轴心受压构件纵向受压钢筋计算

轴心受压构件纵向受压钢筋计算
轴心受压构件纵向受压钢筋计算

结构构件计算书

轴心受压构件纵向受压钢筋计算

项目名称_____________日期_____________

设计者_____________校对者_____________

一、构件编号: ZH-1

二、依据规范:

《混凝土结构设计规范》 (GB 50010-2010)

三、计算参数

1.几何参数:

截面形状: 矩形

截面宽度: b=400mm

截面高度: h=400mm

构件的计算长度: lo=5000mm

2.材料信息:

混凝土强度等级: C30 fc =14.3N/mm2

钢筋类型: HRB335 fy'=300N/mm2

3.设计参数:

结构重要性系数: γo=1.0

纵筋最小配筋率: ρmin=0.600%

4.荷载信息:

轴向力设计值: N=2000.000kN

四、计算过程

1.确定稳定系数Φ:

lo/b=5000/400=12.500

查《混凝土结构设计规范》(GB 50010-2010)表6.2.15 得,

Φ= 0.943

2.计算纵筋面积A's:

截面面积A=bh=400*400=160000mm2

A's= (γo*N/0.9Φ-fc*A)/fy'

= (1.0*2000.000*1000/(0.9*0.943)-14.3*160000)/300=228mm2

纵筋配筋率ρ=A's/A=(228/160000)%=0.143%≤3%,结果符合标准。

3.验算纵筋配筋率:

ρ=A's/A=(228/160000)%=0.143%

ρmin=0.600%

ρ<ρmin 纵筋配筋率不满足要求

所以满足最小配筋面积A's=A*ρmin=160000*0.600=960mm2

第1页,共1页

基本计算轴心受力构件的强度和刚度计算

轴心受力构件的强度和刚度计算 1.轴心受力构件的强度计算 轴心受力构件的强度是以截面的平均应力达到钢材的屈服应力为承载力极限状态。轴心受力构件的强度计算公式为 f A N n ≤= σ (4-1) 式中: N ——构件的轴心拉力或压力设计值; n A ——构件的净截面面积; f ——钢材的抗拉强度设计值。 对于采用高强度螺栓摩擦型连接的构件,验算净截面强度时一部分剪力已由孔前接触面传递。因此,验算最外列螺栓处危险截面的强度时,应按下式计算: f A N n ≤= ' σ (4-2) 'N =)5 .01(1 n n N - (4-3) 式中: n ——连接一侧的高强度螺栓总数; 1n ——计算截面(最外列螺栓处)上的高强度螺栓数; ——孔前传力系数。 采用高强度螺栓摩擦型连接的拉杆,除按式(4-2)验算净截面强度外,还应按下式验算毛截面强度 f A N ≤= σ (4-4) 式中: A ——构件的毛截面面积。 2.轴心受力构件的刚度计算 为满足结构的正常使用要求,轴心受力构件应具有一定的刚度,以保证构件不会在运输和安装过程中产生弯曲或过大的变形,以及使用期间因自重产生明显下挠,还有在动力荷载作用下发生较大的振动。 轴心受力构件的刚度是以限制其长细比来保证的,即

][λλ≤ (4-5) 式中: λ——构件的最大长细比; [λ]——构件的容许长细比。 3. 轴心受压构件的整体稳定计算 《规范》对轴心受压构件的整体稳定计算采用下列形式: f A N ≤? (4-25) 式中:?——轴心受压构件的整体稳定系数,y cr f σ?= 。 整体稳定系数?值应根据构件的截面分类和构件的长细比查表得到。 构件长细比λ应按照下列规定确定: (1)截面为双轴对称或极对称的构件 ? ?? ==y y y x x x i l i l //00λλ (4-26) 式中:x l 0,y l 0——构件对主轴x 和y 的计算长度; x i ,y i ——构件截面对主轴x 和y 的回转半径。 双轴对称十字形截面构件,x λ或y λ取值不得小于t (其中b/t 为悬伸板件宽厚比)。 (2)截面为单轴对称的构件 以上讨论柱的整定稳定临界力时,假定构件失稳时只发生弯曲而没有扭转,即所谓弯曲屈曲。对于单轴对称截面,绕对称轴失稳时,在弯曲的同时总伴随着扭转,即形成弯扭屈曲。在相同情况下,弯扭失稳比弯曲失稳的临界应力要低。因此,对双板T 形和槽形等单轴对称截面进行弯扭分析后,认为绕对称轴(设为y 轴)的稳定应取计及扭转效应的下列换算长细比代替y λ [] 2 /122202022222)/1(4)()(2 1 z y z y z y yz i e λ λλλλλλ--+++= )/7.25//(2 202ωωλl I I A i t z +=

