第四章直流直流(DCDC)变换

第四章直流直流(DCDC)变换
第四章直流直流(DCDC)变换

第四章直流—直流(DC-DC)变换

将大小固定的直流电压变换成大小可调的直流电压的变换称为DC-DC变换,或称直流斩波。直流斩波技术可以用来降压、升压和变阻,已被广泛应用于直流电动机调速、蓄电池充电、开关电源等方面,特别是在电力牵引上,如地铁、城市轻轨、电气机车、无轨电车、电瓶车、电铲车等。这类电动车辆一般均采用恒定直流电源(如蓄电池、不控整流电源)供电,以往采用变阻器来实现电动车的起动、调速和制动,耗电多、效率低、有级调速、运行平稳性差等。采用直流斩波器后,可方便地实现了无级调速、平稳运行,更重要的是比变阻器方式节电(20~30)%,节能效果巨大。此外在AC-DC变换中,还可采用不控整流加直流斩波调压方式替代晶闸管相控整流,以提高变流装置的输入功率因数,减少网侧电流谐波和提高系统动态响应速度。

DC-DC变换器主要有以下几种形式:(1)Buck(降压型)变换器;(2)Boost(升压型)变换器;(3)Boost-Buck(升-降压型)变换器;(4)Cúk变换器;(5)桥式可逆斩波器等。其中Buck和Boost为基本类型变换器,Boost-Buck和Cúk为组合变换器,而桥式可逆斩波器则是Buck变换器的拓展。此外还有复合斩波和多相、多重斩波电路,它们更是基本DC-DC 变换器的组合。

4.1 DC-DC变换的基本控制方式

DC-DC变换是采用一个或多个开关(功率开关器件)将一种直流电压变换为另一种直流电压。当输入直流电压大小恒定时,则可控制开关的通断时间来改变输出直流电压的大小,

这种开关型DC-DC变换器原理及工作波形如图4-1所示。如果开关K导通时间为,关

断时间为,则在输入电压E恒定条件下,控制开关的通、断时间、的相对长短,便可控制输出平均电压U0的大小,实现了无损耗直流调压。从工作波形来看,相当于是一个将恒定直流进行“斩切”输出的过程,故称斩波器。

斩波器有两种基本控制方式:时间比控制和瞬时值控制。

图4-1 DC-DC变换器原理电路及工作波形

(a)原理电路;(b)工作波形

4.1.1 时间比控制

这是DC-DC变换中采用最多的控制方式,它是通过改变斩波器的通、断时间而连续控

制输出电压的大小。即

(4-1)

式中为斩波周期;为斩波频率;为导通比。可以看出,改变导通比即可改变输出电压平均值U0,而的变化又是通过对T、t on控制实现的。时间比控制又有以下几种实现方式:

(1)脉宽控制

斩波频率固定(即T不变),改变导通时间实现变化、控制输出电压U0大小,常称定频调宽,或脉宽调制(直流PWM)。

实现脉宽控制的原理性电路及斩波器开关控制信号波形如图4-2所示。图(a)为一电

压比较器,U T为频率固定的锯齿波或三角波电压,为直流电平控制信号,其大小代表

期望的斩波器输出电压平均值。当,比较器输出(高);当

,(低),从而获得斩波器功率开关控制信号。改变大小,改变斩波器开关导通时间,在U T固定条件下,斩波器开关频率固定,实现了定频调宽。

图4-2 脉宽控制方式

(a)原理电路;(b)控制波形

由于斩波器开关频率固定,这种控制方式下为消除开关频率谐波的滤波器设计提供了方便。

2.频率控制固定斩波器导通时间,改变斩波周期T来改变导通比的控制方式。这种方式的实现电路比较简单,但由于斩波频率变化,消除开关谐波的滤波电路较难设计。

3.混合控制。这是一种既改变斩波频率(即周期T)、又改变导通时间的控制方式,其优点是可较大幅地改变输出电压平均值,但也由于斩波频率变化,滤波困难。

4.1.2 瞬时值控制

在恒值(恒压或恒流)控制或波形控制中,常采用瞬时值控制的斩波方式。此时将期望

值或波形作为参考值,规定一个控制误差ε,当斩波器实际输出瞬时值达指令值上限

时,关断斩波器;当斩波器实际输出瞬时值达指令值下限时,导通斩波

器,从而获得围绕参考值在误差带2范围内的斩波输出。图4-3为实现恒流瞬时值控制原理性框图及斩波器输出波形。

采用瞬时值控制时斩波器功率器件的开关频率较高,非恒值波形控制中开关频率也不恒定,此时要注意功率器件的开关损耗、最大开关频率的限制等实际应用因素,确保斩波电路的安全、可靠工作。

图4-3 瞬时值控制原理图

(a)控制框图;(b)输出电流波形

4.2 基本DC-DC变换器

4.2.1 Buck(降压型)变换器

Buck变换电路如图4-4所示,它是一种降压型DC-DC变换器,即其输出电压平均值

恒小于输入电压E,主要应用于开关稳压电源,直流电机速度控制,以及需要直流降压变换的环节。为获得平直的输出直流电压,输出端采用了L-C形式的低通滤波电路。根据功率

器件VT的开关频率、L、C的数值,电感电流可能连续或断续,影响变换器的输出特性,须分别讨论。

图4-4 Buck变换器

1、电流连续时

图4-5给出了电感电流连续时的有关波形及VT导通、关断两工作模式下的等效电路。

Buck变换器的输入、输出电压关系为:

(4-2)

因,故为降压变换关系。

变换器的输入、输出电流关系为

(4-3)因此电流连续时Buck变换器完全相当于一个“直流”变压器。

图4-5 Buck变换器工作模式及电流连续时各点波形

(a)导通(t on)模式;(b)关断(t off)模式;(c)各点波形

2、电流断续时

电流连续与否的临界状态是VT关断结束时(或导通开始时)电感电流,如图4-6所示。

图4-6 电流临界连续波形

Buck变换器电流断续运行状态时的波形如图4-7所示。

图4-7 电流断续时波形

4.2.2 Boost(升压型)变换器

Boost变换电路如图4-8所示,它是一种升压型DC-DC变换器,其输出电压平均值

要大于输入电压E,主要用于开关稳压电源、直流电机能量回馈制动中。同样根据功率开关

器件VT的开关频率、储能电感L、滤波电容C的数值,电感电流或负载电流可能连续或断续,此时变换器的特性不同,需分开讨论。

图4-8 Boost变换器

1、电流连续时

图4-9给出了电感电流连续时,有关波形及VT导通、关断两工作模式下的等效电路。

图4-9 Boost变换器工作模式及电流连续时各点波形

(a)导通(t on)模式;(b)关断(t off)模式;(c)各点波形

Boost变换器的输入、输出电压关系为

(4-17)

因为,故为升压变换关系。

变换器的输入、输出电流关系为

(4-18)因此电流连续时Boost变换器相当一个升压的“直流”变压器。

2、电流断续时

随着负载的减小,电感电流将减小。当VT关断结束时(或导通开始时),

则进入电流连续与否的临界状态,其电感电压、电感电流波形如图4-10(a)所示。

图4-10 电流临界连续及连续时波形

(a)电流临界连续;(b)电流断续

4.2.3 Boost -Buck(升降压型)变换器

Boost -Buck变换电路如图4-11所示,其特点是:(1)输出电压U0可以小于(降压)、也可以大于(升压)输入电压E;(2)输出电压与输入电压反极性。

图4-11 Boost-Buck变换器

图4-12 Boost -Buck变换器工作模式及电流连续时各点波形

(a)导通(t on)模式;(b)关断(t off)模式;(c)各点波形

输入、输出关系

Buck-Boost变换器的输入、输出电压关系为

(4-31)

此式说明,当导通比≤0.5,|U0|<|E|,降压;当>0.5,|U0|>|E|,升压,且输出电压与输入电压反极性。

同样在忽略变换损耗条件下,根据输入、输出功率相等关系,可导出变换器的输入、输

出电流平均值间关系

(4-32)

4.2.4 Cúk变换器

Cúk变换器也是一种升降压变换器,电路结构如图4-13所示。其输出电压可以比输入电压低、也可以比输入电压高,而且输出与输入电压具有反极性关系。

图4-13 Cúk变换器

1、输入、输出关系

Cúk变换器输入、输出关系是通过分别对电感L1、L2在导通与关断模式切换中,电流纹波及电容C1电压平均值U c1的分析导出。

图4-14 Cúk变换器工作模式及电流连续时各点波形

(a)导通(t on)模式;(b)关断(t off)模式;(c)各点波形

Cúk变换器的输入、输出电压关系为

(4-49)

与Boost -Buck变换器相同,也是当导通比;降压;当

,升压;且输出电压与输入电压反相位。

按同样处理原则可求得变换器的输入、输出电流平均值间关系

(4-50)

Cùk变换器与Boost -Buck变换器的变换功能相同,但也有差异:

1)Cùk变换器输入电源电流和输出负载电流均连续,脉动小,有利于滤波。

2)Cùk变换器借助电容传输能量,Boost -Buck变换器借电感传输能量,故Cùk变换器的电容器C1中脉动电流大,要求电容量大。

3)Cùk变换器VT导通时要流过电感L1和L2的电流,故功率开关的峰值电流大。

4.3 晶闸管斩波器

在大功率的DC-DC变换中,往往使用晶闸管作功率开关元件的直流斩波器(电路)。用于斩波器的晶闸管有半控的普通晶闸管和全控的门极可关断晶闸管(GTO),它们电压、电流容量相近,但用于直流变换的普通晶闸管有关断(换流)问题,除有换流电路导致的斩波器结构复杂外,其斩波频率也较低,约100~200Hz。GTO无关断问题,其斩波器主电路简单,但触发电路设计较复杂,斩波频率可达1KHz。本节主要讨论由普通快速晶闸管和GTO元件构成的斩波电路,包括降压斩波、升压斩波及斩波变阻技术。

