凝胶阻滞电泳

凝胶阻滞电泳
凝胶阻滞电泳

聚乙烯亚胺结合DNA的凝胶阻滞电泳实验

实验导读

琼脂糖凝胶电泳是分离、鉴定、纯化DNA片段的标准方法。即用低浓度的荧光物质,插入性染料溴化乙锭使凝胶中DNA区带染色,在紫外光下可检测出凝胶中少至 1 ng的DNA,故可以直接显示DNA 在凝胶中的位置,也可以用于聚阳离子材料对质粒DNA结合能力的检测。

DNA在琼脂糖凝胶中的电泳迁移率主要取决于以下四个参数:

1)DNA分子的大小:电泳时线性双螺旋DNA分子是以头尾位向前迁移的,迁移率与其分子量的对数成反比。

2)琼脂糖浓度:一定大小的DNA片段通过不同浓度的琼脂糖凝胶时迁移率也不同。DNA 电泳迁移率(μ)的对数与凝胶浓度(ξ)间的线性关系,可表达为下列等式:

Log μ= log μ0-Kr·ξ

式中μ0为自由电泳迁移率;Kr为阻带系数,它是与凝胶性质、迁移分子大小及形状有关的常数。因此,利用不同的凝胶浓度,就能在较大范围内分离不同大小的DNA片段。

表1、琼脂糖的浓度对分离范围的影响

3)DNA分子的构象:分子量相同的闭合环状DNA(第一型)、有缺刻的环状DNA(第二型)及线状DNA(第三型)在琼脂糖凝胶中的迁移率不同。

4)电泳所用电流:低电压条件下线性DNA片段的迁移率与所用电压成比例。.随电场强度的增加,高分子量DNA片段迁移率也有不同程度的增加,因此,电压增加时则琼脂糖凝胶电泳分离DNA的有效范围减少。为了获得DNA片段的最佳分离效果,凝胶电泳的电压应小于5 V/cm。

在基因治疗研究中,常用到多种带正电荷的聚阳离子材料,如聚赖氨酸、聚乙烯亚胺、壳聚糖以及树枝状载体材料,它们能与质粒DNA在一定的重量比或摩尔比下,通过正负离子的结合,缩合形成纳米微粒。在凝胶电泳实验中,通过不同重量比或者摩尔比的载体材料与DNA的结合,在外加电场的作用下,结合物在凝胶上迁移的距离有所不同。因此可据此筛选材料与DNA完全结合时的重量比或者摩尔比,为载体材料在体外细胞实验和体内实验提供适宜的比例关系。

在凝胶电泳实验中,常用的电解液是50 mmol pH 7.5~7.8的Tris-乙酸盐、硼酸盐或磷酸盐等几种不同的电泳缓冲液(见表),通常配成浓缩液于室温贮存。

表2、常用缓冲液的配制

而Tris-乙酸盐(TAE)是最常用的电解缓冲液。TEA的缓冲能力相当低,长时间电泳缓冲系统容易失效(阳极变碱,阴极变酸),因此,在使用数次后需及时更换成新鲜的缓冲液。

在琼脂糖凝胶电泳实验中,对DNA观察最方便的办法是用荧光染料溴化乙锭(Ethidium bromide EB)染料。EB具有可插入DNA碱基群中的一个平面基团。这一基团的结合部分与碱基很接近,使染料与DNA结合后较游离于液体中的染料表现出更强的荧光。溴化乙锭(EB)可用于检测单链或双链核酸(DNA与RNA),。通常在凝胶及电泳液中均掺有溴化乙锭(0.5 μg/ml)。

一、实验目的

1.了解凝胶电泳的原理及基本操作。

2.掌握凝胶阻滞电泳分析材料与DNA的结合能力。

二、实验原理

实验室多用琼脂糖水平平板凝胶电泳装置进行DNA电泳实验。在电场中, 在pH值为8.0-8.3时,核酸分子带负电,在电泳时由负极向正极移动。阳离子聚合物是目前非病毒基因载体中研究较多的一类材料,如聚乙稀亚胺(PEI)、聚氨基酸和壳聚糖等,与DNA的结合能力对其转染效率有着至关重要的影响。以PEI为例,其与DNA通过静电作用形成一个复合物微粒,通过凝胶阻滞实验即可直观的反应其浓缩DNA的能力。

在实验过程中,需计算聚乙烯亚胺与DNA的比例。从研究中发现,对聚乙烯亚胺的研究较多的是采用纳摩尔比(nmol/nmol),即聚乙烯亚胺中所含“氮”的纳摩尔(nmol):DNA中“磷”的纳摩尔(nmol),也就是通常所表示的N/P比。以25KDa的聚乙烯亚胺为例,称取90 mg的PEI溶于20ml的去离子水中,其浓度为4.5ug/ul,因为其分子量为25000,故其浓度为0.18 nmol/ul。由于聚乙烯亚胺中的基本单元结构为-CH2-CH2-NH2,-CH2-CH2-NH和-CH2-CH2-N三种单元结构的质量分别为44,43,42平均为43,另外对于分子量为25000的聚乙烯亚胺而言,共有个581个结构单元,即25000/43=581。所以聚乙烯亚胺中的“N”含量为0.18×581(nmol/ul)=100 nmol/ul,也就意味着质量浓度为4.5 ug/ul 的聚乙烯亚胺(分子量为25000),其“N”的浓度为100nmol/ul。其他分子量的聚乙烯亚胺溶液可以按照以上的方法进行质量浓度与摩尔浓度的换算。对质粒DNA而言,根据其结构中碱基对的数量,每微克的DNA含3nmol的磷,即“P”的浓度。这样,PEI与DNA的N/P即为PEI中所含“N”的nmol与DNA中所含的“P”的nmol之比。如聚乙烯亚胺储存液的浓度为10 nmol/ul,DNA储存液的浓度为0.33 ug/μL(即“P”的浓度为1nmol/ul),在实验中取PEI和DNA各1ul,则两者的N/P比即为10 nmol/1 nmol=10/1,当然在研究中可以调节两者的浓度,使得N/P为整数倍,如1/1,2/1,3/1……。

也可以用聚阳离子材料与质粒DNA的重量比进行凝胶电泳实验,即微克载体材料比微克质粒DNA。下图是阳离子材料聚乙烯亚胺/DNA复合物的凝胶电泳照片。

DNA 0.2/1 0.4/1 0.6/1 0.8/1 1/1 2/1 3/1 (nmol/nmol)

图 1 阳离子材料聚乙烯亚胺/DNA复合物的凝胶电泳示意图

三、仪器和试剂

1.聚乙稀亚胺25 kDa,琼脂糖,TAE,EB,质粒DNA,上样缓冲液。

2.培清 JS-380A自动凝胶图像分析仪,Tanon EPS100 核酸电泳仪。

四、实验步骤

1 聚乙烯亚胺溶液制备

称取90 mg的PEI溶于20ml的去离子水中,其浓度为4.5ug/ul,因为其分子量为25000,故其浓度为0.18 nmol/ul。

2 琼脂糖凝胶的制备(大板)

称取1 g琼脂糖,加入100 mLTAE缓冲液(1×),沸水浴或者微波加热至熔化,晃动使之均匀,冷却至60 ℃后加入3 μL溴化乙锭(Ethidium bromide,EB)(0.5 μg/mL),混匀后灌胶并插好梳子,静置约30 min,使之凝固。拔掉梳子,将胶小心推入电泳槽,加样口一端应与负极(黑色)平行。电泳槽中加入TAE缓冲液,使液面高于凝胶约1 mm。

