傅立叶分析

傅立叶分析
傅立叶分析

脉搏、语音及图像信号的傅里叶分析

一、实验简介

任何波形的周期信号均可用傅里叶级数来表示。傅里叶级数的各项代表了不同频率的正弦或余弦信号,即任何波形的周期信号都可以看作是这些信号(谐波)的叠加。利用不同的方法,可以从周期信号中分解出它的各次谐波的幅值和相位。也可依据信号的傅里叶级数表达式,将各次谐波按表达式的要求叠加得到所期望的信号。

二、实验目的

1、了解常用周期信号的傅里叶级数表示。

2、了解周期脉搏信号、语音信号及图像信号的傅里叶分析过程

3、理解体会傅里叶分析的理论及现实意义

三、实验仪器

脉搏语音实验仪器,数字信号发生器,示波器

四、实验原理

1、周期信号傅里叶分析的数学基础

任意一个周期为T 的函数f(t)都可以表示为傅里叶级数: 0001

0000000001()(cos sin )21()()1()cos()()1()sin()()n n n n n f t a a n t b n t a f t d t a f t n t d t b f t n t d t ππ

πππ

πωωωωπωωωπωωωπ∞=---=++==

=∑??? 其中0ω为角频率,称为基频,0a 为常数,n a 和n b 称为第n 次谐波的幅值。任何

周期性非简谐交变信号均可用上述傅里叶级数进行展开,即分解为一系列不同

次谐波的叠加。

对于如图1所示的方波,一个周期内的函数表达式为:

(0t<)2() (-t 0)2h f t h ππ?≤??=??-≤

411(sin sin 3sin 5)

35n h f t n t n h t t t ωπωωωπ∞==--=+++∑ 同理:对于如图2所示的三角波,函数表达式为:

4t (-t <)44()232(1) (t )44h T T f t t T T h T π?≤??=??-≤

其傅里叶级数展开为:

1202100022281()(1)()sin(21)21

811(sin sin 3sin 5)

35n n h f t n t n h t t t ωπωωωπ∞-==---=-++∑

图1 方波 图2 三角波

从以上各式可知,任何周期信号都可以表示为无限多次谐波的叠加,谐波次数越高,振幅越小,它对叠加波的贡献就越小,当小至一定程度时(谐波振幅小于基波振幅的5%),则高次的谐波就可以忽略而变成有限次数谐波的叠加,这对设计仪器电路是很有意义的。

五、实验内容

1、傅里叶级数的合成

(1)利用数字信号发生器产生频率分别为100Hz、300Hz、500Hz的正弦信号,并使其位相相同,振幅比为:1:1/3: 1/5,将上述三个信号,分别通过加法器输入到傅里叶分析仪,观察并记录其波形。

(2)利用数字信号发生器产生方波,输入到傅里叶分析仪,并将其与上述合成后的信号相比较。两者有何差异?试分析引起的原因,应如何消除?

(3)利用数字信号发生器产生频率分别为200Hz、600Hz、1000Hz的正弦信号,振幅比为:1:1/32:1/52,并且保证其相位相差180°,然后通过加法器输入到傅里叶分析仪,观察并记录其波形,并与数字信号发生器产生的三角波相比较。

(4)利用傅里叶分析仪分别产生方波与三角波,进行傅里叶分析,记录各正弦波频率以及相对的幅度之间的关系,并与上述加法器输入信号相比较。

2.滤波与选频分析:

对上述(4)傅里叶分析的频谱,分别选择低频段和高频段信号通过傅里叶反变换,观察它们图像并导出保存,试分析低通滤波和高通滤波图像的区别

3.周期信号傅里叶分析的应用:

(1)“脉搏信号”的傅里叶分析

1)用傅里叶分析仪软件中提供的“脉搏信号”模块和压电晶体测试自己脉搏波的信号,观察你的脉搏信号。

2)选择完整的周期信号进行频谱分析,并选择合适的频段,测量其中心频率。

3)你深呼吸后,重复上述实验,请比较两次中心频率的变化。

(2)图像信号的傅里叶分析

1)用傅里叶分析仪软件提供的“图片分析”模块,分别选择图片“双缝干涉”、“彩色十字”、“光字”以及“箭头”进行空域的傅里叶频谱分析。

2)分别选择低通和高通滤波器进行滤波,记录所用滤波器的参数并将滤波后的图片导出保存。

3)将滤波后的图像与原图像作对比,你能作何结论?

(3)语音信号的傅里叶分析与识别

1)用傅里叶分析仪软件提供的“语音信号”模块,通过外置麦克风采集语音信号,并选择合适的频段,记录该频段语音信号的傅里叶分析频谱。

2)利用“选择频谱”功能,滤除噪声频率后,进行频率合成;将合成后的结果与1)中采集的原语音信号对比,为语音识别打下基础。

3)利用软件提供的“语音识别”模块,通过麦克风采集两次相同或不同元音的信号,重复上述过程,分别记录两次频谱的分布,并利用“语音识别”模块体验语音识别功能。

7、利用软件中提供的“长时语音”模块,通过外置麦克风采集一段语音信

号,并观察傅里叶分析频谱实时频谱变化。

六、实验数据:

1、傅里叶级数的合成

(1)方波的合成:

合成方波

方波时域图

方波频域图

方波分解图

方波合成图

输入方波:

时域图:

频域图:

分解图:

合成图:

分析:

由图可知,经过傅立叶变换成的正弦信号,通过3个正弦波(频率比为:1:3:5)的叠加,选频越多,合成波逐渐向方波靠近。

而且,从选频来看,低频波主要控制了合成波的大致形状,高频波主要用来修饰细节、边界,通过傅立叶分析,无穷的正弦波叠加就能够形成标准的方波。

(2)三角波合成

合成三角波

时域图

频域图

分解图

输入三角波

时域图

频域图

合成图

分析:

由图可知,经过傅立叶变换成的正弦信号,随着三个正弦波(频率比为1:3:5)的叠加,选频增多,合成波逐渐向三角波靠近。

而且,从选频来看,低频波主要控制了合成波的大致形状,高频波主要用来修饰细节、边界,通过傅立叶分析,无穷的正弦波叠加就能够形成标准的三角波。

分析:

随着选频的增多,经过傅立叶变换的正弦信号逐渐合成,向原来的脉搏时域图靠近。 其中心频率为1.2Hz

图像信号

分析:

由以上图像可以得出,高通是允许一定频率以上的信号通过,经过傅立叶变换,从图上反应就是图像的边界的信号通过而内部未通过,所以只有边界看得比较明显,内部不明显。低通是允许一定频率一下的信号通过,经过傅立叶变换,从图上反应就是图像内部信号通过而边界未通过,所以内部看得明显,边界不明显。

语音信号

分析:

声音通过傅立叶变换转换成正线信号或余弦信号。在选频过程中,只选择波峰处的频率,去掉一些杂波,它的合成波是比较接近正弦波,而时域图中则不是正弦波。若在选频时在波峰两侧也选择一些频段,合成波会更加接近时域图。

语音对比

分析:

从图一可看出,经过傅立叶变换,可得出通到A与通道B的频率和相对强度很相似,则可以判断为同一个人所发出的声音。

从图二可以看出,经过傅立叶变换,可得出通道A与通道B 的频率和相对强度差距很大,则

可判断不是同一个人所发出的声音。

实验一信号与系统的傅立叶分析.

实验一 信号与系统的傅立叶分析 一. 实验目的 用傅立叶变换对信号和系统进行频域分析。 二.实验仪器 装有matlab 软件的计算机 三.实验内容及步骤 (1)已知系统用下面差分方程描述: )1()()(-+=n ay n x n y 试在95.0=a 和5.0=a 两种情况下用傅立叶变换分析系统的频率特性。要求写出系统的传输函数,并打印w e H jw ~)(曲线。、 当a=0.95 B=1; A=[1,0.95]; subplot(1,3,1); zplane(B,A); xlabel('实部Re');ylabel('虚部Im'); title('y(n)=x(n)+0.95y(n-1)传输函数零、极点分布'); grid on ; [H,w]=freqz(B,A,'whole'); subplot(1,3,2); plot(w/pi,abs(H),'linewidth',2); grid on; xlabel('\omega/\pi');ylabel('|H(e^j^\omega)|'); title('幅频响应特性'); axis([0,2,0,2.5]); subplot(1,3,3); plot(w/pi,angle(H),'linewidth',2); grid on; xlabel('\omega/\pi');ylabel('\phi(\omega)'); title('相频响应特性'); axis([-0.1,2.1,-1.5,1.5]); a=0.5程序如上,图如下

(2)已知两系统分别用下面差分方程描述: )1()()(1-+=n x n x n y )1()()(2--=n x n x n y 试分别写出它们的传输函数,并分别打印w e H jw ~)(曲线。 当方程为)1()()(1-+=n x n x n y 的程序代码: B=[1,1];A=1; subplot(2,3,1);zplane(B,A); xlabel('实部Re'); ylabel('虚部Im'); title('y(n)=x(n)+x(n-1)传输函数零、极点分布'); grid on [H,w]=freqz(B,A,'whole'); subplot(2,3,2); plot(w/pi,abs(H),'linewidth',2); grid on;

小波的几个术语及常见的小波基介绍

小波的几个术语及常见的小波基介绍 本篇是这段时间学习小波变换的一个收尾,了解一下常见的小波函数,混个脸熟,知道一下常见的几个术语,有个印象即可,这里就当是先作一个备忘录,以后若有需要再深入研究。 一、小波基选择标准 小波变换不同于傅里叶变换,根据小波母函数的不同,小波变换的结果也不尽相同。现实中到底选择使用哪一种小波的标准一般有以下几点: 1、支撑长度 小波函数Ψ(t)、Ψ(ω)、尺度函数φ(t)和φ(ω)的支撑区间,是当时间或频率趋向于无穷大时,Ψ(t)、Ψ(ω)、φ(t)和φ(ω)从一个有限值收敛到0的长度。支撑长度越长,一般需要耗费更多的计算时间,且产生更多高幅值的小波系数。大部分应用选择支撑长度为5~9之间的小波,因为支撑长度太长会产生边界问题,支撑长度太短消失矩太低,不利于信号能量的集中。 这里常常见到“紧支撑”的概念,通俗来讲,对于函数f(x),如果自变量x在0附近的取值范围内,f(x)能取到值;而在此之外,f(x)取值为0,那么这个函数f(x)就是紧支撑函数,而这个0附近的取值范围就叫做紧支撑集。总结为一句话就是“除在一个很小的区域外,函数为零,即函数有速降性”。 2、对称性 具有对称性的小波,在图像处理中可以很有效地避免相位畸变,因为该小波对应的滤波器具有线性相位的特点。 3、消失矩 在实际中,对基本小波往往不仅要求满足容许条件,对还要施加所谓的消失矩(Vanishing Moments)条件,使尽量多的小波系数为零或者产生尽量少的非零小波系数,这样有利于数据压缩和消除噪声。消失矩越大,就使更多的小波系数为零。但在一般情况下,消失矩越高,支撑长度也越长。所以在支撑长度和消失矩上,我们必须要折衷处理。

深入探析快速傅立叶变换(FFT)