轴心受力构件

第6章轴心受力构件 §6-1 轴心受力构件的应用和截面形式 轴心受力构件(axially loaded members)是指承受通过构件截面形心轴线的轴向力作用的构件,当这种轴向力为拉力时,称为轴心受拉构件(axially tension members),简称轴心拉杆;当这种轴向力为压力时,称为轴心受压构件(axially compression members),简称轴心压杆。轴心受力构件广泛地应用于屋架、托架、塔架、网架和网壳等各种类型的平面或空间格构式体系以及支撑系统中。支承屋盖、楼盖或工作平台的竖向受压构件通常称为柱(columns),包括轴心受压柱。柱通常由柱头、柱身和柱脚三部分组成(图6.1.1),柱头支承上部结构并将其荷载传给柱身,柱脚则把荷载由柱身传给基础。 图6.1.1柱的形式 轴心受力构件(包括轴心受压柱),按其截面组成形式,可分为实腹式构件和格构式构件两种(图6.1.1)。实腹式构件具有整体连通的截面,常见的有三种截面形式。第一种是热轧型钢截面,如圆钢、圆管、方管、角钢、工字钢、T型钢、宽翼缘H型钢和槽钢等,其中最常用的是工字形或H形截面;第二种是冷弯型钢截面,如卷边和不卷边的角钢或槽钢与方管;第三种是型钢或钢板连接而成的组合截面。在普通桁架中,受拉或受压杆件常采用两个等边或不等边角钢组成的T形截面或十字形截面,也可采用单角钢、圆管、方管、工字 柱身 柱脚 (a)实腹式柱(b)格构式缀板柱(c)格构式缀条柱 柱头

钢或T 型钢等截面(图6.1.2a )。轻型桁架的杆件则采用小角钢、圆钢或冷弯薄壁型钢等截面(图6.1.2b)。受力较大的轴心受力构件(如轴心受压柱),通常采用实腹式或格构式双轴对称截面;实腹式构件一般是组合截面,有时也采用轧制H 型钢或圆管截面(图6.1.2c)。格构式构件一般由两个或多个分肢用缀件联系组成(图6.1.2d),采用较多的是两分肢格构式构件。在格构式构件截面中,通过分肢腹板的主轴叫做实轴,通过分肢缀件的主轴叫做虚轴。分肢通常采用轧制槽钢或工字钢,承受荷载较大时可采用焊接工字形或槽形组合截面。缀件有缀条或缀板两种,一般设置在分肢翼缘两侧平面内,其作用是将各分肢连成整体,使其共同受力,并承受绕虚轴弯曲时产生的剪力。缀条用斜杆组成或斜杆与横杆共同组成,缀条常采用单角钢,与分肢翼缘组成桁架体系,使承受横向剪力时有较大的刚度。缀板常采用钢板,与分肢翼缘组成刚架体系。在构件产生绕虚轴弯曲而承受横向剪力时,刚度比缀条格构式构件略低,所以通常用于受拉构件或压力较小的受压构件。实腹式构件比格构式构件构造简单,制造方便,整体受力和抗剪性能好,但截面尺寸较大时钢材用量较多;而格构式构件容易实现两主轴方向的等稳定性,刚度较大,抗扭性能较好,用料较省。 图6.1.2轴心受力构件的截面形式 §6-2 轴心受力构件的强度和刚度 6.2.1 轴心受力构件的强度计算 从钢材的应力~应变关系可知,当轴心受力构件的截面平均应力达到钢材的抗拉强度 u f 时,构件达到强度极限承载力。但当构件的平均应力达到钢材的屈服强度y f 时,由于构件塑性变形的发展,将使构件的变形过大以致达到不适于继续承载的状态。因此,轴心受力构件是以截面的平均应力达到钢材的屈服强度作为强度计算准则的。 对无孔洞等削弱的轴心受力构件,以全截面平均应力达到屈服强度为强度极限状态, 应按下式进行毛截面强度计算: i min min i c o o o c c (a)普通桁架杆件截面(b)轻型桁架杆件截面 (c)实腹式构件截面 1 虚轴 实轴 1 1 1 (d)格构式构件截面