注:中板则取500 mg 琼脂糖,小板则取250 mg 琼脂糖,浓度与大板一致。

3聚乙烯亚胺/DNA复合物的制备

称取 PEI25 kDa 90 mg,将其溶于20 mL水中得到母液,其含N浓度为100nmol/μL。取30 μL该母液稀释至1mL得到含N浓度为3 nmol/μL的PEI溶液。取DNA,稀释使其含P的浓度为3 noml/μL。取上述PEI溶液和DNA溶液各1 μL,用PBS稀释至20uL,混匀得到N/P 比为1:1的溶液,静置30 min左右使其充分复合。然后将该样品与上样缓冲液混合均匀,依次点入加样孔中。

通过调整二者的加样体积,可以得到N/P为2,3,4……的复合物。

4电泳实验

打开电泳仪,设置参数,电压80 v,电流800 mA,时间30 min左右,待看到上样缓冲液指示剂到达阳极一端,停止电泳,在凝胶图像分析仪上拍照。

五、注意事项:

1.溴化乙锭是很强的诱变剂,接触含有该染料的凝胶或溶液时一定要戴手套。

2.设计实验时,阳离子材料和DNA的N/P要选择合适,使得到的凝胶电泳照片能够有层次的显示其与DNA的结合情况。

3.加样时要注意尽量不要让样品溢出加样口,缓慢小心的加入。

六思考题

1 如何进行载体材料/DNA重量比与纳摩尔比的换算。

2 根据聚乙烯亚胺与质粒DNA中N/P的计算,如何计算聚赖氨酸和壳聚糖与DNA的N/P比例。

七、参考文献:

1.D Li,G Tang.et al. The construction of a novel kind of non-viral gene delivery vector based on protein as core backbone. V ox Sanguinis 2008;94:234–241.

2. Yun-Xia Sun,Ren-Xi Zhuo.et al.Synthesis of (Dex-HMDI)-g-PEIs as effective and low cytotoxic nonviral gene vectors. Journal of Controlled Release 2008;128:171-178.

(赵丹军汤谷平)

电泳的基本原理

电泳的基本原理 电泳是指带电颗粒在电场的作用下发生迁移的过程。许多重要的生物分子,如氨基酸、多肽、蛋白质、核苷酸、核酸等都具有可电离基团,它们在某个特定的pH值下可以带正电或负电,在电场的作用下,这些带电分子会向着与其所带电荷极性相反的电极方向移动。电泳技术就是利用在电场的作用下,由于待分离样品中各种分子带电性质以及分子本身大小、形状等性质的差异,使带电分子产生不同的迁移速度,从而对样品进行分离、鉴定或提纯的技术。 电泳过程必须在一种支持介质中进行。Tiselius等在1937年进行的自由界面电泳没有固定支持介质,所以扩散和对流都比较强,影响分离效果。于是出现了固定支持介质的电泳,样品在固定的介质中进行电泳过程,减少了扩散和对流等干扰作用。最初的支持介质是滤纸和醋酸纤维素膜,目前这些介质在实验室已经应用得较少。在很长一段时间里,小分子物质如氨基酸、多肽、糖等通常用滤纸或纤维素、硅胶薄层平板为介质的电泳进行分离、分析,但目前则一般使用更灵敏的技术如HPLC等来进行分析。这些介质适合于分离小分子物质,操作简单、方便。但对于复杂的生物大分子则分离效果较差。凝胶作为支持介质的引入大大促进了电泳技术的发展,使电泳技术成为分析蛋白质、核酸等生物大分子的重要手段之一。最初使用的凝胶是淀粉凝胶,但目前使用得最多的是琼脂糖凝胶和聚丙烯酰胺凝胶。蛋白质电泳主要使用聚丙烯酰胺凝胶。 电泳装置主要包括两个部分:电源和电泳槽。电源提供直流电,在电泳槽中产生电场,驱动带电分子的迁移。电泳槽可以分为水平式和垂直式两类。垂直板式电泳是较为常见的一种,常用于聚丙烯酰胺凝胶电泳中蛋白质的分离。电泳槽中间是夹在一起的两块玻璃板,玻璃板两边由塑料条隔开,在玻璃平板中间

SDS-聚丙烯酰胺凝胶电泳(SDS-PAGE)实验原理和操作步骤

SDS-聚丙烯酰胺凝胶电泳(SDS-PAGE)实 验原理和操作步骤 实验原理: SDS-PAGE是对蛋白质进行量化,比较及特性鉴定的一种经济、快速、而且可重复的方法。该法是依据混合蛋白的分子量不同来进行分离的。 SDS是一种去垢剂,可与蛋白质的疏水部分相结合,破坏其折叠结构,并使其广泛存在于一个广泛均一的溶液中。SDS蛋白质复合物的长度与其分子量成正比。在样品介质和凝胶中加入强还原剂和去污剂后,电荷因素可被忽略。蛋白亚基的迁移率取决于亚基分子量。 试剂和器材: 试剂:1. 5x样品缓冲液(10ml):0.6ml 1mol/L的Tris-HCl(pH6.8),5ml 50%甘油,2ml 10%的SDS,0.5ml巯基乙醇,1ml 1%溴酚蓝,0.9ml蒸馏水。可在4℃保存数周,或在-20℃保存数月。 2. 凝胶贮液:在通风橱中,称取丙烯酰胺30g,甲叉双丙烯酰胺0.8g,加重蒸水溶解后,定容到100ml。过滤后置棕色瓶中,4℃保存,一般可放置1个月。 3. pH8.9分离胶缓冲液:Tris 36.3g ,加1mol/L HCl 48ml,

加重蒸水80ml使其溶解,调pH8.9,定容至100ml,4℃保存。 4. pH6.7浓缩胶缓冲液:Tris 5.98g ,加1mol/L HCl 48ml,加重蒸水80ml使其溶解,调pH 6.7,定容至100ml,4℃保存。 5. TEMED(四乙基乙二胺)原液 6.10%过硫酸铵(用重蒸水新鲜配制) 7. pH8.3 Tris-甘氨酸电极缓冲液:称取Tris 6.0g,甘氨酸28.8g,加蒸馏水约900ml,调pH8.3后,用蒸馏水定容至1000ml。置4℃保存,临用前稀释10倍。 8. 考马斯亮蓝G250染色液:称100mg考马斯亮蓝G250,溶于200ml蒸馏水中,慢慢加入7.5ml 70%的过氯酸,最后补足水到250ml,搅拌1小时,小孔滤纸过滤。 器材:电泳仪,电泳槽,水浴锅,摇床。 实验操作

