数据挖掘常用知识点

数据挖掘常用知识点
数据挖掘常用知识点

数据挖掘工作总结:

首先确定数据集,数据的读取多种方式:

Matlab:读取时用load test.text

Textread():

D=textread('D:\2012aMATLAB\R2012a\bin\shuju.txt');

[a1,a2,a3,a4]=textread('test1.txt','%s%s%s%s','headerlines',4) 说明:%s可以是其他形式,跟读入的数据类型有关,比如这里也可以用%n,%f等。这里%s的个数和[a1,a2,a3,a4]对应.

C 语言读取时:

使用StreamReader和StreamWriter文件头:using System;using System.Collections.Generic;using System.Text;using System.IO; StreamReader读取文件:StreamReader objReader=new StreamReader(文件路径);string sLine="";ArrayList LineList=new ArrayList();while(sLine!=null){ sLine=objReader.ReadLine();if(sLine!=null&&!sLine.Equals(""))LineList.Add(sLine);

}objReader.Close();return LineList;StreamWriter写文件:FileStream fs=new FileStream(文件路径,FileMode.Create);StreamWriter sw=new StreamWriter(fs);

通过数据集看用哪几种方法!

将这些方法运用的环境是什么?

一元线性回归

function yyxxhg

x=[];

y=[];

plot(x,y,'*')

xlabel('职工工资总额')

ylabel('商品零售总额')

%计算最佳参数

lxx=sum((x-mean(x)).^2);

lxy=sum((x-mean(x)).*(y-mean(y)));

b1=lxy/lxx;

b0=mean(y)-b1*mean(x);

%多项式拟合

p=polyfit(x,y,n)

[p,s]=ployfit(x,y,n)

%多项式回归模型的预测及其置信区间

y=ployval(p,x0);

[Y,Delta]=polyconf(p,x0,s,alpha)

拟合回归界面

function nhhgjm

x=[1,2,3,4,5,6,7,1,2,4,35,6];

y=[2,3,4,6,2,4,3,9,6,8,43,1];

polytool(x,y,3,0.05)

非线性回归:

function fxxhg

%非线性拟合命令

[beta,r,J]=nlinfit(x,y,'model',beta0);

%利用inline定义范数model,方法如下:

fun=inline('f(x)','参变量','x')

%非线性回归预测命令为nlpredic,其调用格式为:

ypred=nlpredci(FUN,inputs,beta,r,J);

一元回归:

首先:

(1)作散点图。

(2)建立直线回归方程。

(3)误差估计与可决系数。

(4)回归方程关系显著性的F检验。

(5)回归关系显著的T检验。

(6)预测。例如:

(7)选择一个算法过程的评分函数:最普遍的使用评分函数是模型预测支出与观测到支出间差异的平方和。局部模式探测方法用于异常探测任务,例如工业生产的故障探测,银行和其他商业的欺诈行为探测。

X=[];

Y=[];

Plot(x,y,’*’)

Xlabel(‘x()’);

Ylabel(‘y()’);

(2)

N=size(x,1);

[p,s]=polyfit(x,y,1);

Y1=polyval(p,x);

Hold on

plot(x,y1);

(3)

TSS=sum((y-mean(y)).^2)

RSS=sum((y1-mean(y)).^2)

ESS=sum((y-y1).^2)

R2=RSS/TSS;

(4)

F=(n-2)*RSS/ESS

F1=finv(0.95,1,n-2)

F2=finv(0.99,1,n-2)

(5)

T=p(2)/sqrt(ESS/(n-2))*sqrt(sum((x-mean(x)).^2))

T1=tinv(0.975,n-2);

T2=tinv(0.995,n-2);

(6)

X1=[]; %测试数据

Yc=polyval(p,x1)

[y,delta]=polyconf(p,x1,s);

I1=[y-delta,y+delta];

%在程序中加入:

Polytool(x,y)

Bar(x,y-y1);

Legend(‘残差’)

H=lillietest(y-y1)%残差正态性检验

多元回归基本步骤:

(1)对问题进行直观分析,选择因变量与解释变量,做出因变量与各解释变量的散点图,决定设定多元线性回归模型的参数个数。

(2)输入因变量与自变量的观测数据(y,x),调用命令为:

[b,bint,r,rint,s]=regress(y,x,alpha)

计算参数的估计。

(3)调用命令rcoplot(r,rint),分析数据的异常点情况。

(4)作显著性检验,若通过,则对模型作预测。

(5)对模型进一步研究,如残差的正态性检验,残差的异方差检验,残差的自相关性检验等。

多元回归建模命令

多元回归建模命令为regeress,其调用格式有一下三种:

b=regress(y,x),

[b,bint,r,rint,stats]=regress(y,x)

[b,bint,r,rint,stats]=regress(y,x,alpha)

第三种方式称为全参数方式。其中输入参数:输入量Y表示模型中因变量的观测值(y1,y2,y3,…yn)的转置;x是一个nx(p+1)的矩阵,其中第一列元全部是数1,其余为x的向量,对于一元线性回归,取p=1即可,alpha为显著水品(默认值为0.05)

输出参数:输出向量b为回归系数估计值,bint为回归系数的(1-alpha)置信区间;输出向量r 表示残差列向量,输出量rint为模型的残差的(1-alpha)的置信区间;输出量stats是用于检验回归模型的统计量,有4个分量值:第一个是R平方,其中R是相关系数;第二个是F统计量值;第三个是与统计量F对应的概率P,当P

残差命令为rcoplot,其调用格式为:

rcoplot(r,rint)

其中,输入参数r,rint 是多元回归建模命令regress输出的结果

例:

%输入原始数据

A=[];

%做散点图

Subplot(1,2,1),plot(A(:,1),A(:,3),’+’)

Xlabel(‘x1(库水位)’)

Ylabel(‘y(耗水率)’)

%建立模型:

[m,n]=size(A);

Y=A(:,3);

X=A(:,1:2);

[b,bint,r,rint,stats]=regress(y,[ones(m,1),x]);

B,bint,stats

%模型改进

Rcoplot(r,rint);

%删除异常点程序并建模

[b1,bint1,r1,rint1,stats1]=regress([y(1:12);y(14:m)],[ones(m-1,1),[x(1:12,:);x(14:m,:)]]); rcoplot(r1,rint1);

%多元线性回归实例:

%输入各影响因素的数据

X0=[];

Y=[]’;

[n,p]=size(x0);

X=[ones(n,1),x0];

