复合函数 总结 复习

复合函数  总结 复习
复合函数  总结 复习

课次教学计划(教案)

一、复合函数的构成

设()u g x =是A 到B 的函数,()y f u =

是'B 到'C 上的函数,且

B 'B ?,当u 取遍B 中的元素时,y 取遍

C ,那么(())y f g x =就是A

到C 上的函数。此函数称为由外函数()y f x =和内函数()u g x =复

合而成的复合函数。 说明:

⑴复合函数的定义域,就是复合函数(())y f g x =

中x 的取值范围。

⑵x 称为直接变量,u 称为中间变量,u 的取值范围即为()g x 的值域。 ⑶))((x g f 与))((x f g 表示不同的复合函数。

例1.设函数53)(,32)(-=+=x x g x x f ,求))(()),((x f g x g f . ⑷若)(x f 的定义域为'M ,则复合函数))((x g f 中,M x g ∈)(. 注意:)(x g 的值域'M M

?.

解复合函数题的关键之一是写出复合过程 例1:指出下列函数的复合过程。

(1)y=√2-x 2 (2)y=sin3x (3)y=3cos√1-x 2 解:(1) y=√2-x 2是由y=√u,u=2-x 2复合而成的。 (2)y=sin3x 是由y=sinu,u=3x 复合而成的。

(3)y=3cos√1+x 2是由y=3cosu,u=√r,r=1-x 2复合而成的。

例2:复合函数的定义域问题

⑴若函数)(x f 的定义域是[0,1],求)21(x f -的定义域; ⑵若)12(-x f 的定义域是[-1,1],求函数)(x f 的定义域; ⑶已知)3(+x f 定义域是[)5,4-,求)32(-x f 定义域.

要点1:解决复合函数问题,一般先将复合函数分解,即它是哪个内函数和哪个外函数复合而成的. 解答:

⑴ 函数)21(x f -是由A 到B 上的函数x u 21-=与B 到C 上的函数)(u f y =复合

而成的函数.

函数)(x f 的定义域是[0,1],

∴B=[0,1],即函数x u 21-=的值域为[0,1]. ∴1210≤-≤x ,

∴021≤-≤-x ,即2

10≤≤x , ∴函数)21(x f -的定义域[0,21].

⑵ 函数)12(-x f 是由A 到B 上的函数12-=x u 与B 到C 上的函数)(u f y =复合

而成的函数.

)12(-x f 的定义域是[-1,1],

∴A=[-1,1],即-11≤≤x ,

∴1123≤-≤-x ,即12-=x u 的值域是[-3,1], ∴)(x f y =

的定义域是[-3,1].

要点2:若已知)(x f 的定义域为A ,则)]([x g f 的定义域就是不等式A x g ∈)(的

x 的集合;若已知)]([x g f 的定义域为A ,则)(x f 的定义域就是函数)(x g

)(A x ∈的值域。

⑶ 函数)3(+x f 是由A 到B 上的函数3+=x u 与B 到C 上的函数)(u f y =复合

而成的函数.

)3(+x f 的定义域是[-4,5),

∴A=[-4,5)即54<≤-x ,

∴831<+≤-x 即3+=x u 的值域B=[-1,8)

又)32(-x f 是由'A 到'B 上的函数32'-=x u 与B 到C 上的函数)(u f y =复合而成的

函数,而'B B =,从而32'-=x u 的值域)8,1['-=B ∴8321<-≤-x ∴,1122<≤x ∴2

111<

≤x ∴)32(-x f 的定义域是[1,2

11).

练习:1,已知f(x)的定义域为[0,1],求f(2x-1)的定义域。 2,已知f(2x-1)的定义域为[0,1],求f(x)的定义域。

3,已知f(x+3)的定义域为[1,2],求f (2x-5)的定义域。

说明:

① 已知)(x f 的定义域为(a,b),求))((x g f 的定义域的方法:

已知)(x f 的定义域为)(b a ,,求))((x g f 的定义域。实际上是已知中间变量的u 的取值范围,即)(b a u ,∈,)()(b a x g ,∈。通过解不等式b x g a <<)(求得x 的范围,即为))((x g f 的定义域。

② 已知))((x g f 的定义域为(a,b),求)(x f 的定义域的方法:

若已知))((x g f 的定义域为)(b a ,,求)(x f 的定义域。实际上是已知复合函数))((x g f 直接变量x 的取值范围,即)(b a x ,∈。先利用b x a <<求得)(x g 的

范围,则)(x g 的范围即是)(x f 的定义域,即使函数)(x f 的解析式形式所要求定义域真包含)(x g 的值域,也应以)(x g 的值域做为所求)(x f 的定义域,因为要确保所求外含数)(x f 与已知条件下所要求的外含数是同一函数,否则所求外含数)(x f 将失去解决问题的有效性。

2.求有关复合函数的解析式, 例6.①已知 ,1)(2+=x x f 求)1(-x f ;

②已知 1)1()1(2++=-x x f ,求)(x f . 例7.①已知x

x x f 1

)1(+=- ,求)(x f ; ②已知221

1(x

x x x f +=-,求)1(+x f .

要点3:

已知)(x f 求复合函数)]([x g f 的解析式,直接把)(x f 中的x 换成)(x g 即可。

已知)]([x g f 求)(x f 的常用方法有:配凑法和换元法。

配凑法就是在)]([x g f 中把关于变量x 的表达式先凑成)(x g 整体的表达式,再直接把)(x g 换成x 而得)(x f 。

换元法就是先设t x g =)(,从中解出x (即用t 表示x ),再把x (关于t 的式子)直接代入)]([x g f 中消去x 得到)(t f ,最后把)(t f 中的t 直接换成x 即得

)(x f ,这种代换遵循了同一函数的原则。

例8.①已知)(x f 是一次函数,满足172)1(2)1(3+=--+x x f x f ,求)(x f ;

②已知x x

f x f 4)1

(

2)(3=+,求)(x f . 要点4:

⑴ 当已知函数的类型求函数的解析式时,一般用待定系数法。

⑵ 若已知抽象的函数表达式,则常用解方程组、消参的思想方法 求函数的解析式。已知)(x f 满足某个等式,这个等式除)(x f 是未知量外,还出现其他

未知量,如)(x f -、)1

(x f 等,必须根据已知等式再构造出其他等式组成方程

组,通过解方程组求出)(x f 。

解析式的求法 练习 1. 代入法

例1、()21f x x =+,求(1)f x +

2. 待定系数法

例2、二次函数()f x 满足(3)(1)f x f x +=-,且()0f x =的两实根平方和为10,图像过点(0,3),求()f x 解析式

3. 换元法 例3、21

34(31)x x

f x +-+=

,求()f x 解析式

4. 配凑法(用于二次函数较多)

例4、2(31)965f x x x +=-+,求()f x 解析式

5. 消元法(构造方程组法,赋值法) 例5、2()()1f x f x x +-=-,求()f x 解析式

6. 利用函数的性质求解析式

例6、已知函数()y f x =是定义在区间33,22[]-上的偶函数,且3

2

[0,]x ∈时,25()x f x x -+=-

(1)求()f x 解析式

(2)若矩形ABCD 顶点,A B 在函数()y f x =图像上,顶点,C D 在x 轴上,求矩形ABCD 面积的最大值

例7、已知函数()y f x =是定义在R 上的周期函数,周期5T =,函数()y f x =(11)x -≤≤是奇函数,又知()y f x =在[0,1]上是一次函数,在[1,4]上是二次函数,且在2x =时函数取得最小值,最小值为-5

(1)证明:(1)(4)0f f +=

(2)试求()y f x =,[1,4]x ∈的解析式 (3)试求()y f x =在[4,9]x ∈上的解析式

复合函数的值域

换元法:

(1) 求函数y x =+

分式法 求2

1

+-=

x x y 的值域。

例1、(指、对数函数作内层函数)己在函数2()1233x

x

f x =-?- (1)求函数()f x 的值域

(2)若[2,1]x ∈-时,函数()f x 的最小值为和最大值

例2、(耐克函数)求函数2()(0),[1,2]x x a

f x a x x

++=

>∈的值域

【变式训练】 求函数2

2()2a

f x x x

=+的值域

例3、(其它函数复合)求函数y =2

212124()2

x x x x x +

---≤-的值域

二、复合函数的性质

1、复合函数[])(x g f y =在区间[]b a ,上的单调性:(同增异减)

)(x g u =,)(u f y =增减性相同时, [])(x g f y =为增函数, )(x g u =,)(u f y =增减性相反时, [])(x g f y =为减函数.

求复合函数单调区间的步骤是: (1)求函数的定义域;

(2)用换元法把复合函数分解成常见函数; (3)求各常见函数的单调区间;

(4)把中间变量的变化区间转化成自变量的变化区间; (5)按复合函数单调性的规律,求出复合函数的单调区间.

例8、 求下列函数的单调区间: y=(x 2-4x+3)2

例9、求复合函数213

log (2)y x x =-的单调区间

例10、求y=2x 6x 7--的单调区间和最值。

例11、 求y=1

2x x 221--?

?

?

??的单调区间。

例12、 求y=1/(x 2-4x+3)的单调区间。

2、复合函数[])(x g f y =的奇偶性

若函数[])(),(),(x g f x g x f 的定义域都是关于原点对称的,那么由

)(),(u f y x g u ==的奇偶性得到[])(x g f y =的奇偶性的规律是:

即当且仅当)(x g u =和)(u f y =都是奇函数时,复合函数[])(x g f y =是奇函数. (与奇数偶数的乘法类似)

若f (x )=x 3, g(x)=x 2+1 判断以下函数奇偶性: A.f(x )*g (x) B.f(g(x)) C.g(f(x))

课后作业:

1、若函数(1)f x -定义域为(3,4],则函数f 的定义域为

2、已知函数()f x =

R ,则实数a 的取值范围是

3、已知2211

()f x x x x

-=+,则(1)f x +=

4、已知2(1)34f x x x +=++,则()f x =

5、已知函数()f x 的图像与函数1

()2h x x x

=++的图像关于点A(0,1)对称 (1)求函数()f x 的解析式 (2)若()()a

g x f x x

=+

,且()g x 在区间(0,2]上的值不小于6,求实数a 的取值范围 6、设()f x 是定义在R 上的函数,且()f x 满足(2)()f x f x +=-,当[0,2]x ∈时,2()2f x x x =-,求[2,0]x ∈-时()f x 的解析式

7、

()f x =R,则求m 的取值范围

8、已知函数211()log 1x f x x x

+=--,求函数的定义域,并讨论它的奇偶性单调性。 9、求函数)5,0[,)

3

1(42∈=-x y x

x 的值域。

10、求函数11(()142

x x

y =-+在[]3,2x ∈-上的值域。

总结:

1.复合函数的构成;

设函数)(u f y =,)(x g u =,则我们称))((x g f y =

是由外函数)(u f y

=和内

函数)(x g u =复合而成的复合函数。其中x 被称为直接变量,u 被称为中间变量。复合函数中直接变量x 的取值范围叫做复合函数的定义域,中间变量u 的取值范围,即是)(x g 的值域,是外函数)(u f y =的定义域。 2.有关复合函数的定义域求法及解析式求法: ⑴定义域求法:

求复合函数的定义域只要解中间变量的不等式(由b x g a <<)(解x );求外函数的定义域只要求中间变量的值域范围(由b x a <<求)(x g 的值域)。已知一个复合函数求另一个复合函数的定义域,必须先求出外函数的定义域。

特别强调,此时求出的外函数的定义域一定是前一个复合函数的内函数的值域。

⑵解析式求法:待定系数法、配凑法、换元法、解方程组消元法.