如何分析琼脂糖凝胶电泳图

凝胶电泳结果分析 常见问题原因对策 DNA条带模糊DNA降解实验过程中应避免核酸酶污染。 电泳缓冲液陈旧电泳缓冲液多次使用后,离子强度降低, PH值上升,缓冲能力减弱,从而影响电 泳效果。TBE建议使用10就更换。 所用电泳条件不合适电泳时电压不应超过20V/cm,温度 <30℃,巨大DNA链电泳,温度 <15℃,检查所用电泳缓冲液的缓冲能力, 注意经常更换。 DNA上样量过多减少凝胶中DNA上样量 DNA含盐过高电泳前通过乙醇沉淀去除多余盐分。 有蛋白污染电泳前酚抽提去除蛋白。 DNA变性电泳前勿加热,用20mM NaCl缓冲液稀 释DNA。 出现片状拖带或涂抹带PCR扩增时出现涂抹带、片状 带或地毯样带,往往由于酶量多 或者酶的质量差,dNTP浓度高, Mg2+浓度高,退火温度过低, 循环次数多。 减少酶量或更换酶,减少dNTP浓度,适 当降低Mg2+浓度,增加模板量,减少循 环次数。 不规则DNA 带迁移电泳条件不合适电泳时电压不应超过20V/cm,温度 <30℃,巨大DNA链电泳,温度 <15℃,检查所用电泳缓冲液的缓冲能力, 注意经常更换。 DNA变性电泳前勿加热,用20mM NaCl缓冲液稀 释DNA。 带弱或无DNA 带DNA上样量不够增加DNA上样量,聚丙烯酰胺凝胶电泳 比琼脂糖电泳灵敏度高,上样量可适当降 低。 DNA降解实验过程中应避免核酸酶污染。 DNA跑出凝胶缩短电泳时间,降低电压,增加凝胶浓度。EB染色的DNA所用光源不合 适 应用短波长(254nm)的紫外光源。 DNA带缺尖DNA跑出凝胶缩短电泳时间,降低电压,增加凝胶浓度。 分子大小相近的DNA带不易分 辨 增加电泳时间,核准正确凝胶浓度 DNA变性电泳前勿加热,用20mM NaCl缓冲液稀 释DNA。 DNA链大,常规电泳不合适。在脉冲凝胶电泳上个分析。 电泳时ladder 扭曲配胶的缓冲液与电泳的缓冲液 不是同时配制。 同时配制,电泳缓冲液高出胶的1-2mm 即可。 电泳时电压过高电泳时电压不应超过20V/cm。

琼脂糖凝胶电泳标准操作流程

琼脂糖凝胶电泳操作标准流程 一、实验目的 琼脂糖凝胶电泳是常用的检测核酸的方法,具有操作方便、经济快速等优点。本铜人阵学习DNA 琼脂糖凝胶电泳的使用技术,此关为能力考核,通关成功后,代表具备操作琼脂糖电泳的能力。 二、实验原理 琼脂糖凝胶电泳是常用的用于分离、鉴定DNA 、RNA 分子混合物的方法,这种电泳方法以琼脂凝胶作为支持物,利用DNA 分子在泳动时的电荷效应和分子筛效应,达到分离混合物的目的。DNA 分子在高于其等电点的溶液中带负电,在电场中向阳极移动。在一定的电场强度下,DNA 分子的迁移速度取决于分子筛效应,即分子本身的大小和构型是主要的影响因素。DNA 分子的迁移速度与其相对分子量成反比。不同构型的DNA 分子的迁移速度不同。如环形DNA 分子样品,其中有三种构型的分子:共价闭合环状的超螺旋分子(cccDNA )、开环分子(ocDNA)、和线形DNA分子(IDNA)。这三种不同构型分子进行电泳时的迁移速度大小顺序为:cccDNA > IDNA >ocDNA 影响核酸分子泳动率的因素主要还是:1、DNA 分子大小;2、琼脂糖浓度; 3、DNA 构想; 4、所用的电压; 5、琼脂糖种类; 6、电泳缓冲液 核酸电泳中常用的染色剂是溴化乙锭(ethidium bromide EB )。溴化乙锭是一种扁平分子,可以嵌入核酸双链的配对碱基之间。在紫外线照射BE-DNA 复合物时,出现不同的效应。254nm的紫外线照射时,灵敏度最高,但对DNA损伤严重;360nm紫外线照射时,虽然灵敏度较低,但对DNA损伤小,所以适合对DNA样品的观察和回收等操作。300nm紫外线照射的灵敏度较高,且对DNA 损伤不是很大,所以也比较适用。 三、材料、试剂及器具 1、材料 不同大小的基因组片段; 2、试剂 Hind III digest DNA Marker (分子量标准)(TaKaRa);D2000(TianGen);

最新琼脂糖凝胶电泳目的及后续工作

琼脂糖凝胶电泳的应用 琼脂糖凝胶电泳是用琼脂或琼脂糖作支持介质的一种电泳方法。对于分子量较大的样品,如大分子核酸、病毒等,一般可采用孔径较大的琼脂糖凝胶进行电泳分离。 1.分离纯化大片段DNA 琼脂糖凝胶约可区分相差100bp的DNA片段,其分辨率虽比聚丙烯酰胺凝胶低,但它制备容易,分离范围广,尤其适于分离大片段DNA。普通琼脂糖凝胶分离DNA的范围为0.2-20kb,利用脉冲电泳,可分离高达10^7bp的DNA片段。分离后如需回收:将需要的DNA胶部分切下,尽量不要切到多余的胶。切胶后加入3倍体积TE,水浴熔化后,酚、酚或氯仿抽提干净,乙醇沉淀即可。 2.提取大分子DNA构建大片段基因组文库的关键就是获得高分子量的基因组DNA。而利用成熟的商品化试剂盒提取基因组DNA只能得到大小约在20kb左右的DNA;酶抽提法需经过多次抽提法才能得到较纯的DNA,但极易造成基因组断裂,也难以得到大于300kb的基因组DNA。两种方法均不能达到目的,但经过研究人员不懈的研究,利用琼脂糖凝胶制备成凝胶块提取基因组DNA能够获得足够大的DNA片段,可以完全符合构建粘粒基因组文库的要求。在此过程中研究人员在用低熔点琼脂糖还是普通熔点琼脂糖制备凝胶块的问题中选择了后者,因为低熔点琼脂糖价格昂贵且胶块在制备纯化的过程中容易断裂,而普通熔点琼脂糖与低熔点琼脂糖在基因组DNA制备方面没有区别。 3.PCR产物检测在基因组DNA的提取中,DNA经孵育及抽提、沉淀后以70%乙醇洗涤2次,再适量的双蒸水溶解DNA。然后在1.0%的琼脂糖凝胶上进行电泳,以1kb DNA ladder 为参照,估计DNA溶液浓度。具体检验方法是:2.0%琼脂糖制成凝胶,取6 微升AFLP-PCR产物与1微升上样缓冲液混匀后上样,用1×TBE电泳缓冲液,120V电泳50min,使用EB溶液染色后在凝胶成像系统(ChampGel-3200)上观察拍照。 4.免疫扩散法中的应用免疫扩散法是指抗原与抗体在同一凝胶中扩散的方法,是观察可溶性抗原与相应抗体反应和抗原抗体鉴定的最基本方法之一。利用琼脂糖凝胶作为扩

