风冷机组热回收方法及应用_张志明

风冷机组热回收方法及应用_张志明
风冷机组热回收方法及应用_张志明

*

2010年12月 洁净与空调技术CC&AC 第4期

风冷机组热回收方法及应用

烟台中集来福士海洋工程有限公司 张志明

*

中国航天513所 陆新宇

摘 要 对风冷机组的热回收系统原理进行了分析,提出了一种利用冷凝热回收器提供生活用热水的方法和装置,并对该系统使用的经济性进行了分析,指出利用热回收系统可有效地节约能源。关键词 风冷机组;热回收;经济分析

Air Cooled Chiller Unit Heat Reclamation’s Method and Application

Zhang Zhiming and Lu Xinyu

Abstract This text analysed the theory of heat reclamation system, gived a advanced method that used condenser heat

reclamation equipment to supply living hot water ,and analysed the economy efficiency of che heat reclamation system,concluded that used heat reclamation system can economize energy sources.Keywords Air cooled chiller unit; Heat reclamation; Economy efficiency

张志明,男,1977年4月生,本科,工程师

264000 山东省烟台市芝罘区芝罘岛东路70号(0535)6801451-2016

E-mail: zhzhm3322@https://www.360docs.net/doc/718231119.html, 收稿日期:2010-5-24

0 引言

我国正处于能源工业化过程,社会经济发展对能源的依赖要比发达国家大得多,社会发展受到能源的约束程度越来越严重。近年来,我国虽然电力生产迅速增长,但是相对而言电力消费增长更快,因此有不少地方经常会出现电力供应不足,拉闸限电的现象。然而随着能源消费的不断增长,废物废气的排放量也在不断增加,环境问题变得日益严重。因此保护环境、节约能源就变得尤为重要。随着空调冷热水机组的逐步普及,空调产品已日渐成为耗能大户。而传统项目的空调机组,在制冷的同时需要通过冷却塔或风冷冷凝器设法向空气中散热,而同时又通过锅炉、电热水器等设备通过燃油、燃气或消耗电能来不断向用户提供生活用热水,这样就造成了极大的能源浪费,同时由于煤、油等一次能源的大量使用产生废热、废气、废渣等造成环境污染。如果我们能将冷水机组制冷时排放到大气中的热量进行回收,用于生活用热水等用途,就能节省原本用于烧热水所需的能源。风冷热回收机组正是基于此原理而在近期兴起的一种高效节能机组。 1 风冷热回收特点

一机多用,既能为室内提供制冷/热空调,又能不受气候变化全天候供应生活热水,既节省了热水锅炉的投资和运行费用,又避免了太阳能热水器对气候的依赖性。

节能环保,采用热回收装置能将机组冷凝热回收制取热水,既节约了能源的消耗,同时避免了冷凝废热排放到空气中的热污染及锅炉燃烧产生的二氧化碳造成的温室效应。

节省空间,热回收机组的热水供应装置一般都是内置在机组中的,无须为供热设备提供任何额外的安装空间。

稳定可靠,由于热回收装置内无运转件,设备运行平稳可靠,无需投入大量的运行维修人员,同时由于不需要增加其他大负荷电器控制设备,装置启停时对系统的电网冲击小,既节约了电路装置费用又减少了安全隐患。

改善性能,使用热回收装置有利于改善空调系统性能,提高机组的能效比,并能延长机组的使用寿命。

2 风冷热回收形式、热回收供水温度和热回收热量

风冷机组的热回收形式分为显热回收和全热回收两种,具体取决于用户对热回收量和热水出水温度的要求。如果热回收量要求比较小,即大体相当于机组冷凝负荷的15%左右,则可以设计成只吸收冷

凝热中显热的形式。实际运行过程中,如果热水进水温度比较低时,可能也会吸收一小部分潜热,但是此种热回收方式在做热回收时,不会降低机组制冷量和制冷效率,由于增加了热回收装置,相当于增加了冷凝器的换热面积,降低了传热温差,相当于降低了机组冷凝温度,甚至会对机组制冷量和制冷效率提高有利,并且由于风冷机组压缩机组的排气温度比较高,普遍在80℃左右,热水回水温度可以保证达到45℃以上,最高可以达到60℃。如果用户对热水需求量比较大,仅回收冷凝负荷的高温显热部分就无法满足要求,除了回收显热外,还需要大量回收机组潜热,而要大量吸收机组潜热,理论上机组的冷凝温度必须高于热水回水温度,如果用户采用了热水箱蓄热装备,热水回收温度比较高,这样机组冷凝温度也需要提高。当然,提高冷凝温度会对机组的冷量和制冷效率有所影响,并且机组热回收水温度要求越高,回收比例越大,机组的冷凝温度就会提高的越大,对机组的制冷量和制冷效率影响就会越大。因此对于热水需求量不是很大的项目,建议采用长时间部分热回收的方式,而不建议采用集中某一时间段全部热回收的方式。