四:外函数解析式其本身决定定义域的主要依据有: ⑴ 当)(x f 为整式或奇次根式时,x ∈R ;

⑵ 当)(x f 为偶次根式时,被开方数不小于0(即≥0);

⑶ 当)(x f 为分式时,分母不为0;当分母是偶次根式时,被开方数大于0; ⑷ 当)(x f 为指数式时,对零指数幂或负整数指数幂,底不为0(如0)(x x f =,

22

1

)(x

x

x f ==-中0≠x )

。 ⑸ 当)(x f 是由一些基本函数通过四则运算结合而成的,它的定义域应是使各部分都有意义的自变量x 的值组成的集合,即求各部分定义域集合的交集。

⑹ 分段函数)(x f y =的定义域是各段上自变量x 的取值集合的并集。 ⑺ 由实际问题建立的函数,除了要考虑使解析式有意义外,还要考虑实际意义对自变量的要求

⑻ 对于含参数字母的函数,求定义域时一般要对字母的取值情况进行分类讨论,并要注意函数的定义域为非空集合。

⑼ 对数函数的真数必须大于零,底数大于零且不等于1。

幂函数知识点总结与练习题

幂函数 (1)幂函数的定义: 一般地,函数y x α =叫做幂函数,其中x 为自变量,α是常数. ①图象分布:幂函数图象分布在第一、二、三象限,第四象限无图象.幂函数是偶函数时,图象分布在第一、二象限(图象关于y 轴对称);是奇函数时,图象分布在第一、三象限(图象关于原点对称);是非奇非偶函数时,图象只分布在第一象限. ②过定点:所有的幂函数在(0,)+∞都有定义,并且图象都通过点(1,1). ③单调性:如果0α>,则幂函数的图象过原点,并且在[0,)+∞上为增函数.如果0α<,则幂函数的图象在(0,)+∞上为减函数,在第一象限,图象无限接近x 轴与y 轴. ④奇偶性:当α为奇数时,幂函数为奇函数,当α为偶数时,幂函数为偶函数.当q p α= (其中,p q 互质,p 和q Z ∈),若p 为奇数q 为奇数时,则q p y x =是奇函数,若p 为奇数q 为偶数时,则q p y x =是偶函数,若p 为偶数q 为奇数时,则q p y x =是非奇非偶函数. ⑤图象特征:幂函数,(0,)y x x α =∈+∞,当1α>时,若01x <<,其图象在直线y x =下 方,若1x >,其图象在直线y x =上方,当1α<时,若01x <<,其图象在直线y x =上

方,若1x >,其图象在直线y x =下方. 幂函数练习题 一、选择题: 1.下列函数中既是偶函数又是(,)-∞0上是增函数的是 ( ) A .y x =43 B .y x =32 C .y x =-2 D .y x =-14 2.函数2 -=x y 在区间]2,2 1[上的最大值是 ( ) A . 4 1 B .1- C .4 D .4- 3.下列所给出的函数中,是幂函数的是 ( ) A .3 x y -= B .3 -=x y C .3 2x y = D .13 -=x y 4.函数3 4x y =的图象是 ( ) A . B . C . D . 5.下列命题中正确的是 ( ) A .当0=α时函数α x y =的图象是一条直线 B .幂函数的图象都经过(0,0)和(1,1)点 C .若幂函数αx y =是奇函数,则α x y =是定义域上的增函数 D .幂函数的图象不可能出现在第四象限 6.函数3 x y =和3 1 x y =图象满足 ( ) A .关于原点对称 B .关于x 轴对称 C .关于y 轴对称 D .关于直线x y =对称 7. 函数R x x x y ∈=|,|,满足 ( ) A .是奇函数又是减函数 B .是偶函数又是增函数 C .是奇函数又是增函数 D .是偶函数又是减函数 8.如图1—9所示,幂函数α x y =在第一象限的图象,比较1,,,,,04321αααα的大小( ) A .102431<<<<<αααα B .104321<<<<<αααα 1α 4α 2α

高考复习函数知识点总结

高考复习 函数知识点总结 一.函数概念的理解以及函数的三要素 (1)函数的概念 ①设A 、B 是两个非空的数集,如果按照某种对应法则f ,对于集合A 中任何一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的一个函数,记作:f A B →. ②函数的三要素:定义域、值域和对应法则. ③只有定义域相同,且对应法则(函数关系式)也相同的两个函数才是同一函数. (2)区间的概念及表示法 ①设,a b 是两个实数,且a b <,满足a x b ≤≤的实数x 的集合叫做闭区间,记做[,]a b ; 满足a x b <<的实数x 的集合叫做开区间,记做(,)a b ; 满足a x b ≤<,或a x b <≤的实数x 的集合叫做半开半闭区间,分别记做 [,)a b ,(,]a b ; 满足,,,x a x a x b x b ≥>≤<的实数x 的集合分别记做 [,),(,),(,],(,)a a b b +∞+∞-∞-∞. 注意:对于集合{|}x a x b <<与区间(,)a b ,前者a 可以大于或等于b ,而后者必须a b < . (3)求函数的定义域时,一般遵循以下原则: ① 分式的分母不为0; ② 偶次根式下被开方数大于0; ③ 0y x = ,则有0x ≠ ; ④ 对数函数的真数大于0,底数大于0切不等于1 注意:①解析式为整式的函数定义域为R ; ②若()f x 是由有限个基本初等函数的四则运算而合成的函数时,则

其定义域一般是各基本初等函数的定义域的交集; ③对于求复合函数定义域问题,一般步骤是:若已知() f x的定义域 为[,] a g x b ≤≤解出. f g x的定义域应由不等式() a b,其复合函数[()] (4)求函数的值域或最值 常用方法: ①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值. ②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量 的取值范围确定函数的值域或最值. ③判别式法:若函数() =可以化成一个系数含有y的关于x的二次方程 y f x 2 ++=,则在()0 a y x b y x c y ()()()0 a y≠时,由于,x y为实数,故必须有 2()4()()0 ?=-?≥,从而确定函数的值域或最值. b y a y c y ④不等式法:利用基本不等式确定函数的值域或最值. ⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代 数函数的最值问题转化为三角函数的最值问题. ⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的 值域或最值. ⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值. ⑧函数的单调性法. (5)函数解析式 ①换元法;(用于求复合函数的解析式) ②配凑法;(用于求复合函数的解析式)

(完整版)一次函数题型总结归纳

a a t 精心整理 一次函数题型总结 函数定义 1、判断下列变化过程存在函数关系的是() A.是变量, B.人的身高与年龄 C.三角形的底边长与面积 y x ,x y 2±=A 、1B 、2C 、3D 、42、若函数y=(3-m)x m-9是正比例函数,则m=。 3、当m 、n 为何值时,函数y=(5m -3)x 2-n +(m+n)(1)是一次函数(2)是正比 例函数 一次函数与坐标系 1.一次函数y=-2x+4的图象经过第象限,y 的值随x 的值增大而(增大或减少)