SDS-PAGE电泳问题总结

SDS-PAGE电泳问题总结(2012-04-19 20:07:12)转载▼ 标签:杂谈分类:々☆常用技术☆々 蛋白质条带为什么走到下面逐渐变宽发散? 回答:多数情况是因为小分子在胶里的运动不规律,这种情况常发生在高浓度胶或凝固不 一致的胶里,你可以加大阴极的缓冲液浓度,可能会有点改善 胶凝的快慢不在于TEMED多少,在于APS的量,APS提供自由基,TEMED帮助自由基作用,是催化剂,对凝固速度影响不是太大,可以试试加大APS的量 丙烯酰胺在凝胶中的百分比分离胶的分辨范围 15 %15~45 kDa 12.5%15~60 kDa 10 %18~75 kDa 7.5%30~120kDa 5 %60~212kDa 来源于《蛋白质技术手册》汪家政 每种浓度的变性胶的分离范围不是指能跑出哪个范围分子量的蛋白质,而是指在这个区 间内,蛋白质迁移率基本和分子量成正比,也就是线性关系,为了数据的可靠性,大家 尽量根据这个来选择自己配胶的浓度。 下层也就是阳极缓冲液的作用当然是导电,用普通TRIS缓冲液做阳极缓冲液,一样跑得好,阴极就不一样了,需要提供离子强度和SDS环境,而在电泳过程中,阴极缓冲液的一些离子损失,而且与样品接触,不适合再次使用
至于有些时候跑太大浓度的胶,因为药品,BUFFER配制过程的一些问题,导致会出现蛋白带无法电泳到分离胶的最下方,胶跑得难看情况比较多,一般来说,15%的胶已经能够跑出大约15KDa左右的蛋白,对于普通SDS-PAGE已经几乎到了极限,还跑不出来的MARK带,就不必去追究商品的问题了 SDS-PAGE胶的凝结速度受温度影响很大,随着温度的升高,凝结速度越来越快,温度降 低则反之。所以,夏天时胶凝结的比较快,而冬天脚的凝结速度则变慢,甚至不能凝结,解决此类问题较可行的方法是:冬天在原配方的基础上加倍过硫酸铵和TEMED的使用量,可很好的解决胶凝结速度过慢的问题。 做SDS-PAGE的时候,除了蛋白量上样一致,最好体积也一致,这样跑出来的胶各个泳道之间的band能做到一样宽,方便后面的比较,特别是WB。做法就是拿1X的上样缓冲补全要加的样做到体积一致,否则跑出来会有的宽有的窄,特别是上样体积相差较大的 加入染色液后,先放入微波炉里加热5-10秒,使染色液微热即可(千万不要加热太久, 否则冰醋酸就挥发了)。然后放水平摇床上摇20分钟,最多半小时就染好了。脱色也很 简单,不用脱色液,直接用去离子水,放微波炉里煮沸5分钟左右,然后将水倒掉,再换上新的去离子水煮,这样反复几次,就可以了。效果可能比正常的脱色稍差一点点,不 如那样清楚,只要电泳时比平时多上1/5的样品就可以了,关键是这样省时省材料(用不着含甲醇和冰醋酸的脱色液)。方便快捷!放心,反复煮胶不会把胶煮坏的。

RNA的琼脂糖凝胶电泳实验原理和步骤

RNA的琼脂糖凝胶电泳实验原理和步骤 关键词:RNA琼脂糖电泳2012-03-09 00:00 来源:互联网点击次数:38148 一、实验目的 掌握植物总RNA非变性胶电泳的原理和方法。 二、实验原理 RNA电泳可以在变性及非变性两种条件下进行。非变性电泳使用1.0%--1.4%的凝胶,不同的RNA条带也能分开,但无法判断其分子量。只有在完全变性的条件下,RNA的泳动率才与分子量的对数呈线性关系。因此要测定RNA分子量时,一定要用变性凝胶。在需快速检测所提总RNA样品完整性时,配制普通的1%琼脂糖凝胶即可。

三、实验材料、器具及药品 蘑菇的总RNA溶液。电泳仪,电泳槽,电子天平,移液器,枪头,微波炉,紫外透射检测仪等。琼脂糖,1XTAE电泳缓冲液,0.5μg/ml溴化乙锭(EB)10X载样缓冲液。 四、实验步骤 (1)用1×TAE电泳缓冲液制作琼脂糖凝胶,加1×TAE电泳缓冲液至液面覆盖凝胶。 (2)在超净工作台上,用移液器吸取总RNA样品4μl于封口膜上。在实验台上再加入5μl 1×TAE电泳缓冲液及1μl 的10X载样缓冲液,混匀后,小心加入点样孔。 (3)打开电源开关,调节电压至100V,使RNA由负极向正极电泳,约30min 后将凝胶放入EB染液中染色5min,用清水稍微漂洗。在紫外透射检测仪上观察RNA电泳结果。

RNA的变性琼脂糖凝胶检测 试剂: (1)MOPS缓冲液(10*):0.4mol/L 吗啉代丙烷磺酸(MOPS)(Ph7.0),0.1mol/L NaAc, 10mol/L EDTA。 (2)上样染料:50%甘油,1mmol/L EDTA ,0.4%溴酚蓝,0.4%二甲苯蓝。(3)甲醛。 (4)去离子甲酰胺。v电泳槽清洗:去污剂洗干净(一般浸泡过夜)——水冲洗——乙醇干燥——3%H2O2灌满——室温放置10分钟——0.1%DEPC水冲洗。 操作:

凝胶电泳实验原理与步骤

一、实验目的 学习和掌握琼脂糖电泳法鉴定DNA的原理和方法。 二、实验原理 琼脂糖凝胶电泳是用于分离、鉴定和提纯DNA片段的标准方法。琼脂糖是从琼脂中提取的一种多糖,具亲水性,但不带电荷,是一种很好的电泳支持物。DNA在碱性条件下(pH8.0的缓冲液)带负电荷,在电场中通过凝胶介质向正极移动,不同DNA分子片段由于分子和构型不同,在电场中的泳动速率液不同。溴化乙锭(EB)可嵌入DNA分子碱基对间形成荧光络合物,经紫外线照射后,可分出不同的区带,达到分离、鉴定分子量,筛选重组子的目的。 三、实验材料 实验14提取的DNA样品, 四、器具及药品 电泳仪,电泳槽,紫外透射反射仪,恒温水浴锅,微波炉,微量进样器,三羟甲基氨基甲烷,盐酸,醋酸钠,EDTA,琼脂糖,溴酚蓝,溴化乙锭。 五、实验步骤 1、安装电泳槽 将有机玻璃的电泳凝胶床洗净,晾干,用胶带将两端的开口封好,放在水平的工作台上,插上样品梳。 2、琼脂糖凝胶的制备 称取琼脂糖溶解在电泳缓冲液中,(按0.3-1.5%的琼脂糖含量,1-25kb大小的DNA用1%的凝胶,20-100kb的DNA用0.5%的凝胶,200-2000bp的DNA用1.5%的凝胶)置微波炉或沸水浴中加热至完全溶化(不要加热至沸腾),取出摇匀。 3、灌胶 将冷却到60℃的琼脂糖溶液轻轻倒入电泳槽水平板上。 4、待琼脂糖胶凝固后,在电泳槽内加入电泳缓冲液,然后拔出梳子。 5、加样 将DNA样品与加样缓冲液按4:1混匀后,用微量移液器将混合液加到样品槽中,每槽加10-20μl,记录样品的点样次序和加样量。 6、电泳 安装好电极导线,点样孔一端接负极,另一端接正极,打开电源,调电压至3-5V/cm,电泳1-3hr,当溴酚蓝移到距凝胶前沿1-2cm时,停止电泳。 7、染色和观察 取出凝胶,放在含有溴化乙锭的染色液中染色30min,即可在254nm的紫外灯下观察,有橙红色荧光条带的位置,即为DNA条带,或在紫外灯下照相记录电泳图谱。溴化乙锭是致癌剂,操作时要小心,必须戴手套。 附: ⑴5×TBE(tris-硼酸及EDTA)缓冲液的配制(1000ml): Tris 54g,硼酸27.5g,0.5mol/L EDTA 20ml,将pH调到8.0,定容至1000ml,4℃冰箱保存,用时稀释10倍。 ⑵加样缓冲液的配制: 0.25%溴酚蓝,40%(W/V)蔗糖水溶液,4℃冰箱保存。 ⑶溴化乙锭的配制: 称取0.1g溴化乙锭,溶于10ml水,配成终浓度为10mg/ml的母液,4℃冰箱保存。染