深入探析快速傅立叶变换(FFT) 摘要: FFT(Fast Fourier Transform,快速傅立叶变换)是离散傅立叶变换的快速算法,也是我们在数字信号处理技术中经常会提到的一个概念。在大学的理工科课程中,在完成高等数学的课程后,数字信号处理一般会作为通信电子类专业的专业基础课程进行学习,原因是其中涉及了大量的高等数学的理论推导,同时又是各类应用技术的理论基础。 关于傅立叶变换的经典著作和文章非常多,但是看到满篇的复杂公式推导和罗列,我们还是很难从直观上去理解这一复杂的概念,我想对于普通的测试工程师来说,掌握FFT的概念首先应该搞清楚这样几个问题:(1)为什么需要FFT (2) 变换究竟是如何进行的(3) 变换前后信号有何种对应关系(4) 在使用测试工具(示波器或者其它软件平台)进行FFT的方法和需要注意的问题(5) 力科示 波器与泰克示波器的FFT计算方法的比较 在这篇文章中我尝试用更加浅显的讲解,尽量不使用公式推导来说一说FFT 的那些事儿。 一, 为什么需要FFT? 首先FFT(快速傅立叶变换)是离散傅立叶变换的快速算法,那么说到FFT,我们自然要先讲清楚傅立叶变换。先来看看傅立叶变换是从哪里来的? 傅立叶是一位法国数学家和物理学家的名字,英语原名是Jean Baptiste Joseph Fourier(1768-1830), Fourier对热传递很感兴趣,于1807年在法国科学学会上发表了一篇论文,运用正弦曲线来描述温度分布,论文里有个在当时颇具争议性的命题:任何连续周期信号可以由一组适当的正弦曲线组合而成。当时审查这个论文的人,其中有两位是历史上著名的数学家拉格朗日(Joseph Louis Lagrange, 1736-1813)和拉普拉斯(Pierre Simon de Laplace, 1749-1827),当拉普拉斯和其他审查者投票通过并要发表这个论文时,拉格朗日坚决反对,在近50年的时间里,拉格朗日坚持认为傅立叶的方法无法表示带有棱角的信号,如在方波中出现非连续变化斜率。法国科学学会屈服于拉格朗日的权威,拒绝了傅立叶的工作,幸运的是,傅立叶还有其它事情可忙,他参加了政治运动,随拿破仑远征埃及,法国大革命后因为怕被推上断头台而一直在逃难。直到拉格朗日死后15年这个论文才被发表出来。 谁是对的呢?拉格朗日是对的:正弦曲线无法组合成一个带有棱角的信号。但是,我们可以用正弦曲线来非常逼近地表示它(棱角),逼近到两种表示方法不存在能量差别,基于此,傅立叶是对的。 为什么我们要用正弦曲线来代替原来的曲线呢?如我们也还可以用方波或三角波来代替,分解信号的方法是无穷的,但分解信号的目的是为了更加简单地处理原来的信号。用正余弦来表示原信号会更加简单,因为正余弦拥有其他信号所不具备的性质:正弦曲线保真度。一个正弦曲线信号输入后,输出的仍是正弦曲线,只有幅度和相位可能发生变化,但是频率和波的形状仍是一样的,且只有正弦曲线才拥有这样的性质,正因如此我们才不用方波或三角波来表示。

小波工具箱常用函数

1.Cwt :一维连续小波变换 格式:coefs=cwt(s,scales,'wavename') coefs=cwt(s,scales,'wavename','plot') scales:尺度向量,可以为离散值,表示为[a1,a2,a3……],也可为连续值,表示为[amin:step:amax] 2.dwt:单尺度一维离散小波变换 格式:[ca,cd]=dwt(x,'wavename') [ca,cd]=dwt(x,lo-d,hi-d) 先利用小波滤波器指令wfilters求取分解用低通滤波器lo-d和高通滤波器hi-d。[lo-d,hi-d]=wfilters('haar','d');[ca,cd]=dwt(s,lo-d,hi-d) 3.idwt:单尺度一维离散小波逆变换 4.wfilters 格式:[lo-d,hi-d,lo-r,hi-r]=wfilters('wname') [f1,f2]=wfilters('wname','type') type=d(分解滤波器)、R(重构滤波器)、l(低通滤波器)、h(高通滤波器) 5.dwtmode 离散小波变换模式 格式:dwtmode dwtmode('mode') mode:zdp补零模式,sym对称延拓模式,spd平滑模式 6.wavedec多尺度一维小波分解 格式:[c,l]=wavedec(x,n,'wname') [c,l]=wavedec(x,n,lo-d,hi-d)

7.appcoef 提取一维小波变换低频系数 格式:A=appcoef(c,l,'wavename',N) A=appcoef(c,l,lo-d,hi-d,N) N是尺度,可省略例: loadleleccum; s=leleccum(1:2000) subplot(421) plot(s); title('原始信号') [c,l]=wavedec(s,3,'db1'); ca1=appcoef(c,l,'db1',1); subplot(445) plot(ca1); ylabel('ca1'); ca2=appcoef(c,l,'db1',2); subplot(4,8,17) plot(ca2); ylabel('ca2'); 8.detcoef 提取一维小波变换高频系数 格式:d=detcoef(c,l,N),N尺度的高频系数 d=detcoef(c,l,) 最后一尺度的高频系数 例:

小波变换的几个典型应用

第六章小波变换的几个典型应用 6.1 小波变换与信号处理 小波变换作为信号处理的一种手段,逐渐被越来越多领域的理论工作者和工程技术人员所重视和应用,并在许多应用中取得了显著的效果。同传统的处理方法相比,小波变换取得了质的飞跃,在信号处理方面具有更大的优势。比如小波变换可以用于电力负载信号的分析与处理,用于语音信号的分析、变换和综合,还可以检测噪声中的未知瞬态信号。本部分将举例说明。 6.1.1 小波变换在信号分析中的应用 [例6-1] 以含躁的三角波与正弦波的组合信号为例具体说如何利用小波分析来分析信号。已知信号的表达式为 应用db5小波对该信号进行7层分解。xiaobo0601.m 图6-1含躁的三角波与正弦波混合信号波形 分析: (1)在图6-2中,逼近信号a7是一个三角波。 (2)在图6-3中细节信号d1和d2是与噪声相关的,而d3(特别是d4)与正弦信号相关。 图6-2 小波分解后各层逼近信号 图6-3 小波分解后各层细节信号 6.1.2 小波变换在信号降躁和压缩中的应用 一、信号降躁 1.工程中,有用信号一般是一些比较平稳的信号,噪声通常表现为高频信号。2.消躁处理的方法:首先对信号进行小波分解,由于噪声信号多包含在具有较高频率的细节中,我们可以利用门限、阈值等形式对分解所得的小波系数进行处理,然后对信号进行小波重构即可达到对信号的消躁目的。 小波分析进行消躁处理的3种方法: (1)默认阈值消躁处理。该方法利用ddencmp生成信号的默认阈值,然后利用wdencmp函数进行消躁处理。 (2)给定阈值消躁处理。在实际的消躁处理过程中,阈值往往可通过经验公式获得,且这种阈值比默认阈值的可信度高。在进行阈值量化处理时可利用函数wthresh。 (3)强制消躁处理。该方法时将小波分解结构中的高频系数全部置为0,即滤掉所有高频部分,然后对信号进行小波重构。方法简单,消躁后信号比较平滑,但易丢失信号中的有用成分。 小波阈值去噪方法是目前应用最为广泛的小波去噪方法之一。 3.信号降噪的准则: 1.光滑性:在大部分情况下,降噪后的信号应该至少和原信号具有同等的光滑性。