2.已知y+4与x 成正比例,且当x=2时,y=1,则当x=-3时,y= . 3.已知k >0,b >0,则直线y=kx+b 不经过第 象限. 4、若函数y=-x+m 与y=4x -1的图象交于y 轴上一点,则m 的值是( )A. B. C. D. 1-14 1-4 1(2)把这两摞饭碗整齐地摆成一摞时,这摞饭碗的高度 是多少? 4、东从A 地出发以某一速度向B 地走去,同时小明从B 地 出发以 另一速度向A 地而行,如图所示,图中的线段、B 地的 1y 距离(千米)与所用时间(小时)的关系。 2

a t s ⑵试求出A 、B 两地之间的距离。 函数图像的平移 1.把直线向上平移3个单位所得到的直线的函数解析式为 .13 2+=x y 2、(2007浙江湖州)将直线y =2x 向右平移2个单位所得的直线的解析式是()。 A 、y =2x +2 B 、y =2x -2 C 、y =2(x -2) D 、y =2(x +2) 的增大而,当. 函数图像与坐标轴围成的三角形的面积 1、函数y=-5x+2与x 轴的交点是与y 轴的交点是与两坐标轴围成的三角形面积是。 2.已知直线y =x +6与x 轴、y 轴围成一个三角形,则这个三角形面积为___。3、已知:在直角坐标系中,一次函数y=的图象分别与x 轴、y 轴相交于23

函数及其表示知识框架

函数及 其表示 要求层次 重难点 函数的概念与表示 C 理解函数的概念及对函数符号()y f x 的理解;会求函数的定义域、简单的函数的值域;会作出一些基本函数:一次函数,二次函数等函数的图象;理解分段函数的定义及其应用; 理解映射的概念. 映射 A 函数的表示 B 一、知识点 1.函数的概念: 设A 、B 是非空的数集,如果按照某个确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数f(x)和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数。记作:y=f(x),x ∈A 。其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{f(x)| x ∈A }叫做函数的值域。 注意:(1)“y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”; (2)函数符号“y=f(x)”中的f(x)表示与x 对应的函数值,一个数,而不是f 乘x 。 2.构成函数的三要素:定义域、对应关系和值域 模块框架 高考要求 知识内容 函数及其表示

(1)解决一切函数问题必须认真确定该函数的定义域,函数的定义域包含三种形式: ①自然型:指函数的解析式有意义的自变量x的取值范围(如:分式函数的分母不为 零,偶次根式函数的被开方数为非负数,对数函数的真数为正数,等等); ②限制型:指命题的条件或人为对自变量x的限制,这是函数学习中重点,往往也是 难点,因为有时这种限制比较隐蔽,容易犯错误; ③实际型:解决函数的综合问题与应用问题时,应认真考察自变量x的实际意义。 (2)求函数的值域是比较困难的数学问题,中学数学要求能用初等方法求一些简单函数的值域问题。 ①配方法(将函数转化为二次函数);②判别式法(将函数转化为二次方程);③不等 式法(运用不等式的各种性质);④函数法(运用基本函数性质,或抓住函数的单调性、函数图象等)。 3.两个函数的相等: 函数的定义含有三个要素,即定义域A、值域C和对应法则f。当函数的定义域及从定义域到值域的对应法则确定之后,函数的值域也就随之确定。因此,定义域和对应法则为函数的两个基本条件,当且仅当两个函数的定义域和对应法则都分别相同时,这两个函数才是同一个函数。 4.区间 (1)区间的分类:开区间、闭区间、半开半闭区间; (2)无穷区间; (3)区间的数轴表示。 5.映射的概念 一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A 中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A→B为从集合A到集合B的一个映射。记作“f:A→B”。 函数是建立在两个非空数集间的一种对应,若将其中的条件“非空数集”弱化为“任意两个非空集合”,按照某种法则可以建立起更为普通的元素之间的对应关系,这种的对应就叫映射。 注意:(1)这两个集合有先后顺序,A到B的射与B到A的映射是截然不同的.其中f表示具体的对应法则,可以用汉字叙述。 (2)“都有唯一”什么意思? 包含两层意思:一是必有一个;二是只有一个,也就是说有且只有一个的意思。 6.常用的函数表示法 (1)解析法:就是把两个变量的函数关系,用一个等式来表示,这个等式叫做函数的解析表达式,简称解析式; (2)列表法:就是列出表格来表示两个变量的函数关系; (3)图象法:就是用函数图象表示两个变量之间的关系。 7.分段函数 若一个函数的定义域分成了若干个子区间,而每个子区间的解析式不同,这种函数又称分段函数; 8.复合函数 若y=f(u),u=g(x),x∈(a,b),u∈(m,n),那么y=f[g(x)]称为复合函数,u称为中间变量,它的取值范围是g(x)的值域。 二、重点题型解析

高一数学幂函数知识点总结

高一数学幂函数知识点总结 函数是高中数学中比较重要的一项知识,学好函数可以提高自己的数学知识水平。下面就让小编给大家分享一些高一数学幂函数知识点总结吧,希望能对你有帮助! 高一数学幂函数知识点总结篇一一、一次函数定义与定义式:自变量x和因变量y有如下关系: y=kx+b 则此时称y是x的一次函数。 特别地,当b=0时,y是x的正比例函数。 即:y=kx(k为常数,k0) 二、一次函数的性质: 1.y的变化值与对应的x的变化值成正比例,比值为k 即:y=kx+b(k为任意不为零的实数b取任何实数) 2.当x=0时,b为函数在y轴上的截距。 三、一次函数的图像及性质: 1.作法与图形:通过如下3个步骤 (1)列表; (2)描点; (3)连线,可以作出一次函数的图像一条直线。因此,作一次函数的图像只需知道2点,并连成直线即可。(通常找函数图像与x轴

和y轴的交点) 2.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。 3.k,b与函数图像所在象限: 当k0时,直线必通过一、三象限,y随x的增大而增大; 当k0时,直线必通过二、四象限,y随x的增大而减小。 当b0时,直线必通过一、二象限; 当b=0时,直线通过原点 当b0时,直线必通过三、四象限。 特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图像。 这时,当k0时,直线只通过一、三象限;当k0时,直线只通过二、四象限。 四、确定一次函数的表达式: 已知点A(x1,y1);B(x2,y2),请确定过点A、B的一次函数的表达式。 (1)设一次函数的表达式(也叫解析式)为y=kx+b。 (2)因为在一次函数上的任意一点P(x,y),都满足等式y=kx+b。所以可以列出2个方程:y1=kx1+b①和y2=kx2+b② (3)解这个二元一次方程,得到k,b的值。 (4)最后得到一次函数的表达式。