[db,dbint,dr,drint,dstats]=regress(y,x);

%回归模型的显著性检验。

TSS=y’*(eye(n)-1/n*ones(n,n))*y;

H=x*inv((x’*x))*x’;

ESS=y’*(eye(n)-H)*Y;

RSS=y’*(H-1/n*ones(n,n))*Y;

MSR=RSS/p;

MSE=ESS/n-p-1;

%F检验

F0=(RSS/P)/(ESS/n-p-1);

Fa=finv(p,n-p-1,0.975);

%t检验

S=MSE*inv(x’*x);

T0=db./sqrt(diag(S));

Ta=tinv(n-p-1,0.975);

Pp=tpdf(T0,n-p-1);

%可决系数检验

R2=RSS/TSS;

优2

良 1.5

轻度污染 1.2

中度污染1

重度污染0.8

严重污染0.7

轻微污染 1.1

中度重污染0.75

重污染0.4

可吸入的颗粒物:6

细颗粒物:5.6

二氧化氮:4.5

一氧化碳:3

可吸入的颗粒物,细颗粒物:5.8二氧化氮,细颗粒物:5

臭氧八小时:4

二氧化硫:3.5

一氧化碳:3

大数据挖掘常用方法

数据挖掘常用的方法 在大数据时代,数据挖掘是最关键的工作。大数据的挖掘是从海量、不完全的、有噪声的、模糊的、随机的大型数据库中发现隐含在其中有价值的、潜在有用的信息和知识的过程,也是一种决策支持过程。其主要基于人工智能,机器学习,模式学习,统计学等。通过对大数据高度自动化地分析,做出归纳性的推理,从中挖掘出潜在的模式,可以帮助企业、商家、用户调整市场政策、减少风险、理性面对市场,并做出正确的决策。目前,在很多领域尤其是在商业领域如银行、电信、电商等,数据挖掘可以解决很多问题,包括市场营销策略制定、背景分析、企业管理危机等。大数据的挖掘常用的方法有分类、回归分析、聚类、关联规则、神经网络方法、Web 数据挖掘等。这些方法从不同的角度对数据进行挖掘。 (1)分类。分类是找出数据库中的一组数据对象的共同特点并按照分类模式将其划分为不同的类,其目的是通过分类模型,将数据库中的数据项映射到摸个给定的类别中。可以应用到涉及到应用分类、趋势预测中,如淘宝商铺将用户在一段时间内的购买情况划分成不同的类,根据情况向用户推荐关联类的商品,从而增加商铺的销售量。 (2)回归分析。回归分析反映了数据库中数据的属性值的特性,通过函数表达数据映射的关系来发现属性值之间的依赖关系。它可以应用到对数据序列的预测及相关关系的研究中去。在市场营销中,回归分析可以被应用到各个方面。如通过对本季度销售的回归分析,对下一季度的销售趋势作出预测并做出针对性的营销改变。

(3)聚类。聚类类似于分类,但与分类的目的不同,是针对数据的相似性和差异性将一组数据分为几个类别。属于同一类别的数据间的相似性很大,但不同类别之间数据的相似性很小,跨类的数据关联性很低。 (4)关联规则。关联规则是隐藏在数据项之间的关联或相互关系,即可以根据一个数据项的出现推导出其他数据项的出现。关联规则的挖掘过程主要包括两个阶段:第一阶段为从海量原始数据中找出所有的高频项目组;第二极端为从这些高频项目组产生关联规则。关联规则挖掘技术已经被广泛应用于金融行业企业中用以预测客户的需求,各银行在自己的ATM 机上通过捆绑客户可能感兴趣的信息供用户了解并获取相应信息来改善自身的营销。 (5)神经网络方法。神经网络作为一种先进的人工智能技术,因其自身自行处理、分布存储和高度容错等特性非常适合处理非线性的以及那些以模糊、不完整、不严密的知识或数据为特征的处理问题,它的这一特点十分适合解决数据挖掘的问题。典型的神经网络模型主要分为三大类:第一类是以用于分类预测和模式识别的前馈式神经网络模型,其主要代表为函数型网络、感知机;第二类是用于联想记忆和优化算法的反馈式神经网络模型,以Hopfield 的离散模型和连续模型为代表。第三类是用于聚类的自组织映射方法,以ART 模型为代表。虽然神经网络有多种模型及算法,但在特定领域的数据挖掘中使用何种模型及算法并没有统一的规则,而且人们很难理解网络的学习及决策过程。 (6)Web数据挖掘。Web数据挖掘是一项综合性技术,指Web 从文档结构和使用的集合C 中发现隐含的模式P,如果将C看做是输入,P 看做是输出,那么Web 挖掘过程就可以看做是从输入到输出的一个映射过程。

数据挖掘试题与答案

一、解答题(满分30分,每小题5分) 1. 怎样理解数据挖掘和知识发现的关系?请详细阐述之 首先从数据源中抽取感兴趣的数据,并把它组织成适合挖掘的数据组织形式;然后,调用相应的算法生成所需的知识;最后对生成的知识模式进行评估,并把有价值的知识集成到企业的智能系统中。 知识发现是一个指出数据中有效、崭新、潜在的、有价值的、一个不可忽视的流程,其最终目标是掌握数据的模式。流程步骤:先理解要应用的领域、熟悉相关知识,接着建立目标数据集,并专注所选择的数据子集;再作数据预处理,剔除错误或不一致的数据;然后进行数据简化与转换工作;再通过数据挖掘的技术程序成为模式、做回归分析或找出分类模型;最后经过解释和评价成为有用的信息。 2. 时间序列数据挖掘的方法有哪些,请详细阐述之 时间序列数据挖掘的方法有: 1)、确定性时间序列预测方法:对于平稳变化特征的时间序列来说,假设未来行为与现在的行为有关,利用属性现在的值预测将来的值是可行的。例如,要预测下周某种商品的销售额,可以用最近一段时间的实际销售量来建立预测模型。 2)、随机时间序列预测方法:通过建立随机模型,对随机时间序列进行分析,可以预测未来值。若时间序列是平稳的,可以用自回归(Auto Regressive,简称AR)模型、移动回归模型(Moving Average,简称MA)或自回归移动平均(Auto Regressive Moving Average,简称ARMA)模型进行分析预测。 3)、其他方法:可用于时间序列预测的方法很多,其中比较成功的是神经网络。由于大量的时间序列是非平稳的,因此特征参数和数据分布随着时间的推移而变化。假如通过对某段历史数据的训练,通过数学统计模型估计神经网络的各层权重参数初值,就可能建立神经网络预测模型,用于时间序列的预测。