离散傅立叶变换及谱分析

数字信号处理实验 实验二、离散傅立叶变换及谱分析 学院:信息工程学院 班级:电子101班 姓名:*** 学号:******

一、实验目的 1.掌握离散傅里叶变换的计算机实现方法。 2.检验实序列傅里叶变换的性质。 3.掌握计算序列的循环卷积的方法。 4.学习用DFT对连续信号和时域离散信号进行谱分析的方法,了解可能出现的分析误差,以便在实际中正确应用DFT。 二、实验内容 1.实现序列的离散傅里叶变换并对结果进行分析。(自己选择序列,要求包括复序列,实序列,实偶序列,实奇序列,虚奇序列) 本例检验实序列的性质DFT[xec(n)]=Re[X(k)] DFT[xoc(n)]=Im[X(k)] (1)设 x(n)=10*(0.8).^n(0<=n<=10),将x(n)分解为共扼对称及共扼反对称部分 n=0:10; x=10*(0.8).^n; [xec,xoc]=circevod(x); subplot(2,1,1);stem(n,xec); title('Circular -even component') xlabel('n');ylabel('xec(n)');axis([-0.5,10.5,-1,11]) subplot(2,1,2);stem(n,xoc); title('Circular -odd component') xlabel('n');ylabel('xoc(n)');axis([-0.5,10.5,-4,4]) figure(2) X=dft(x,11); Xec=dft(xec,11); Xoc=dft(xoc,11); subplot(2,2,1);stem(n,real(X));axis([-0.5,10.5,-5,50]) title('Real{DFT[x(n)]}');xlabel('k'); subplot(2,2,2);stem(n,imag(X));axis([-0.5,10.5,-20,20]) title('Imag{DFT[x(n)]}');xlabel('k'); subplot(2,2,3);stem(n,Xec);axis([-0.5,10.5,-5,50]) title('DFT[xec(n)]');xlabel('k'); subplot(2,2,4);stem(n,imag(Xoc));axis([-0.5,10.5,-20,20]) title('DFT[xoc(n)]');xlabel('k'); 实验说明: 复数序列实数部分的离散傅立叶变换是原来序列离散傅立叶变换的共轭对称分量,复数序列虚数部分的离散傅立叶变换是原来序列离散傅立叶变换的反对称分量,复序列共轭对称分量的离散傅立叶变换是原来序列离散傅立叶变换的实数部分,复序列反对称分量的离散傅立叶变换是原来序列离散傅立叶变换的虚数部分。

傅立叶的思想及其意义

【傅立叶生平简介】 夏尔·傅立叶(Charles Fourier,1772—1837) ,法国思想家弗朗斯瓦.沙利.马利.傅立叶是和圣西门同时代的法国著名的“空想”社会主义者。他的“空想”社会主义学说和圣西门主义产生的历史条件相同,但自成一个体系,被称作傅立叶主义。傅立叶的空想社会主义学说和圣西门、欧文的空想社会主义学说一起,为马克思的科学社会主义学说的诞生,提供了宝贵的思想资料,成为马克思主义的三个来源之一。马克思曾经称赞傅里叶是“19世纪最伟大的讽刺家”。 【他关于这个社会的主张】他不主张废除私有制,幻想通过宣传和教育来建立一种以“法郎吉”为其基层组织的社会主义社会。他已有关于消灭脑力劳动和体力劳动的对立以及城市和乡村的对立的思想萌芽。还首次提出妇女解放的程度是人民是否彻底解放的准绳。在教育上,主张对儿童从小实施劳动教育和科学教育。傅立叶还阐述了他的空想社会主义的理想社会是一种“和谐的”社会,这种社会由他称之为“法郎吉”的基层组织所组成。这是一种农业和工业联合在一起的生产、消费协作组织,劳动者以劳力、资本家以股份参加,成员都应该劳动。生产总收益除生产费外,按特定比例分配给出资本的股东、技术工作者和生产劳动者。为了自己的美好设想,傅立叶曾进行过一些尝试。他多次请统治者和资本家赞助他的计划,但

一直到他老死,始终没有一个资本家上门对他的计划感兴趣。虽然傅立叶的设想都失败了,但他关于未来社会的天才设想,却给科学社会主义的诞生提供了宝贵的思想材料。 【他心中的理想社会】傅立叶为自己的理想社会设计了一种叫做“法朗吉”的“和谐制度”,是一种工农结合的社会基层组织。”“法朗吉”通常由大约一千六百人组成。在“法朗吉”内,人人劳动,男女平等,免费教育,工农结合,没有城乡差别、脑力劳动和体力劳动的差别。他还为“法朗吉”绘制了一套建筑蓝图。建筑物叫“法伦斯泰尔”,中心区是食堂、商场、俱乐部、图书馆等。建筑中心的一侧是工厂区,另一侧是生活住宅区。“法朗吉”是招股建设的。收入按劳动、资本和才能分配。傅立叶幻想通过这种社会组织形式和分配方案来调和资本与劳动的矛盾,从而达到人人幸福的社会和谐。 【他对婚姻的认识】 傅立叶曾经正确地指出,资本主义文明制度的本质特征是侮辱女性,妇女是一种商品,婚姻不过是一种特殊的商业交易,资产阶级婚姻只是一种合法而持续的卖淫。他辛辣地嘲讽说:“正象文法中二个否定构成一个肯定,在婚姻交易中也是两个卖淫构成一桩德行。”傅立认为:“侮辱女性既是文明的本质特征,也是野蛮的本质特征,区别只在于野蛮以简单的形式所犯下的罪恶,文明都赋之以复杂的、暧昧的、两面性的、伪善的存在形式……对于使妇女陷于奴隶状态这件事,男人自己比任何人都更应该受到惩罚。”

研究生《小波理论及应用》复习题

2005年研究生《小波理论及应用》复习题 1. 利用正交小波基建立的采样定理适合于:紧支集且有奇性(函数本身或其导数不连续)的函数(频谱无限的函数)。Shannon 采样定理适合于频谱有限的信号。 2. 信号的突变点在小波变换域常对于小波变换系数模极值点或过零点。并且信号奇异性大小同小波变换的极值随尺度的变化规律相对立。只有在适当尺度下各突变点引起的小波变化才能避免交迭干扰,可以用于信号的去噪、奇异性检测、图象也缘提取、数据压缩等。 3. 信号在一点的李氏指数表征了该点的奇异性大小,α越大,该点的光滑性越小,α越小,该点的奇异性越大。光滑点(可导)时,它的1≥α;如果是脉冲函数,1-=α;白噪声时0≤α。 4. 做出三级尺度下正交小波包变换的二进数图,小波包分解过程?说明小波基与小波包基的区别? 5. 最优小波包基的概念:给定一个序列的代价函数,然后在小波包基中寻找使代价函数最小的基――最优基。 6. 双通道多采样率滤波器组的传递函数为: ()()()()()()()()()()()()()z X z G z G z H z H z X z G z G z H z H z Y z Y z Y -??????-++??????+=+=∧∧∧∧212121请根据此式给出理想重建条件: 为了消除映象()z X -引起的混迭:()()()()0=-+-∧ ∧z G z G z H z H