以上是针对风冷机组在夏季或过渡季节制冷工况下的热回收论述。对于在冬季或过渡季节制热工况下也需要提供生活用热水的情况,机组可以提供的热水量主要取决于机组所在项目的热负荷和机组本身的供热能力,由于空调用热水和生活热水负荷均来自于机组的冷凝热,因此两者总量不会超过机组制热能力,如果项目热负荷小,机组可提供热水能力就大,反之提供热水的能力就小,短缺的热量就需要用辅助电加热器或专门的热水机组来补充。

3 风冷机组热回收原理及经济性分析

3.1 风冷机组热回收工作原理

热回收技术就是通过一定的方式将冷水机组运行过程中排向外界的大量废热回收再利用,作为用户的最终热源或初级热源。

如图2所示,压缩机排出的高温高压气态制冷剂先进入热回收器,放出热量加热生活用水(或其它气液态物质),再经过冷凝器和膨胀阀,在蒸发器吸收被冷却介质的热量,成为低温低压的气态制冷剂,返回压缩机。图中热回收器便是热量回收的载体,起着热量回收和转移的作用。根据热力学第一定律可以得到如下关系式:

Q k ’ + Q R = Q 0' + P in ’

式中:P i n ’为压缩机吸收并压缩制冷剂消耗的功率;Q 0'制冷剂在蒸发器吸收的热量,即制冷量;Q R 为制冷剂在热回收器中放出的热量,即热回收量;Q k ’为制冷剂在冷凝器中冷凝(或过冷)放出的热量。

图1

风冷机组热回收工作原理

3.2 风冷机组热回收经济性分析

1)部分热回收经济性分析

某综合商务楼,建筑面积10000 m 2,设计冷负荷720 kW ,热负荷600 kW ,办公楼常年需要供应生活用卫生热水,卫生热水出水温度要求50℃,热水需求量为30 t/d 。

此项目选用烟台顿汉布什一台型号为ACDXHP220带部分热回收机组,机组制冷量为750 kW ,制热量为850 kW 。

制冷季节热水完全回收机组散热量中的显热部分,热回收量为机组总散热量的15%,满负荷运行时机组热回收量为145 kW ,制热季节由于机组的制热能力远大于项目要求的制热量,因此机组的冷凝热可以一分为二,一部分可以通过冷凝器供应空调热水,一部分可以通过热回收器供应生活热水。

如果每天平均按照65%负荷运行,日可产热水32 t ,完全可以满足用户卫生热水30 t 需求,冬季也按照日产30 t 热水来计算,机组在环境温度为0℃以上的情况下就完全可以满足制热+热回收的要求。在过渡季节机组平均冷负荷小于65%或环境温度小于0℃的制热工况下运行,可以增加辅助电加热器来满足要求。

每月按30天计算,每年可用热回收供热水按10个月计算(冬季、夏季各按5个月计算),机组冬季制热平均COP 按照3.6计算,则生产热水成本比较见表1。

. 66 . 洁净与空调技术CC&AC 2010年

表1

生产热水成本比较表

表1计算依据:

a )热水温升:30℃(20℃加热到50℃)。

b )柴油燃烧值:42915 kJ/kg =10250 kcal/k g ,燃烧率:77.5%。

锅炉效率:84%;柴油油价:5.5元/k g 。c )液化气燃烧值:26000 kcal/m 3;燃烧率:80%;锅炉效率:84%;液化气价:18元/m 3。

d )电价:工业用电0.9元/kW·h ,电热效率95%。

e. 热泵热水机COP 按3.6计算。2)全热热回收分析

其回收原理与仅回收显热的部分热回收原理是一样的,不过在机组结构上稍微有差别,全热回收需要在机组冷凝器外单独增加一个整体冷凝器,在机组需要热回收时,机组原配冷凝器就完全停止工作了,夏季热回收时就完全相当于一台水冷机组在

运行。

图2 冬季热回收机组

而冬季由于机组的制热和热回收只能满足其一,需要增加比较大的辅助热水供热装置来满足热回水供应要求(如图2所示)。因此,此类热回收机组,在制冷工况下可以回收全部的冷凝热,经济效益非常明显。尽管制热工况仍需要借助于其它设备来提供卫生热水,但全年卫生热水费用还是可以节约很多,经济效益依然很显著。

4 结论

通过对风冷机组热回收系统分析表明,在诸多的热水供应方案中,采用热回收模式最为合适,不仅附属设备少,节约初投资,同时还可以节省大量运行费用。特别是在长江以南或附近地区,风冷机组有广阔的市场和较大的使用量,可以大力推广此类设备。而在南方地区冬季热负荷相对夏季冷负荷比较小,而风冷热泵机组制热能力又比制冷能力大,因此在既需要制冷、制热又需要卫生热水,且卫生热水需求量不是很大场合如酒店、宾馆、医院、餐厅、学校、工厂、俱乐部等,可以大力推广显热回收设备。

参考文献

[1] 严建敏. 上海某三级生物安全实验室洁净空调设计[J]. 制 冷空调与动力机械,2008(2)

[2] 徐峥. 某二级生物安全实验室净化空调系统设计[J]. 制冷 空调与动力机械,2009(3)

[3] 陈邝尹. 生物安全实验室 暖通空调系统的几个设计要点

[J]. 暖通空调,2006(7)

第4期 风冷机组热回收方法及应用 . 67 .