工字型截面轴心受压实验

《钢结构基本原理》自主实验报告 实验老师:杨彬 实验组员: 1351078 林子昂 1350882 符徐霞 1350980 李牧遥 1350982 张宇坤 1351012 王慜彦 1351145 张健 实验日期:2015年11月10日

一、实验目的 1 .了解工字形截面轴心受压钢构件的整体稳定实验方法,包括试件设计、实验装置设 计、测点布置、加载方式、试验结果整理与分析等。 2 .观察工字形截面轴心受压柱的失稳过程和失稳模式,加深对其整体稳定概念的理解。 3 .将柱子理论承载力和实测承载力进行比较,加深对工字形截面轴心受压构件整体稳 定系数及其计算公式的理解。 二、实验原理 ●轴心受压构件整体稳定性能概述 整体失稳破坏是轴心受压钢构件的主要破坏形式。 轴心受压构件在轴心压力较小时处于稳定平衡状态,如有微小干扰力使其偏离平衡位置,则在干扰力除去后,仍能回复到原先的平衡状态。随着轴心压力的增加,轴心受压构件会由稳定平衡状态逐步过渡到随遇平衡状态,这时如有微小干扰力使其偏离平衡位置,则在干扰力除去后,将停留在新的位置而不能回复到原先的平衡位置。随遇平衡状态也称为临界状态,这时的轴心压力称为临界压力。当轴心压力超过临界压力后,构件就不能维持平衡而失稳破坏。实际轴心压杆与理想轴心压杆有很大区别。实际轴心压杆都带有多种初始缺陷,如杆件的初弯曲、初扭曲、荷载作用的初偏心、制作引起的残余应力,材性的不均匀等等。这些初始缺陷使轴心压杆在受力一开始就会出现弯曲变形,压杆的失稳属于极值型失稳。 ●工字形截面轴心受压构件的弯曲失稳 工字形截面属于双轴对称截面,因此工字形截面轴心受压构件只可能发生弯曲失稳或扭转失稳。对于常见的非薄壁工字形截面,其截面的抗扭刚度和翘曲刚度都很大,因 此不会发生扭转失稳。当构件未设置沿截面强轴的支撑时,由于工字形截面绕强轴的惯性矩大于绕弱轴的惯性矩,因此构件将发生绕弱轴的弯曲失稳。 三、实测试件几何参数 四、实验装置、加载方式、测点布置概述

结构设计原理

第三章 轴心受力构件 本章的意义和内容:在设计以承受恒荷载为主的多层房屋的内柱及桁架的腹杆等构件时,可近似地按轴心受力构件计算。轴心受力构件有轴心受压构件和轴心受拉构件。本章主要讲述轴心受压构件的正截面受压承载力计算、构造要求,以及轴心受拉构件的受拉承载力计算等问题。 本章习题内容主要涉及: 轴心受压构件——荷载作用下混凝土和钢筋的应力变化规律;稳定系数?的确定;配有纵筋及普通箍筋柱的强度计算;配有纵筋及螺旋形箍筋柱的强度计算;构造要求。 轴心受拉构件——荷载作用下构件的破坏形态;构件的强度计算。 一、概 念 题 (一)填空题 1. 钢筋混凝土轴心受压构件计算中,?是 系数,它是用来考虑 对柱的承载力的影响。 2. 配普通箍筋的轴心受压构件的承载力为u N = 。 3. 一普通箍筋柱,若提高混凝土强度等级、增加纵筋数量都不足以承受轴心压力时,可采用 或 方法来提高其承载力。 4. 矩形截面柱的截面尺寸不宜小于 mm 。为了避免矩形截面轴心受压构件长细比过大,承载力降低过多,常取≤l 0 ,≤h l 0 (0l 为柱的计算长度,b 为矩形截面短边边长,h 为长边边长)。 5.《混凝土结构设计规范》规定,受压构件的全部纵筋的配筋率不应小于 ,且不宜超过 ;一侧纵筋的配筋率不应小于 。 6.配螺旋箍筋的钢筋混凝土轴心受压构件的正截面受压承载力为 sso y s y cor c u 2(9.0A f A f A f N α+''+=),其中,α是 系数。 (二)选择题 1. 一钢筋混凝土轴心受压短柱,由混凝土徐变引起的塑性应力重分布现象与纵筋配筋率ρ'的关系是:[ ] a 、ρ'越大,塑性应力重分布越不明显 b 、ρ'越大,塑性应力重分布越明显 c 、ρ'与塑性应力重分布无关 d 、开始,ρ'越大,塑性应力重分布越明显,但ρ'超过一定值后,塑性应力重分布反

