光电催化制氢研究进展

光电催化制氢研究进展
光电催化制氢研究进展

太阳能光催化制氢技术原理

太阳能光催化制氢技术原理 在新能源领域中,氢能已普遍被认为是一种最理想的新世纪无污染的绿色能源,这是因为氢燃烧,水是它的唯一产物。氢是自然界中最丰富的元素,它广泛地存在于水、矿物燃料和各类碳水化合物中。 然而,传统的制氢方法,需要消耗巨大的常规能源,使氢能身价太高,大大限制了氢能的推广应用。于是科学家们很快想到利用取之不尽、廉价的太阳能作为氢能形成过程中的一次能源,使氢能开发展现出更加广阔的前景。科学家们发现了以光催化材料为“媒介”,能利用太阳能把水裂解为燃料电池所必需的氧和氢,科学家称这种仅用阳光和水生产出氢和氧的技术为“人类的理想技术之一”。 太阳能光催化制氢技术的原理 我们知道,在标准状态下把1mol水(18克)分解成氢气和氧气需要约285kJ的能量,太阳能辐射的波长范围是200~2600nm,对应的光子能量范围是400~45kJ/mol。但是水对于可见光至紫外线是透明的,并不能直接吸收太阳光能。因此,想用光裂解水就必须使用光催化材料,科学家们往水中加入一些半导体光催化材料,通过这些物质吸收太阳光能并有效地传给水分子,使水发生光解。以二氧化碳钛半导体光催化材料为例,当太阳光照射二氧化化钛时,其价带上的电子(e-)就会受激发跃迁至导带,同时在价带上产生相应的空穴(h+),形成了电子空穴对。产生的电子(e-)、空穴(h+)在内部电场作用下分离并迁移到粒子表面。水在这种电子-空穴对的作用下发生电离生成氢气和氧气。 太阳能光催化制氢技术的研究现状 技术研究的关键主要集成电路中在光催化材料的研究方面,光催化材料要满足以下几个条件:(1)光催化材料裂解水效率较高;(3)光催化材料最好要可能利用太阳所有波段中的能量。光裂解水制氢以半导体为催化材料,一般为金属氧化物和金属硫化物,然而,目前研究者一般均选用二氧化钛作为光催化氧化的稳定性好,但是由于二氧化钛无臭、无毒,化学稳定性好,但是由于二氧化钛的禁带宽度较宽,只能利用太阳光中的紫外光部分,而紫外光只占太阳光总能量的4%,如何减低光催化材料的禁带宽度,使之能利用太阳光中可见光部分(占太阳能总能量的43%),是太阳能裂解水制氢技术的关键。 国内研究现状 国内研究太阳能裂解水不是很多,但是近几年来有明显增加趋势。最近,这项研究又有了新的大突破。 大连物理化学研究所李灿研究组在2003年7月《化学通讯》上报道,发现了一种新的光催化材料,它由铟锌的硫化物组成,能在太阳可见光照射下裂解水,连续产生氢气和氧气,并且效率保持稳定。 2003年9月南京大学环境材料与再生能源研究中心主任邹志刚通过与日本产业技术综合研究所的合作研究,向社会公布了"可见光响应型水全分解光催化剂"这一重大科研成果,研制出一种新型的光催化材料,它由铟钽氧化物组成,表面有一层镍氧化物。这种催化材料在可见光波段起作用,它的催化效率和使用寿

