的思想及其程序实现。 实验内容 1.键盘输入数据,建立一个有向图的邻接表。 2.输出该邻接表。 3.在有向图的邻接表的基础上计算各顶点的度,并输出。 4.以有向图的邻接表为基础实现输出它的拓扑排序序列。 5.采用邻接表存储实现无向图的深度优先递归遍历。 6.采用邻接表存储实现无向图的广度优先遍历。 7.在主函数中设计一个简单的菜单,分别调试上述算法。 源程序: 主程序的头文件:队列 #include #include #define TRUE 1 #define FALSE 0 #define OK 1 #define ERROR 0 #define OVERFLOW -2 typedef int QElemType; typedef struct QNode{ //队的操作 QElemType data; struct QNode *next; }QNode,*QueuePtr; typedef struct { QueuePtr front; QueuePtr rear; }LinkQueue; void InitQueue(LinkQueue &Q){ //初始化队列 Q.front =Q.rear =(QueuePtr)malloc(sizeof(QNode)); if(!Q.front) exit(OVERFLOW); //存储分配失败 Q.front ->next =NULL; } int EnQueue(LinkQueue &Q,QElemType e) //插入元素e为Q的新的队尾元素{ QueuePtr p; p=(QueuePtr)malloc(sizeof(QNode)); if(!p) exit(OVERFLOW); p->data=e;

数据结构课程实验报告(7)

课程实验报告课程名称:数据结构 专业班级:信安 学号: 姓名: 指导教师: 报告日期:2015.4.5 计算机科学与技术学院

目录 1 课程实验概述 (1) 2 实验一基于顺序结构的线性表实现 2.1 问题描述 (2) 2.2 系统设计 (2) 2.3 系统实现 (7) 2.4 效率分析 (11) 3 实验二基于链式结构的线性表实现 3.1 问题描述 (12) 3.2 系统设计 (12) 3.3 系统实现 (14) 3.4 效率分析 (22) 4 实验三基于二叉链表的二叉树实现 4.1 问题描述 (23) 4.2 系统设计 (23) 4.3 系统实现 (32) 4.4 效率分析 (43) 5 实验总结与评价 (45)

1 课程实验概述 上机实验是对学生的一种全面综合训练,是与课堂听课、自学和练习相辅相成的必不可少的一个教学环节。实验目的着眼于原理与应用的结合,使学生学会如何把书上的知识用语解决实际问题,能够理解和运用常用的数据结构,如线性表、栈、队列、树、图、查找表等,并在此基础上建立相应的算法;通过上机实验使学生了解算法和程序的区别,培养学生把算法转换为程序的能力,提高学生解决实际问题的能力;学会分析研究计算机加工的数据结构的特性,以便为应用涉及的数据选择适当的逻辑结构、存储结构及其相应的算法,并初步掌握算法的时间分析和空间分析的技术。

2 实验一基于顺序结构的线性表实现 2.1 问题描述 编写一个程序,实现顺序表的各种基本运算,并在此基础上完成以下功能: 1) 初始化顺序表; 2) 释放顺序表; 3) 判断顺序表L是否为空; 4) 输出顺序表L的长度; 5) 输出顺序表L的第i个元素; 6) 输出元素e的位置; 7) 输出元素e的前一个元素; 8) 输出元素e的后一个元素; 9) 在第i个元素位置上插入f元素; 10) 删除L的第i个元素; 11) 输出顺序表L; 12) 保存顺序表L的数据。 2.2 系统设计 1、数据类型 顺序表:typedef struct { ElemType * elem; //线性表首地址 int length; //线性表当前长度 int listsize; //线性表最大长度 }SqList; 数据类型:int(可以在头文件中更改数据类型) 输入形式:文件读取、键盘输入 输入范围:-2^15~2^16 2、函数返回状态 判断为真:TRUE 0 判断为假:FALSE -1 函数正确执行:OK -2 函数执行错误:ERROR -3 元素不存在:NOTEXIST -4 内存分配溢出:OVERFLOW -5

相关文档
最新文档