4.3.1 降压斩波

降压斩波及升压斩波方式多用于城市电车、地铁、电瓶车等直流电动机驱动系统,用作速度调节。图4-15为定频调宽的脉宽调制(PWM)晶闸管斩波器主电路结构,其中VT1为主晶闸管,起功率开关作用;VT2为辅助晶闸管,与无源元件C、L1、L2、VD1、VD2一起组成VT1的关断电路,从而控制输出电压的脉宽。VD F为负载感性电流的续流二极管。

斩波器的工作过程可用图4-15、配合图4-16来说明。

1)接通直流电源。由于VT1、VT2均未触发,电源E通过L1、VD1及负载L、R对C 充电至E,极性上(+)下(-),如图4-15(a)所示。

图4-15 定频调宽晶闸管降压斩波器

4.3.2 升压斩波

图4-17为一种采用GTO作功率开关元件的升压型斩波器,负载为直流电动机。它利用电感贮能释放时产生高压来升高输出电压,其中图(a)为斩波电路结构,图(b)为VT导

通模式下的等效电路,图(c)为VT关断模式下的等效电路。

图4-17 GTO升压斩波器及工作模式电路拓扑

(a)升压斩波电路;(b)导通(t on)模式;(c)关断(t off)模式

输出电压为:

(4-57)

由于,可知,即可输出比电源电压更高的电压,故称升压斩波器。在负载为直流电动机时,则可实现能量回馈的制动运行。

4.3.3 斩波变阻

利用斩波器与固定电阻并联,改变斩波电路的通导比,可以实现电阻值的等效变化。图4-19为三相绕线式异步电动机转子串电阻斩波变阻调速的应用。转子绕组相电压经不控

整流变换成直流,使所需外接电阻减少至单个,再在上并接降压型斩波器,以调节转子回路电阻大小。

图4-19 绕线式异步电机转子串电阻斩波变阻调速

当斩波器关断时,转子回路所接电阻为,持续时间为;当斩波器开通时,

转子回路所接电阻为,持续时间为。这样,一个开关周期内转子回路

等效电阻为

(4-58)

由此可见,改变斩波器的导通比

就可连续改变等效电阻 的大小,从而实现电

机的无级调速。 4.4 桥式可逆斩波器

桥式可逆斩波器主电路结构如图4-20所示。它由四个自关断器件(如GTR )VT 1、VT 2、VT 3、VT 4和四个快速型续流二极管VD 1、VD 2、VD 3、VD 4构成,形同字母H 。H 桥的一对角线接恒定直流电源E ,另一对角线接负载,图示为直流电动机。根据各功率开关元件的导通规律不同,H 型桥可逆斩波器可分单极性脉宽调制(斩波)和双极性脉宽调制(斩波)两种控制方式。

4.4.1 单极性脉宽调制

单极性脉宽调制时,斩波器输出电压U AB 的极性是通过一个控制电压 来改变。当

,使VT 1、VT 2交替互补地导通,VT 4一直导通、VT 3一直关断,各功率开关器件基极驱动信号如图4-21所示。这时斩波器输出电压U AB 总是B 端为(+)、A 端为(-),呈现

出一种单一方向的极性。当控制电压 ,则晶体管基极驱动电压 与 对换、

与 对换,变成VT 3、VT 4交替导通,VT 2一直导通而VT 1一直关断,H 桥输出电压U AB 随之改变极性,变成A 端为(+)、B 端为(-)的另一种单一的极性。

图4-20 桥式可逆斩波器 图4-21 单极性调制时驱动信号

4.4.2 双极性脉宽调制

双极性脉宽调制时,H 桥的四个晶体管分为两组:一组为VT 1和VT 4,另一组为VT 2和VT 3。控制规律是同组两管同时通、断,两组通、断相互交替,其晶体管驱动信号、输出电压、电流波形如图4-22所示。

图4-22 双极性调制时驱动信号和电压、电流波形

4.4.3 单极性调制与双极性调制方式的比较

1)双极性调制控制简单,只要改变位置就能将输出电压从+E变到-E;而在单极性调制方式中需要改变晶体管触发信号的安排。

2)当H桥输出电压很小时,双极性调制每个晶体管驱动信号脉宽都比较宽,能保证晶体管可靠触发导通。单极性调制时则要求晶体管驱动信号脉宽十分狭窄,但过窄脉冲不能保证晶体管可靠导通。

3)双极性调制时四个晶体管均处于开关状态,开关损耗大;而单极性调制时只有两个晶体管工作,开关损耗相应小。

本章小结

直流—直流(DC—DC)变换是一种可以进行直流电压升、降和实现电阻大小变化的变换技术,广泛用于直流电机调速和开关电源技术,别是后者,是目前通讯、计算机电源技术中的核心。

本章介绍了四种基本变换电路和一种桥式可逆斩波电路,其中最为基本的是Buck(降压型)变换和Boost(升压型)变换电路。对于这两种电路的深入掌握是本章学习的关键和核心,也是学习其他DC—DC变换电路的基础。学习的重点应放在对这两种电路工作原理的深刻理解上,掌握电流连续与断续两种不同工作状态下的输入、输出关系,主要滤波元件的计算,并能将这些概念应用到对Boost—Buck和Cúk组合变换电路的学习中。桥式可逆斩波电路在直流伺服与驱动中有广泛的应用,它的基本工作原理也被移植到多相大功率的交

流可逆电力传动中,故也是一种应用价值广泛的基本变换电路。

第三章01-降压型直流变换器.