石墨相氮化碳可见光催化分解水制氢

龙源期刊网 https://www.360docs.net/doc/715082572.html, 石墨相氮化碳可见光催化分解水制氢 作者:刘澈 来源:《中国科技纵横》2018年第01期 摘要:随着人们对光催化剂研究的深入,利用光催化剂将水裂解产生氢气已经成为可以 将太阳能转化为化学能的有效手段。各种氧化物、氮化物和硫化物光催化剂因其各自具有独特的光催化性能而受到广泛的研究。为进一步提高其在实际应用中的光催化效果,提高可见光利用率,科研学者们尝试了各种方法进行改进,如掺杂改性、复合改性、形貌调整等等。本文依据前辈专家学者的科研成果,简单的从可见光利用方面阐述了现阶段可见光催化剂的研究和进展。 关键词:光解水制氢;石墨相氮化碳;可见光 中图分类号:TQ426 文献标识码:A 文章编号:1671-2064(2018)01-0210-02 1 概述 随着人类社会的快步发展,人类对能源的需求持续增长,地球储存的能源已经无法满足人类长期的发展需求。同时化石能源的大量使用造成了环境大面积的破坏,严重威胁了人类的生存健康,寻求一种清洁高效的新能源成为能源发展的新方向。氢能,作为一种二次能源具有着清洁,高效,热值高,原料广等优点,被认为是一种最理想的无污染绿色能源。但是,氢在地球上主要是以化合物的形式存在,最广泛的来源就是水。工业上往往用电解水制氢、煤炭气化制氢等方式制备氢气,都存在着能耗高,会带来污染等问题。 光催化剂是进行光解水制氢的基本要素,半导体光催化剂的催化原理可以用能带理论来解释,半导体存在着不连续的能带结构,价带和导带之间存在着具有一定宽度的禁带,当半导体光催化剂受到等于或高于其禁带宽度的光子能量的太阳光照射时,价带上的电子就会跃迁到导带上,同时在价带上产生相应的空穴,形成电子-空穴对。电子、空穴在一定的作用力下迁移至粒子的表面,因其具有较强的氧化还原能力,从而使附着在粒子表面不能吸收光的物质发生氧化还原反应。光解水制氢技术的首次提出是在1972年,日本东京大学的Fujishima教授[1]发现二氧化钛单晶电极经过太阳光的照射可以将水分解为氧气和氢气,直接将太阳能转化为化学能。在这样的基础之上,各种各样的光催化剂被科学研究者们发现,本文旨在从光催化剂的角度出发,就现存的一些利用可见光解水制氢的方法进行简单的介绍以及其研究进展。 2 研究现状综述 石墨相氮化碳即g-C3N4是一种具有优异光催化性能的非金属半导体,其组成元素是地球上含量丰富的C和N,相比于金属半导体而言成本较低。且g-C3N4具有密度低、化学稳定性好、耐磨性强[2]等优点。由于g-C3N4的禁带带宽合适,在2.7eV左右,可以吸收太阳光谱中

光催化制氢

光催化制备氢气进展报告 中文摘要 太阳光光催化水解制氢就是解决能源与环境问题得一重要途径。有效地实现可见光催化水解制氢技术得关键在于光催化材料得选择与光催化体系得选择.本文介绍了光催化制氢原理,以及光催化剂在改性研究、光催化剂催化体系得研究进展与研究方向。 关键词:制氢光催化改性光催化体系TiO2 1引言 随着人口与经济得迅速增长,世界能源得消耗成倍增长,加速了化石燃料得枯竭,因而寻找新能源代替化石燃料已刻不容缓.在新能源领域中,氢能已普遍被认为就是一种最理想得新世纪无污染得绿色能源,这就是因为氢燃烧,水就是它得唯一产物。氢就是自然界中最丰富得元素,它广泛地存在于水、矿物燃料与各类碳水化合物中。 然而,传统得制氢方法,需要消耗巨大得常规能源,使氢能身价太高,大大限制了氢能得推广应用。于就是科学家们很快想到利用取之不尽、廉价得太阳能作为氢能形成过程中得一次能源,使氢能开发展现出更加广阔得前景。科学家们发现了以光催化材料为“媒介",能利用太阳能把水裂解为燃料电池所必需得氧与氢,科学家称这种仅用阳光与水生产出氢与氧得技术为“人类得理想技术之一”. 1、1半导体制氢原理 图1所示为半导体光催化制氢反应得基本过程:半导体吸收能量等于或大于禁带宽度得光子,将发生电子由价带向导带得跃迁,这种光吸收称为本征吸收.本征吸收在价带生成空穴,在导带生成电子,这种光生电子-空穴对具有很强得还原与氧化活性,由其趋动得还原氧化反应称为光催化反应。如图1所示,光催化反应包括,光生电子还原电子受体H+与光生空穴氧化电子给体D—得电子转移反应,这两个反应分别称为光催化还原与光催化氧化。根据激发态得电子转移反应得热力学限制,光催化还原反应要求导带电位比受体得电位(H+/H2)偏负,光催化氧化反应要求价带电位比给体得电位(D/D—)偏正;换句话说,导带底能级要比受体得电位(H+/H2)能级高,价带顶能级要比给体得电位(D/D-)能级低.在实际反应过程中,由于半导体能带弯曲及表面过电位等因素得影响,对禁带宽度得要求往往要比理论值大.也就就是说,能够实现完全分解水得到氢气与氧气光催化材料得带隙必须大于1、23eV,并且导带与价带得位置相对氢标准电极电位得位置合适。