轴心受力构件(五)

第四章轴心受力构件 一、轴心受力构件的特点和截面形式 轴心受力构件包括轴心受压杆和轴心受拉杆。轴心受力构件广泛应用于各种钢结构之中,如网架与桁架的杆件、钢塔的主体结构构件、双跨轻钢厂房的铰接中柱、带支撑体系的钢平台柱等等。 实际上,纯粹的轴心受力构件是很少的,大部分轴心受力构件在不同程度上也受偏心力的作用,如网架弦杆受自重作用、塔架杆件受局部风力作用等。但只要这些偏心力作用非常小(一般认为偏心力作用产生的应力仅占总体应力的3%以下。)就可以将其作为轴心受力构件。 轴心受力的构件可采用图中的各种形式。 其中 a)类为单个型钢实腹型截面,一般用于受力较小的杆件。其中圆钢回转半径最小,多用作拉杆,作压杆时用于格构式压杆的弦杆。钢管的回转半径较大、对称性好、材料利用率高,拉、压均可。大口径钢管一般用作压杆。型钢的回转半径存在各向异性,作压杆时有强轴和弱轴之分,材料利用率不高,但连接较为方便,单价低。 b) 类为多型钢实腹型截面,改善了单型钢截面的稳定各向异性特征,受力较好,连接也较方便。 c) 类为格构式截面,其回转半径大且各向均匀,用于较长、受力较大的轴心受力构件,特别是压杆。但其制作复杂,辅助材料用量多。 二、轴心受拉杆件 轴心受拉杆件应满足强度和刚度要求。并从经济出发,选择适当的截面形式,处理好构造与连接。 1、强度计算 轴心拉杆的强度计算公式为:

(6-1) 式中: N——轴心拉力; A n——拉杆的净截面面积; f ——钢材抗拉强度设计值。 当轴心拉杆与其它构件采用螺栓或高强螺栓连接时,连接处的净截面强度计算如连接这一章所述。 公式(6-1)适用于截面上应力均匀分布的拉杆。当拉杆的截面有局部削弱时,截面上的应力分布就不均匀,在孔边或削弱处边缘就会出现应力集中。但当应力集中部分进入塑性后,内部的应力重分布会使最终拉应力分布趋于均匀。因而须保证两点:(1)选用的钢材要达到规定的塑性(延伸率)。(2)截面开孔和消弱应有圆滑和缓的过渡,改变截面、厚度时坡度不得大于1:4。 2、刚度计算 为了避免拉杆在使用条件下出现刚度不足、横向振动以造成过大的附加应力,拉杆设计时应保证具有一定的刚度。普通拉杆的刚度按下式用长细比来控制。 (6-2)式中: ——拉杆按各方向计算得的最大长细比; l0 ——计算拉杆长细比时的计算长度; i ——截面的回转半径(与 l0 相对应);

轴心受压构件长细比详细计算公式及扩展

关于受压杆件长细比的计算 1.对于轴压构件的长细比计算公式如下: i l 0=λ l l ?=μ0 A I i =(根据I 的定义,理解i ) 其中对各个系数进行详解: A —构件的横截面积。矩形面积为A=bh 。对于圆形截面为:42 D A π=,圆管截面22 )1(4απ-=D A 。 I —构件的截面惯性矩。对于矩形的截面惯性矩为123 bh I =,对于圆形截面来说为644 D I π=,对于圆管截面的惯性矩为 )1(6444 απ-=D I 其中D d /=α,d 为圆管内径,D 为圆管外径。 矩形:24/3232022 222bh y b dy b y dA y I h h h =?=?=?= ??- 圆形: 64/)22sin (2164)2cos 1(2164sin sin 320420 42022032202202D D d D d dr r rd r dr dA y I D D πθθθθθθθθππππ=-?=-?==?= ?=??????(θθ2sin 212cos -=) l 为构件的几何长度,其具体长度又根据混凝土,钢结构,砌体等不同的结构形式而有所不同。

μ为长度因数,其值由竿端约束情况决定。例如,两端铰支的细长压杆,μ=1;一段固定、一段自由的细长压杆,μ=2;两端固定的细长压杆,μ=0.5;一段固定一段铰支的细长压杆,μ=0.7。 拓展: 根据i 的计算公式,很明显,我们可以就算出矩形和圆形的回转半径i : 矩形:12 h i =;圆形(实):4D i =,圆环:4)1(4α-=D i (不用记) 钢结构受压杆件的容许长细比