第二节降压型开关电源 第三章直流变换器 * VT "Ln lk? 第二节降压型开关电源 (&5祥Sfi开关电8电》图 4 0 t ----- t onr- J ???0 ;aa) VT—高频晶体开关管, 工作在:导通饱和状态 ?止状态 起开关作用,可用M OS管和IGBT管代 替; 开关管与负载RL侧电路相率联,VT的反复 周期性导通和《止,控制了U1是否加到负 ?R L的时间比例,起到斩波作用? VD—续流二极管?当开关管VT截止时? VD 提 供一个称为“续流辭电流的通路?使电感电流 不致迅变中断,避免电感感应出高压而将晶体 管击穿损坏-此续流通路也是电感能 量放出到负载的通路? L—储能电感.有两个作用,能a转换和滤波 C—滤波电容,減小负《电压的脉动成分和?小 输出阻抗? R L—等效负我电阻,用电设备.

lk? + vr __________ 95 ttS生开关电源电路图 + Eo U—输入直流电压?该电压大小不穂定或者有纹波卩0?输出直流电压,纹波小,稳定? 将?个直流电压Ui转换成另 4 0 t ■----- t onr- I ?13 Q * hl U L * 、丫〔二二+ 图S MSfi开*??鼻匕1?创6图?个宜流电压Uo, KUo

直流变换器的设计(降压)

直流变换器的设计(降压) 一、设计要求: (1) 二、题目分析: (1) 三、总体方案: (2) 四、原理图设计: (2) 五、各部分定性说明以及定量计算: (5) 六、在设计过程中遇到的问题及排除措施: (6) 七、设计心得体会: (6)

直流变换器的设计(降压) BUCK降压斩波电路就是直流斩波中最基本的一种电路,是用BUCK作为全控型器件的降压斩波电路,用于直流到直流的降压变换。IGBT是MOSFET与双极晶体管的复合器件。它既有MOSFET易驱动的特点,又具有功率晶体管电压、电流容量大等优点。其频率特性介于MOSFET与功率晶体管之间,可正常工作于几十千赫兹频率范围内,故在较高频率的大、中功率应用中占据了主导地位。所以用BUCK作为全控型器件的降压斩波电路就有了IGBT易驱动,电压、电流容量大的优点。 BUCK降压斩波电路由于易驱动,电压、电流容量大在电力电子技术应用领域中有广阔的发展前景,也由于开关电源向低电压,大电流和高效率发展的趋势,促进了IGBT 降压斩波电路的发展。 一、设计要求: 技术参数:输入直流电压Vin=36V 输出电压Vo=12V 输出电流Io=3A 最大输出纹波电压50mV 工作频率f=100kHz 二、题目分析: 电力电子器件在实际应用中,一般是由控制电路,驱动电路和以电力电子器件为核心的主电路组成一个系统。由信息电子电路组成的控制电路按照系统的工作要求形成控制信号,通过驱动电路去控制主电路中电力电子器件的导通或者关断来完成整个系统的功能,当控制电路所产生的控制信号能够足以驱动电力电子开关时就无需驱动电路。 课程设计步骤分析(顺序): 1.设计主电路,主电路为:采用BUCK变换器,主功率管用MOSFET; 2.选择主电路所有图列元件,并给出清单; 3.设计MOSFET驱动电路及控制电路; 4.绘制装置总体电路原理图,绘制: MOSFET驱动电压、BUCK电路中各元件的电压、电流以及输出电压波形; 5.编制设计说明书、设计小结。

直流变换器课程设计

目录第一章.设计概要 1.1 技术参数 1.2 设计要求 第二章.电路基本概述 第三章.电力总体设计方案 第三章.电力总体设计方案 3.1 电路的总设计思路 3.2电路的设计总框图 第四章BUCK 主电路设计 4.1 Buck变换器主电路原理图 4.2 Buck变换器电路工作原理图 4.3 主电路保护(过电压保护) 4.4 Buck变换器工作模态分析 4.5 主电路参数分析 第五章控制电路 5.1 控制带你撸设计方案选择 5.2 SG3525控制芯片介绍 5.3 SG3525各引脚具体功能 5.4 SG3525部结构及工作特性 5.5 SG3525构成的控制电路单元电路图 第六章驱动电路原理与设计 6.1 驱动电路方案设计与选择 6.2 驱动电路工作分析 第七章附录 第八章设计心得