冷水机组的工作原理

冷水机组得工作原理 1、冷水机组得分类及优、缺点冷水机组得分类: 分类方式 种类 分类方式 种类 按压缩机形式分 活塞式螺杆式离心式 按燃料种类 燃油型(柴油、重油)燃气型(煤油、天然气) 按冷凝器冷却方式 水冷式风冷式 按能量利用形式 单冷型热泵型热回收型单冷、冰蓄冷双功能型 按冷水出水温度 空调型(7度、10度、13度、15度) 低温型(-5度~-30度) 按密封方式 开式半封闭式全封闭式 按载冷剂分 水盐水乙二醇 按能量补偿不同分 电力补偿(压缩式)热能补偿(吸收式) 按制冷剂分 R22R123 R134a 按热源不同(吸收式) 热水型蒸汽型直燃型 各种冷水机组得优缺点 名称 优点 缺点 活塞式冷水机组 1、用材简单,可用一般金属材料,加工容易,造价低 2、系统装置简单,润滑容易,不需要排气装置 3、采用多机头,高速多缸,性能可得到改善 1、零部件多,易损件多,维修复杂,频繁,维护费用高 2、压缩比低,单机制冷量小 3、单机头部分负荷下调节性能差,卸缸调节,不能无级调节 4、属上下往复运动,振动较大 5、单位制冷量重量指标较大 螺杆式冷水机组 1、结构简单,运动部件少,易损件少,仅就是活塞式得1/10,故障率低,寿命长 2、圆周运动平稳,低负荷运转时无“喘振"现象,噪音低,振动小 3、压缩比可高达20,EER值高

4、调节方便,可在10%~100%范围内无级调节,部分负荷时效率高,节电显著 5、体积小,重量轻,可做成立式全封闭大容量机组 6、对湿冲程不敏感 7、属正压运行,不存在外气侵入腐蚀问题 1、价格比活塞式高 2、单机容量比离心式小,转速比离心式低 3、润滑油系统较复杂,耗油量大 4、大容量机组噪声比离心式高 5、要求加工精度与装配精度高 离心式冷水机组 1、叶轮转速高,输气量大,单机容量大 2、易损件少,工作可靠,结构紧凑,运转平稳,振动小,噪声低 3、单位制冷量重量指标小 4、制冷剂中不混有润滑油,蒸发器与冷凝器得传热性能好 5、EER值高,理论值可达 6、99 6、调节方便,在10%~100%内可无级调节 1、单级压缩机在低负荷时会出现“喘振"现象,在满负荷运转平稳 2、对材料强度,加工精度与制造质量要求严格 3、当运行工况偏离设计工况时效率下降较快,制冷量随蒸发温度降低而减少幅度比活塞式快 4、离心负压系统,外气易侵入,有产生化学变化腐蚀管路得危险 模块化冷水机组 1、系活塞式与螺杆式得改良型,它就是由多个冷水单元组合而成 2、机组体积小,重量轻,高度低,占地小 3、安装简单,无需预留安装孔洞,现场组合方便,特别适用于改造工程 1、价格较贵 2、模块片数一般不宜超过8片 水源热泵机组 1、节约能源,在冬季运行时,可回收热量 2、无需冷冻机房,不要大得通风管道与循环水管,可不保温,降低造价 3、便于计量 4、安装便利,维修费低 5、应用灵活,调节方便 1、在过度季节不能最大限度利用新风 2、机组噪声较大 3、机组多数暗装于吊顶内,给维修带来一定难度 溴化锂吸收式冷水机组(蒸汽,热水与直燃型) 1、运动部件少,故障率低,运动平稳,振动小,噪声低 2、加工简单,操作方便,可实现10%~100%无级调节 3、溴化锂溶液无毒,对臭氧层无破坏作用 4、可利用余热。废热及其她低品位热能 5、运行费用少,安全性好 6、以热能为动力,电能耗用少 1、使用寿命比压缩式短