4.2 轴心受压构件承载力计算

轴心受压构件承载力计算 按照箍筋配置方式不同,钢筋混凝土轴心受压柱可分为两种:一种是配置纵向钢筋和普通箍筋的柱(图4.2.1a),称为普通箍筋 柱;一种是配置纵向钢筋和螺旋筋(图)或 焊接环筋(图4.2.1c)的柱,称为螺旋箍筋柱或 间接箍筋柱。 需要指出的是,在实际工程结构中,几 乎不存在真正的轴心受压构件。通常由于荷 载作用位置偏差、配筋不对称以及施工误差 等原因,总是或多或少存在初始偏心距。但 当这种偏心距很小时,如只承受节点荷载屋 架的受压弦杆和腹杆、以恒荷载为主的等跨 多层框架房屋的内柱等,为计算方便,可近 似按轴心受压构件计算。此外,偏心受压构件垂直于弯矩作用平面的承载力验算也按轴心受压构件计算。 一、轴心受压构件的破坏特征 按照长细比的大小,轴心受压柱可分为短柱和长柱两类。对方形和矩形柱,当≤8时属于短柱,否则为长柱。其中为柱的计算长度,为矩形截面的短边尺寸。 1.轴心受压短柱的破坏特征 配有普通箍筋的矩形截面短柱,在轴向压力N作用下整个截面的应变基本上是均匀分布的。N较小时,构件的压缩变形主要为弹性变形。随着荷载的增大,构件变形迅速增大。与此同时,混凝土塑性变形增加,弹性模量降低,应力增长逐渐变慢,而钢筋应力的增加则越来越快。对配置HPB235、HRB335、HRB400、RRB400级热轧钢筋的构件,钢筋将先达到其屈服强度,此后增加的荷载全部由混凝土来承受。在临近

破坏时,柱子表面出现纵向裂缝,混凝土保护层开始剥落,最后,箍筋之间的纵向钢筋压屈而向外凸出,混凝土被压碎崩裂而破坏(图4.2.2)。破坏时混凝土的应力达到棱柱体抗压强度。当短柱破坏时,混凝土达到极限压应变=,相应的纵向钢筋应力值=E s=2×105×mm2=400N/mm2。因此,当纵向钢筋为高强度钢筋时,构件破坏时纵向钢筋可能达不到屈服强度。设计中对于屈服强度超过400N/mm2的钢筋,其抗压强度设计值只能取400N/mm2。显然,在受压构件内配置高强度的钢筋不能充分发挥其作用,这是不经济的。 2.轴心受压长柱的破坏特征 对于长细比较大的长柱,由于各种偶然因素造成的初始偏心距的影响是不可忽略的,在轴心压力N作用下,由初始偏心距将产生附加弯矩,而这个附加弯矩产生的水平挠度又加大了原来的初始偏心距,这样相互影响的结果,促使了构件截面材料破坏较早到来,导致承截能力的降低。破坏时首先在凹边出现纵向裂缝,接着混凝土被压碎,纵向钢筋被压弯向外凸出,侧向挠度急速发展,最终柱子失去平衡并将凸边混凝土拉裂而破坏(图4.2.3)。试验表明,柱的长细比愈大,其承截力愈低,对于长细比很大的长柱,还有可能发生“失稳破坏”。 由上述试验可知,在同等条件下,即截面相同,配筋相同,材料相同的条件下,长柱承载力低于短柱承载力。在确定轴心受压构件承截力计算公式时,规范采用构件

轴心受力构件习题及问题详解

轴心受力构件习题及答案 一、选择题 的构件,在拉力N作用下的强度计算公1. 一根截面面积为A,净截面面积为A n 式为______。 2. 轴心受拉构件按强度极限状态是______。 净截面的平均应力达到钢材的抗拉强度 毛截面的平均应力达到钢材的抗拉强度 净截面的平均应力达到钢材的屈服强度 毛截面的平均应力达到钢材的屈服强度 3. 实腹式轴心受拉构件计算的容有______。 强度强度和整体稳定性强度、局部稳定和整体 稳定强度、刚度(长细比) 4. 轴心受力构件的强度计算,一般采用轴力除以净截面面积,这种计算方法对下列哪种连接方式是偏于保守的? 摩擦型高强度螺栓连接承压型高强度螺栓连 接普通螺栓连接铆钉连接 5. 工字型组合截面轴压杆局部稳定验算时,翼缘与腹板宽厚比限值是根据 ______导出的。 6. 图示单轴对称的理想轴心压杆,弹性失稳形式可能为______。