第一章.设计概要 1.1 技术参数: 输入直流电压Vin=25V,输出电压Vo=10V,输出电流Io=0.5A,最大输出纹波电压50mV,工作频率f=30kHz。 1.2 设计要求: (1)设计主电路,建议主电路为:采用BUCK 变换器,大电容滤波,主功率管用MOSFET;(2)选择主电路所有图列元件,并给出清单; (3)设计MOSFET 驱动电路及控制电路; (4)绘制装置总体电路原理图,绘制:MOSFET 驱动电压、BUCK 电路中各元件的电压、电流以及输出电压波形(波形汇总绘制,注意对应关系); (5)编制设计说明书、设计小结。 第二章.电路基本概述 直流斩波电路(DC Chopper)的功能是将直流电变为另一固定电压或可调电压的直流电,也称为直接直流-直流变换器(DC/DC Converter)。直流斩波电路一般是指直接将直流电变为另一直流电的情况,输入与输出不之间不隔离。直流斩波电路的种类较多,包括6 种基本斩波电路:降压斩波电路,升压斩波电路,升降压斩波电路,Cuk 斩波电路,Sepic 斩波电路和Zeta 斩波电路。Buck 电路作为一种最基本的DC/ DC 拓扑,结构比较简单,输出电压小于输入电压,广泛用于各种电源产品中。根据对输出电压平均值进行调制的方式不同,斩波电路可以分为脉冲宽度调试、频率调制和混合型三种控制方式,Buck 电路的研究对电子产品的发展有着重要的意义。MOSFET 特点是用栅极电压来控制漏极电流,驱动电路简单,需要的驱动功率小,开关速度快,工作频率高,热稳定性优于GTR,但其电流容量小,耐压低,一般只适用于功率不超过10kW 的电力电子装置。功率MOSFET 的种类:按导电沟道可分为P沟道和N 沟道。按栅极电压幅值可分为;耗尽型;当栅极电压为零时漏源极之间就存在导电沟道,增强型;对于N(P)沟道器件,栅极电压大于(小于)零时才存在导电沟道,功率MOSFET 主要是N 沟道增强型。 第三章.电力总体设计方案 3.1 电路的总设计思路 Buck 变换器电路可分为三个部分电路块。分别为主电路模块,控制电路模块和驱动电路模块。主电路模块,由MOSFET 的开通与关断的时间占空比来决定输出电压u。的大小。控制电路模块,可用SG3525 来控制MOSFET 的开通与关断。驱动电路模块,用来驱动MOSFET。 3.2 电路设计总框图 电力电子器件在实际应用中,一般是有控制电路,驱动电路,保护电路和以电力电子器件为核心的主电路组成一个系统。有信息电子电路组成的控制电路按照系统的工作要求形成控制信号,通过驱动电路去控制主电路中电力电子器件的导通或者关断,来完成整个系统的功能。因此,一个完整的降压斩波电路也应该包括主电路,控制电路,驱动电路和保护电路致环节。根据降压斩波电路设计任务要求设计主电路、控制电路、驱动及保护电路,设计出降压斩波电路的结构框图如下图所示。

2buck直流变换器的工作原理及动态建模

DC/DC 变换器的概念7【】15【】19【】 将一个固定的直流电压变换成可变的直流电压称之为DC/DC 变换,亦称为直流斩波。用斩波器斩切直流的基本思想是:如果改变开关的动作频率,或者改变直流电流通和断的时间比例,就可以改变加到负载上的电压、电流的平均值。Buck 变换器又称降压变换器、串连开关稳压电源、三端开关型降压稳压器。 基本的DC/DC 变换器按输入输出之间是否有电气隔离可分为两类:隔离型DC/DC 变换器和非隔离型DC/DC 变换器。非隔离型DC/DC 变换器中存在四种基本的变换器拓扑,它们是降压式(Buck )型,升压式(Boost)型,升降压式(Buck-boost)型,Cuk 型,此外还有Sepic 型和Zeta 型变换器。 二电平Buck 直流变换器的工作原理及主电路图2【】13【】25【】26【】 1 主电路拓扑 Buck 变换器是一种输出电压等于或小于输入电压的单管非隔离直流变换器。它的拓扑为电压源、串联开关和电流负载组合而成。如图所示: 图 Buck 电路主电路拓扑 为了分析稳态特性,简化推导公式的过程,特作如下假定。 (1) 开关晶体管、二极管均是理想元件。也就是可以瞬间的导通和截至,而且导通时降压为零,截至时漏电流为零。 (2) 电感、电容是理想元件。电感工作在线性区而未饱和,寄生电阻为零,电容的等效串联电阻为零。 (3) 输出电压中的纹波电压与输出电压的比值小到允许忽略。 Buck 变换器的工作原理:当开关管S 导通时,电容开始充电,i U 通过向负载传递能量,此时,L i 增加,电感内的电流逐渐增加,储存的磁场能量也逐渐增加,而续流二极管因反向偏置而截至;当S 关断时,由于电感电流L i 不能突变,故L i 通过二极管VD 续流,电感电流逐渐减小,由于二极管VD 的单向导电性,L i 不可能为负,即总有L 0i ,从而可在负载上获得单极性的输出电压。 根据晶体管的开关特性,在管子的基极加入开关信号,就能控制它的导通和截至,对于NPN 晶体管,当基极加入正向信号时,将产生积极电流b i ,基极正向电压电压升高,b i 也随之升高,b i 达到一定数值后,集电极电流c i 达到最大值,其后继续增加b i ,b i 基本上保持不变,这种现象称为饱和。在饱和状态下,晶体管的集射极电压很小,可以忽略不计。因此晶体管的饱和状态相当于开关的接通状态。当基极加入反向偏压时,晶体管截至,集电极电流 c i 接近于零,而晶体管的集射极电压接近于电源电压。晶体管的这种状态相当于开关的断开 状态,通常称为截至状态,或称为关断状态。