热回收技术应用原理

热回收技术应用原理 一、热回收原理 制冷机组经冷凝器放出的热量通常被冷却塔或冷却风机排向周围环境中,对需要用热的场所如宾馆、工厂、医院等是一种巨大的浪费,同时给周围环境也带来一定的废热污染。 热回收技术就是通过一定的方式将冷水机组运行过程中排向外界的大量废热回收再利用,作为用户的最终热源或初级热源。 制冷压缩机排出的高温高压气态制冷剂先进入热回收器,放出热量加热生活用水(或其它气液态物质),再经过冷凝器和膨胀阀,在蒸发器吸收被冷却介质的热量,成为低温低压的气态制冷剂,返回压缩机。图中热回收器便是热量回收的载体,起着热量回收和转移的作用。根据热力学第一定律可以得到如下关系式φ?k′+φ?R=φ0′+P?in′式中,P?in′—压缩机吸收并压缩制冷剂消耗的功率; φ0′—制冷剂在蒸发器吸收的热量,即制冷量; φ?R—制冷剂在热回收器中放出的热量,即热回收量; φ?k′—制冷剂在冷凝器中冷凝(或过冷)放出的热量。 雷诺威机房空调,雷诺威精密空调 二、热回收类别 针对热回收器回收热量的多少,热回收又可以分为部分热回收和全热回收。其中,部分热回收只能回收冷水机组排放的部分热量,全热回收基本回收了系统排入环境中的全部热量。 三、热回收器形式 根据使用场所的不同和用户终端的具体需求,热回收器可以采用多种不同的形式,如管壳式、板式、翅片管式、套管式等。 四、热回收技术在冷水机组上的一般应用 根据冷水机组通常的使用场所,一般以水作为热量回收的媒介,在此以制取免费卫生热水为例展开讨论。 五、热回收技术原理 热回收器里通过的是高温高压的气态制冷剂(温度约70℃—85℃),在高温高压制冷剂通过热回收器的同时,利用循环水泵将常温的水送入热回收器,在热回收器里水与高温制冷剂蒸气进行热交换,制冷剂被冷凝的同时将水温升高,然后返回热水储存箱,水泵再次从储存箱中将水送入热回收器进行循环加热,使热水温度进一步升高。储存箱中的水经热回收器多次热交换,最终达到客户要求的水温(55℃-60℃左右)。当热水温度达到设定值时,循环水泵停止工作。 通过热水阀自储存箱中提取卫生热水,一旦水箱中水位降低,补水装置自动补水,此时水温开始下降,当水温降到低于设定值时,热水循环泵自行启动运转,再次通过热回收器对储存箱的水进行循环加热(前提是冷水机组在运行中),这样就确保储存箱中的热水温度维持在相对恒定的范围内。

风冷热泵空调热回收技术简介

风冷热泵空调热回收技术简介 环境污染和能源危机已成为当今社会的两大难题,如何在享受舒适的室内空气环境的同时付出最少的代价逐渐成为人类的共识,在这种背景下以环保和健康为主要特征的绿色建筑应运而生。尽可能少地消耗能源为建筑物创造舒适环境已经成为空调的发展方向,开发利用天然的冷/热源能够为空调带来节能和环保双重效益,因而越来越受到人们的重视。 我们身边的大气环境就是一个巨大的天然资源,可以随意获取和使用、对设备无害,是一种理想的天然冷热源。 空调在制冷的同时,根据能量守恒原理要将与制冷量相当的热量通过冷却塔或冷却风扇向大气中排放掉,此举除造成大气废热污染外,还会产生温室效应。而人们又要另外消耗高品位的电力、天燃气、燃油等能源来加热仅45℃的热水,表面上似乎没有热能的损失,实际上伴随着热能形式转换过程中的熵损失,已经是一种能源的浪费。能不能呢充分发挥高品位能量工作效率和利用低品位能量呢? 答案是肯定的,这就是利用热回收技术则巧妙的在空调制冷的同时将被浪费的热能集中回收来制取卫生热水(或提供冬季采暖用热)。其方法就是在空调制冷压缩机出口侧高温高压制冷剂蒸汽与冷凝器进行热交换的部件前串联或并联一个换热设备(制冷剂在空调制冷循环中的物化状态及性质在此不再累叙),在废热没有被冷却塔或冷却风机排放到大气环境中去之前就将这部分热量回收提走,这样既保证了热量的

有效回收再利用,又保护了大气环境免受热污染,而这部分回收的废热则可以用来加热卫生用热水,直接产生二次经济效益,一举数得。在风冷热泵空调机上应用热回收技术时,夏天相当于增加了一个水冷却装置。水冷却效率比风冷却效率高,空调制冷机因此可节能10~15%,而且由于冷凝温度降低还可延长压缩机使用寿命。 冬天热泵则转换为制热模式,为房间提供采暖用热媒水。在满足采暖需求的前提下还可以生产部分卫生用热水。 在春秋季过渡季节,建筑物既无制冷要求、又无供热需要,则可以充分利用热泵设备的高效热转换效率来生产卫生热水。 在满足热水加热要求的前提下,其余时间还可以对蓄热水箱进行循环保温加热,大大降低的运行费用。 热回收技术还使一机三用成为可能。利用热泵技术冬季向建筑物供暖、夏季向建筑物供冷、并可同时提供卫生热水,配以四管制系统还可以实现夏季无需投入锅炉的前提下同时制冷、供暖,大大提高了设备的综合利用率,性价比极高,其能源利用率为传统方式的2~3倍,投入1kW的电能可得到3~4kW以上的制冷或供热的能量(额定工况下) 对于我国这样一个人口众多、能源日益紧张,资金有限的实际状况,在室外气候条件合适的地区大力推广热泵制冷采暖和制卫生热水,是符合国家可持续发展战略的,也是充分保障使用方的社会效益及经济效益的。