最新光催化分解水材料研究总结全解

光催化分解水材料研究总结 班级:xxxxx 学号:xxxxx 姓名:xxx 一·研究小组简介 彭绍琴:1985年毕业于南昌大学(原江西大学)无机化学专业,获理学学士学位。 1993,2-1994,6北京大学访问学者;1999年7月研究生毕业于南昌大学物理化学专业,获理学硕士学位;2005年7月研究生毕业于南昌大学材料物理与化学专业,获工学博士学位。目前是江西省高校骨干教师,南昌大学无机化学和应用化学,长期从事无机化学、材料化学的教学和科研工作。在无机功能材料、纳米材料、光催化领域有较长时间的工作积累,在国内外重要学术刊物上发表论文30余篇。参与完成国家自然科学基金和“973”项目2项,主持和完成江西省自然科学基金各1项。主持和完成江西省教育厅项目各1项。 上官文峰:日本国立长崎大学工学博士,原日本国工业技术院科学技术特别研究员, 曾先后任北京大学、东京大学高级访问学者。现任上海交通大学教授、博士生导师,机械与动力学院燃烧与环境技术研究中心副主任。主要从事环境催化与材料、光催化、太阳能制氢、燃烧排放及柴油机尾气催化净化、纳米材料制备及其功能开发等领域的研究。主要负责承担了国家863计划、国家973计划、国家自然科学基金、上海市重点发展基金、海外合作等项目。在Chem Commun, J Phys Chem B, Appl Catal A & B,《科学通报》等国际国内权威期刊上发表了一系列学术论文,取得日本国发明专利 4 项,并获日本政府“注目发明”奖 1 项。获国家发明专利10 余项,获省部级科学技术进步奖 2 项。教育部“跨世纪优秀人才”培养计划入选者,中国化学会催化专业委员会委员,中国太阳能学会氢能专业委员会委员,中国仪表材料学会理事,973计划“太阳能规模制氢的基础研究”项目专家组成员,《环境污染与防治》杂志编委,亚太纳米科技论坛ISNEPP2006、2007学术委员会委员。 李越湘:男,博士,教授,博士生导师,南昌大学科技处副处长。南昌大学材料物 理与化学重点学科光催化方向学术带头人,江西省高校中青年学科带头人,2004年获江西省科学技术协会“江西青年科学家提名”称号。现为中国太阳学会氢能专业委员会委员,《功能材料》通讯编委。1984年大学本科毕业于江西大学化学系,获学士学位;1996,10-1997,12国家公派到德国科隆大学((Universitaet zu Koeln))做访问学者,期间得到德国学术交流中心(DAAD)短期奖学金资助;2002年研究生毕业于中国科学院研究生院(兰州化学物理所),获理学博士学位;2006年6月-11月国家公派到德国汉诺威大学(Leibniz Universitaet Hannover)做高级研究学者。长期从事光催化、无机材料、环境化学等方向的研究,已在国内外重要学术刊物上发表了学术论文50余篇,其中18篇为SCI论文,4篇为EI。作为主要承担者完成省科技厅攻关项目一项和多项横向项目,主持和参与(排名第二)完成江西省自然科学基金各一项。目前承担973计划(国家重点规划基础研究项目)二级子项目和省自然科学基金项目各一项。 尚世通(1985一):男,山东省成武县人,东北电力大学硕士研究生,主要从事水质科学与技术研究工作。 宋华(1963-):女,工学博士,教授、博导,现系大庆石油学院化学化工学院副院长,从

半导体光催化制氢的进展.

《能源材料》课程论文 题目:半导体光催化水解制氢的进展 指导教师:毛景 学生姓名:朱永坤学号:20130800830 专业:建筑结构及功能材料 院(系):材料科学与工程 2016年6月8 日

关键词:半导体;光催化;太阳能;电解水;制氢;改性。 引言: 在上课过程中老师讲到的新能源汽车当中的氢燃料池汽车让我对氢能的开发利用产生了浓厚的兴趣,就想着写一篇关于氢能方面的文章。结合老师上课过程提到的太阳能制氢,就定位在了半导体光催化制氢这个主题了。 目前,氢气在氢燃料电池汽车当中得到了广泛的应用,氢燃料电池通过液态氢与空气中的氧结合而发电,根据此原理而制成的氢燃料电池可以发电用来推动汽车。 氢燃料电池汽车是终极环保汽车。氢燃料电池汽车零排放,且一次加氢续驶里程长,加氢时间短,相当于汽油车,一直以来被作为新能源汽车技术路线之一。 但是,到目前为止,氢燃料电池汽车,并没有得到大范围的普及,因为一些技术条件的短板暂时限制了它的应用。其中最大的问题就是氢气来源问题,世界上很多国家的氢燃料的生产并不是以水为原料,而是以天然气作为生产原料,先前讲到了,如果要电解水取得氢气,那需要很大的能量消耗,而且要生产出能量值与普通汽油燃料相当的氢燃料,我们就需要大量的水资源,水同样也是我们这个星球稀缺的资源。同时,氢气的储存和运输过程又要耗费很大的能量,所以到目前为止,要驱动一辆氢燃料电池汽车,所需能耗太大,还不能达到节能环保的目的。麻省理工学院的一些能源专家则提出,氢燃料电池车真正要“跑起来”,至少还需要15年的时间。 那么,如何低能耗,效率高地制备氢气成为了氢燃料汽车的一个瓶颈,目前制备氢气有也有很多方法,包括热化学法制氢,光电化学分解法制氢,光催化法制氢,人工光合作用制氢,生物制氢等,在这里重点介绍一下光催化制氢的一