XL4015降压型直流电源变换器芯片(大功率型)

n LCD Monitor and LCD TV n Portable instrument power supply n Telecom / Networking Equipment component count. Figure1. Package Type of XL4015

Pin Configurations Figure2. Pin Configuration of XL4015 (Top View) Table 1 Pin Description Pin Number Pin Name Description 1 GND Ground Pin. Care must be taken in layout. This pin should be placed outside of the Schottky Diode to output capacitor ground path to prevent switching current spikes from inducing voltage noise into XL4015. 2 FB Feedback Pin (FB). Through an external resistor divider network, FB senses the output voltage and regulates it. The feedback threshold voltage is 1.25V . 3 SW Power Switch Output Pin (SW). SW is the switch node that supplies power to the output. 4 VC Internal V oltage Regulator Bypass Capacity. In typical system application, The VC pin connect a 1uf capacity to VIN. 5 VIN Supply V oltage Input Pin. XL4015 operates from a 8V to 36V DC voltage. Bypass Vin to GND with a suitably large capacitor to eliminate noise on the input.

升降压双向直流变换器

双向直流-直流变换器的设计与仿真 姓名:张羽 学号:109081183 指导教师:李磊 院系:动力工程学院

摘要:本文选取了一种以Buck-Boost变换器为基础的双向DC-DC变换器进行了研究,设计了一种隔离型Buck-Boost双向DC-DC变换器。并根据设计指标,对变压器、输出滤波器、功率开关等进行参数设计,并使用saber仿真软件完成了这种带高频电气隔离的拓扑的仿真。 关键字:双向DC-DC变换器Buck-Boost变换器saber仿真软件uc3842 0 引言 所谓双向DC-DC变换器就是实现了能量的双向传输,在功能上相当于两个单向DC-DC。它的输入、输出电压极性不变,但输入、输出电流的方向可以改变。是典型的“一机两用”设备。在需要双向能量流动的应用场合可以大幅度减轻系统的体积重量及成本。 近年来,双向DC/DC变换器在电动汽车、航天电源系统、燃料电池系统以及分布式发电系统等方面得到了广泛应用。 1 基本电路的选取 DC-DC功率变换器的种类很多。按照输入/输出电路是否隔离来分,可分为非隔离型和隔离型两大类。非隔离型的DC-DC变换器又可分为降压式、升压式、极性反转式等几种;隔离型的DC-DC变换器又可分为单端正激式、单端反激式、双端半桥、双端全桥等几种。下面主要讨论非隔离型升压式DC-DC变换器的工作原理。 本文选取Buck-Boost双向DC-DC变换器进行了仿真实验。 2 Buck-Boost双向DC-DC变换器 2.1 Buck-Boost变换器 将Buck变换器与Boost变换器二者的拓扑组合在一起,除去Buck中的无源开关,除去Boost中的有源开关,如图所示,称为升降压变换器。它是由电压源、电流转换器、电压负载组成的一种拓扑,中间部分含有一级电感储能电流转换器。它是一种输出电压既可以高于也可以低于输入电压的单管非隔离直流变换器。Buck-Boost变换器和Buck变换器与Boost变换器最大的不同就是输出电压的极性和输入电压的极性相反,输入电流和输出电流都是脉动的,但是由于滤波电容的作用,负载电流应该是连续的。

LM2717型双降压直流直流变换器的原理及应用.

LM2717型双降压直流/直流变换器的原理及应用 摘要:LM2717是美国国家半导体公司推出的一款全新的高性能变换器,内含两个脉宽调制(PWM)直流/直流转换器,功能强大。介绍了该器件的主要参数、工作原理和引脚功能,讨论利用LM2717进行应用设计时选择外部器件的原则及设计中应注意的问题。 关键词:LM2717;PWM;DC/DC变换器;设计 1 引言 LM2717是美国国家半导体公司推出的一款全新的高性能DC/DC变换器,内含2个降压脉宽调制(PWM)直流/直流变换器,其中一个专门用来提供固定输出3.3 V电压,另一个专门用来提供可调输出电压。2个变换器都设有导通电阻(RDSON)只有0.16 Ω的内部开关,确保转换效率最高,工作频率可以在300 kHz~600 kHz调节,系统可以采用较小巧的外部元件。每个变换器也可以用其关闭引脚单独关闭。该电路可广泛应用于薄膜晶体管液晶显示器(TFT-LCD)、测控装置、便携式产品和膝上电脑。 LM2717的主要特性如下: 3.3 V固定输出降压变换器,内有一个电流为2.2 A、电阻为0.16 Ω的内部开关; 可调降压变换器有一个电流为3.2 A、电阻为0.16 Ω的内部开关; 工作输入电压范围是4 V~20 V; 低电压输入保护; 可调工作频率范围为300 kHz-600 kHz; 24引脚TSSOP封装。 2 引脚功能 如图1所示为LM2717的引脚排列,各个引脚的基本功能如下: PGND(1,2,11,12):电源地,AGND和PGND必须直接连在一起。 AGND(3,9,10):模拟地,AGND和PGND必须直接连在一起。 FBl(4):固定降压输出电压的反馈输入端。 VC1(5):固定降压补偿网络连接引脚,接至电压误差放大器的输出端。 VVG(6):带隙连接端。 VC2(7):可调降压补偿网络连接引脚,接至电压误差放大器的输出端。 FB2(8):可调降压输出电压的反馈输入端。 SW2(13):可调降压电源开关输入端。开关连接在VIN引脚和SW2引脚之间。 VIN(14,15,23):模拟电源输入端。VIN引脚应该直接连在一起。 CB2(16):可调降压变换器自举电容器连接引脚。 SHDN2(17):可调降压变换器的关闭引脚。低电压时激活。 SS2(18):可调降压软启动引脚。 FSLCT(19):转换频率选择输入端。利用一只电阻器可在300 kHz~600 kHz范围内设置频率。