聚丙烯酰胺凝胶电泳原理及方法

聚丙烯酰胺凝胶电泳原理及方法 发布时间:11-06-01 来源:点击量:10032 字段选择:大中小聚丙烯酰胺凝胶电泳原理及方法 聚丙烯酰胺凝胶电泳是以聚丙烯酰胺凝胶作为支持介质的电泳方法。在这种支持介质上可根据被分离物质分子大小和分子电荷多少来分离。 聚丙烯酰胺凝胶有以下优点: ①聚丙烯酰胺凝胶是由丙烯酰胺和N,N'甲叉双丙烯酰胺聚合而成的大分子。凝胶有格子是带有酰胺侧链的碳-碳聚合物,没有或很少带有离子的侧基,因而电渗作用比较小,不易和样品相互作用。 ②由于聚丙烯酰胺凝胶是一种人工合成的物质,在聚合前可调节单体的浓度比,形成不同程度交链结构,其空隙度可在一个较广的范围内变化,可以根据要分离物质分子的大小,选择合适的凝胶成分,使之既有适宜的空隙度,又有比较好的机械性质。一般说来,含丙烯酰胺7-7.5%的凝胶,机械性能适用于分离分子量范围不1万至100 万物质,1万以下的蛋白质则采用含丙烯酰胺15-30%的凝胶,而分子量特别大的可采用含丙烯酰胺4%的凝胶,大孔胶易碎,小孔胶则难从管中取出,因此当丙烯酰胺的浓度增加时可以减少双含丙烯酰胺,以改进凝胶的机械性能。 ③在一定浓度范围聚丙烯酰胺对热稳定。凝胶无色透明,易观察,可用检测仪直接测定。 ④丙烯酰胺是比较纯的化合物,可以精制,减少污染。合成聚丙

的总克数称凝胶浓度,常用T%表达;凝胶溶液中交联剂占单体和交联体总量的百分数称为交联度,常用C%表示,可用下式计算: 公式 a:丙烯酰胺克数;b:甲撑双丙烯酰胺克数;m:缓冲液体积(毫升)凝胶浓度过高时,凝胶硬而脆,容易破碎;凝胶浓度太低时,凝胶稀软,不易操作。 交联度过高,胶不透明并缺乏弹性;交联度过低,凝胶呈糊状。聚丙烯酰胺凝胶具有较高的粘度,它不防止对流减低扩散的能力,而且因为它具有三度空间网状结构,某分子通过这种网孔的能力将取决于凝胶孔隙和分离物质颗粒的大小和形状,这是凝胶的分子筛作用。由于这种分子筛作用,这里的凝胶并不仅是单纯的支持物,因此,在电泳过程中除了注意电泳的基本原理以外,还必须注意与凝胶本身有关的各种性质(网孔的大小和形状等)。可通过下式计算来选择适当的凝胶网孔。 公式 式中:P为网孔平均直径,C为多聚体浓度,d为该多聚体分子直径(若不是卷曲的分子应为5A),K为常数,K值取决于涨胶的几何构型,假如多聚体的链是以近似于直角交联的,则约为1.5根据此式,我们可以通过多聚体浓度C近似地计算出网孔直径,例如已知多聚体浓度为5%,其网孔平均直径应为: 公式

凝胶电泳

凝胶电泳

————————————————————————————————作者:————————————————————————————————日期:

论文题目:凝胶电泳 专业:化学 年级:10级 学号:10101550203 姓名:马慧 摘要 凝胶电泳(Gel electrophoresis)或称胶体电泳,也可称为扁平式电泳法,是一大类技术,被科学工作者用于分离不同物理性质(如大小、形状、等电点等)的分子。它是以淀粉胶、琼脂或琼脂糖凝胶、聚丙烯酰胺凝胶等作为支持介质的区带电泳法。凝胶电泳通常用于分析用途,但也可以作为制备技术,在采用某些方法,如质谱、聚合酶链式反应、克隆、DNA测序或者 免疫印迹检测之前,进行部分提纯分子。通过学习,了 解凝胶电泳的类别、原理、特点及其应用范围。 关键词:制备,类别,定义,原理,特点,应用范围 正文 一、凝胶制备 1、设备与试剂:琼脂糖凝胶电泳分为垂直及水平型两种。其中水平型可制备低浓度琼脂糖凝胶,而且制胶与加样都比较方便,故应用比较广泛。核酸分离一般用连续缓冲体系,常用的有TBE(0.08mol/L Tris?HCl,pH8.5,0.08mol/L硼酸,0.0024mol/L EDTA)和THE(0.04mol/L Tris?HCl。pH7.8,0.2mol/L醋酸钠,0.0018mol/L EDTA)。 2、凝胶制备:用上述缓冲液配制0.5%-0.8%琼脂糖凝胶溶液,沸水浴或微波炉加热使之融化,冷至55℃时加入溴化乙锭(EB)至终浓度为0.5μg/ml,然后将其注入玻璃板或有机玻璃板组装好的模子中,厚度依样品浓度而定。注胶时,梳齿下端距玻璃板0.5-1.0mm,待脱凝固后,取出梳子,加入适量电极缓冲液使板胶浸没在缓冲液下1mm处。

SDS-PAGE电泳实验步骤

垂直板聚丙烯酰胺凝胶电泳分离蛋白质 一、实验目的 学习SDS-聚丙烯酰胺凝胶电泳法(SDS—PAGE)测定蛋白质的分子量的原理和基本操作技术。 二、实验原理 蛋白质是两性电解质,在一定的pH条件下解离而带电荷。当溶液的pH大于蛋白质的等电点(pI)时,蛋白质本身带负电,在电场中将向正极移动;当溶液的pH小于蛋白质的等电点时,蛋白质带正电,在电场中将向负极移动;蛋白质在特定电场中移动的速度取决于其本身所带的净电荷的多少、蛋白质颗粒的大小和分子形状、电场强度等。 聚丙烯酰胺凝胶是由一定量的丙烯酰胺和双丙烯酰胺聚合而成的三维网状孔结构。本实验采用不连续凝胶系统,调整双丙烯酰胺用量的多少,可制成不同孔径的两层凝胶;这样,当含有不同分子量的蛋白质溶液通过这两层凝胶时,受阻滞的程度不同而表现出不同的迁移率。由于上层胶的孔径较大,不同大小的蛋白质分子在通过大孔胶时,受到的阻滞基本相同,因此以相同的速率移动;当进入小孔胶时,分子量大的蛋白质移动速度减慢,因而在两层凝胶的界面处,样品被压缩成很窄的区带。这就是常说的浓缩效应和分子筛效应。同时,在制备上层胶(浓缩胶)和下层胶(分离胶)时,采用两种缓冲体系;上层胶pH=6.7—6.8,下层胶pH=8.9;Tris —HCI缓冲液中的Tris用于维持溶液的电中性及pH,是缓冲配对离子;CI-是前导离子。在pH6.8时,缓冲液中的Gly-为尾随离子,而在pH=8.9时,Gly的解离度增加;这样浓缩胶和分离胶之间pH的不连续性,控制了慢离子的解离度,进而达到控制其有效迁移率之目的。不同蛋白质具有不同的等电点,在进入分离胶后,各种蛋白质由于所带的静电荷不同,而有不同的迁移率。由于在聚丙烯酰胺凝胶电泳中存在的浓缩效应,分子筛效应及电荷效应,使不同的蛋白质在同一电场中达到有效的分离。 如果在聚丙烯酰胺凝胶中加入一定浓度的十二烷基硫酸钠(SDS),由于SDS带有大量的负电荷,且这种阴离子表面活性剂能使蛋白质变性,特别是在强还原剂如巯基乙醇存在下,蛋白质分子内的二硫键被还原,肽链完全伸展,使蛋白质分子与SDS充分结合,形成带负电性的蛋白质—SDS复合物;此时,蛋白质分子上所带的负电荷量远远超过蛋白质分子原有的电荷量,掩盖了不同蛋白质间所带电荷上的差异。蛋白质分子量愈小,在电场中移动得愈快;反之,愈慢。蛋白质的分子量与电泳迁移率之间的关系是: M r =K(10-b·m) logM r =LogK—b·R m , 式中M r ——蛋白质的分子量; logK——截距; b——斜率; R m ——相对迁移率。 实验证明,蛋白质分子量在15,000—200,000的范围内,电泳迁移率与分子量