石墨相氮化碳可见光催化分解水制氢

石墨相氮化碳可见光催化分解水制氢 1 概述 随着人类社会的快步发展,人类对能源的需求持续增长,地 球储存的能源已经无法满足人类长期的发展需求。同时化石能源的大量使用造成了环境大面积的破坏,严重威胁了人类的生存健康,寻求一种清洁高效的新能源成为能源发展的新方向。氢能,作为一种二次能源具有着清洁,高效,热值高,原料广等优点,被认为是一种最理想的无污染绿色能源。但是,氢在地球上主要是以化合物的形式存在,最广泛的来源就是水。工业上往往用电解水制氢、煤炭气化制氢等方式制备氢气,都存在着能耗高,会带来污染等问题。 光催化剂是进行光解水制氢的基本要素,半导体光催化剂的催化原理可以用能带理论来解释,半导体存在着不连续的能带结构,价带和导带之间存在着具有一定宽度的禁带,当半导体光催化剂受到等于或高于其禁带宽度的光子能量的太阳光照射时,价带上的电子就会跃迁到导带上,同时在价带上产生相应的空穴,形成电子 - 空穴对。电子、空穴在一定的作用力下迁移至粒子的表面,因其具有较强的氧化还原能力,从而使附着在粒子表面不能吸收光的物质发生氧化还原反应。光解水制氢技术的首次提出是在 1972 年,日本东京大学的 Fujishima 教授 [1] 发现二氧化钛单晶电极经过太阳光的照射可以将水分解为氧气和氢气,直接将太阳能转化为化学能。在这样的基础之上,各种各样的光催化剂被科学研究者们发现,本

文旨在从光催化剂的角度出发,就现存的一些利用可见光解水制氢的方法进行简单的介绍以及其研究进展。 2 研究现状综述 石墨相氮化碳即 g-C3N4 是一种具有优异光催化性能的非金 属半导体,其组成元素是地球上含量丰富的C和N,相比于金属 半导体而言成本较低。且 g-C3N4 具有密度低、化学稳定性好、耐磨性强[2]等优点。由于g-C3N4的禁带带宽合适,在2.7eV左右,可以吸收太阳光谱中波长小于475nm的光波,可见光可激发;且g-C3N4没有毒性,适用范围广,引起了学者们的广泛研究。关于石墨相氮化碳的单层结构主要有以下两种观点[3],一种是三嗪环,一种是 3-s- 三嗪环,主要的研究对象是 3-s- 三嗪环。 g-C3N4中的C和N是以sp2形式杂化,形成的高度离域的n共轭体系[4],其导带和价带分别处于 1.4V和-1.3V[5],横跨在 H+/H2和OH-/O2的两侧,所以g-C3N4在分解水制氢方面有很好的应用。但是g-C3N4存在着一些问题,如电荷迁移慢、载流子复合严重、量子效率低、禁带宽度大不利于可见光的利用等。针对这些问题,国内外的专家学者们开展了大量的工作。 将g-C3N4做成纳米结构有利于增加其表面积,提高光捕获能力,缩短光生电子和空穴的迁移途径,改善光生载流子复合效率大的缺陷。Han等人[6]以双氰胺做前驱体,制备出的海草状 的 g-C3N4 具有多孔结构和更小的片层结构,比表面积大,光捕 获能力强,在可见光(入>420nm照射下,海草状的g-C3N4的析氢速