函数的基本性质知识点归纳与题型总结

函数的基本性质知识点归纳与题型总结 一、知识归纳 1.函数的奇偶性 2.函数的周期性 (1)周期函数 对于函数f(x),如果存在一个非零常数T,使得当x取定义域内的任何值时,都有f(x+T)=f(x),那么就称函数f(x)为周期函数,称T为这个函数的周期. (2)最小正周期 如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小正周期. 解题提醒: ①判断函数的奇偶性,易忽视判断函数定义域是否关于原点对称.定义域关于原点对称是函数具有奇偶性的一个必要条件. ②判断函数f(x)的奇偶性时,必须对定义域内的每一个x,均有f(-x)

=-f (x )或f (-x )=f (x ),而不能说存在x 0使f (-x 0)=-f (x 0)或f (-x 0)=f (x 0). ③分段函数奇偶性判定时,误用函数在定义域某一区间上不是奇偶函数去否定函数在整个定义域上的奇偶性. 题型一 函数奇偶性的判断 典型例题:判断下列函数的奇偶性: (1)f (x )=(x +1) 1-x 1+x ; (2)f (x )=? ???? -x 2+2x +1,x >0, x 2+2x -1,x <0; (3)f (x )=4-x 2 x 2; (4)f (x )=log a (x +x 2+1)(a >0且a ≠1). 解:(1)因为f (x )有意义,则满足1-x 1+x ≥0, 所以-1<x ≤1, 所以f (x )的定义域不关于原点对称, 所以f (x )为非奇非偶函数. (2)法一:(定义法) 当x >0时,f (x )=-x 2+2x +1, -x <0,f (-x )=(-x )2+2(-x )-1=x 2-2x -1=-f (x ); 当x <0时,f (x )=x 2+2x -1, -x >0,f (-x )=-(-x )2+2(-x )+1=-x 2-2x +1=-f (x ).

函数概念及其表示(知识点总结例题分类讲解)

龙文教育教师1对1个性化教案 教导处签字: 日期:年月日

函数及其表示 【要点回顾】 函数的概念 1.函数的概念 定义:设B A 、是两个非空的数集,如果按照某种对应法则f ,对于集合A 中的任意x ,在集合B 中都有唯一的数和它对应,那么这样的对应叫做从A 到B 的一个函数,通常记为 . 2.函数的定义域与值域 在函数A x x f y ∈=),(中,x 叫做自变量,x 的取值范围A 叫做)(x f y =的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{}A x x f ∈)(称为函数)(x f y =的值域. 函数的三要素:定义域、值域和对应法则 3.区间的概念 4.判断对应是否为函数 5.定义域的求法 6.函数值域的求法 7.复合函数(抽象函数)定义域的求法 函数的表示法 1.函数的三种表示法 图象法、列表法、解析法 2.分段函数 在自变量的不同变化范围中,对应法则用不同式子来表示的函数称为分段函数。 3.映射的概念 设B A 、是两个非空的集合,如果按某一个确定的对应关系f ,对于集合A 中的任意一个元素,在集合B 中都有唯一确定的元素与之对应,那么就称对应B A f →:为从集合A 到集合B 的一个映射,通常记为B A f →: ,f 表示对应法则. 【例题讲解】 考点一:函数与映射概念考查

例1 判断下列图象能表示函数图象的是( ) 练习1:函数()y f x =的图象与直线x = a 的交点个数 ( ) A. 只有一个 B.至多有一个 C.至少有一个 D.0个 练习2:下述两个个对应是A 到B 的映射吗? (1)A R =,{|0}B y y =>,:||f x y x →= ; ( 2 ){| 0}A x x =>,{|}B y y R =∈,:f x y →= 练习3:下列是映射的是( ) 图1 图2 图3 图4 图5 (A)图1、2、3 (B)图1、2、5 (C)图1、3、5 (D)图1、2、3、5 函数相等:如果两个函数的定义域相同,并且对应关系完全一致. 例2 指出下列各函数中,哪个与函数y x =是同一个函数: (1)2 x y x =; (2)y = (3)s t =. 练习1:判定下列各组函数是否为同一个函数: (1)()f x x =, ()f x (2)()1f x x =+,21 ()1 x f x x -=- 练习2:试判断以下各组函数是否表示同一函数? (1)2)(x x f =,33)(x x g =; (A)

2017幂函数知识总结

幂 函 数 复 习 一、幂函数定义:形如 )(R x y ∈=αα的函数称为幂函数,其中x 是自变量,α是常数。 注意:幂函数与指数函数有何不同? 【思考·提示】 本质区别在于自变量的位置不同,幂函数的自变量在底数位置,而指数函数的自变量在指数位置. 观察图:

归纳:幂函数图像在第一象限的分布情况如下: 二、幂函数的性质 归纳:幂函数在第一象限的性质: 0>α,图像过定点(0,0)(1,1),在区间(+∞,0)上单调递增。 0<α,图像过定点(1,1),在区间(+∞,0)上单调递减。 探究:整数m,n 的奇偶与幂函数n m x y =),,,(互质且n m Z n m ∈的定义域以及奇偶性有什么关系?

结果:形如n m x y =),,,(互质且n m Z n m ∈的幂函数的奇偶性 (1)当m ,n 都为奇数时,f (x )为奇函数,图象关于原点对称; (2)当m 为奇数n 为偶数时,f (x )为偶函数,图象关于y 轴对称; (3)当m 为偶数n 为奇数时,f (x )是非奇非偶函数,图象只在第一象限内. 三、幂函数的图像画法: 关键先画第一象限,然后根据奇偶性和定义域画其它象限。 指数大于1,在第一象限为抛物线型(凹); 指数等于1,在第一象限为上升的射线; 指数大于0小于1,在第一象限为抛物线型(凸); 指数等于0,在第一象限为水平的射线; 指数小于0,在第一象限为双曲线型; 2、幂函数),,,,(互质q p Z q p p q x y ∈==αα的图像: 3、比较幂形式的两个数的大小,一般的思路是: (1)若能化为同指数,则用幂函数的单调性; (2)若能化为同底数,则用指数函数的单调性; (3)若既不能化为同指数,也不能化为同底数,则需寻找一个恰当的数作为桥梁来比较大小. .经典例题:

初中函数知识点总结非常全

知识点一、平面直角坐标系 1、平面直角坐标系 在平面内画两条互相垂直且有公共原点的数轴,就组成了平面直角坐标系。 其中,水平的数轴叫做x 轴或横轴,取向右为正方向;铅直的数轴叫做y 轴或纵轴,取向上为正方向;两轴的交点O (即公共的原点)叫做直角坐标系的原点;建立了直角坐标系的平面,叫做坐标平面。 为了便于描述坐标平面内点的位置,把坐标平面被x 轴和y 轴分割而成的四个部分,分别叫做第一象限、第二象限、第三象限、第四象限。 注意:x 轴和y 轴上的点,不属于任何象限。 2、点的坐标的概念 点的坐标用(a ,b )表示,其顺序是横坐标在前,纵坐标在后,中间有“,”分开,横、纵坐标的位置不能颠倒。平面内点的坐标是有序实数对,当b a ≠时,(a ,b )和(b ,a )是两个不同点的坐标。 知识点二、不同位置的点的坐标的特征 1、各象限内点的坐标的特征 点P(x,y)在第一象限0,0>>?y x 点P(x,y)在第二象限0,0>?y x 2、坐标轴上的点的特征 点P(x,y)在x 轴上0=?y ,x 为任意实数 点P(x,y)在y 轴上0=?x ,y 为任意实数 点P(x,y)既在x 轴上,又在y 轴上?x ,y 同时为零,即点P 坐标为(0,0) 3、两条坐标轴夹角平分线上点的坐标的特征 点P(x,y)在第一、三象限夹角平分线上?x 与y 相等 点P(x,y)在第二、四象限夹角平分线上?x 与y 互为相反数 4、和坐标轴平行的直线上点的坐标的特征 位于平行于x 轴的直线上的各点的纵坐标相同。 位于平行于y 轴的直线上的各点的横坐标相同。 5、关于x 轴、y 轴或远点对称的点的坐标的特征 点P 与点p ’关于x 轴对称?横坐标相等,纵坐标互为相反数 点P 与点p ’关于y 轴对称?纵坐标相等,横坐标互为相反数 点P 与点p ’关于原点对称?横、纵坐标均互为相反数 6、点到坐标轴及原点的距离 点P(x,y)到坐标轴及原点的距离: (1)点P(x,y)到x 轴的距离等于y (2)点P(x,y)到y 轴的距离等于x (3)点P(x,y)到原点的距离等于2 2y x + 知识点三、函数及其相关概念 1、变量与常量 在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。 一般地,在某一变化过程中有两个变量x 与y ,如果对于x 的每一个值,y 都有唯一确定的值与它对应,那么就说x 是自变量,y 是x 的函数。 2、函数解析式 用来表示函数关系的数学式子叫做函数解析式或函数关系式。 使函数有意义的自变量的取值的全体,叫做自变量的取值范围。 3、函数的三种表示法及其优缺点 (1)解析法 两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做解析法。 (2)列表法 把自变量x 的一系列值和函数y 的对应值列成一个表来表示函数关系,这种表示法叫做列表法。 (3)图像法 用图像表示函数关系的方法叫做图像法。 4、由函数解析式画其图像的一般步骤 (1)列表:列表给出自变量与函数的一些对应值 (2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点 (3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。 知识点四、正比例函数和一次函数 1、正比例函数和一次函数的概念

函数的综合知识点及题型归纳总结

函数的综合知识点及题型归纳总结 题型归纳及思路提示 题型1 函数与数列的综合 思路提示 利用函数与数列知识的相互联系、相似性质: (1)抽象函数的关系与数列递推关系式类似. (2)函数单调性与数列单调性的相似性. (3)数列与不等式的综合可以利用数列的形式构造辅助函数,利用函数的性质证明不等式,因此解决数列问题可转化为函数问题,用函数的知识或方法解决. 例2.79 (2012四川理12)设函数(){}n a x x x f ,cos 2-=是公差为 8 π 的等差数列, ()()(),5521π=+++a f a f a f Λ则()[]=-512 3a a a f f ( ) A 、0 B 、 2161π C 、28 1 π D 、21613π 分析 本题将数列与函数结合,其解题思路是研究函数性质(单调性、奇偶性)与数列的特征. 解析 由()x x x f cos 2-=得ππππ++=??? ? ? +-??? ??+=??? ? ? + x x x x x f sin 22cos 222, 令(),sin 2x x x g +=则()x g 在R 上为单调递增的奇函数,故 ()()(),5521π=+++a f a f a f Λ ?πππππππ5222521=+??? ? ? -+++??? ??-++??? ? ? - a g a g a g Λ? 0222521=??? ? ? -++??? ??-+??? ??-πππa g a g a g Λ 设,2 π - =n n a b 则{}n b 也为等差数列,且()()()0521=+++b g b g b g Λ○ 1,下证03=b .反证法,若,03>b 则,02,02342351>=+>=+b b b b b b 故0,,34251>->->b b b b b ,又()x g 是R 上单调递增的奇函数,所以()()()()()5513,00b g b g b g g b g -=->=>, ()()(),442b g b g b g -=->以上相加得()()()0521>+++b g b g b g Λ与○1矛盾,故假设 “03>b ”不成立,同理“03