X轴弯曲及扭转失稳Y轴弯曲及扭转失稳 扭转失稳绕Y轴弯曲失稳 7. 用Q235号钢和16锰钢分别建造一轴心受压柱,其长细比相同,在弹性围屈曲时,前者的临界力______后者的临界力。 大于小于等于或接近无法 比较 8. 轴心受压格构式构件在验算其绕虚轴的整体稳定时采用换算长细比,是因为______。 格构构件的整体稳定承载力高于同截面的实腹构件 考虑强度降低的影响 考虑剪切变形的影响 考虑单支失稳对构件承载力的影响 9. 为防止钢构件中的板件失稳采取加劲措施,这一做法是为了______。 改变板件的宽厚比增大截面面积改变截面上 的应力分布状态增加截面的惯性矩 10. 轴心压杆构件采用冷弯薄壁型钢或普通型钢,其稳定性计算______。 完全相同 仅稳定系数取值不同 仅面积取值不同 完全不同 11. 工字型截面受压构件的腹板高度与厚度之比不能满足按全腹板进行计算的要求时,______。

轴心受压构件概念题

轴心受压构件概念题 一、判断题(请在你认为正确陈述的各题干后的括号内打“√”,否则打“×”。每小题1分。) 1.轴心受压构件纵向受压钢筋配置越多越好。() 2.轴心受压构件中的箍筋应作成封闭式的。() 3.实际工程中没有真正的轴心受压构件。() 4.轴心受压构件的长细比越大,稳定系数值越高。() 5.轴心受压构件计算中,考虑受压时纵筋容易压曲,所以钢筋的抗压强度设计值最大取为2 N。() 400mm / 6.螺旋箍筋柱既能提高轴心受压构件的承载力,又能提高柱的稳定性。()×√√××× 二、单选题(请把正确选项的字母代号填入题中括号内,每题2分。) 1.钢筋混凝土轴心受压构件,稳定系数是考虑了()。 A.初始偏心距的影响; B.荷载长期作用的影响; C.两端约束情况的影响; D.附加弯矩的影响。 2.对于高度、截面尺寸、配筋完全相同的柱,以支承条件为() 时,其轴心受压承载力最大。 A.两端嵌固; B.一端嵌固,一端不动铰支; C.两端不动铰支; D.一端嵌固,一端自由; 3.钢筋混凝土轴心受压构件,两端约束情况越好,则稳定系数 ()。 A.越大;B.越小;C.不变;D.变化趋势不定。 4.一般来讲,其它条件相同的情况下,配有螺旋箍筋的钢筋混凝土柱 同配有普通箍筋的钢筋混凝土柱相比,前者的承载力比后者的承载力 ()。 A.低;B.高;C.相等;D.不确定。 5.对长细比大于12的柱不宜采用螺旋箍筋,其原因是()。 A.这种柱的承载力较高; B.施工难度大; C.抗震性能不好;

D.这种柱的强度将由于纵向弯曲而降低,螺旋箍筋作用不能发挥;6.轴心受压短柱,在钢筋屈服前,随着压力而增加,混凝土压应力的 增长速率()。 A.比钢筋快;B.线性增长;C.比钢筋慢;D.与钢筋相等。 7.两个仅配筋率不同的轴压柱,若混凝土的徐变值相同,柱A配筋率 大于柱B,则引起的应力重分布程度是()。 A.柱A=柱B;B.柱A>柱B;C.柱A<柱B;D.不确定。 8.与普通箍筋的柱相比,有间接钢筋的柱主要破坏特征是()。 A.混凝土压碎,纵筋屈服; B.混凝土压碎,钢筋不屈服; C.保护层混凝土剥落; D.间接钢筋屈服,柱子才破坏。 是因为()。 9.螺旋筋柱的核心区混凝土抗压强度高于f c A.螺旋筋参与受压; B.螺旋筋使核心区混凝土密实; C.螺旋筋约束了核心区混凝土的横向变形; D.螺旋筋使核心区混凝土中不出现内裂缝。 10.为了提高钢筋混凝土轴心受压构件的极限应变,应该()。 A.采用高强混凝土; B.采用高强钢筋; C.采用螺旋配筋; D.加大构件截面尺寸。 11.规范规定:按螺旋箍筋柱计算的承载力不得超过普通柱的1.5倍, 这是为()。 A.在正常使用阶段外层混凝土不致脱落 B.不发生脆性破坏; C.限制截面尺寸; D.保证构件的延性A。 12.一圆形截面螺旋箍筋柱,若按普通钢筋混凝土柱计算,其承载力为 300KN,若按螺旋箍筋柱计算,其承载力为500KN,则该柱的承载力应示为()。 A.400KN;B.300KN;C.500KN;D.450KN。 13.配有普通箍筋的钢筋混凝土轴心受压构件中,箍筋的作用主要是 ()。 A.抵抗剪力; B.约束核心混凝土; C.形成钢筋骨架,约束纵筋,防止纵筋压曲外凸; D.以上三项作用均有。 D A A B D C B D C C A D C