光解水制氢半导体光催化材料的研究进展

光解水制氢半导体光催化材料的研究进展 田蒙奎1 ,2 ,上官文峰2 ,欧阳自远1 ,王世杰1 (1. 中国科学院地球化学研究所,贵州贵阳550002 ; 2. 上海交通大学机械与动力学院燃烧与环境技术研究中心,上海200030) 摘要: 自从Fujishima2Honda 效应发现以来,科学研究者一直努力试图利用半导体光催化剂光分解水来获得既可储存而又清洁的学能———氢能。近一二十年来,光催化材料的研究经历了从简单氧化物、复合氧化物、层状化合物到能响应可见光的光催化材料。本文重点描述了这些光催化材料的结构和光催化特性,阐述了该课题的意和今后的研究方向。关键词: 光解水;氢能;半导体光催化剂中图分号: X13 文献标识码:A文章编号:100129731 (2005) 1021489204 1 引言 在能源危机和环境问题的双重压力下,氢能因其燃烧值高、储量丰富、无污染而成为最有希望替代现有化石能源的清洁能源,因而氢能的开发成了能源领域的研究热点。自从Fujishima 和Honda 于1972 年发现了TiO2 光电化学能分解水产生H2 和O2 以来[1 ] ,科学研究者实现太阳能光解水制氢一直在作不懈的努力。普遍接受的光解水制氢原理是:半导体光催化剂在能量等于或大于其禁带宽度的光辐射时,电子从最高电子占据分子轨道( HOMO ,即价带) 受激跃迁至最低电子占据分子轨道(LUMO ,即导带) ,从而在价带留下了光生空穴( h + ) , 导带中引入了光生电子(e - ) 。光生空穴和光生电子分别具有氧化和还

原能力。要实现太阳能光解水制氢和氧,光生电子的还原能力必须能还原H2O 产生H2 ,而光生空穴的氧化能力必须能氧化H2O 产生O2 ,即半导体光催化剂的导带底要在H2O/ H2 电位( E0 = 0V ,p H = 0) 的上面(导带位置越高,电位越负,还原能力越强) ;而价带顶在O2 / H2O 电位( ENHE = + 1. 23V ,p H = 0) 的下面(价带位置越低,电位越正,氧化能力越强) 。近一二十年来, TiO2 以外的光催化剂的相继发现,特别是能响应可见光的光催化材料的出现,使得光解水制氢研究进入了非常活跃时期。本文就近期太阳能光解水制氢研究进展中的半导体光催化材料作一综述。 2 简单半导体氧化物,硫化物系光催化剂目前广泛研究的简单化合物半导体材料的能带结构如图1 所示: 图1 部分半导体材料的能带结构示意图 Fig 1 Schematic diagram of band st ructure for some semiconductor s TiO2 光催化剂由于光照不发生光腐蚀、耐酸碱性好、化学性质稳定、对生物无毒性、来源丰富等优点而被广为利用。具有代表性的