空调系统热回收技术简介

空调系统热回收技术简介 陈振乾施明恒 (东南大学能源与环境学院南京210096) 摘要:中央空调系统的热回收技术在建筑节能中具有重大的意义。本文分析了中央空调热回收技术原理和建筑中央空调排风及空气处理中的能量回收系统。 Brief Introduction to Heat Recovery in Air Conditioning System Chen Zhenqian and Shi Mingheng (School of Energy and Environment, Southeast University, Nanjing 210096) Abstract: Heat recovery technology in central air conditioning system is very important in building energy saving. The principle of heat recovery technology in central air conditioning system is analyzed. The energy recovery in exhaust air and air handling of building is introduced. 一、前言 随着我国空调普及率的逐年提高,其能耗不断增加,建筑能耗在总能耗中所占比重越来越大。在一些欧美国家,建筑能耗中的采暖、通风和空调的耗能占全国总能耗的30%;在我国也达到20%左右,而且在迅速增加。高级民用建筑的中央空调耗能占建筑总耗能的30%~60%。能源的高消耗对我国发展造成了很大的压力,根据发改委能源组提供的材料,从1980年到1985年我们国家GDP的年增长率是10.7%,能源消费的增长率是10.9%,1986—1990年GDP年增长是7.9%,能源消费的增长率9.2%。1991—1995年GDP的年增长率是12%,能源消费的增长率是5.9%。1995—2000 年,GDP开始时8.3%,后来调整为8.6%,能源消费增长率是0.6%。2001—2005年GDP年增长率是9.47%,能源的消费增长是9.93%。其中2003年GDP的增长率是10%,能源是15.3%,2004年GDP是10.1%,能源增长率是16.1%。从这个数字可以看出,我们国家从1980—2005年GDP的增长一直在7.8—12%之前,基本上是这个范围内波动,而能源消耗的波动很大,特别是2003、2004年,能源的消费增长远远高于GDP的增长。和发展国家相比我国每平方米的能耗是他们的3倍,这说明在能源的高消费上必须要引起全社会的重视。目前中国每年竣工建筑面积约为20亿m2,其中公共建筑约有4亿m2。在公共建筑(特别是大型商场、高档旅馆酒店、高档办公楼等)的全年能耗中,大约50%~60%消耗于空调制冷与采暖系统,20%~30%用于照明。而在空调采暖这部分能耗中,大约20%~50%由外围护结构传热所消耗(夏热冬暖地区大约20%,夏热冬冷地区大约35%,寒冷地区大约40%,严寒地区大约50%)。从目前情况分析,这些建筑在围护结构、采暖空调系统,以及照明方面,共有节约能源50%的潜力。采暖空调节能潜力最大,在暖通空调设计方面加以控制就能够有效的节能能源。而新风带来的潜热负荷可以占到空调总负荷的20%-40%,开发节能的新风系统是建筑节能领域的一项重大课题。因此降低空调系统的能耗对降低建筑物耗能、节约能源有重要意义。本文主要对空调系统的热回收技术原理进行分析介绍。 二、空调冷水机组余热回收 中央空调的冷水机组在夏天制冷时,一般机组的排热是通过冷却塔将热量排出。在夏天,利用热回收技术,将该排出的低品位热量有效地利用起来,结合蓄能技术,为用户提供生活热水,达到节约能源的目的。目前,酒店、医院、办公大楼的主要能耗是中央空调系统的耗电及热水锅炉的耗油消耗。利用中央空调的余热回收装置全部或部分取代锅炉供应热水,将会使中央空调系统能源得到全面的综合利用,从而使用户的能耗大幅下降。通常,该热回收一般有部分热回收和全部热回收。 1、部分热回收 部分热回收将中央空调在冷凝(水冷或风冷)时排放到大气中的热量,采用一套高效的热交换装置对热量进行回收,制成热水供需要使用热水的地方使用,如图1所示。由于回收的热量较大,它可以完全替

关于冷水机组热回收技术的说明

附件 关于冷水机组热回收技术的说明 1、热回收的原理及介绍 1.1背景资料 在酒店、宾馆、医院、浴足、桑拿等场所,既需要热水供应,又要制冷空调。一方面要用燃煤/燃气锅炉生产热水,另一方面要用冷却塔(或地下水、风冷风机等形式)把空调在制冷过程中产生的冷凝热散失到大气中,产生污染的同时浪费能源。热水与制冷空调两套方案相互独立,致使制冷空调的余热得不到充分利用,甚是可惜! 空调压缩机产生的冷凝热量等于空调系统从制冷空间吸收总热量加上压缩机的发热量,约为制冷量的115%以上。目前绝大部分的空调设计,这部分的热量不但没有利用,还要消耗水泵、冷却塔、风冷风机等动力电能,将这部分热量排到大气环境(或地下环境)中去。如果把这一部分热量利用起来,变废为宝,免费获取生活热水,实现空调系统的单向能耗,双向输出,在制冷的同时又产生热水,岂不美哉。 1.2冷水机组热回收技术介绍 常规制冷空调用压缩机的出口处的制冷剂温度在65℃~95℃之间,冷凝管的表面热的烫手,空调热回收技术就是利用这部分的冷凝废热资源,来产生热水的。 1.2.1部分热回收如下图: 热回收装 压缩 膨胀水水 水 水