指数函数、对数函数和幂函数知识点归纳

一、幂函数 1、幂的有关概念 正整数指数幂: ...() n n a a a a n N =∈ g123 零指数幂: 01(0) a a =≠ 负整数指数幂: 1 (0,) p p a a p N a -=≠∈ 分数指数幂:正分数指数幂的意义是: (0,,,1) m n m n a a a m n N n =>∈> 且 负分数指数幂的意义是: 1 (0,,,1) m n m n m n a a m n N n a a - ==>∈> 且 2、幂函数的定义 一般地,函数 a y x =叫做幂函数,其中x是自变量,a是常数(我们只讨论a是有理数的情况). 3、幂函数的图象 幂函数a y x = 当 11 ,,1,2,3 32 a= 时的图象见左图;当 1 2,1, 2 a=--- 时的图象见上图: 由图象可知,对于幂函数而言,它们都具有下列性质:

a y x =有下列性质: (1)0a >时: ①图象都通过点(0,0),(1,1); ②在第一象限内,函数值随x 的增大而增大,即在(0,)+∞上是增函数. (2)0a <时: ①图象都通过点(1,1); ②在第一象限内,函数值随x 的增大而减小,即在(0,)+∞上是减函数; ③在第一象限内,图象向上与y 轴无限地接近,向右与x 轴无限地接近. (3)任何幂函数的图象与坐标轴至多只有一个交点; (4)任何幂函数图象都不经过第四象限; (5)任何两个幂函数的图象最多有三个交点. 二、指数函数 ①定义:函数)1,0(≠>=a a a y x 且称指数函数, 1)函数的定义域为R ; 2)函数的值域为),0(+∞; 3)当10<a 时函数为增函数. 4)有两个特殊点:零点(0,1),不变点(1,)a . 5)抽象性质: ()()(),()()/()f x y f x f y f x y f x f y +=?-= 三、对数函数 如果b a N =(0a >,1a ≠),那么b 叫做以a 为底N 的对数,记作log a N b = log b a a N N b =?=(0a >,1a ≠,0N >). 1.对数的性质 ()log log log a a a MN M N =+. log log log a a a M M N N =-.

初中数学函数知识点归纳(1)

函数知识点总结(掌握函数的定义、性质和图像) 平面直角坐标系 1、定义:平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系 2、各个象限内点的特征: 第一象限:(+,+)点P(x,y),则x>0,y>0; 第二象限:(-,+)点P(x,y),则x<0,y>0; 第三象限:(-,-)点P(x,y),则x<0,y<0; 第四象限:(+,-)点P(x,y),则x>0,y<0; 3、坐标轴上点的坐标特征: x轴上的点,纵坐标为零;y轴上的点,横坐标为零;原点的坐标为(0 , 0)。两坐标轴的点不属于任何象限。 4、点的对称特征:已知点P(m,n), 关于x轴的对称点坐标是(m,-n), 横坐标相同,纵坐标反号 关于y轴的对称点坐标是(-m,n) 纵坐标相同,横坐标反号 关于原点的对称点坐标是(-m,-n) 横,纵坐标都反号 5、平行于坐标轴的直线上的点的坐标特征: 平行于x轴的直线上的任意两点:纵坐标相等; 平行于y轴的直线上的任意两点:横坐标相等。 6、各象限角平分线上的点的坐标特征: 第一、三象限角平分线上的点横、纵坐标相等。 第二、四象限角平分线上的点横、纵坐标互为相反数。 7、点P(x,y)的几何意义: 点P(x,y)到x轴的距离为 |y|,

点P (x,y )到y 轴的距离为 |x|。 点P (x,y )到坐标原点的距离为22y x + 8、两点之间的距离: X 轴上两点为A )0,(1x 、B )0,(2x |AB|||12x x -= Y 轴上两点为C ),0(1y 、D ),0(2y |CD|||12y y -= 已知A ),(11y x 、B ),(22y x AB|= 2 12212)()(y y x x -+- 9、中点坐标公式:已知A ),(11y x 、B ),(22y x M 为AB 的中点,则:M=(212x x + , 2 1 2y y +) 10、点的平移特征: 在平面直角坐标系中, 将点(x,y )向右平移a 个单位长度,可以得到对应点( x-a ,y ); 将点(x,y )向左平移a 个单位长度,可以得到对应点(x+a ,y ); 将点(x,y )向上平移b 个单位长度,可以得到对应点(x ,y +b ); 将点(x,y )向下平移b 个单位长度,可以得到对应点(x ,y -b )。 注意:对一个图形进行平移,这个图形上所有点的坐标都要发生相应的变化;反过来, 从图形上点的坐标的加减变化,我们也可以看出对这个图形进行了怎样的平移。 函数的基本知识: 基本概念 1、变量:在一个变化过程中可以取不同数值的量。 常量:在一个变化过程中只能取同一数值的量。 2、函数:一般的,在一个变化过程中,如果有两个变量x 和y ,并且对于x 的每一个确定的 值,y 都有唯一确定的值与其对应,那么我们就把x 称为自变量,把y 称为因变量,y 是x 的函数。 *判断A 是否为B 的函数,只要看B 取值确定的时候,A 是否有唯一确定的值与之对应 3、定义域和值域: 定义域:一般的,一个函数的自变量允许取值的范围,叫做这个函数的定义域。 值域:一般的,一个函数的因变量所得的值的范围,叫做这个函数的值域。

高中数学函数及其表示知识点

第二章 函数 第一课时 (一)知识梳理 1.映射的概念 设B A 、是两个集合,如果按照某种对应法则f ,对于集合A 中的任意元素,在集合B 中都有唯一确定的元素与之对应,那么这样的单值对应叫做从A 到B 的映射,通常记为B A f →: ,f 表示对应法则 注意:⑴A 中元素必须都有象且唯一;⑵B 中元素不一定都有原象,但原象不一定唯一。 2.函数的概念 (1)函数的定义: 设B A 、是两个非空的数集,如果按照某种对应法则f ,对于集合A 中的 x ,在集合B 中都有 的数和它对应,那么这样的对应叫做从A 到B 的一个函数,通常记为__________ (2)函数的定义域、值域 在函数A x x f y ∈=),(中,x 叫做自变量,x A 叫做)(x f y =的定义域;与x 的值相对应的y 值叫做函数值, {} A x x f ∈)(称为函数)(x f y =的值域。 (3)函数的三要素: 、 和 3.函数的三种表示法:图象法、列表法、解析法 (1).图象法:就是用函数图象表示两个变量之间的关系; (2).列表法:就是列出表格来表示两个变量的函数关系; (3).解析法:就是把两个变量的函数关系,用等式来表示。 4.分段函数 在自变量的不同变化范围中,对应法则用不同式子来表示的函数称为分段函数。 (二)考点分析 考点1:映射的概念 例1.下述两个个对应是A 到B 的映射吗? A R =,{|0}B y y =>,:||f x y x →=; 考点2:判断两函数是否为同一个函数 如果两个函数的定义域相同,并且对应关系完全一致,称这两个函数相等。 例1. 试判断以下各组函数是否表示同一函数? (1)2)(x x f =,33)(x x g =; (2)x x x f =)(,???<-≥=;01 ,01)(x x x g (3)x x f = )(1+x ,x x x g +=2)(;