轴心受压构件

一、选择题 的构件,在拉力N作用下的强度计算公1. 一根截面面积为A,净截面面积为A n 式为______。 2. 轴心受拉构件按强度极限状态是______。 净截面的平均应力达到钢材的抗拉强度 毛截面的平均应力达到钢材的抗拉强度 净截面的平均应力达到钢材的屈服强度 毛截面的平均应力达到钢材的屈服强度 3. 实腹式轴心受拉构件计算的内容有______。 强度强度和整体稳定性强度、局部稳定和整体稳定强度、刚度(长细比) 4. 轴心受力构件的强度计算,一般采用轴力除以净截面面积,这种计算方法对下列哪种连接方式是偏于保守的? 摩擦型高强度螺栓连接承压型高强度螺栓连 接普通螺栓连接铆钉连接 5. 工字型组合截面轴压杆局部稳定验算时,翼缘与腹板宽厚比限值是根据 ______导出的。

6. 图示单轴对称的理想轴心压杆,弹性失稳形式可能为______。 X轴弯曲及扭转失稳Y轴弯曲及扭转失稳 扭转失稳绕Y轴弯曲失稳 7. 用Q235号钢和16锰钢分别建造一轴心受压柱,其长细比相同,在弹性范围内屈曲时,前者的临界力______后者的临界力。 大于小于等于或接近无法 比较 8. 轴心受压格构式构件在验算其绕虚轴的整体稳定时采用换算长细比,是因为______。 格构构件的整体稳定承载力高于同截面的实腹构件 考虑强度降低的影响 考虑剪切变形的影响 考虑单支失稳对构件承载力的影响 9. 为防止钢构件中的板件失稳采取加劲措施,这一做法是为了______。 改变板件的宽厚比增大截面面积改变截面上的应力分布状态增加截面的惯性矩 10. 轴心压杆构件采用冷弯薄壁型钢或普通型钢,其稳定性计算______。

基本计算轴心受力构件的强度和刚度计算

轴心受力构件的强度和刚度计算 1.轴心受力构件的强度计算 轴心受力构件的强度是以截面的平均应力达到钢材的屈服应力为承载力极限状态。轴心受力构件的强度计算公式为 N、 <7 =——< f(4-1) 4 式中:N一构件的轴心拉力或压力设计值; A,_——构件的净截面面积; f——钢材的抗拉强度设计值。 对于采用高强度螺栓摩擦型连接的构件,验算净截面强度时一部分剪力已山孔前接触面传递。因此,验算最外列螺栓处危险截面的强度时,应按下式计算: N' b =——

轴心受力构件的刚度是以限制其长细比来保证的,即

2 <[A] 式中:A——构件的最大长细比; [2]——构件的容许长细比。 3.轴心受压构件的整体稳定计算 《规范》对轴心受压构件的整体稳定计算采用下列形式: (4-25) 式中:(P—轴心受压构件的整体稳定系数,0 = 2工。 J y 整体稳定系数0值应根据构件的截面分类和构件的长细比查表得到。 构件长细比兄应按照下列规定确定: (1)截面为双轴对称或极对称的构件 (4-26) 式中:h,心一构件对主轴x和y的计算长度; 止,.一构件截面对主轴x和〉,的回转半径。 双轴对称十字形截面构件,人或九取值不得小于5.07b/t (其中b/t为悬伸板件宽厚比)。 (2)截面为单轴对称的构件 以上讨论柱的整定稳定临界力时,假定构件失稳时只发生弯曲而没有扭转,即所谓弯曲屈曲。对于单轴对称截面,绕对称轴失稳时,在弯曲的同时总伴随着扭转,即形成弯扭屈曲。在相同情况下,弯扭失稳比弯曲失稳的临界应力要低。因此,对双板T形和槽形等单轴对称截面进行弯扭分析后,认为绕对称轴(设为),轴)的稳定应取计?及扭转效应的下列换算长细比代替心 葢“詔/(人/25.7 + J//:)