光催化原理及应用

光催化原理及应用 起源 光触媒,是一个外来词,起源于日本,由于日本文字写成“光触媒”,所以中国人就直接把她命名为“光触媒”。其实日文“光触媒”翻译成中文应该叫“光催化剂”翻译成英文叫“photo catalyst ”。光触 媒于1967年被当时还是东京大学研究生的藤岛昭教授发现。在一次试验中对放入水中的氧化钛 单结晶进行了光线照射,结果发现水被分解成了氧和氢。这一效果作为“本多?藤岛效果” (Honda-Fujishima Effect )而闻名于世,该名称组合了藤岛教授和当时他的指导教师一东京 工艺大学校长本多健一的名字。 这种现象相当于将光能转变为化学能,以当时正值石油危机的背景,世人对寻找新能源的期 待甚为殷切,因此这一技术作为从水中提取氢的划时代方法受到了瞩目,但由于很难在短时间 内提取大量的氢气,所以利用于新能源的开发终究无法实现,因此在轰动一时后迅速降温。 1992年第一次二氧化钛光触媒国际研讨会在加拿大举行,日本的研究机构发表许多关于光触 媒的新观念,并提出应用于氮氧化物净化的研究成果。因此二氧化钛相关的专利数目亦最多, 其它触媒关连技术则涵盖触媒调配的制程、触媒构造、触媒担体、触媒固定法、触媒性能测试等。以此为契机,光触媒应用于抗菌、防污、空气净化等领域的相关研究急剧增加,从1971年 至2000年6月总共有10,717件光触媒的相关专利提出申请。二氧化钛TiO 2 光触媒的广泛应 用,将为人们带来清洁的环境、健康的身体。 催化剂是加速化学反应的化学物质,其本身并不参加反应。典型的天然光催化剂就是我们常见的叶绿素,在植物的光合作用中促进空气中的二氧化碳和水合成为氧气和碳水化合物。 光触媒是一种纳米级的金属氧化物材料,它涂布于基材表面,在光线的作用下,产生强烈催化降解功能:能有效地降解空气中有毒有害气体;能有效杀灭多种细菌,并能将细菌或真菌释放岀的毒素分解及无害化处理;同时还具备除臭、抗污等功能。光催化是在光的辐照下使催化剂周围的氧气和水转化成极具活性的氧自由基,氧化力极强,几乎可以分解所有对人体或环境有害的有机物质总的来说纳米光触媒技术是一种纳米仿生技术,用于环境净化,自清洁材料,先进新能源,癌症医疗,高效率抗菌等多个前沿领域。 早在1839年,Becquere就发现了光电现象,然而未能对其进行理论解释。直到1955年,Brattain 和Gareet 才对光电现象进行了合理的解释,标志着光电化学的诞生。1972年,日本东京大学Fu jishmi a和H onda研究发现[3],利用二氧化钛单晶进行光催化反应可使水分解成氢和氧。这一开创性的工作标志着光电现象应用于光催化分解水制氢研究的全面启动。在过去30年里,人们在光催化材料开发与应用方面的研 究取得了丰硕的成果。 以二氧化钛为例,揭示了其晶体结构、表面羟基自由基以及氧缺陷对量子效率的影响机制;采用元素 掺杂、复合半导体以及光敏化等手段拓展其光催化活性至可见光响应范围;通过在其表面沉积贵金属纳米 颗粒可以提高电子-空穴对的分离效率,提高其光催化活性。尽管人们对光催化现象的认知与应用取得了长足的进步,然而受认知手段与认知水平的限制,目前对光催化作用机理的研究成果仍不足以指导光催化技术的大规模工业化应用,亟待大力开展光催化基本原理研究工作以促进这一领域的发展。另一方面,现有光催化材料的光响应范围窄,量子转换效率低,太阳能利用率低,依然是制约光催化材料应用的瓶颈。寻找和制备高量子效率光催化材料是实现光能转换的先决条件,也是光催化材料研究者所需要解决的首要 任务之一。 光催化机理: 半导体材料在紫外及可见光照射下,将光能转化为化学能,并促进有机物的合成与分解,这一过程称为光催化。当光能等于或超过半导体材料的带隙能量时,电子从价带(VB)激发到导带(CB)形成光生载流子(电子-空穴对)。在缺乏合适的电子或空穴捕获剂时,吸收的光能因为载流子复合而以热的形式耗散。价带空穴是强氧化剂,而导带电子是强还原剂。大多数有机光降解是直接或间接利用了空穴的强氧化能力。

10 可见光区光催化分解水制氢的研究进展

一 引言 能源和环境是人类社会可持续发展中所面临的两个重大战略问题。随着传统能源煤、石油、天然气等的日益枯竭以及环境恶化,人们迫切需要寻找新的清洁能源。氢能是一种清洁、高效、可贮 可见光区光催化分解水制氢的研究进展 介绍了光催化分解水的基本原理,综述了近年来各种类型的半导体光催化剂在可见光区分解水 制氢的研究进展,并对未来的发展方向进行了展望。 可见光;光催化;分解水制氢;半导体;太阳能 摘 要:关键词:宁夏大学 天然气转化国家重点实验室培育基地 ■ 苏 光 马保军 存、可运输的能源,被誉为“未来的石油”。因此以太阳能为原料通过光催化的方法分解水制氢是一种极具发展潜力的能源利用方式,是“人类的理想技术之一”。1972年日本东京大学的Fujishima 和Honda 首次发现了在TiO 2电极上光电催化分解水 五 结论 本文对天津大学10kW p 非晶硅光伏直接并网系统进行了介绍。随着光伏器件价格的不断下降和国家对光伏产业的政策扶持,光伏发电必将会成为能源结构中的重要组成因素。通过对其一部分时间的监测,目前仍需进一步研究的光伏并网问题为: (1) 选址问题:光伏直接并网系统选址需考虑到当地的气候因素、负荷情况以及并入电网的等级和容量问题,而光伏组件往往对占地面积需求较大,建议推广光伏屋顶并网系统。 (2) 光伏发电对电网稳定运行问题:由于光伏发电过度依赖天气状况,所产生的电量很不稳定,因此需要保证光伏电站和水电、火电等电站的配 合发电,最大程度地减小由于光伏电站发电量波动对电网的影响。 参考文献 [1] IEEE STD 929-2000 IEEE Recommended Practice for Utility Interface of Photovoltaic(PV)Systems[S]. [2] 张海林,杨勇.自动化系统中的串行通信协议的设计[J].计算机工程与应用,2003,39(31):159—160. [3] 王飞,余世杰,苏建徽,等.太阳能光伏并网发电系统的研究[J].电工技术学报,2005,20(5):72—74. [4] 周德佳,赵争鸣,吴理博,等.基于仿真模型的太阳能光伏电池阵列特性的分析[J].清华大学学报 (自然科学版),2007,47(7):1109—1112,1117. [5] Masters G M .Renewable and efficient electric power systems [M].Hoboken ,NJ :Wiley ,2004. [6]郑诗程,夏伟.三相光伏并网系统的控制策略研究[J].电力电子,2007,(3):43—46 . (接上页)