2Buck直流变换器地工作原理及动态建模

2 Buck 直流变换器的工作原理及动态建模 2.1 DC/DC 变换器的概念7【】15【】19【】 将一个固定的直流电压变换成可变的直流电压称之为DC/DC 变换,亦称为直流斩波。用斩波器斩切直流的基本思想是:如果改变开关的动作频率,或者改变直流电流通和断的时间比例,就可以改变加到负载上的电压、电流的平均值。Buck 变换器又称降压变换器、串连开关稳压电源、三端开关型降压稳压器。 基本的DC/DC 变换器按输入输出之间是否有电气隔离可分为两类:隔离型DC/DC 变换器和非隔离型DC/DC 变换器。非隔离型DC/DC 变换器中存在四种基本的变换器拓扑,它们是降压式(Buck )型,升压式(Boost)型,升降压式(Buck-boost)型,Cuk 型,此外还有Sepic 型和Zeta 型变换器。 2.2 二电平Buck 直流变换器的工作原理及主电路图2【】13【】25【】26【】 1 主电路拓扑 Buck 变换器是一种输出电压等于或小于输入电压的单管非隔离直流变换器。它的拓扑为电压源、串联开关和电流负载组合而成。如图2.1所示: 图2.1 Buck 电路主电路拓扑 为了分析稳态特性,简化推导公式的过程,特作如下假定。 (1) 开关晶体管、二极管均是理想元件。也就是可以瞬间的导通和截至,而且导通时降压为零,截至时漏电流为零。 (2) 电感、电容是理想元件。电感工作在线性区而未饱和,寄生电阻为零,电容的等效串联电阻为零。 (3) 输出电压中的纹波电压与输出电压的比值小到允许忽略。 Buck 变换器的工作原理:当开关管S 导通时,电容开始充电,i U 通过向负载传递能量,此时,L i 增加,电感内的电流逐渐增加,储存的磁场能量也逐渐增加,而续流二极管因反向偏置而截至;当S 关断时,由于电感电流L i 不能突变,故L i 通过二极管VD 续流,电感电流逐渐减小,由于二极管VD 的单向导电性,L i 不可能为负,即总有L 0i ,从而可在负载上

直流变换器开题报告..

开题报告 一背景 直流变换器是一种将模拟量转变为数字量的半导体元件。按功能可分为:升压变换器、降压变换器和升降压变换器。在燃料电池汽车中主要采用升压变换器。变换器首先通过电力电子器件将直流电源转变成交流电(AC),一般称作逆变,然后通过变压器(升压比为1∶n)升压,最后通过整流、滤波电路产生变压后的直流电,以供负载使用. 直流转换器与一般的变换器相比,具有抗干扰能力强、可靠性高、输出功率大、品种齐全等特点,用途广泛,输入输出完全隔离,输出多路不限,极性任选。宽范围输入变换器是专为满足输入电压变化范围较大场合需要而开发的一种直流稳压电源,其输入直流电压可以在DC100V-375V宽范围内变动而保证输出电压的稳定性.此外,这种电源体积小,重量轻、保护功能完善,具有良好的电磁兼容性。本身具有过流、过热、短路保护。多档输出的变换器,它不仅提供电源而且有振铃和报警功能。该变换器分为军用、工业及商业三个品级,在诸如通信机房、舰船等蓄电池供电的场合极为适用。直流—直流变换器(DC/DC Converter)早在10年前就做成了元器件式样,在系统中损坏 时可以卸下更换。目前,它正从低技术、元器件型转向高技术、插件(Building black)型发展。系统设计师在开始方案设计阶段就要考虑系统究竟需要什么样的电源输入、输出?DC/DC变换器作为子系统的一个部件,应该更仔细地规定它的指标以及要付出多少费用。有趣的是,全球声称可供给军用DC/DC变换器的厂家超过300家,但却没有两