部分热回收(100%+30%的换热铜管) 双管束换热器:制冷剂侧共用一个回路,水侧上下分层。 1.2.2全部热回收 全热回收(100 %+100%的换热铜管) 双管束冷凝器:制冷剂侧共用一个回路,水侧左右分层。 30℃ 45℃ 制冷剂

2、热回收量 热回收温度一般不高于60℃ 2.1对于水冷螺杆机组的部分热回收量 ① R22机组: 60度热水,回收量最大10%; 55度热水,回收量最大 15%;50度热水,回收量最大30%;45度热水,回收量最大50% 。 ② R134a 机组: 60度热水,回收量最大8%; 55度热水,回收量最 大14%; 50度热水,回收量最大29%;45度热水,回收量最大50%。 说明: ① 对于不同的热回收温度和热回收量,机组需要进行不同的设计和报 价。 ② 以上参数为公司提供的标准热回收产品的性能参数。 2.2对于水冷螺杆机组的全部热回收量 大约为标况下冷量的100±5% 3、热回收系统热水的用途建议 3.1一般的热回收热水有以下用途: 1) 用于洗澡的淋浴; 2) 用于的洗手; 3) 制备工艺热水 注:根据应用场合的实际需要,选择合适的机组制取满足要求的热水。 ℃ ℃ 冷却水

AHU空气处理机组选型手册

目录1.如何确定机组型号 2.AHU定义及常用场合功能排布 3.各种功能段使用介绍

第一部分 如何确定机组型号 1.箱体(客户有要求的除外)

2.机组高度2300mm及以下,整机运输;机组高度23mm以上,散件运输。 当机组总高模数大于等于25或宽度模数大于25时,底座槽钢采用100mm,其余均为80mm。 3.表冷器选型 表冷选型出水温度偏差±℃范围内 水阻在110KPa以内(水阻太大时可将盘管前后分级,或左右分) 迎面风速>s时,要加挡水板(在湿度较大的地区,如广州、深圳等地,建议冷盘管迎面风速高于s时,即加装挡水板) 选盘管时冷量需乘以的安全系数 4.风机选型 机组全压>1200Pa时,选用后倾风机 风机出风口风速:直接出风风机,风口风速≤13m/s 不直接出风风机,风口风速≤15m/s 电机极数的选择:风机转速<600r/min,选用6极电机 风机转速600--3000r/min,选用4极电机 风机转速>3000r/min,选用2极电机 无蜗壳风机:必须找厂家选型,无涡壳风机功能段排布上均流在风机段之前。 对于风机电机直联的注意一般都要配变频电机。 5.机组带转轮除湿机的,一般转轮除湿段和机组前后功能段都是通过帆布软接,注意前后预留中间段,帆布软接一般是根据现场情况配,工厂不带。 6.所有的加湿器都要加接水盘,高压喷雾和喷淋还要加装挡水板和开门。喷淋前后都要预留中间段,并且开门。喷淋段本身也要开门。 7.没有特殊要求不允许机组配置外置板式加袋式共滑道。 8.如果要装压差计,初中效不能同框架或者滑道。 9.加湿出风段在一起时,出风段需要设置门。 10.机组配置紫外线灯的,注意机组的宽度是否大于紫外线灯的长度。不同规格紫外线灯的长度:20W——604mm 30W——40W—— 11.湿膜加湿分直排水和循环水两种,我们通常采用的是直排水的。湿膜在功能段上作为加湿用还是作为挡水板是有区别的,所以报价及EOF中要明确。 12.在对噪音要求较高的场合,一般会配置900mm长的消声段,舒适性场合一般选用孔板+玻璃棉形式的消声器,净化场合采用微穿孔的消声器。 13.风阀执行器 开关量