光强对光电化学法分解水制氢的影响

光强对光电化学法分解水制氢的影响 摘要:氢气被认为是最理想的清洁能源,因其对环境无污染。利用免费而且无限量的太阳能通过光电催化分解水的方法制取氢被认为是最具有前景的制氢方法。光电化学分解水制氢气是太阳能制氢研究的一个重要组成部分,近年来通过对光电化学中光阳极材料的进一步深化,光电化学制氢的研究取得了巨大的进展。本文以纳米二氧化钛作为光阳极,利用其耐光腐蚀和化学稳定性好的优点来测试不同的光强辐射对我们光电系统制氢效率的影响。 关键词:太阳能;光电化学分解;纳米二氧化钛

Effects of light intensity on the photoelectrochemical decomposition of water to hydrogen Abstract:As we all know,hydrogen is considered as an ideal clean energy, because of its no pollution to the environment. With using the method of free and limitless solar energy through the photoelectric catalytic decomposition of water to produce hydroge n is considered to be the most promising method for hydrogen production. The photoelectrochemical water splitting into hydrogen is an important part of solar hydro gen production, in recent years through the further deepening of the photoelectrochemical light anode materials, has made great progress in photoelectrochemical hydrogen prod uction.In this paper, the nanotitanium dioxide was used as anode, using its corrosion r esistance and good chemical stability to test the different light radiation impact on our law system of the photoelectric efficiency of hydrogen production Key word:Solar energy;The photoelectrochemical decomposition; Nanotitanium dioxide 1引言 氢气因其对环境无污染被认为是最理想的清洁能源。在传统的制取氢气的方法当中,化石燃料的制取约占全球制氢数量的90%,这种方法主要是利用变压吸附以及蒸汽转化相结合的方法制取高纯度的氢。利用电能制取氢也占有一定的比例。但上述两种方式,制取高纯度的氢时能耗大,污染大。在近些年来的研究中,利用免费而且无限量的太阳能通过光电催化分解水的方法制取氢被认为是最具有前景的制氢方法。 光电化学分解水制氢是太阳能制氢研究的一个重要组成之一,由光阳极和对

太阳能光催化制氢技术

太阳能光催化制氢技术 摘要 光催化技术作为一种新型的处理技术,具有很强的氧化还原功能。在杀菌、分解有机污染物氧化无机物,净化空气等方面具有很广阔的应用前景。本文重点讨论光催化制氢技术的进展,由于目前的国内外研究光催化领域在紫外线方面成果比较突出,然而为了使该技术产业化生产,使氢能源成为未来可利用的清洁能源,以后在研究可见光光催化势必成为国际上竞争的热点,其最为重要的是如何研发出高效稳定并能利用太阳能的催化剂,这将成为该门技术用以使用化的重要标志。 关键词:太阳能;光催化;氢气 1 前言 随着经济的发展,能源危机日趋严重:石化能源的消耗,空气、水资源的污染等等已经成为可持续发展的瓶颈。据有关报道记载全世界煤的贮藏量约为9.1 ×1011t,石油贮存量约1.6 ×1014L。按现在的消耗速度,不足100年,石油将耗尽,煤也只能维持200年左右。故开发出能够替代石油等石化能源的新型能源具有广阔的社会效益与经济效益。同时,以煤、石油、天然气为主的化石资源的燃烧释放大量的CO2、SO2 等有害气体,使我们共同生活的地球面临着其带来的温室效应、酸雨等诸多环境污染问题。因此,为了实现人类的可持续发展, 开发清洁的可再生能源已迫在眉睫。而氢作为一种无污染高热量的能源,同时地球上水资源丰富,太阳能是一种取之不尽、用之不竭的自然资源,利用太阳能制氢是一种具有广阔前景的技术。然而直接用太阳能分解水制氢显然是不可能的,研究开发出光解水的催化剂正是该种技术的核心。然而以二氧化钛为代表的传统催化剂只能利用紫外光,催化效率低,其应用到太阳能制氢中受到很大的限制,为了在可见光下催化制氢,亟需发展新型的催化剂材料。本文就围绕光催化剂的研究进展,综述一下太阳能光催化制氢技术的发展,并简要提出该技术的发展前景。 2 光催化氧化综述 20世纪70年代,日本学者Fujishima A和Honda K在Nature上首次报道了光照射条件下,TiO2 电极可分解水产生氢气,掀起了一股研究热潮。然而在20世纪后期该技术并没有得到很大的关注,随着进入21世纪以后光催化制氢技术得到了重新的重视,现在有关该报道络绎不绝,可以说是百花齐放。 光催化氧化利用范围相当的广阔,在污染物处理,大气净化等方面都有作用,现