SDS-PAGE凝胶电泳

蛋白质亚基分子量测定SDS-PAGE凝胶电泳 一目的 掌握SDS-PAGE凝胶电泳测定蛋白质亚基分子量的基本原理和操作方法 二原理 SDS是一种阴离子去污剂,作为变性剂和助溶性试剂,能断裂分子内和分子间的氢键,使分子去折叠,破坏蛋白质分子的二级、三级结构;而强还原剂,如二硫苏糖醇、β-巯基乙醇能使半胱氨酸残基之间的二硫键断裂。 因此,在样品和凝胶中加入SDS和还原剂后,蛋白质分子被解聚为组成它们的多肽链,解聚后的氨基酸侧链与SDS结合后,形成带负电的蛋白质-SDS胶束,所带电荷远远超过了蛋白质原有的电荷量,消除了不同分子间的电荷差异;同时,蛋白质-SDS聚合体的形状也基本相同,这就消除了在电泳过程中分子形状对迁移率的影响。 基于上述SDS-PAGE的原理介绍,我们可以利用SDS-PAGE电泳进行未知蛋白质的分子量测定;以不同分子量的标准蛋白进行SDS-PAGE电泳得到不同标准蛋白的电泳迁移率,制作标准校正曲线,然后对未知蛋白在相同条件下进行SDS-PAGE电泳,测定迁移率,从标准曲线得到相应的分子量 三试剂和器材 试剂:1低分子量标准蛋白质 2 待测蛋白质样品(用上次测定的可溶性蛋白样液) 3 凝胶贮液:30g丙烯酰胺,0.8g甲叉双丙烯酰胺,溶于100ml蒸馏水中,过滤,于4°暗处贮存,一个月内使用 4 1mol/l,PH8.8 Tris-HCl 缓冲液,Tris121g溶于蒸馏水,用浓盐酸调至PH8.8,以蒸馏水定容至1000ml 5 10%(w/v)SDS 6 10%(w/v)过硫酸铵溶液(当天配) 7 四甲基乙二胺(TEMED) 8 电极缓冲液PH8.3:Tris30.3g,甘氨酸144.2g,SDS 10g,溶于蒸馏水并定容至1000ml,使用时稀释10倍。 9 2×样品稀释液:SDS 500mg,巯基乙醇1ml ,甘油3ml, 溴酚蓝4mg,1mol/L Tris-HCL (pH6.8),用蒸馏水溶解并定容至10ml,按每份1ml分装,可在4℃存放数周,或在-20℃保存数月。以此液制备样品时,样品若为液体,则加入与阳平等体积的原液混合即可。 10 固定液:500ml 乙醇,100ml冰醋酸,用蒸馏水定容至1000ml 11 脱色液:250ml乙醇,80ml冰醋酸,用蒸馏水定容至1000ml 12 染色液:0.29g考马斯亮蓝R-250溶解在250ml脱色液中 器材:微量进样针,电泳仪,电泳槽 四操作步骤 1分离胶制备: 凝胶浓度5% 7.5% 10% 12.5% 15% 凝胶贮液ml 5 7.5 10 12.5 15 1mol/LPH8.8 Tris-HClml 11.2 11.2 11.2 11.2 11.2 水ml 13.7 11.2 1.2 8.7 3.7 10% SDS ml 0.3 10% 过硫酸铵ml 0.1 TEMED (μL) 20 将上述胶液配好,混匀后,迅速加入两块玻璃板间隙中,使胶液面与矮玻璃和高玻璃之间形

SDS-聚丙烯酰胺凝胶电泳

SDS-聚丙烯酰胺凝胶电泳 (PAGE) 实验报告

一、实验目的 1.学习SDS-PAGE分离蛋白质的原理; 2.掌握垂直板电泳的操作方法。 二、实验原理 1、电泳: (1)定义:是指带电粒子在电场中向与其自身所带电荷相反的电极方向移动的现象。 (2)影响电泳效果的因素: ①带电颗粒的大小和形状:颗粒越大,电泳速度越慢,反之越快; ②颗粒的电荷数:电荷越少,电泳速度越慢,反之越快; ③溶液的粘度:粘度越大,电泳速度越慢,反之越快; ④溶液的pH值:影响被分离物质的解离度,离等电点越近,电泳速度越慢,反之越快; ⑤电场强度:电场强度越小,电泳速度越慢,反之越快; ⑥离子强度:离子强度越大,电泳速度越慢,反之越快; ⑦电渗现象:电场中,液体相对于固体支持物的相对移动; ⑧支持物筛孔大小:孔径小,电泳速度慢,反之则快。 2、SDS-聚丙烯酰胺凝胶电泳(SDS-PAGE) (1)定义 聚丙烯酰胺凝胶电泳(PAGE):是以聚丙烯胺凝胶作为载体的一种区带电泳。 SDS-PAGE:是在聚丙烯酰胺凝胶系统中引进SDS(十二烷基磺酸钠) (2)SDS的作用 SDS是一种阴离子去垢剂,可与蛋白质结合,形成SDS-蛋白质复合物。 由于SDS带有大量负电荷,好比蛋白质穿上带负电的“外衣”,蛋白质本身带有的电荷则被掩盖,即消除了蛋白质分子之间电荷差异。 因此在电泳时,蛋白质分子的迁移速度则主要取决于蛋白质分子大小 (3) SDS-PAGE分类: ?SDS-PAGE按照缓冲液pH值和凝胶孔径差异分为连续系统和不连续系统两大类: 连续系统:电泳体系中缓冲液pH值及凝胶浓度相同,带电颗粒在电场作用下,主要靠电荷和分子筛效应。 不连续系统:缓冲液离子成分,pH,凝胶浓度及电位梯度均不连续性,带电颗粒在电场中泳动不仅有电荷效应,分子筛效应,还具有浓缩效应,因而其分离条带清晰度及分辨率均较前者佳 (4)聚丙烯胺凝胶的生成: 聚丙烯胺凝胶由丙烯酰胺单体(Acr)和N,N’-甲叉双丙烯酰胺(Bis)在催化剂作用下聚合而成。在具有自由基时,Acr和Bis就会聚合。 引发产生自由基的方法有两种:

琼脂糖凝胶电泳实验原理和实验方法

琼脂糖凝胶电泳实验原理和实验方法 [实验原理] 电泳是现在用于分离和纯化DNA片段的最常用技术。包含电解质的多孔支持介质----“胶”并把它置于静电场中。则DNA分子将向阳极移动,这是因为DNA分子沿其双螺旋骨架两侧带有含负电荷的磷酸根残基。当DNA长度增加时,来自电场的驱动力和来自凝胶的阻力之间的比率就会降低,不同长度的DNA片段就会表现出不同的迁移率。因而就可依据DNA分子的大小来使其分离。该过程通过把示踪染料(Purple Loading Dye)或分子量标准参照物(Ladder)和样品(DNA&RNA)一起进行电泳而得到检测。分子量标准参照物也可以提供一个用于确定DNA片段大小的标准。 琼脂糖凝胶适用于分离大小在0.2-50Kb范围内的DNA片段。 [实验用品] 1.琼脂糖 1.0% 1.0g琼脂糖+100ml电泳缓冲液(TAE),微波炉中火30秒至沸腾,熔化的琼脂物冷却至60℃时 可加入10mg/ml溴化乙锭10μl,充分混匀,将温热的凝胶倒入已置好梳子(鉴定胶用细密点的梳子;回收胶用粗稀的梳子)的胶膜中在室温下放置30-45min后现进行电泳。 1.5%:琼脂糖1.5g。 2.电泳缓冲液 50×TAE Tris乙酸Tris 242g终2 mol/L 乙酸57.1ml 终1mol/L 0.5M EDTA200ml pH8.0终100mmol/L dH2O 补足至1000ml 使用时稀释1×TAE。 5×TBE Tris硼酸Tris 54g 终445mmol/L 硼酸27.5g 终445mmol/L 0.5M EDTA20ml pH8.0终10mmol/L dH2O 补足至1000ml 使用时稀释10倍成0.5倍如50ml贮存液+450ml水→500ml工作液。 [实验内容与方法] 1.移取适量的琼脂糖(如制备1%的琼脂糖胶液就移1g的琼脂糖溶于100ml TAE缓冲液中)微波炉加热使其溶于TAE缓冲液中。熔化的琼脂物冷却至60℃时可加入10mg/ml溴化乙锭10μl,充分混匀。 2.缓慢地将琼脂糖胶液注入一个带有“梳子”的胶床中(避免气泡产生),若有气泡产生用塑料移液管移去。 3.根据胶的大小让胶凝固20-60min. 4.当胶正凝固时,准备DNA样品,取适量的DNA如10μlDNA+2μl(6X)Purple Loading Dye混合.(加样液中包含染料如溴酚蓝BPB) 5.胶凝之后轻轻移去梳子。将胶床放在电泳槽内,加样孔一侧靠近阴极黑末端,注入适量的TAE 缓冲液,通常缓冲液高于胶面1cm。或加溴化乙锭EB 至TAE缓冲液中并使之混匀EB的终浓度是1μg/ml。EB也可加到胶中即将琼脂糖在微波炉加热然后冷却至60℃再加入EB。 6.加DNA样品及进行电泳使吸管与加样孔垂直使吸管尖端刚好在加样孔开口之下缓慢将DNA样品加入加样孔中. 7.加样完毕后正确连接电泳槽和电源黑的连阴极红的连阳极在打开电源之前设定好电压和时间电压150V, 时间10min. 8.通过检查加样孔附近的铂线来检测接线柱是否连接良好。若连接良好负极附近的铂丝会有气泡产生。

琼脂糖凝胶电泳实验

琼脂糖凝胶电泳实验技巧 核酸分子是两性解离分子,在高于其等电点的电泳缓冲液中,基其碱基不解离,而磷酸基团全部解离,核酸分子因而带负电荷,电泳时向正极迁移。琼脂糖主要多海洋植物琼脂中提取而来并经糖基化修饰,为一种聚合链线性分了,使用琼脂糖凝胶作为电泳支持介质,发挥分子筛功能,使得大小和构象不同的核酸分子的迁移率出现较大差异,从而达到分离的目的。琼脂糖凝胶电泳操作简单、快速、通过调整其使用浓度,使得分辨率达到大多实验的要求。因此成为分离、鉴定、纯化核酸分子的常用方法。 一、操作过程中要注意以下一些问题。 1、凝胶制作 凝胶浓度 凝胶的浓度据实验需要而变,一般在%%之间,没有用完的凝胶可以再次融化,但随着融化次数的增加,水分丢失也越多,凝胶浓度则会越来越高,导致实验结果不稳定。补水办法:一是在容器上标记煮胶前的刻度,煮胶后补充水分到原刻度;二是在煮胶前称重,煮胶后补充水至原重量。粗略一点的办法是通过多次较恒定的煮胶条件得出一个经验补水值,以保证凝胶浓度基本维持在原浓度。如果条带要回收最好不要用回收胶。 梳板的选用 一般每个制胶模具均配有多个齿型不同的梳板。梳齿宽厚,形成的点样孔容积较大,用于DNA片段回收实验等;相反,梳齿窄而薄,形成的点样孔容积就较小,用于PCR产物、酶切产物鉴定等。回收的话还可以将几个齿用透明胶带粘起来,形成一个窄而长的大孔以加大点样量提高回收率。梳板的选择主要是看上样量的多少而定。一般来说,上样量小时尽量选择薄的梳板制胶,此时电泳条带致密清晰,便于结果分析。另外,每次制胶时都要注意梳齿与底板的距离至少要 1mm,否则,拔梳板时易损坏凝胶孔底层,导致点样后样品渗漏。当然,点样孔的破坏还与拔梳板的时间和方法有关,一般凝胶需冷却30min以上方可拔出梳板,应急的情况下可以将成型的凝胶块入4度冰箱中冷却15min左右,拔梳板的方法是将制胶槽放置在电泳槽中的电泳缓冲液中,然后垂直向上慢慢用力,因为有液体的润滑作用,梳板易拔出且不易损坏点样孔。 2、点样

DNA的琼脂糖凝胶电泳实验原理和方法步骤

DNA的琼脂糖凝胶电泳实验原理和方 法步骤 琼脂糖凝胶电泳是用于分离、鉴定和提纯DNA片段的标准方法。琼脂糖是从琼脂中提取的一种多糖,具亲水性,但不带电荷,是一种很好的电泳支持物。DNA 在碱性条件下(pH8 0的缓冲液)带负电荷,在电场中通过凝胶介质向正极移动,不同DNA分子片段由于分子和构型不同,在电场中的泳动速率液不同。溴化乙锭(EB)可嵌入DNA分子碱基对间形成荧光络合物,经紫外线照射后,可分出不同的区带,达到分离、鉴定分子量,筛选重组子的目的。… 一、实验目的 学习和掌握琼脂糖电泳法鉴定DNA的原理和方法。 二、实验原理 琼脂糖凝胶电泳是用于分离、鉴定和提纯DNA片段的标准方法。琼脂糖是从琼脂中提取的一种多糖,具亲水性,但不带电荷,是一种很好的电泳支持物。DNA在碱性条件下(pH8.0的缓冲液)带负电荷,在电场中通过凝胶介质向正极移动,不同DNA分子片段由于分子和构型不同,在电场中的泳动速率液不同。溴化乙锭(EB)可嵌入DNA分子碱基对间形成荧光络合物,经紫外线照射后,可分出不同的区带,达到分离、鉴定分子量,筛选重组子的目的。 三、实验材料 实验14提取的DNA样品, 四、器具及药品 电泳仪,电泳槽,紫外透射反射仪,恒温水浴锅,微波炉,微量进样器,三羟甲基氨基甲烷,盐酸,醋酸钠,EDTA,琼脂糖,溴酚蓝,溴化乙锭。 五、实验步骤 1、安装电泳槽 将有机玻璃的电泳凝胶床洗净,晾干,用胶带将两端的开口封好,放在水平的工作台上,插上样品梳。 2、琼脂糖凝胶的制备 称取琼脂糖溶解在电泳缓冲液中,(按0.3-1.5%的琼脂糖含量,1-25kb大小的DNA用1%的凝胶,20-100kb的DNA用0.5%的凝胶,200-2000bp的DNA用1.5%的凝胶)置微波炉或沸水浴中加热至完全溶化(不要加热至沸腾),取出摇匀。 3、灌胶 将冷却到60℃的琼脂糖溶液轻轻倒入电泳槽水平板上。 4、待琼脂糖胶凝固后,在电泳槽内加入电泳缓冲液,然后拔出梳子。 5、加样 将DNA样品与加样缓冲液(loading buffer)按4:1混匀后,用微量移液器将混合液加到