数据挖掘的方法

数据挖掘的方法有哪些? 时间:2012-11-1111:24来源:百度空间作者:温馨小筑围观:1436次 利用数据挖掘进行数据分析常用的方法主要有分类、回归分析、聚类、关联规则、特征、变化和偏差分析、Web页挖掘等,它们分别从不同的角度对数据进行挖掘。 1、分类 分类是找出数据库中一组数据对象的共同特点并按照分类模式将其划分为不同的类,其目的是通过分类模型,将数据库中的数据项映射到某个给定的类别。它可以应用到客户的分类、客户的属性和特征分析、客户满意度分析、客户的购买趋势预测等,如一个汽车零售商将客户按照对汽车的喜好划分成不同的类,这样营销人员就可以将新型汽车的广告手册直接邮寄到有这种喜好的客户手中,从而大大增加了商业机会。 2、回归分析 回归分析方法反映的是事务数据库中属性值在时间上的特征,产生一个将数据项映射到一个实值预测变量的函数,发现变量或属性间的依赖关系,其主要研究问题包括数据序列的趋势特征、数据序列的预测以及数据间的相关关系等。它可以应用到市场营销的各个方面,如客户寻求、保持和预防客户流失活动、产品生命周期分析、销售趋势预测及有针对性的促销活动等。 3、聚类 聚类分析是把一组数据按照相似性和差异性分为几个类别,其目的是使得属于同一类别的数据间的相似性尽可能大,不同类别中的数据间的相似性尽可能小。它可以应用到客户群体的分类、客户背景分析、客户购买趋势预测、市场的细分等。 4、关联规则 关联规则是描述数据库中数据项之间所存在的关系的规则,即根据一个事务中某些项的出现可导出另一些项在同一事务中也出现,即隐藏在数据间的关联或相互关系。在客户关系管理中,通过对企业的客户数据库里的大量数据进行挖掘,可以从大量的记录中发现有趣的关联关系,找出影响市场营销效果的关键因素,为产品定位、定价与定制客户群,客户寻求、细分与保持,市场营销与推销,营销风险评估和诈骗预测等决策支持提供参考依据。 5、特征 特征分析是从数据库中的一组数据中提取出关于这些数据的特征式,这些特征式表达了该数据集的总体特征。如营销人员通过对客户流失因素的特征提取,可以得到导致客户流失的一系列原因和主要特征,利用这些特征可以有效地预防客户的流失。

数据挖掘_概念与技术(第三版)部分习题答案汇总

1.4 数据仓库和数据库有何不同?有哪些相似之处? 答:区别:数据仓库是面向主题的,集成的,不易更改且随时间变化的数据集合,用来支持管理人员的决策,数据库由一组内部相关的数据和一组管理和存取数据的软件程序组成,是面向操作型的数据库,是组成数据仓库的源数据。它用表组织数据,采用ER数据模型。 相似:它们都为数据挖掘提供了源数据,都是数据的组合。 1.3 定义下列数据挖掘功能:特征化、区分、关联和相关分析、预测聚类和演变分析。使用你熟悉的现实生活的数据库,给出每种数据挖掘功能的例子。 答:特征化是一个目标类数据的一般特性或特性的汇总。例如,学生的特征可被提出,形成所有大学的计算机科学专业一年级学生的轮廓,这些特征包括作为一种高的年级平均成绩(GPA:Grade point aversge)的信息, 还有所修的课程的最大数量。 区分是将目标类数据对象的一般特性与一个或多个对比类对象的一般特性进行比较。例如,具有高GPA 的学生的一般特性可被用来与具有低GPA 的一般特性比较。最终的描述可能是学生的一个一般可比较的轮廓,就像具有高GPA 的学生的75%是四年级计算机科学专业的学生,而具有低GPA 的学生的65%不是。 关联是指发现关联规则,这些规则表示一起频繁发生在给定数据集的特征值的条件。例如,一个数据挖掘系统可能发现的关联规则为:major(X, “computing science”) ? owns(X, “personal computer”) [support=12%, confidence=98%] 其中,X 是一个表示学生的变量。这个规则指出正在学习的学生,12% (支持度)主修计算机科学并且拥有一台个人计算机。这个组一个学生拥有一台个人电脑的概率是98%(置信度,或确定度)。 分类与预测不同,因为前者的作用是构造一系列能描述和区分数据类型或概念的模型(或功能),而后者是建立一个模型去预测缺失的或无效的、并且通常是数字的数据值。它们的相似性是他们都是预测的工具: 分类被用作预测目标数据的类的标签,而预测典型的应用是预测缺失的数字型数据的值。 聚类分析的数据对象不考虑已知的类标号。对象根据最大花蕾内部的相似性、最小化类之间的相似性的原则进行聚类或分组。形成的每一簇可以被看作一个对象类。聚类也便于分类法组织形式,将观测组织成类分 层结构,把类似的事件组织在一起。 数据演变分析描述和模型化随时间变化的对象的规律或趋势,尽管这可能包括时间相关数据的特征化、区分、关联和相关分析、分类、或预测,这种分析的明确特征包括时间序列数据分析、序列或周期模式匹配、和基于相似性的数据分析 2.3 假设给定的数据集的值已经分组为区间。区间和对应的频率如下。――――――――――――――――――――――――――――――――――――― 年龄频率――――――――――――――――――――――――――――――――――――― 1~5 200 5~15 450 15~20 300 20~50 1500 50~80 700 80~110 44 ―――――――――――――――――――――――――――――――――――――计算数据的近似中位数值。 解答:先判定中位数区间:N=200+450+300+1500+700+44=3194;N/2=1597 ∵ 200+450+300=950<1597<2450=950+1500; ∴ 20~50 对应中位数区间。