高中数学函数知识点总结

高中数学函数知识点总结 1. 对于集合,一定要抓住集合的代表元素,及元素的“确定性、互异性、无序性”。 2 进行集合的交、并、补运算时,不要忘记集合本身和空集的特殊情况 注重借助于数轴和文氏图解集合问题。 空集是一切集合的子集,是一切非空集合的真子集。 {} {}如:集合,A x x x B x ax =--===||2 2301 若,则实数的值构成的集合为B A a ? 3. 注意下列性质: {}()集合,,……,的所有子集的个数是;1212a a a n n 要知道它的来历:若B 为A 的子集,则对于元素a 1来说,有2种选择(在或者不在)。同样,对于元素a 2, a 3,……a n ,都有2种选择,所以,总共有2n 种选择, 即集合A 有2n 个子集。 当然,我们也要注意到,这2n 种情况之中,包含了这n 个元素全部在何全部不在的情况,故真子集个数为21n -,非空真子集个数为22n - ()若,;2A B A B A A B B ??== (3)德摩根定律: ()()()()()()C C C C C C U U U U U U A B A B A B A B ==, 有些版本可能是这种写法,遇到后要能够看懂 4. 你会用补集思想解决问题吗?(排除法、间接法) 如:已知关于的不等式 的解集为,若且,求实数x ax x a M M M a --<∈?5 0352 的取值范围。 7. 对映射的概念了解吗?映射f :A →B ,是否注意到A 中元素的任意性和B 中与之对应元素的唯一性,哪几种对应能构成映射? (一对一,多对一,允许B 中有元素无原象。) 注意映射个数的求法。如集合A 中有m 个元素,集合B 中有n 个元素,则从A 到B 的映射个数有n m 个。 如:若}4,3,2,1{=A ,},,{c b a B =;问:A 到B 的映射有 个,B 到A 的映射有 个;A 到B 的函数有 个,若}3,2,1{=A ,则A 到B 的一一映射有 个。 函数)(x y ?=的图象与直线a x =交点的个数为 个。 8. 函数的三要素是什么?如何比较两个函数是否相同? (定义域、对应法则、值域) 相同函数的判断方法:①表达式相同;②定义域一致 (两点必须同时具备) 9. 求函数的定义域有哪些常见类型?

三角函数题型分类总结

专题 三角函数题型分类总结 三角函数公式一览表 ............................................................................................................... 错误!未定义书签。 一 求值问题 ........................................................................................................................................................... - 1 - 练习 ................................................................................................................................................................. - 1 - 二 最值问题 ........................................................................................................................................................... - 2 - 练习 ................................................................................................................................................................. - 3 - 三 单调性问题 ....................................................................................................................................................... - 3 - 练习 ................................................................................................................................................................. - 3 - 四.周期性问题 ........................................................................................................................................................ - 4 - 练习 ................................................................................................................................................................. - 4 - 五 对称性问题 ....................................................................................................................................................... - 5 - 练习 ................................................................................................................................................................. - 5 - 六.图象变换问题 .................................................................................................................................................... - 6 - 练习 ................................................................................................................................................................. - 7 - 七.识图问题 ......................................................................................................................................................... - 7 - 练习 ................................................................................................................................................................. - 9 - 一 求值问题 类型1 知一求二 即已知正余弦、正切中的一个,求另外两个 方法:根据三角函数的定义,注意角所在的范围(象限),确定符号; 例 4 s i n 5 θ=,θ是第二象限角,求cos ,tan θθ 类型2 给值求值 例1 已知2tan =θ,求(1) θ θθθsin cos sin cos -+;(2)θθθθ2 2cos 2cos .sin sin +-的值. 练习 1、sin 330?= tan 690° = o 585sin = 2、(1)α是第四象限角,12 cos 13 α=,则sin α= (2)若4 sin ,tan 05 θθ=- >,则cos θ= . (3)已知△ABC 中,12 cot 5 A =-,则cos A = . (4) α是第三象限角,2 1)sin(=-πα,则αcos = )25cos(απ += 3、(1) 已知5 sin ,5 α= 则44sin cos αα-= .

函数及其表示知识点

函数及其表示 一、知识梳理 1.映射的概念 设是两个集合,如果按照某种对应法则,对于集合中的任意元素,在集合中都有唯一确定的元素与之对应,那么这样的单值对应叫做从到的映射,通常记为 ,f 表示对应法则 注意:⑴A 中元素必须都有象且唯一;⑵B 中元素不一定都有原象,但原象不一定唯一。 2.函数的概念 (1)函数的定义:设是两个非空的数集,如果按照某种对应法则,对于集合中的 ,在集合中都有 的数和它对应,那么这样的对应叫做从到的一个函数,通常记为__________ (2)函数的定义域、值域 在函数中,叫做自变量, 叫做的定义域;与的值相对应的值叫做函数值, 称为函数的值域。 (3)函数的三要素: 、 和 3.函数的三种表示法:图象法、列表法、解析法 (1).图象法:就是用函数图象表示两个变量之间的关系; (2).列表法:就是列出表格来表示两个变量的函数关系; (3).解析法:就是把两个变量的函数关系,用等式来表示。 4.分段函数 在自变量的不同变化范围中,对应法则用不同式子来表示的函数称为分段函数。 (二)考点分析 考点1:映射的概念 例1.下述两个个对应是A 到B 的映射吗? (1)A R =,{|0}B y y =>,:||f x y x →=; (2){|0}A x x =>,{|}B y y R =∈,:f x y →= 例2.若}4,3,2,1{=A ,},,{c b a B =,,,a b c R ∈,则A 到B 的映射有 个,B 到A 的映射有 个 例3.设集合{1,0,1}M =-,{2,1,0,1,2}N =--,如果从M 到N 的映射f 满足条件:对M 中的每个元素x 与它在N 中的象()f x 的和都为奇数,则映射f 的个数是( ) ()A 8个 ()B 12个 ()C 16个 ()D 18个 考点2:判断两函数是否为同一个函数 如果两个函数的定义域相同,并且对应关系完全一致,称这两个函数相等。 例1. 试判断以下各组函数是否表示同一函数? (1),; (2), (3),; (4),

相关文档
最新文档