琼脂糖凝胶电泳

原理 琼脂糖凝胶电泳是用琼脂糖作支持介质的一种电泳方法。其分析原理与其他支持物电泳的最主要区别是:它兼有“分子筛”和“电泳”的双重作用。 琼脂糖凝胶具有网络结构,物质分子通过时会受到阻力,大分子物质在涌动时受到的阻力大,因此在凝胶电泳中,带电颗粒的分离不仅取决于净电荷的性质和数量,而且还取决于分子大小,这就大大提高了分辨能力。但由于其孔径相当大,对大多数蛋白质来说其分子筛效应微不足道,现广泛应用于核酸的研究中。 蛋白质和核酸会根据pH不同带有不同电荷,在电场中受力大小不同,因此跑的速度不同,根据这个原理可将其分开。电泳缓冲液的pH在6~9之间,离子强度0.02~0.05为最适。常用1%的琼脂糖作为电泳支持物。琼脂糖凝胶约可区分相差100bp的DNA片段,其分辨率虽比聚丙烯酰胺凝胶低,但它制备容易,分离范围广。普通琼脂糖凝胶分离DNA的范围为0.2-20kb,利用脉冲电泳,可分离高达10^7bp的DNA片段。 操作流程 准备干净的配胶板和电泳槽 注意DNA酶污染的仪器可能会降解DNA,造成条带信号弱、模糊甚至缺失的现象。 选择电泳方法 一般的核酸检测只需要琼脂糖凝胶电泳就可以;如果需要分辨率高的电泳,特别是只有几个bp的差别应该选择聚丙烯酰胺凝胶电泳;用普通电泳不合适的巨大DNA链应该使用脉冲凝胶电泳。注意巨大的DNA链用普通电泳可能跑不出胶孔导致缺带。 正确选择凝胶浓度 对于琼脂糖凝胶电泳,浓度通常在0.5~2%之间,低浓度的用来进行大片段核酸的电泳,高浓度的用来进行小片段分析。低浓度胶易碎,小心操作和使用质量好的琼脂糖是解决办法。注意高浓度的胶可能使分子大小相近的DNA带不易分辨,造成条带缺失现象。 适合的电泳缓冲液 常用的缓冲液有TAE和TBE,而TBE比TAE有着更好的缓冲能力。电泳时使用新制的缓冲液可以明显提高电泳效果。注意电泳缓冲液多次使用后,离子强度降低,pH值上升,缓冲性能下降,可能使DNA电泳产生条带模糊和不规则的DNA带迁移的现象。 电泳的合适电压和温度 电泳时电压不应该超过20V/cm,电泳温度应该低于30℃,对于巨大的DNA电泳,温度应该低于15℃。注意如果电泳时电压和温度过高,可能导致出现条带模糊和不规则的DNA 带迁移的现象。特别是电压太大可能导致小片段跑出胶而出现缺带现象 DNA样品的纯度和状态 是电压太大可能导致小片段跑出胶而出现缺带现象DNA样品的纯度和状态注意样品中含盐量太高和含杂质蛋白均可以产生条带模糊和条带缺失的现象。乙醇沉淀可以去除多余的盐,用酚可以去除蛋白。注意变性的DNA样品可能导致条带模糊和缺失,也可能出现不规则的DNA条带迁移。在上样前不要对DNA样品加热,用20mM NaCl缓冲液稀释可以防止DNA变性。 DNA的上样 正确的DNA上样量是条带清晰的保证。注意太多的DNA上样量可能导致DNA带型模糊,而太小的DNA上样量则导致带信号弱甚至缺失。TIANGEN公司DNA分子量标准每次上样6ul 即可得到清晰均匀的条带。 Marker的选择 DNA电泳一定要使用DNA Marker或已知大小的正对照DNA来估计DNA片段大小。

SDS-聚丙烯酰胺凝胶电泳法测定蛋白质分子量

实验六报告: SDS- 聚丙烯酰胺凝胶电泳法测定蛋白质分子量 1.研究背景及目的 根据自然界中普遍存在的电泳现象,以及实践应用的需求,科学家不断完善了电泳技术,从移界电泳法、垂直管型盘状电泳、垂直板型电泳、垂直柱型盘状电泳到水平板型电泳。电泳技术广泛地应用于样品的分析鉴定。蛋白质分子量的测定在理论和实践中具有很重要的意义,比如临床中对于尿液中蛋白质分子量的测定可以监测人体内的某些疾病(肾小管损坏、多发性骨髓瘤等)。这种需要促进了相关技术的发明。具体过程见原理。蛋白质在聚丙烯酰胺凝胶中电泳时,它的迁移率取决于它所带净电荷以及分子的大小和形状等因素。从活性电泳到变性电泳经过了很多思考。从活性如果加入一种试剂使电荷因素及分子的形状消除,那电泳迁移率就取决于分子的大小,就可以用电泳技术测定蛋白质的分子量。 1967年,Shapiro等发现阴离子去污剂十二烷基硫酸钠(SDS)具有这种作用[1] 。 通过向样品中添加入巯基乙醇和过量SDS,使蛋白质变性解聚,并让SDS与蛋白质结合成 带强负电荷的复合物,掩盖了蛋白质之间原有电荷的差异。SDS与蛋白质分子结合,不仅 使蛋白质分子带上大量的负电荷,而且使蛋白质分子的形状都变成短棒状,从而消除了蛋白质分子之间原有的电荷差异和分子形状的差异。因此蛋白质在SDS-PAGE中的时迁移率 主要取于其分子大小。由于SDS与蛋白质的结合,电泳迁移率在外界条件固定的情况下,只取决于蛋白质分子量大小这一因素,使得SDS-聚丙烯酰胺凝胶电泳具有分辨率高、重复性好等特性,因此广泛应用于未知蛋白质分子量测定。通过本次实验,学习和掌握垂直板型聚丙烯酰胺凝胶电泳的原理和方法,进一步学习和应用SDS-聚丙烯酰胺凝胶电泳法测定蛋白质分子量。 2.原理 由于技术的发展,理论上可以通过测序测出蛋白质分子量的真值,但是实际操作过于繁琐,且生物大分子的数量级是KDa,实际中往往不需要特别精确。所以转向寻求其它方法,如果两种性质具有相关性,就会有相关理论基础和技术,发现分子量与迁移速率有关,于是寻找相关方面的技术。通过沉降平衡法测定分子量,但是需要很大的转速,且要考虑安全性和造价,于是舍弃;分子筛层析主要以分子量差异进行分离,可以用来测定分子量,但是需要很长的分离柱,分离速度较慢,还要测定OD值,操作麻烦,浪费时间,而且带 来的经济效益也不是很大;与此同时,电泳技术也发展起来,电泳相对时间较短,造价低,可操作性强。电泳与分子量、分子形状以及所带电荷量有关,其中含有分子量,理论上就可行了,于是用电泳测定分子量。首要矛盾是消除电荷差异和分子形状差异,从数学上彻底消除电荷效应是不可能的,使带电量相同也不可能实现,只有使分子带上非常大的电荷量从而使分子间的电荷差异可以忽略。想到通过引入外来物形成复合物,定量引入,定量结合,且结合后分子间差异并未发生改变。关于引入负电还是引入正电的问题,蛋白大多为球状,若结合后仍未球状,静电结合不稳定;双亲性物质彻底结合后破坏空间结构,所以引入负电,结合稳定。于是开始筛选阴离子去污剂,在众多的物质试验中,发现十二烷基硫酸钠(SDS)具有很好的效果。SDS通常与蛋白质以1.4:1的重量比结合,所引入净电 荷量约为蛋白质本身静电荷 10倍的静电荷,从而形成具有均一电荷密度和相同荷质比的SDS-蛋白质复合物,该复合物所带的电荷远远超过蛋白质原有的净电荷,从而消除或大大降低不同蛋白质之间所带净电荷

相关文档
最新文档