为了使()z Y 成为()z X 的延迟,要求:()()()()k CZ z G z G z H z H -∧∧=+ (C,K 为任一常数) 7. 正交镜像对称滤波器()()n h n g ,的()jw e G 与()jw e H 以2π=w 为轴左右对称。如果知道QMF 的()n h ,能否确定()()()n h n g n g ∧ ∧,,? ()()()n h n g n 1-= ,()()()n g n h n 1--=∧ , ()()()n h n g n 1-=∧ 8. 试列出几种常用的连续的小波基函数 Morlet 小波,Marr 小波,Difference of Gaussian (DOG ),紧支集样条小波 9. 试简述海森堡测不准原理,说明应用意义? 10. 从连续小波变换到离散小波变换到离散小波框架-双正交小波变换-正交变换、紧支集正交小波变换,其最大的特点是追求变换系数的信息冗余小,含有的信息量越集中。 11. 解释紧支集、双正交、正交小波、紧支集正交小波、光滑性、奇异性。 12. 已知共轭正交滤波器组(CQF )()n h 请列出()()()n g n h n g ∧ ∧,,。 ()()() ()()()()()()???????-=--=-=---=∧∧n h n N g n g n N h n h n N h n g n n 11 13. 共轭正交滤波器()()n g n h ,的()jw e G 与()jw e H 的关系与QMF 情况

傅立叶的基本理论

只要是理工科毕业的朋友,都学过傅立叶级数与傅立叶变换,但真正要与实际应用联系起来,用它来阐述应用中的各类问题,我们总会感觉概念模糊,似懂非懂,不知从何说起。是的,作者和你一样,常常有这样的体会。现在,让我与你一起重新学习傅立叶的基本理论和应用,最后还给出一份FFT(快速傅立叶变换)的源码(基于C)。希望对你有所帮助。Let’s go! 1.历史回顾 谈傅立叶变换,不能不说三角函数。三角函数起源于18世纪,主要是与简谐振动的研究有关。当时的科学家傅立叶对三角函数作了深入研究,并用三角级数解决了很多热传导的问题。三角函数的展开式如下: f(t) = (1/2a0) + (a1·cos(x)+b1·sin(x)) + (a2·cos(2x)+b2·sin(2x)) + … 其中,系数a和b表示不同频率阶数下的幅度。 成立条件: n 周期性条件,也就是说f(x)描述的波形必须每隔一段时间周期T就会重复出现; n Dirichlet条件,周期T内,有限的最大最小值,有限的不连续点; 任何区间内绝对可积; 研究目的: 把一个基于时间变量t的函数展开成傅立叶级数的目的是分解为不同的频率分量,以便进行各种滤波算法。这些基本的组成部分是正弦函数SIN(nt)和余弦函数COS(nt)。 应用领域: l 信号分析,包括滤波、数据压缩、电力系统的监控等; l 研究偏微分方程,比如求解热力学方程的解时,把f(t)展开为三角级数最为关键。 l 概率与统计,量子力学等学科。 2.傅立叶变换 H(w) = ∫h(t)·e^jwt·dt, (区间:-∽~+∽,w = 2πf) 讨论:这里为什么会选择复指数的形式而没有用正弦余弦表示?

小波变换函数(自己总结)

2.1小波分析中的通用函数 1 biorfilt双正交小波滤波器组 2 centfrg计算小波中心频率 3 dyaddown二元取样 4 dyadup二元插值 5 wavefun小波函数和尺度函数 6 wavefun2二维小波函数和尺度函数 7 intwave积分小波函数fai 8 orthfilt正交小波滤波器组 9 qmf镜像二次滤波器(QMF) 10 scal2frg频率尺度函数 11 wfilters小波滤波器 12 wavemngr小波管理 13 waveinfo显示小波函数的信息 14 wmaxlev计算小波分解的最大尺度 15 deblankl把字符串变成无空格的小写字符串 16 errargn检查函数参数目录 17 errargt检查函数的参数类型 18 num2mstr最大精度地把数字转化成为字符串 19 wcodemat对矩阵进行量化编码 20 wcommon寻找公共元素 21 wkeep提取向量或矩阵中的一部分 22 wrev向量逆序 23 wextend向量或矩阵的延拓 24 wtbxmngr小波工具箱管理器 25 nstdfft非标准一维快速傅里叶变换(FFT) 26 instdfft非标准一维快速逆傅里叶变换 27 std计算标准差 2.2小波函数 1 biorwavf双正交样条小波滤波器 2 cgauwavf复Gaussian小波 3 cmorwavf复Morlet小波 4 coifwavf Coiflet小波滤波器 5 dbaux Daubechies小波滤波器 6 dbwavf Daubechies小波滤波器 7 fbspwavf频率分布B-Spline小波 8 gauswavf Gaussian小波 9 mexihat墨西哥小帽函数 10 meyer meyer小波11 meyeraux meyer小波辅助函数 12 morlet Morlet小波 13 rbiowavf反双正交样条小波滤波器 14 shanwavf 复shannon小波 15 symaux计算Symlet小波滤波器 16 symwavf Symlets小波滤波器 2.3一维连续小波变换 1 cwt一维连续小波变换 2 pat2cwav从一个原始图样中构建一个小波函数 2.4一维离散小波变换 1 dwt但尺度一维离散小波变换 2 dwtmode离散小波变换拓展模式 3 idwt单尺度一位离散小波逆变换 4 wavedec多尺度一维小波分解(一维多分辨率分析函数) 5 appcoef提取一维小波变换低频系数 6 detcoef提取一维小波变换高频系数 7 waverec多尺度一维小波重构 8 upwlex单尺度一维小波分解的重构 9 wrcoef对一维小波系数进行单支重构 10 upcoef一维系数的直接小波重构 11 wenergy显示小波或小波包分解的能量 2.5二维离散小波变换 1 dwt2单尺度二维离散小波变换 2 idwt2单尺度逆二维离散小波变换 3 wavedec2多尺度二维小波分解(二维分辨率分析函数) 4 waverec2多尺度二维小波重构 5 appcoef2提取二维小波分解低频系数 6 detcoef2提取二维小波分解高频系数 7 upwlev2二维小波分解的单尺度重构 8 wrcoef2对二维小波系数进行单支重构 9 upcoef二维小波分解的直接重构 2.6离散平稳小波变换 1 swt一维离散平稳小波变换 2 iswt一维离散平稳小波逆变换 3 swt2二维离散平稳小波变换 4 iswt2二维离散平稳小波逆变换