热回收空调原理、特点及优势

简介:简单地说,热回收空调是把制冷循环中制冷工质冷凝放热过程放出的热量利用起来制备热水。在如今能源紧张、资源匮乏的年代,节能、环保已成为持续发展的主题,空调作为建筑的主要能耗之一,怎么从空调上节约能源是迫切需要面对的问题。热回收空调显著的节能效果现受到越来越多行业学者的关注,这与其本身具备的特点和优势是密不可分的。关键字:热回收 热回收空调原理 一、常规空调制冷系统中的能耗问题 业内人士都知道,“制冷”并不仅仅是一个简单的降温过程,与自然冷却相比,“制冷”的过程实际上是通过消耗一定的外界能量(如电能、热能、太阳能等),把热量从“低温热源”转移到“高温热源”的过程。因此,我们通过“制冷”把载冷剂的温度降低的同时,加上外功转化的热量,必然会产生比冷量更大的热量。目前绝大部分的空调设计,这部分热量不但没有利用,还要消耗水泵及风机动力,把热量通过冷凝器由冷却介质(水、空气等)带走。我们如果能够把这部分热量利用起来,则可以实现单向能耗,双向输出,大大提高制冷机组的能源利用率,还可以节约冷却系统的能耗。 二、热回收原理 因此,基于以上系统能源再利用的出发点考虑,广州哈思空调有限公司研发生产的热回收空调技术,取得了很好的节能效果。其系统原理图及相关工作原理如下: 图3—1 热回收空调系统原理图 热回收空调原理及其节能效果 依上图(图3—1)所示,冷水水源直接进入热水器套管入水口,通过逆流循环吸收经过压缩后的高温高压的制冷剂释放出来的热量,不但可以提高冷凝系统的效率又达到加热冷水的目的。加热后的热水(55℃~60℃)直接进贮保温水箱,以备各项生活热水之用。整个空调系统是以电能来驱动工作,而非电能来制热。就节能方面同比之下,电资源虽丰富,但用电直接制热的方式不但耗电量大,运行成本高,而且电热管容易损坏;对于常规用燃油锅炉加热的方式,由于燃油的价格高,产生的效能并不高。因此,该热回收空调技术在节能方面的效果是相当显著的,而且该系统在夏季制冷时所产生的热水是完全免费的。 热回收空调特点及优势 简单地说,热回收空调是把制冷循环中制冷工质冷凝放热过程放出的热量利用起来制备热水。在如今能源紧张、资源匮乏的年代,节能、环保已成为持续发展的主题,空调作为建筑的主要能耗之一,怎么从空调上节约能源是迫切需要面对的问题。热回收空调显著的节能效果现受到越来越多行业学者的关注,这与其本身具备的特点和优势是密不可分的。 一、热回收空调的特点 1、就空调系统而言,简约,可靠,无需增加其他电控系统,自动化程度高,运行稳定,无安全隐患。 2、热水系统出水温度恒定(不会有过冷、过热现象发生),能同时实现多点供水,可满足不同需要的生活热水需求。 3、安装容易简便,不受场所限制,安全,使用寿命长。

【CN209655505U】一种热回收新风机组系统【专利】

(19)中华人民共和国国家知识产权局 (12)实用新型专利 (10)授权公告号 (45)授权公告日 (21)申请号 201920335814.9 (22)申请日 2019.03.18 (73)专利权人 天津市亨益空调净化设备有限公 司 地址 301707 天津市武清区豆张庄镇来家 庄 (72)发明人 刘振旺 张春来 苏晓和  (51)Int.Cl. F24F 7/08(2006.01) F24F 12/00(2006.01) F24F 13/30(2006.01) F24F 13/28(2006.01) F24F 3/14(2006.01) F24F 11/89(2018.01) F24F 11/56(2018.01) F24F 11/70(2018.01) F24F 11/74(2018.01)F24F 11/86(2018.01)F24F 110/10(2018.01)F24F 110/20(2018.01)F24F 110/70(2018.01)F24F 110/40(2018.01) (54)实用新型名称 一种热回收新风机组系统 (57)摘要 本实用新型提出一种热回收新风机组系统, 包括新风机组、总控制器、控制新风机组的新风 机组主板、无线通信模块、通过无线通信模块将 将检测数据反馈至总控制器的检测系统、通过无 线通信模块与总控制器连接的终端控制器,新风 机组包括新风通道、排风通道、新风快调旁通通 道以及排风快调旁通通道;该热回收新风机组系 统不仅可实现智能控制和可视化监控,且通过全 热交换器和第二热交换器对排风能量进行两级 回收,提高热泵热回收效率,并保证室外低温时, 保证蒸发器一定的制热效果,节能省排,另外,设 置的新风快调旁通通道和排风快调旁通通道可 实现室内快速调温的需求, 提高居住舒适性。权利要求书1页 说明书5页 附图1页CN 209655505 U 2019.11.19 C N 209655505 U

全热交换新风系统样本

全热交换新风系统样本 全热交换新风系统主要由离心式送风机、离心式排风机、热回收芯体、送风口、排风口及其它附件组成。它是在热回收式新风换气机加装了热回收芯体后的升级版,是一种更节能的通风换气系统。 全热交换新风系统配置了两个风机,送风机运转时,新鲜空气从室外引入,经送风管道输送到各个房间,室内污浊空气则从洗手间等房间收集后,通过排风风道,由排风机排到室外。新风气流和从室内排出的污浊空气在内置的热交换芯处,进行温度与湿度交换,回收一部分能量,这部分能量通过新风带回室内。 广州快净环保科技有限公司专业生产全热交换新风系统。本公司具有雄厚的技术开发力量,以先进的数控加工设备生产全热交换新风系统,排风、送风同时同速工作,实现等量换气。内部使用新型材料,有效降低运行噪音,保温效果好,重量轻。制造性能优良的产品,获得广大消费者好评。