《大数据时代下的数据挖掘》试题和答案与解析

《海量数据挖掘技术及工程实践》题目 一、单选题(共80题) 1)( D )的目的缩小数据的取值范围,使其更适合于数据挖掘算法的需要,并且能够得到 和原始数据相同的分析结果。 A.数据清洗 B.数据集成 C.数据变换 D.数据归约 2)某超市研究销售纪录数据后发现,买啤酒的人很大概率也会购买尿布,这种属于数据挖 掘的哪类问题?(A) A. 关联规则发现 B. 聚类 C. 分类 D. 自然语言处理 3)以下两种描述分别对应哪两种对分类算法的评价标准? (A) (a)警察抓小偷,描述警察抓的人中有多少个是小偷的标准。 (b)描述有多少比例的小偷给警察抓了的标准。 A. Precision,Recall B. Recall,Precision A. Precision,ROC D. Recall,ROC 4)将原始数据进行集成、变换、维度规约、数值规约是在以下哪个步骤的任务?(C) A. 频繁模式挖掘 B. 分类和预测 C. 数据预处理 D. 数据流挖掘 5)当不知道数据所带标签时,可以使用哪种技术促使带同类标签的数据与带其他标签的数 据相分离?(B) A. 分类 B. 聚类 C. 关联分析 D. 隐马尔可夫链 6)建立一个模型,通过这个模型根据已知的变量值来预测其他某个变量值属于数据挖掘的 哪一类任务?(C) A. 根据内容检索 B. 建模描述 C. 预测建模 D. 寻找模式和规则 7)下面哪种不属于数据预处理的方法? (D) A.变量代换 B.离散化

C.聚集 D.估计遗漏值 8)假设12个销售价格记录组已经排序如下:5, 10, 11, 13, 15, 35, 50, 55, 72, 92, 204, 215 使用如下每种方法将它们划分成四个箱。等频(等深)划分时,15在第几个箱子内? (B) A.第一个 B.第二个 C.第三个 D.第四个 9)下面哪个不属于数据的属性类型:(D) A.标称 B.序数 C.区间 D.相异 10)只有非零值才重要的二元属性被称作:( C ) A.计数属性 B.离散属性 C.非对称的二元属性 D.对称属性 11)以下哪种方法不属于特征选择的标准方法: (D) A.嵌入 B.过滤 C.包装 D.抽样 12)下面不属于创建新属性的相关方法的是: (B) A.特征提取 B.特征修改 C.映射数据到新的空间 D.特征构造 13)下面哪个属于映射数据到新的空间的方法? (A) A.傅立叶变换 B.特征加权 C.渐进抽样 D.维归约 14)假设属性income的最大最小值分别是12000元和98000元。利用最大最小规范化的方 法将属性的值映射到0至1的范围内。对属性income的73600元将被转化为:(D) A.0.821 B.1.224 C.1.458 D.0.716 15)一所大学内的各年纪人数分别为:一年级200人,二年级160人,三年级130人,四年 级110人。则年级属性的众数是: (A) A.一年级 B.二年级 C.三年级 D.四年级

数据挖掘复习章节知识点整理

数据挖掘:是从大量数据中发现有趣(非平凡的、隐含的、先前未知、潜在有用)模式,这些数据可以存放在数据库,数据仓库或其他信息存储中。 挖掘流程: 1.学习应用域 2.目标数据创建集 3.数据清洗和预处理 4.数据规约和转换 5.选择数据挖掘函数(总结、分类、回归、关联、分类) 6.选择挖掘算法 7.找寻兴趣度模式 8.模式评估和知识展示 9.使用挖掘的知识 概念/类描述:一种数据泛化形式,用汇总的、简洁的和精确的方法描述各个类和概念,通过(1)数据特征化:目标类数据的一般特性或特征的汇总; (2)数据区分:将目标类数据的一般特性与一个或多个可比较类进行比较; (3)数据特征化和比较来得到。 关联分析:发现关联规则,这些规则展示属性-值频繁地在给定数据集中一起出现的条件,通常要满足最小支持度阈值和最小置信度阈值。 分类:找出能够描述和区分数据类或概念的模型,以便能够使用模型预测类标号未知的对象类,导出的模型是基于训练集的分析。导出模型的算法:决策树、神经网络、贝叶斯、(遗传、粗糙集、模糊集)。 预测:建立连续值函数模型,预测空缺的或不知道的数值数据集。 孤立点:与数据的一般行为或模型不一致的数据对象。 聚类:分析数据对象,而不考虑已知的类标记。训练数据中不提供类标记,对象根据最大化类内的相似性和最小化类间的原则进行聚类或分组,从而产生类标号。 第二章数据仓库 数据仓库是一个面向主题的、集成的、时变的、非易失的数据集合,支持管理部门的决策过程。从一个或多个数据源收集信息,存放在一个一致的模式下,并且通常驻留在单个站点。数据仓库通过数据清理、变换、继承、装入和定期刷新过程来构造。面向主题:排除无用数据,提供特定主题的简明视图。集成的:多个异构数据源。时变的:从历史角度提供信息,隐含时间信息。非易失的:和操作数据的分离,只提供初始装入和访问。 联机事务处理OLTP:主要任务是执行联机事务和查询处理。 联系分析处理OLAP:数据仓库系统在数据分析和决策方面为用户或‘知识工人’提供服务。这种系统可以用不同的格式和组织提供数据。OLAP是一种分析技术,具有汇总、合并和聚集功能,以及从不同的角度观察信息的能力。

大数据时代的数据挖掘

大数据时代的数据挖掘 大数据是2012的时髦词汇,正受到越来越多人的关注和谈论。大数据之所以受到人们的关注和谈论,是因为隐藏在大数据后面超千亿美元的市场机会。 大数据时代,数据挖掘是最关键的工作。以下内容供个人学习用,感兴趣的朋友可以看一下。 智库百科是这样描述数据挖掘的“数据挖掘又称数据库中的知识发现,是目前人工智能和数据库领域研究的热点问题,所谓数据挖掘是指从数据库的大量数据中揭示出隐含的、先前未知的并有潜在价值的信息的非平凡过程。数据挖掘是一种决策支持过程,它主要基于人工智能、机器学习、模式识别、统计学、数据库、可视化技术等,高度自动化地分析企业的数据,做出归纳性的推理,从中挖掘出潜在的模式,帮助决策者调整市场策略,减少风险,做出正确的决策。 数据挖掘的定义 技术上的定义及含义 数据挖掘(Data Mining )就是从大量的、不完全的、有噪声的、模糊的、随机的实际应用数据中,提取隐含在其中的、人们事先不知道的、但又是潜在有用的信息和知识的过程。这个定义包括好几层含义:数据源必须是真实的、大量的、含噪声的;发现的是用户感兴趣的知识;发现的知识要可接受、可理解、可运用;并不要求发现放之四海皆准的知识,仅支持特定的发现问题。 与数据挖掘相近的同义词有数据融合、人工智能、商务智能、模式识别、机器学习、知识发现、数据分析和决策支持等。 ----何为知识从广义上理解,数据、信息也是知识的表现形式,但是人们更把概念、规则、模式、规律和约束等看作知识。人们把数据看作是形成知识的源泉,好像从矿石中采矿或淘金一样。原始数据可以是结构化的,如关系数据库中的数据;也可以是半结构化的,如文本、图形和图像数据;甚至是分布在网络上的异构型数据。发现知识的方法可以是数学的,也可以是非数学的;可以是演绎的,也可以是归纳的。发现的知识可以被用于信息管理,查询优化,决策支持和过程控制等,还可以用于数据自身的维护。因此,数据挖掘是一门交叉学科,它把人们对数据的应用从低层次的简单查询,提升到从数据中挖掘知识,提供决策支持。在这种需求牵引下,汇聚了不同领域的研究者,尤其是数据库技术、人工智能技术、数理统计、可视化技术、并行计算等方面的学者和工程技术人员,投身到数据挖掘这一新兴的研究领域,形成新的技术热点。 这里所说的知识发现,不是要求发现放之四海而皆准的真理,也不是要去发现崭新的自然科学定理和纯数学公式,更不是什么机器定理证明。实际上,所有发现的知识都是相对的,是有特定前提和约束条件,面向特定领域的,同时还要能够易于被用户理解。最好能用自然语言表达所发现的结果。n x _s u x i a n g n i n g