【免费下载】小波分析及其应用

科技文献检索作业 卷 试 料 小波分析及其应用 测控技术1103 雷创新

小波分析及其应用 1.小波分析的概念和特点 1.1小波理论的发展概况 20世纪80年代逐渐发展和兴起的小波分析(wavelctanalysis)是20世纪 数学领域中研究的重要杰出成果之一。小波分析理论作为数学界中一种比较成熟的理论基础,应用到了各种领域的研究当中,推动了小波分析在各工程应用中的发展。它作为一种新的现代数字信号处理算法,汲取了现代分析学中诸如样条分析、傅立叶分析、数值分析和泛函分析等众数学多分支的精华部分,替代了工程界中一直应用的傅立叶变换,它是一种纯频域分析方法,不能在时频同时具有局部化特性。而小波分析中的多尺度分析思想,犹如一台变焦照相机,可以由粗及精逐步观察信号,在局部时频分析中具有很强的灵活性,因此有“数学显微镜”的美称。它能自动随着频率增加而调节成窄的“时窗”和宽的“频窗”,又随着频率降低而调节成宽的“时窗”和窄的“频窗”以适应实际分析需要。另外,小波变换在经过适当离散后可以够成标准正交基或正交系,这些在理论和应用上都具有十分重要的意义,因此,小波分析在各个领域得到了高度的重视并取得了许多重要的成果。 小波变换作为一种数学理论和现代数字信号处埋方法在科学技术界引起了越来越多专家学者的关注和重视。在数学家看来,基于小波变换的小波分析技术是当今数值分析、泛函分析、调和分析等半个多世纪以来发展最完美的结晶,是正在发展中的新的数学分支。在工程领域,特别是在信号处理、图像处理、机器视觉、模糊识别、语音识别、流体力学、量子物理、地震勘测、电磁学、CT成像、机械故障诊断与监控等领域,它被认为是近年来在工具及方法上的重大突破。然而,小波分析虽然在众多领域中已经取得了一定的成果,但是,有专家预言小波分析理论的真正高潮并没有到来。首先,小波分析尚需进一步完善,除一维小波分析理论比较成熟以外,向量小波和多维小波则需要进行更加深入的研究与讨论;其次,针对不同情况选择不同的小波基函数,实现的效果是有差别性的这一问题,对最优小波基函数的选取方法有待进一步研究。在今后数年中,小波理论将成为科技工作者经常使用的又一锐利数学工具,极大地促进科技进步及各个领域工程应用的新发展。 小波分析的概念最早是在1974年由法国地质物理学家 J.Morlet提出的,并通过物理直观和信号处理的实际经验建立了反

五种常见小波基函数及其matlab实现

与标准的傅里叶变换相比,小波分析中使用到的小波函数具有不唯一性,即小波函数 具有多样性。小波分析在工程应用中,一个十分重要的问题就是最优小波基的选择问题,因为用不同的小波基分析同一个问题会产生不同的结果。目前我们主要是通过用小波分析方法处理信号的结果与理论结果的误差来判定小波基的好坏,由此决定小波基。常用小波基有Haar 小波、Daubechies(dbN)小波、Mexican Hat(mexh)小波、Morlet 小波、Meyer 小波等。 Haar 小波 Haar 函数是小波分析中最早用到的一个具有紧支撑的正交小波函数,也是最简单的一个小波函数,它是支撑域在[0,1]∈t 范围内的单个矩形波。Haar 函数 的定义如下: 1 021121(t)-1 t t ≤≤≤≤ψ=?????其他 Haar 小波在时域上是不连续的,所以作为基本小波性能不是特别好。但它也有自己的优点: 1. 计算简单。 2. (t)ψ不但与j (t)[j z]2ψ∈正交,而且与自己的整数位移正交,因此, 在2j a =的多分辨率系统中,Haar 小波构成一组最简单的正交归一的 小波族。 ()t ψ的傅里叶变换是: 2/24=sin ()j e a ψ-ΩΩ ΩΩ()j Haar 小波的时域和频域波形

Daubechies(dbN)小波 Daubechies 小波是世界著名的小波分析学者Inrid ·Daubechies 构造的小波函数,简写为dbN ,N 是小波的阶数。小波(t)ψ和尺度函数(t)φ中的支撑 区为12-N ,(t)ψ的消失矩为N 。除1=N (Harr 小波)外,dbN 不具有

第五章 小波变换基本原理

第五章 小波变换基本原理 问题 ①小波变换如何实现时频分析?其频率轴刻度如何标定? —尺度 ②小波发展史 ③小波变换与短时傅里叶变换比较 a .适用领域不同 b.STFT 任意窗函数 WT (要容许性条件) ④小波相关概念,数值实现算法 多分辨率分析(哈尔小波为例) Daubechies 正交小波构造 MRA 的滤波器实现 ⑤小波的历史地位仍不如FT ,并不是万能的 5.1 连续小波变换 一.CWT 与时频分析 1.概念:? +∞ ∞ --ψ= dt a b t t S a b a CWT )( *)(1),( 2.小波变换与STFT 用于时频分析的区别 小波 构造? 1910 Harr 小波 80年代初兴起 Meyer —小波解析形式 80年代末 Mallat 多分辨率分析—WT 无须尺度和小波函数—滤波器组实现 90年代初 Daubechies 正交小波变换 90年代中后期 Sweblews 第二代小波变换