轴心受压构件纵向受压钢筋计算

结构构件计算书 轴心受压构件纵向受压钢筋计算 项目名称_____________日期_____________ 设计者_____________校对者_____________ 一、构件编号: ZH-1 二、依据规范: 《混凝土结构设计规范》 (GB 50010-2010) 三、计算参数 1.几何参数: 截面形状: 矩形 截面宽度: b=400mm 截面高度: h=400mm 构件的计算长度: lo=5000mm 2.材料信息: 混凝土强度等级: C30 fc =14.3N/mm2 钢筋类型: HRB335 fy'=300N/mm2 3.设计参数: 结构重要性系数: γo=1.0 纵筋最小配筋率: ρmin=0.600% 4.荷载信息: 轴向力设计值: N=2000.000kN 四、计算过程 1.确定稳定系数Φ: lo/b=5000/400=12.500 查《混凝土结构设计规范》(GB 50010-2010)表6.2.15 得, Φ= 0.943 2.计算纵筋面积A's: 截面面积A=bh=400*400=160000mm2 A's= (γo*N/0.9Φ-fc*A)/fy' = (1.0*2000.000*1000/(0.9*0.943)-14.3*160000)/300=228mm2 纵筋配筋率ρ=A's/A=(228/160000)%=0.143%≤3%,结果符合标准。 3.验算纵筋配筋率: ρ=A's/A=(228/160000)%=0.143% ρmin=0.600% ρ<ρmin 纵筋配筋率不满足要求 所以满足最小配筋面积A's=A*ρmin=160000*0.600=960mm2 第1页,共1页

轴心受压构件的稳定性计算

轴心受压构件的稳定性计算 7.2.1 除可考虑屈服后强度的实腹式构件外,轴心受压构件的稳定性计算应符合下式要求: 式中:φ——轴心受压构件的稳定系数(取截面两主轴稳定系数中的较小者),根据构件的长细比(或换算长细比)、钢材屈服强度和表7.2.1-1、表7.2.1-2的截面分类,按本标准附录D采用。 表7.2.1-1 轴心受压构件的截面分类(板厚t<40mm)

注:1 a*类含义为Q235钢取b类,Q345、Q390、Q420和Q460钢取a类;b*类含义为Q235钢取c类,Q345、Q390、Q420和Q460钢取b类; 2 无对称轴且剪心和形心不重合的截面,其截面分类可按有对称轴的类似

截面确定,如不等边角钢采用等边角钢的类别;当无类似截面时,可取c类。 表7.2.1-2 轴心受压构件的截面分类(板厚t≥40mm) 7.2.2 实腹式构件的长细比λ应根据其失稳模式,由下列公式确定: 1 截面形心与剪心重合的构件: 1) 当计算弯曲屈曲时,长细比按下列公式计算:

式中:l0x、l0y——分别为构件对截面主轴x和y的计算长度,根据本标准第 7.4节的规定采用(mm); i x、i y——分别为构件截面对主轴x和y的回转半径(mm)。 2) 当计算扭转屈曲时,长细比应按下式计算,双轴对称十字形截面板件宽厚比不超过15εk者,可不计算扭转屈曲。 式中:I0、I t、I w——分别为构件毛截面对剪心的极惯性矩(m m4)、自由扭转常数(m m4)和扇性惯性矩(m m6),对十字形截面可近似取I w=0; I w——扭转屈曲的计算长度,两端铰支且端截面可自由翘曲者,取几何长度l;两端嵌固且端部截面的翘曲完全受到约束者,取0.5l(mm)。 2 截面为单轴对称的构件: 1) 计算绕非对称主轴的弯曲屈曲时,长细比应由式(7.2.2-1)、式(7.2.2-2)计算确定。计算绕对称主轴的弯扭屈曲时,长细比应按下式计算确定: 式中:y s——截面形心至剪心的距离(mm); i0——截面对剪心的极回转半径,单轴对称截面i20=y2s+i2x+i2y(mm);

相关文档
最新文档