《数据挖掘》试题与标准答案

一、解答题(满分30分,每小题5分) 1. 怎样理解数据挖掘和知识发现的关系?请详细阐述之 首先从数据源中抽取感兴趣的数据,并把它组织成适合挖掘的数据组织形式;然后,调用相应的算法生成所需的知识;最后对生成的知识模式进行评估,并把有价值的知识集成到企业的智能系统中。 知识发现是一个指出数据中有效、崭新、潜在的、有价值的、一个不可忽视的流程,其最终目标是掌握数据的模式。流程步骤:先理解要应用的领域、熟悉相关知识,接着建立目标数据集,并专注所选择的数据子集;再作数据预处理,剔除错误或不一致的数据;然后进行数据简化与转换工作;再通过数据挖掘的技术程序成为模式、做回归分析或找出分类模型;最后经过解释和评价成为有用的信息。 2.时间序列数据挖掘的方法有哪些,请详细阐述之 时间序列数据挖掘的方法有: 1)、确定性时间序列预测方法:对于平稳变化特征的时间序列来说,假设未来行为与现在的行为有关,利用属性现在的值预测将来的值是可行的。例如,要预测下周某种商品的销售额,可以用最近一段时间的实际销售量来建立预测模型。 2)、随机时间序列预测方法:通过建立随机模型,对随机时间序列进行分析,可以预测未来值。若时间序列是平稳的,可以用自回归(Auto Regressive,简称AR)模型、移动回归模型(Moving Average,简称MA)或自回归移动平均(Auto Regressive Moving Average,简称ARMA)模型进行分析预测。 3)、其他方法:可用于时间序列预测的方法很多,其中比较成功的是神经网络。由于大量的时间序列是非平稳的,因此特征参数和数据分布随着时间的推移而变化。假如通过对某段历史数据的训练,通过数学统计模型估计神经网络的各层权重参数初值,就可能建立神经网络预测模型,用于时间序列的预测。

什么叫数据挖掘_数据挖掘技术解析

什么叫数据挖掘_数据挖掘技术解析 数据挖掘(data mining)是指从大量的资料中自动搜索隐藏于其中的有着特殊关联性的信息的过程。在全世界的计算机存储中,存在未使用的海量数据并且它们还在快速增长,这些数据就像待挖掘的金矿,而进行数据分析的科学家、工程师、分析员的数量变化一直相对较小,这种差距称为数据挖掘产生的主要原因。数据挖掘是一个多学科交叉领域,涉及神经网络、遗传算法、回归、统计分析、机器学习、聚类分析、特异群分析等,开发挖掘大型海量和多维数据集的算法和系统,开发合适的隐私和安全模式,提高数据系统的使用简便性。 数据挖掘与传统意义上的统计学不同。统计学推断是假设驱动的,即形成假设并在数据基础上验证他;数据挖掘是数据驱动的,即自动地从数据中提取模式和假设。数据挖掘的目标是提取可以容易转换成逻辑规则或可视化表示的定性模型,与传统的统计学相比,更加以人为本。 数据挖掘技术简述数据挖掘的技术有很多种,按照不同的分类有不同的分类法。下面着重讨论一下数据挖掘中常用的一些技术:统计技术,关联规则,基于历史的分析,遗传算法,聚集检测,连接分析,决策树,神经网络,粗糙集,模糊集,回归分析,差别分析,概念描述等十三种常用的数据挖掘的技术。 1、统计技术数据挖掘涉及的科学领域和技术很多,如统计技术。统计技术对数据集进行挖掘的主要思想是:统计的方法对给定的数据集合假设了一个分布或者概率模型(例如一个正态分布)然后根据模型采用相应的方法来进行挖掘。 2、关联规则数据关联是数据库中存在的一类重要的可被发现的知识。若两个或多个变量的取值之I司存在某种规律性,就称为关联。关联可分为简单关联、时序关联、因果关联。关联分析的目的是找出数据库中隐藏的关联网。有时并不知道数据库中数据的关联函数,即使知道也是不确定的,因此关联分析生成的规则带有可信度。 3、基于历史的MBR(Memory-based Reasoning)分析先根据经验知识寻找相似的情况,