3.WT 与STFT 对比举例(Fig 5–6, Fig 5–7) 二.WT 几个注意的问题 1.WT 与)(t ψ选择有关 — 应用信号分析还是信号复原 2.母小波)(t ψ必须满足容许性条件 ∞<ψ=? ∞ +∞ -ψdw w w C 2 )( ①隐含要求 )(,0)0(t ψ=ψ即具有带通特性 ②利用ψC 可推出反变换表达式 ??+∞∞-+∞ ∞-ψ -ψ= dadb a b t b a CWT a C t S )(),(11 )(2 3.CWT 高度冗余(与CSTFT 相似) 4.二进小波变换(对平移量b 和尺度进行离散化) )2(2)()(1 )(2 ,22,,n t t a b t a t n b a m m n m b a m m -ψ=ψ?-ψ= ??==--ψ dt t t S n CWT d n m m m n m )(*)()2,2(,,?+∞ ∞ ---ψ=?= 5.小波变换具有时移不变性 ) ,()() ,()(00b b a C W T b t S b a C W T t S -?-? 6.用小波重构信号 ∑ ∑∑∑+∞ -∞=+∞-∞ =+∞ -∞=+∞ -∞ =ψψ= m n m n n m n m n m n m t d t d t S )(?)(?)(,,,,正交小波 中心问题:如何构建对偶框架{} n m ,?ψ

《小波分析及其应用》word版

现代数字信号处理作业 小波分析及其应用 电研111 梁帅

小波分析及其应用 1.小波分析的概念和特点 1.1小波理论的发展概况 20世纪80年代逐渐发展和兴起的小波分析(wavelctanalysis)是20世纪数学领域中研究的重要杰出成果之一。小波分析理论作为数学界中一种比较成熟的理论基础,应用到了各种领域的研究当中,推动了小波分析在各工程应用中的发展。它作为一种新的现代数字信号处理算法,汲取了现代分析学中诸如样条分析、傅立叶分析、数值分析和泛函分析等众数学多分支的精华部分,替代了工程界中一直应用的傅立叶变换,它是一种纯频域分析方法,不能在时频同时具有局部化特性。而小波分析中的多尺度分析思想,犹如一台变焦照相机,可以由粗及精逐步观察信号,在局部时频分析中具有很强的灵活性,因此有“数学显微镜”的美称。它能自动随着频率增加而调节成窄的“时窗”和宽的“频窗”,又随着频率降低而调节成宽的“时窗”和窄的“频窗”以适应实际分析需要。另外,小波变换在经过适当离散后可以够成标准正交基或正交系,这些在理论和应用上都具有十分重要的意义,因此,小波分析在各个领域得到了高度的重视并取得了许多重要的成果。 小波变换作为一种数学理论和现代数字信号处埋方法在科学技术界引起了越来越多专家学者的关注和重视。在数学家看来,基于小波变换的小波分析技术是当今数值分析、泛函分析、调和分析等半个多世纪以来发展最完美的结晶,是正在发展中的新的数学分支。在工程领域,特别是在信号处理、图像处理、机器视觉、模糊识别、语音识别、流体力学、量子物理、地震勘测、电磁学、CT成像、机械故障诊断与监控等领域,它被认为是近年来在工具及方法上的重大突破。然而,小波分析虽然在众多领域中已经取得了一定的成果,但是,有专家预言小波分析理论的真正高潮并没有到来。首先,小波分析尚需进一步完善,除一维小波分析理论比较成熟以外,向量小波和多维小波则需要进行更加深入的研究与讨论;其次,针对不同情况选择不同的小波基函数,实现的效果是有差别性的这一问题,对最优小波基函数的选取方法有待进一步研究。在今后数年中,小波理论将成为科技工作者经常使用的又一锐利数学工具,极大地促进科技进步及各个领域工程应用的新发展。 小波分析的概念最早是在1974年由法国地质物理学家J.Morlet提出的,并通过物理直观和信号处理的实际经验建立了反演公示,但当时该理论未能得到数学家的认可。1986年法国数学家YMcyer偶尔构造出一个真正的小波基,并与

傅立叶逆变换FFT结果 分析

FFT结果的物理意义 FFT是离散傅立叶变换的快速算法,可以将一个信号变换到频域。有些信号在时域上是很难看出什么特征的,但是如 果变换到频域之后,就很容易看出特征了。这就是很多信号分析采用FFT变换的原因。另外,FFT可以将一个信号的频谱 提取出来,这在频谱分析方面也是经常用的。 虽然很多人都知道FFT是什么,可以用来做什么,怎么去做,但是却不知道FFT之后的结果是什意思、如何决定要使用 多少点来做FFT。 现在圈圈就根据实际经验来说说FFT结果的具体物理意义。一个模拟信号,经过ADC采样之后,就变成了数字信号。采样 定理告诉我们,采样频率要大于信号频率的两倍,这些我就不在此罗嗦了。 采样得到的数字信号,就可以做FFT变换了。N个采样点,经过FFT之后,就可以得到N个点的FFT 结果。为了方便进行FFT 运算,通常N取2的整数次方。 假设采样频率为Fs,信号频率F,采样点数为N。那么FFT之后结果就是一个为N点的复数。每一个点就对应着一个频率 点。这个点的模值,就是该频率值下的幅度特性。具体跟原始信号的幅度有什么关系呢?假设原始信号的峰值为A,那么FFT 的结果的每个点(除了第一个点直流分量之外)的模值就是A的N/2倍。而第一个点就是直流分量,它的模值就是直流分量 的N倍。而每个点的相位呢,就是在该频率下的信号的相位。第一个点表示直流分量(即0Hz),而最后一个点N的再下一个 点(实际上这个点是不存在的,这里是假设的第N+1个点,也可以看做是将第一个点分做两半分,另一半移到最后)则表示 采样频率Fs,这中间被N-1个点平均分成N等份,每个点的频率依次增加。例如某点n所表示的频率为:Fn=(n-1)*Fs/N。 由上面的公式可以看出,Fn所能分辨到频率为为Fs/N,如果采样频率Fs为1024Hz,采样点数为1024点,则可以分辨到1Hz。 1024Hz的采样率采样1024点,刚好是1秒,也就是说,采样1秒时间的信号并做FFT,则结果可以分析到1Hz,如果采样2秒时 间的信号并做FFT,则结果可以分析到0.5Hz。如果要提高频率分辨力,则必须增加采样点数,也即采样时间。频率分辨率和 采样时间是倒数关系。 假设FFT之后某点n用复数a+bi表示,那么这个复数的模就是An=根号a*a+b*b,相位就是Pn=atan2(b,a)。根据以上的结果, 就可以计算出n点(n≠1,且n<=N/2)对应的信号的表达式为: An/(N/2)*cos(2*pi*Fn*t+Pn),即2*An/N*cos(2*pi*Fn*t+Pn)。 对于n=1点的信号,是直流分量,幅度即为A1/N。 由于FFT结果的对称性,通常我们只使用前半部分的结果,即小于采样频率一半的结果。 好了,说了半天,看着公式也晕,下面圈圈以一个实际的信号来做说明。 假设我们有一个信号,它含有2V的直流分量,频率为50Hz、相位为-30度、幅度为3V的交流信号,以及一个频率为75Hz、