近期关于光催化水解制氢气的研究综述

以二氧化钛为基质的催化剂的研究综述 温邻君杨晓奕 (北京航空航天大学,北京,100191) 摘要:本文系统地介绍了关于光致水解制氢气的催化剂的近期研究进展。从以下几个提高催化活性的方向:贵金属负载、离子掺混、染色光敏化处理、复合半导体及化学牺牲剂等,结合最新的研究成果,总结各种改善高催化活性思路的科研进展,系统地比较各个方法的特点,提出自己的看法。并展望该领域未来的发展。 关键词:TiO2、光催化水解制氢、催化剂改性技术、电子-空穴、牺牲剂、量子效率 Abstract:This paper reports the recent developments in photocatalytic water-splitting for hydrogen production. Basing on the following methods to improve the catalytic activity: noble metal loading, ion doping, dye sensitization, composite semiconductors and chemical additives. Combines with the recent research results to summarize the developments in those methods. Systematically compares the characteristics of the various methods and gives my own opinions. At last, look forward to the future in this area. Key words: TiO2, photocatalytic water-splitting for hydrogen production, photocatalyst modification techniques, electron -role, sacrificial reagents, quantum efficiency

实现太阳能全分解水制氢

实现太阳能全分解水制氢 8月20日,中科院大连化物所催化基础国家重点实验室及洁净能源国家实验室李灿院士和中科院“百人计划”学者陈钧研究员负责的人工光合研究项目取得新进展:将自然光合作用酶PSII和人工半导体纳米光催化剂自组装构建了太阳能光催化全分解水杂化体系,实现了太阳光下的全分解水反应(即:2H2O?O2+2H2),相关研究结果发表在近期的《自然—通讯》期刊上(Wangyin Wang, Jun Chen, Can Li, Wenming Tian, Nature Communications, 2014, 5:4647 doi: 10.1038/ncomms5647)。这是国际上第一例在“自然和人工光合杂化体系上实现太阳能全分解水制氢”的研究报道。 太阳能光催化分解水制氢是科学界最具挑战的课题之一,受到世界各国科学家越来越广泛的重视。实现水分解反应的关键是构建高效的光催化体系。大部分人工光催化剂体系的催化剂活性比自然光合体系的催化活性低,尤其水氧化助催化剂的活性更低(一般比自然光合体系PSII中CaMn4O5簇的活性低3-4个数量级),而自然光合体系的捕光范围和稳定性不如基于无机半导体的人工光合体系优越,为此李灿团队提出了复合人工光合体系的理念,试图杂化集成两种体系的优势,建立自然光合和人工光合的复合杂化体系,以期实现太阳能到化学能的高效转化,并揭示自然光合体系的奥秘。围绕这一理念已先后构建了杂化体系实现了高效产氢、氢转移及CO2加氢等还原反应,受邀在Accounts of Chemical Research上发表综述文章 (Acc. Chem. Res., 2013, 46, 2355) ,阐述了复合人工光合作用体系的科学意义和构建策略,为发展全分解水体系奠定了基础。 在自然光合作用中,PSII酶利用太阳能高效催化水氧化反应,放出氧气并产生当量质子和电子,为了实现太阳能光催化全分解水,基于复合人工光合作用体系的思路,在本工作中结合光合酶PSII和人工光催化剂的优势,构建了植物PSII酶和半导体光催化剂(例如,Ru/SrTiO3:Rh)的自组装杂化光合体系,以无机离子对[Fe(CN)63-/Fe(CN)64-]由自然酶PSII向人工Ru/SrTiO3:Rh催化剂传递电子,在可见光照射下实现了化学计量比全分解水。分解水产氢活性达到了2489 mol H2 (mol PSII)-1 h-1,而且在户外阳光下也实现了分解水反应。研究还发现PSII膜片段可以通过自组装的方式结合在无机催化剂表面,PSII氧化水产生的电子通过界面处传递离子对将电子转移到半导体催化剂表面参与质子 还原产氢反应。该研究为进一步构建和发展“自然-人工”杂化的太阳能高效光合体系提供了原初的思路。 该研究工作得到了国家自然科学基金项目和科技部973项目的资助。(来源:科学网 通讯员王旺银 记者刘万生)

相关文档
最新文档