数据挖掘技术

第6卷(A版) 第8期2001年8月 中国图象图形学报 Jou rnal of I m age and Grap h ics V o l.6(A),N o.8 A ug.2001 基金项目:国家自然科学基金项目(79970092)收稿日期:2000206222;改回日期:2000212214数据挖掘技术吉根林1),2)孙志挥2) 1)(南京师范大学计算机系,南京 210097) 2)(东南大学计算机系,南京 210096) 摘 要 数据挖掘技术是当前数据库和人工智能领域研究的热点课题,为了使人们对该领域现状有个概略了解,在消化大量文献资料的基础上,首先对数据挖掘技术的国内外总体研究情况进行了概略介绍,包括数据挖掘技术的产生背景、应用领域、分类及主要挖掘技术;结合作者的研究工作,对关联规则的挖掘、分类规则的挖掘、离群数据的挖掘及聚类分析作了较详细的论述;介绍了关联规则挖掘的主要研究成果,同时指出了关联规则衡量标准的不足及其改进方法,提出了分类模式的准确度评估方法;最后,描述了数据挖掘技术在科学研究、金融投资、市场营销、保险业、制造业及通信网络管理等行业的应用情况,并对数据挖掘技术的应用前景作了展望. 关键词 数据挖掘 决策支持 关联规则 分类规则 KDD 中图法分类号:T P391 T P182 文献标识码:A 文章编号:100628961(2001)0820715207 Survey of the Da ta M i n i ng Techn iques J I Gen2lin1,2),SU N Zh i2hu i2) 1)(D ep art m ent of co mp u ter,N anj ing N or m al U niversity,N anj ing210097) 2)(D ep art m ent of co mp u ter,S ou theast U niversity,N anj ing210096) Abstract D ata m in ing is an em erging research field in database and artificial in telligence.In th is paper,the data m in ing techn iques are in troduced b roadly including its p roducing background,its app licati on and its classificati on. T he p rinci pal techn iques u sed in the data m in ing are su rveyed also,w h ich include ru le inducti on,decisi on tree, artificial neu ral netw o rk,genetic algo rithm,fuzzy techn ique,rough set and visualizati on techn ique.A ssociati on ru le m in ing,classificati on ru le m in ing,ou tlier m in ing and clu stering m ethod are discu ssed in detail.T he research ach ievem en ts in associati on ru le,the sho rtcom ings of associati on ru le m easu re standards and its i m p rovem en t,the evaluati on m ethods of classificati on ru les are p resen ted.Ex isting ou tlier m in ing app roaches are in troduced w h ich include ou tlier m in ing app roach based on statistics,distance2based ou tler m in ing app roach,data detecti on m ethod fo r deviati on,ru le2based ou tlier m in ing app roach and m u lti2strategy m ethod.F inally,the app licati on s of data m in ing to science research,financial investm en t,m arket,in su rance,m anufactu ring indu stry and comm un icati on netw o rk m anagem en t are in troduced.T he app licati on p ro spects of data m in ing are described. Keywords D ata m in ing,D ecisi on suppo rt,A ssociati on ru le,C lassificati on ru le,KDD 0 引 言 数据挖掘(D ata M in ing),也称数据库中的知识发现(KDD:Know ledge D iscovery in D atabase),是指从大型数据库或数据仓库中提取人们感兴趣的知识,这些知识是隐含的、事先未知的潜在有用信息,提取的知识一般可表示为概念(Concep ts)、规则(R u les)、规律(R egu larities)、模式(Pattern s)等形式[1].大家知道,如今已可以用数据库管理系统来存储数据,还可用机器学习的方法来分析数据和挖掘大量数据背后的知识,而这两者的结合就促成了数

(完整word版)数据挖掘概念与技术原书第3版(范明、孟小峰绎)第一章课后习题

1.9习题 1.1 什么是数据挖掘?在你的回答中,强调以下问题: (a)它是又一种广告宣传吗? (b)它是一种从数据库、统计学、机器学习和模式识别发展而来的技术的简单转换或应用吗? (c)我们提出了一种观点,说数据挖掘是数据库技术进化的结果。你认为数据挖掘也是机器学习研究进化的结果吗?你能基于该学科的发展历史提出这一观点吗?针对统计学和模式识别领域,做相同的事。 (d)当把数据挖掘看做知识发现过程时,描述数据挖掘所涉及的步骤。 答:简单地说,数据挖掘其实就是从大量的数据中发现有用的信息,它是从大量数据中挖掘有趣模式和知识的过程。数据挖掘不是一种广告宣传,而是身处在信息时代数据如此庞大的今天,我们对由海量的数据转化为有用信息的迫切需要,所以它是信息技术自然进化的结果,而不是一种广告宣传。 数据挖掘也不是一种从数据库、统计学、机器学习和模式识别发展而来的技术的简单转换或应用,它涉及到了很多领域的技术,比如统计学、机器学习、模式识别、数据库和数据仓库、信息检索、可视化、神经网络、高性能计算、算法以及许多应用领域的大量技术。 数据挖掘起始于20世纪下半叶,是在当时多个学科发展的基础上发展起来的。随着数据库技术的发展应用,数据的积累不断膨胀,导致简单的查询和统计已经无法满足企业的商业需求,所以急需一种新型的技术去获取有用的信息,当时计算机领域的人工智能也取得了巨大进展,进入了机器学习的阶段,人们就将两者结合起来,用数据库管理系统存储数据,用计算机分析数据,这两者的结合就促就以这一门新兴的学科,所以数据挖掘不是机器学习研究进化的结果,而是结合了机器学。 数据挖掘的步骤包括:(1)数据收集;(2)数据清洗、脱敏;(3)数据存储;(4)数据分析;(5)数据可视化。 1.2数据仓库与数据库有何不同?他们有哪相似之处? 答:数据库是按照数据结构来组织、存储和管理数据的仓库,它是以一定方式储存在一起、能为多个用户共享、具有尽可能小的冗余度的特点、是与应用程序彼此独立的数据集合。数据仓库,是为企业所有级别的决策制定过程,提供所有类型数据支持的战略集合。它是单个数据存储,出于分析性报告和决策支持目的而创建。 不同处:(1)数据库是面向事务的设计,数据仓库是面向主题设计的。 (2)数据库一般存储在线交易数据,数据仓库存储的一般是历史数据。 (3)数据库设计是尽量避免冗余,数据仓库在设计是有意引入冗余。 (4)数据库是为捕获数据而设计,数据仓库是为分析数据而设计。 相似处:两者都是数据的集合。 1.3定义下列数据挖掘功能:特征化、区分、关联和相关性分析、分类、回归、聚类、离群点分析。使用你熟悉的现实生活中的数据库,给出每种数据挖掘功能的例子答:特征化:目标类数据的一般特性或特征的汇总。例如:汇总某年级学生的基本特征,结果可能会高分段成绩信息,是否挂科等信息。 区分:将目标类数据对象的一般特性与一个或多个对比类对象的一般特性进行比较。 例如:购买化妆品的顾客70%在20~40岁之间,受过大学教育,而不经常购买化妆品的