种产品是相同的,这给系统设计师选用该产品时造成困难。设计师们考虑的最重要的事是:对产品的性能价格比进行综合平衡,决定取舍。需求和市场决定制造厂的发展战略目前,对制造厂家而言,面临着要求降低噪声、减小尺寸以及提高功率和效率的挑战和市场竞争。现扼要介绍几家公司的做法。当今,在任何一个计算机系统中,各种电源都是以插件形式出现的。供应厂商均按用户的要求作相应改动以适应需求。DC/DC直流变换器的军品市场占很大比重,但增长缓慢。分析家们预测:到1996年,DC/DC变换器最大市场将是计算机和通信领域。 美国InterPoint公司的研究开发战略是:针对军用及宇航系统应用,提供一种更便宜、功率更大、性能更好的产品,它们比现有DC/DC 变换器有全面改进。预计今后几年的实际问题仍是产品价格。采用模块化方法可以降低成本,同时提高DC/DC变换器输出功率。一些应用系统要求功率高达2KW,如果采用200W的产品去构建系统,至少要10~12个产品,既麻烦也影响系统可靠性。该公司认为必须研制出功率比200W大2~3倍的大功率电源,而且单件成本控制在1.3~1.7倍才合适。 模块化方法,可以通过消除非重复工程成本(NRE)使系统成本降低。这种模块化的器件也是分布式供电系统的基本构件。鉴于分布式供电比集中供电系统有更多优点,而绝大多数应用系统要求在母线级上直流电压要分别供给不同逻辑电路各种电压,例如+5V、+12V、+3.3V 等等。一些厂家利用板级(on-Card)DC/DC变换器来实现,另一些供应商则把几种输出合在一起,把电源放在靠近需要供电的电路板上。

直流升降压变换器设计与仿真

1 绪论 电力电子学,又称功率电子学。它主要研究各种电力电子器件,以及由这些电力电子器件所构成的各式各样的电路或装置,以完成对电能的变换和控制。为自动化专业开设的专业基础技术技能设计,课程设计对自动化专业的学生是一个非常重要的实践教学环节。通过设计能够使学生巩固、加深对变流电路基本理论的理解,提高学生运用电路基本理论分析和处理实际问题的能力,培养学生的创新精神和创新能力。 斩波电路(DC Chopper)的功能是将直流电变为另一固定电压或可调电压的直流电,也称为直接直流—直流变换器( DC/DC Converter)。直流斩波电路的种类很多,包括6种基本斩波电路:降压斩波电路,升压斩波电路,升降压斩波电路,Cuk斩波电路,Sepic斩波电路,Zeta斩波电路,前两种是最基本电路。应用Multisim建立了电路的仿真模型,在此基础上对升降压斩波Boost—Buck 电路进行了较详细的仿真分析。 本文分析了升降压斩波电路的工作原理,又用Multisim对升压-降压变换器进行了仿真建模,最后对仿真结果进行了分析总结。

2直流升降压斩波电路工作原理及输入输出关系 2.1升降压斩波电路工作原理 图2.1所示为升降压斩波电路(Buck-Boost Chopper)原理图及波形图。电路中电感L值很大,电容C值也很大。因为要使得电感电流和电容电压基本为恒指。 a) 原理图 b) 波形图 图2.1 升压/降压斩波电路的原理图及波形图 该电路的基本工作原理:当可控开关V处于通态时,电源E经V向电感L供电使其储存能量,此时电流为I1,方向如图1所示。同时,电容C维持输出电压基本恒定并向负载R供电。此后,使V关断,电感L中储存的能量向负载释放,

电力电子升降压变换器课程设计

1 绪论 《电力电子技术》课程是一门专业技术基础课,电力电子技术课程设计是电力电子技术课程理论教学之后的一个实践教学环节。其目的是训练学生综合运用学过的变流电路原理的基础知识,独立完成查找资料、选择方案、设计电路、撰写报告的能力,使学生进一步加深对变流电路基本理论的理解和基本技能的运用,为今后的学习和工作打下坚实的基础。 《电力电子技术》课程设计是配合变流电路理论教学,为自动化专业开设的专业基础技术技能设计,课程设计对自动化专业的学生是一个非常重要的实践教学环节。通过设计能够使学生巩固、加深对变流电路基本理论的理解,提高学生运用电路基本理论分析和处理实际问题的能力,培养学生的创新精神和创新能力。 斩波电路(DC Chopper)的功能是将直流电变为另一固定电压或可调电压的直流电,也称为直接直流—直流变换器( DC/DC Converter)。直流斩波电路的种类很多,包括6种基本斩波电路:降压斩波电路,升压斩波电路,升降压斩波电路,Cuk斩波电路,Sepic斩波电路,Zeta斩波电路,前两种是最基本电路。应用Matlab的可视化仿真工具Simulink建立了电路的仿真模型,在此基础上对升降压斩波Boost—Buck电路进行了较详细的仿真分析。 本文分析了升降压斩波电路的工作原理,又用Matlab对升压-降压变换器进行了仿真建模,最后对仿真结果进行了分析总结。 2 升降压斩波电路的设计

2.1升降压斩波电路工作原理 (1)V通时,电源E经V向L供电使其贮能,此时电流为i1。同时,C 维持输出电压恒定并向负载R供电。 (2)V断时,L的能量向负载释放,电流为i2。负载电压极性为上负下正,与电源电压极性相反,该电路也称作反极性斩波电路。 a) 原理图 b) 波形图 图(3)升压/降压斩波电路的原理图及波形图 数量关系: 稳态时,一个周期T内电感L两端电压uL对时间的积分为零,即:

相关文档
最新文档