小波变换及其应用_李世雄

现代数学讲座 小波变换及其应用 李世雄 (安徽大学数学系 合肥 230039) 科学技术的迅速发展使人类进入了信息时代。在信息社会中人们在各种领域中都会涉及各种信号(语音,音乐,图像,金融数据,……)的分析、加工、识别、传输和存储等问题。长期以来,傅里叶变换一直是处理这方面问题最重要的工具,并且已经发展了一套内容非常丰富并在许多实际问题中行之有效的方法。但是,用傅里叶变换分析处理信号的方法也存在着一定的局限性与弱点,傅里叶变换提供了信号在频率域上的详细特征,但却把时间域上的特征完全丢失了。小波变换是80年代后期发展起来的新数学分支,它是傅里叶变换的发展与扩充,在一定程度上克服了傅里叶变换的弱点与局限性。本文从信号分析与处理的角度来介绍小波变换的基本理论与应用,使具有微积分基础的读者通过本文能对这一新的数学分支有一初步了解。小波变换在函数论、微分方程、数值计算等方面也有着重要的应用,有兴趣的读者可参看[1][4]。 (一)从傅里叶变换谈起 数学中经常用变换这一技巧将问题由繁难化为简易,初等数学中用对数将较繁难的乘除法化为简易的加减法就是很典型的一个例子。而傅里叶变换(简称FT )则是利用积分将一个函数f (t )(-∞

小波变换及应用

小波变换及应用 一. 为什么研究小波变换 傅立叶变换(Fourier Transform ,缩写为FT )由下列公式定义: 正变换公式 ?()()i t f f t e dt ωω∞ --∞ =?? (1) 逆变换公式 ? ∞ ∞ -?= dt e f t f t i ωωπ )(?21 )( (2) 分析: 1.对于确定信号和平稳随机过程,傅立叶变换把时间域与频率域联系起来,许多在时域内难以看清的问题,在频域中往往表现得非常清楚。 2.变换积分核t i e ω±的幅值在任何情况下均为1,即1=±t i e ω,因此,频 谱)(?ωf 的任一频率点值是由时间过程)(t f 在整个时间域),(∞-∞上的贡献决定的;反之,过程)(t f 在某一时刻的状态也是由)(?ωf 在整个频率域),(∞-∞上的贡献决定的。)(t f 与)(?ωf 彼此之间是整体刻画,不能够反映各自在局部区域上的特征,因此不能用于局部分析。特别是傅立叶变换的积分作用平滑了非平稳过程的突变成分。要知道所分析的信号在突变时刻的频率成分,傅立叶变换是无能为力的。 3.实际中存在许多信号具有局部时间范围(特别是突变时刻)内的信号特征(一般是频率成分),例如,在音乐和语音信号中,人们所关心的是什么时刻奏什么音符,发出什么样的音节;图像信号中的细节信息,如边缘特征。 4.为了对非平稳信号作较好的分析,可以对信号在时域上加一个窗函数 )(τ-t g ,使其对信号)(t f 进行乘积运算以实现在τ附近的开窗,再对加窗的信 号进行傅立叶分析,这就是短时傅立叶变换(Short Time Fourier Transform, 缩写为STFT ),或者称为加窗傅立叶变换(Windowed Fourier Transform )。STFT 定义如下: (,)()()i t f S f t g t e dt ωωττ∞ --∞ =-? (3)

快速傅立叶变换信号分析实例

快速傅立叶变换信号分析实例(MATLAB运用) 一、介绍几个将要用的函数 [x,fs,bits]=wavread(‘filename’) 这是一个MATLAB中读取wav文件的数据的函数。其中的x表示一长串的数据,一般是两列(立体声;fs是该wav文件在采集时用的采样频率;bits是指在进行A/D转换时用的量化位长(一般是8b或16b),‘filename是函数的路径及其名字’。 [d]=fff(w,l) 这是MATLAB中快速傅立叶变换(FFT)是函数的一种输入输出形式。w是一列波形数据:l是指用多少点的FFT,此处应该选择2的乘方的数(如16、128、1024等),因为这样就可以使用优化的蝶形算法;d是频域的输出。由于FFT的对称性,又输入的是实数,FFT的结果的复数序列是共轭反对称的,所以它们的模的大小对称,一般说只用取一半的数据就可以了。 sound(w,fs,bits) 和前面的wavread一样的参数表示,它将数列的数据通过声卡转化为声音。 二、分段进行傅立叶变换 [w,fs,bits]=wavread('E:\matlab\实验\ding.wav') %读取声音数据 1. 显示双声道波形 subplot(2,1,1); plot(w(:,1)); subplot(2,1,2); plot(w(:,2)); %显示双通道波形 2. 作1024点的fft变换

u=w(:,1); n=round(length(u)/1024) %分段 z=zeros(n,1024); for i=1:n-1 z(i,:)=(fft(u(1024*(i-1)+1:1024*i),1024))'; %用1024点的fft end z(n,:)=fft(u(1024*(n-1)+1:length(u)),1024)';%剩下的一部分,在后面补0,凑成1024个数据 u=w(:,2); z2=zeros(n,1024); for i=1:n-1 z2(i,:)=(fft(u(1024*(i-1)+1:1024*i),1024))'; %用1024点的fft end z2(n,:)=fft(u(1024*(n-1)+1:length(u)),1024)'; 3.寻找峰值,重构信号 [m,i]=max(abs(z(:,1:200)')) [m2,i2]=max(abs(z(:,100:200)')) i2=i2+100; t=[1:1024]*fs; for j=1:20 u(1024*j-1023:1024*j)=m(j)*sin(i(j)/1024*fs*t)+m2(j)*sin(i2(j)/1024*f s*t); end %u=u/20; %调整幅值 figure plot(u(1:2:length(u))); %画出重构声音信号

相关文档
最新文档