大数据常用的算法

大数据常用的算法(分类、回归分析、聚类、关联规则) 在大数据时代,数据挖掘是最关键的工作。大数据的挖掘是从海量、不完全的、有噪声的、模糊的、随机的大型数据库中发现隐含在其中有价值的、潜在有用的信息和知识的过程,也是一种决策支持过程。其主要基于人工智能,机器学习,模式学习,统计学等。通过对大数据高度自动化地分析,做出归纳性的推理,从中挖掘出潜在的模式,可以帮助企业、商家、用户调整市场政策、减少风险、理性面对市场,并做出正确的决策。目前,在很多领域尤其是在商业领域如银行、电信、电商等,数据挖掘可以解决很多问题,包括市场营销策略制定、背景分析、企业管理危机等。大数据的挖掘常用的方法有分类、回归分析、聚类、关联规则、神经网络方法、Web 数据挖掘等。这些方法从不同的角度对数据进行挖掘。 (1)分类。分类是找出数据库中的一组数据对象的共同特点并按照分类模式将其划分为不同的类,其目的是通过分类模型,将数据库中的数据项映射到摸个给定的类别中。可以应用到涉及到应用分类、趋势预测中,如淘宝商铺将用户在一段时间内的购买情况划分成不同的类,根据情况向用户推荐关联类的商品,从而增加商铺的销售量。 (2)回归分析。回归分析反映了数据库中数据的属性值的特性,通过函数表达数据映射的关系来发现属性值之间的依赖关系。它可以应用到对数据序列的预测及相关关系的研究中去。在市场营销中,回归分析可以被应用到各个方面。如通过对本季度销售的回归分析,对下一季度的销售趋势作出预测并做出针对性的营销改变。 (3)聚类。聚类类似于分类,但与分类的目的不同,是针对数据的相似性和差异性将一组数据分为几个类别。属于同一类别的数据间的相似性很大,但不同类别之间数据的相似性很小,跨类的数据关联性很低。 (4)关联规则。关联规则是隐藏在数据项之间的关联或相互关系,即可以根据一个数据项的出现推导出其他数据项的出现。关联规则的挖掘过程主要包括两个阶段:第一阶段为从海量原始数据中找出所有的高频项目组;第二极端为从这些高频项目组产生关联规则。关联规则挖掘技术已经被广泛应用于金融行业企业中用以预测客户的需求,各银行在自己的ATM 机上通过捆绑客户可能感兴趣的信息供用户了解并获取相应信息来改善自身的营销。 (5)神经网络方法。神经网络作为一种先进的人工智能技术,因其自身自行处理、分布存储和高度容错等特性非常适合处理非线性的以及那些以模糊、不完整、不严密的知识或数据为特征的处理问题,它的这一特点十分适合解决数据挖掘的问题。典型的神经网络模型主要分为三大类:第一类是以用于分类预测和模式识别的前馈式神经网络模型,其主要代表为函数型网络、感知机;第二类是用于联想记忆和优化算法的反馈式神经网络模型,以Hopfield 的离散模型和连续模型为代表。第三类是用于聚类的自组织映射方法,以ART 模型为代表。虽然神经网络有多种模型及算法,但在特定领域的数据挖掘中使用何种模型及算法并没有统一的规则,而且人们很难理解网络的学习及决策过程。 (6)Web数据挖掘。Web数据挖掘是一项综合性技术,指Web 从文档结构和使用的集合C 中发现隐含的模式P,如果将C看做是输入,P 看做是输出,那么Web 挖掘过程就可以看做是从输入到输出的一个映射过程。 当前越来越多的Web 数据都是以数据流的形式出现的,因此对Web 数据流挖掘就具有很重要的意义。目前常用的Web数据挖掘算法有:PageRank算法,HITS算法以及LOGSOM 算法。这三种算法提到的用户都是笼统的用户,并没有区分用户的个体。目前Web 数据挖掘面临着一些问题,包括:用户的分类问题、网站内容时效性问题,用户在页面停留时间问题,页面的链入与链出数问题等。在Web 技术高速发展的今天,

数据挖掘与数据仓库知识点总结

1、数据仓库定义:数据仓库是一种新的数据处理体系结构,它与组织机构的操作数据库分别维护,允许将各种应用系统一起,为统一的历史数据分析提供坚实的平台,对信息处理提供支持。数据仓库是面向主题的、集成的、相对稳定的、反映历史变化的数据集合,为企业决策支持系统提供所需的集成信息。设计和构造步骤:1)选取待建模的商务处理;2)选取商务处理的粒变;3)选取用于每个事实表记录的维;4)选取事实表中每条记录的变量 系统结构:(1)底层是仓库数据服务器,总是关系数据库系统。(2)中间层是OLAP服务器,有ROLAP 和MOLAP,它将对多维数据的操作映射为标准的关系操作(3)顶层是前端客户端,它包括查询和报表工具、分析工具和数据挖掘工具 2、数据仓库的多维数据模型:(1)星形模式:在此模型下,数据仓库包括一个大的包含大批数据并且不含冗余的中心表,一组小的附属表,维表围绕中心事实表显示的射线上。特征:星型模型四周的实体是维度实体,其作用是限制和过滤用户的查询结果,缩小访问围。每个维表都有自己的属性,维表和事实表通过关键字相关联。【例子:sales数据仓库的星形模式,此模式包含一个中心事实表sales,它包含四个维time, item, branch和location。 (2)雪花型模式:它是星形模式的变种,其中某些维表是规化的,因而把数据进一步分解到附加的表中。特征:雪花模型通过最大限度地减少数据存储量和联合较小的维表来改善查询性能,增加了用户必须处理的表数量和某些查询的复杂性,但同时提高了处理的灵活性,可以回答更多的商业问题,特别适合系统的逐步建设要求。【例子同上,只不过把其中的某些维给扩展了。 (3)事实星座形:复杂的应用可能需要多个事实表共享维表,这种模式可看作星形模式的汇集。 特征:事实星座模型能对多个相关的主题建模。例子:有两个事实表sales和shipping,它们可以共享维表time, item和location。 3、OLAP:即联机分析处理,是在OLTP基础上发展起来的、以数据仓库基础上的、面向高层管理人员和专业分析人员、为企业决策支持服务。特点:1.实时性要求不是很高。2.数据量大。3.因为重点在于决策支持,所以查询一般是动态的,也就是说允许用户随机提出查询要求。 OLAP操作:上卷:通过沿一个维的概念分层向上攀登,或者通过维归约,对数据立方体进行类聚。下钻:是上卷的逆操作,它由不太详细的数据得到更详细的数据,下钻可以通过沿维的概念分层向下或引入附加的维来实现。切片:对给定方体的一个维进行进行选择,导致一个子立方体。切块:通过对两个或多个维执行选择,定义子立方体。转轴:是一种可视化操作,它转动数据的视角,提供数据的替代表示。 OLTP:即联机事务处理,是以传统数据库为基础、面向操作人员和低层管理人员、对基本数据进行查询和增、删、改等的日常事务处理。OLTP的特点有:a.实时性要求高;b.数据量不是很大。C.交易一般是确定的,是对确定性数据进行存取。d.并发性要求高且严格的要求事务的完整性,安全性。 OLTP和OLAP的区别:1)用户和系统的面向性:OLTP面向顾客,而OLAP面向市场;2)数据容:OLTP 系统管理当前数据,而OLAP管理历史的数据;3)数据库设计:OLTP系统采用实体-联系(ER)模型和面向应用的数据库设计,而OLAP系统通常采用星形和雪花模型;4)视图:OLTP系统主要关注一个企业或部门部的当前数据,而OLAP 系统主要关注汇总的统一的数据;5)访问模式:OLTP访问主要有短的原子事务组成,而OLAP系统的访问大部分是只读操作,尽管许多可能是复杂的查询。 7、PageRank算法原理:1)在初始阶段:构建Web图,每个页面初始设置相同的PageRank 值,通过迭代计算,会得到每个页面所获得的最终PageRank值。2)在一轮中更新页面 PageRank得分的计算方法:每个页面将其当前的PageRank值平均分配到本页面包含的出 链上。每个页面将所有指向本页面的入链所传入的权值求和,即可得到新的PageRank得分。 优点:是一个与查询无关的静态算法,所有网页的PageRank值通过离线计算获得;有效减 少在线查询时的计算量,极大降低了查询响应时间。 缺点:1)人们的查询具有主题特征,PageRank忽略了主题相关性,导致结果的相关性和主 题性降低。2)旧的页面等级会比新页面高。因为即使是非常好的新页面也不会有很多上游, 除非它是某个站点的子站点。

数据挖掘复习知识点整理超详细

必考知识点: 信息增益算法/ ID3决策树(计算) (详细见教材) 使用朴素贝叶斯分类预测类标号(计算) FP-TREE(问答) (详细见教材) 数据仓库的设计(详见第二章)(问答) (见PPT) 数值规约Equi-depth、equi-width、v-optimal、maxdiff(问答) (详细见教材) BUC (这个也要考,但不记得怎么考的了) 后向传播神经网络(名词解释) K-平均,K-中心点,DBSCAN 解析特征化(这个也要考) 总论 数据挖掘:是从大量数据中发现有趣(非平凡的、隐含的、先前未知、潜在有用)模式,这些数据可以存放在数据库,数据仓库或其他信息存储中。 挖掘流程: (1)学习应用域(2)目标数据创建集(3)数据清洗和预处理(4)数据规约和转换(5)选择数据挖掘函数(总结、分类、回归、关联、分类)(6)选择挖掘算法(7)找寻兴趣度模式(8)模式评估和知识展示(9)使用挖掘的知识 概念/类描述:一种数据泛化形式,用汇总的、简洁的和精确的方法描述各个类和概念,通过(1)数据特征化:目标类数据的一般特性或特征的汇总;(2)数据区分:将目标类数据的一般特性与一个或多个可比较类进行比较;(3)数据特征化和比较来得到。 关联分析:发现关联规则,这些规则展示属性-值频繁地在给定数据集中一起出现的条件,通常要满足最小支持度阈值和最小置信度阈值。 分类:找出能够描述和区分数据类或概念的模型,以便能够使用模型预测类标号未知的对象类,导出的模型是基于训练集的分析。导出模型的算法:决策树、神经网络、贝叶斯、(遗传、粗糙集、模糊集)。 预测:建立连续值函数模型,预测空缺的或不知道的数值数据集。 孤立点:与数据的一般行为或模型不一致的数据对象。 聚类:分析数据对象,而不考虑已知的类标记。训练数据中不提供类标记,对象根据最大化类内的相似性和最小化类间的原则进行聚类或分组,从而产生类标号。 第二章数据仓库 数据仓库是一个面向主题的、集成的、时变的、非易失的数据集合,支持管理部门的决策过程。从一个或多个数据源收集信息,存放在一个一致的模式下,并且通常驻留在单个站点。数据仓库通过数据清理、变换、继承、装入和定期刷新过程来构造。面向主题:排除无用数据,提供特定主题的简明视图。集成的:多个异构数据源。时变的:从历史角度提供信息,隐含时间信息。非易失的:和操作数据的分离,只提供初始装入和访问。 联机事务处理OLTP:主要任务是执行联机事务和查询处理。 联系分析处理OLAP:数据仓库系统在数据分析和决策方面为用户或‘知识工人’提供服务。这种系统可以用不同的格式和组织提供数据。OLAP是一种分析技术,具有汇总、合并和聚集功能,以及从不同的角度观察信息的能力。

数据挖掘 - 知识点

1、数据库与数据仓库的对比 数据库数据仓库 面向应用面向主题 数据是详细的数据是综合和历史的 保持当前数据保存过去和现在的数据 数据是可更新的数据不更新 对数据的操作是重复的对数据的操作是启发式的 操作需求是事先可知的操作需求是临时决定的 一个操作存取一个记录一个操作存取一个集合 数据非冗余数据时常冗余 操作比较频繁操作相对不频繁 查询基本是原始数据查询基本是经过加工的数据 事务处理需要的是当前数据决策分析需要过去和现在的数据 很少有复杂的计算有很多复杂的计算 支持事务处理支持决策分析 2、OLTP与OLAP 联机事物处理(On Line Transaction Processing,OLTP)是在网络环境下的事务处理工作,以快速的响应和频繁的数据修改为特征,使用户利用数据库能够快速地处理具体的业务。 OLTP OLAP 数据库数据数据仓库数据 细节性数据综合性数据 当前数据历史数据 经常更新不更新,但周期刷新 对响应时间要求高响应时间合理 用户数量大用户数量相对较小 面向操作人员,支持日常操作面向决策人员,支持决策需要 面向应用,事务驱动面向分析,分析驱动 3、数据字典和元数据: 数据字典:是数据库中各类数据描述的集合,它在数据库设计中具有很重要的地位。由:数据项;数据结构;数据流;数据存储;处理过程5部分组成。 元数据(metadata)定义为关于数据的数据(data about data),即元数据描述了数据仓库的数据和环境。数据仓库的元数据除对数据仓库中数据的描述(数据仓库字典)外,还有以下三类元数据:(1) 关于数据源的元数据(2) 关于抽取和转换的元数据(3) 关于最终用户的元数据

相关文档
最新文档