广州新风换气机始终如一的贯彻“做中国最好的新风换气机”的品牌理念,在国内外近上千个工程项目中使用了快净新风换气机,其品质与诚信均经受了市场的考验。已与全国各地的400多家客户有过项目合作,无一起质量问题投诉。 新风换气机主要由热回收系统、动力系统、控制系统、降噪系统及箱体组成。热交换采用静止板式热交换器,当室内空调回风和新风分别呈正交叉方式流经热交换器时,由于平隔板两侧气流存在着温度差和水蒸汽分压力差,两股气流间同时产生传热传质,引起全热交换过程。这种过程是经过平隔板完成的,所以,属透过型全热交换。当安装在系统上的全热交

换器在夏季运行时,新风从空调回风中获得冷量,使温度降低,同时被回风干燥,使新风湿度降低;在冬季运行时,新风从空调回风中获得热能,使温度升高,同时被回风加湿。就是通过这样的全热交换过程,让新风从空调回风中回收了能量。

空调热回收系统在绿色建筑设计中的应用

空调热回收系统在绿色建筑设计中的应用 发表时间:2018-09-05T15:26:15.640Z 来源:《防护工程》2018年第9期作者:王源霞[导读] 空调系统热回收的应用在绿色建筑评价标准中占有重要的分值。本文介绍了空调空气热回收和空调冷凝热回收技术的原理,并对此技术在绿色建筑设计中的应用进行了探究。王源霞 广东诚实建设工程设计有限公司 514021摘要:暖通空调节能技术在绿色建筑的设计和使用过程中非常重要,其中空调系统热回收的应用在绿色建筑评价标准中占有重要的分值。本文介绍了空调空气热回收和空调冷凝热回收技术的原理,并对此技术在绿色建筑设计中的应用进行了探究。关键词:热回收;绿色建筑;节能随着生活水平的不断提高,人们对建筑舒适性的要求越来越高,同时国家对节能减排越来越重视,绿色建筑成为未来建筑发展的主要潮流。绿色建筑作为一种建筑规则和建筑环境性能的衡量标准,要求节约能源及资源,减轻建筑对环境的负荷,同时提供安全、健康、舒适性良好的生活空间,做到建筑与人及环境的和谐共处、永续发展。绿色建筑是实现建筑业可持续发展的有效途径之一。 暖通空调设计是建筑设计中一个重要环节,要将绿色观念融入到建筑暖通空调设计之中,合理运用空调节能技术,这样才能有效地发挥绿色观念和绿色技术的优势,体现出建筑行业对绿色发展观念的追求。空调热回收技术可以有效的节约能源,实现节能减排。 1 热回收空调系统特点 空调热回收包括空气热回收和冷却水热回收。空气热回收可分为全热回收和显热回收,原理是利用建筑物的排风与新风进行热交换,在夏季可以回收空调冷量,在冬季可以回收热量。目前大部分的热回收设备的效率可以在60%以上。冷却水热回收主要是将空调系统的冷凝热全部或部分地回收用来加热制备生活热水,也称为冷凝热回收。 1.1 空气热回收节能技术 在建筑的空调负荷中,新风负荷一般占到空调总负荷的30%甚至更多。把空调房间的热量直接排放到大气中既造成环境热污染,又浪费了能量。采用空调房间排风中的余热来预处理房间新风,就可以减少处理新风所需的能耗,提高空调系统经济性。 式中,ρ—空气密度,kg/m3;C—空气的定压比热容,KJ/(Kg·K);L—风量,m3/h;t—空气温度,℃;h—空气焓值;ηt—显热交换效率;ηh—全热交换效率。 由上式可以看出,如果新排风温差(室内外温差)较大时,回收热量显著;当室内外温差较小时,例如在过渡季节,可以在新风入口设置一个旁通管。当使用新排风热交换器不足以满足空调房间的冷(热)负荷时,可选用带辅助冷却(加热)盘管的设备。 1.2 冷凝热回收节能技术 空调冷凝器产生冷凝热,需要通过风冷或水冷等方式将热量带走,冷凝热回收系统是将这些要散发的热量回收用来加热水箱的水制备成生活热水。根据热量回收程度的不同,可分为全热回收方式和部分回收方式。冷凝热回收系统充分利用了空调系统中的废热,将空调系统中产生的低品位热量有效的利用起来,不仅达到了节约能源的目的,还可以减小冷却塔容量或取消冷却塔,使设备噪音减小,有效的减少了环境噪声污染。 空调系统运行释放冷凝热的热能总量及时间与生活热水的需求不一定完全匹配,可以在系统中设置蓄热水箱及调峰辅助热源,以保证生活热水的需求。 有文献研究表明[2],根据建筑物逐时动态冷负荷,对空调系统的冷凝热及生活热水需求进行计算,使用冷凝热回收系统后,可以将自来水加热到40~45℃,能满足生活热水的预热需求。 2 热回收技术在绿色建筑中的评价 根据现行规范GB/T50378-2014《绿色建筑评价标准》[3] (以下简称《标准》,绿色建筑评价指标体系由7类指标组成,分别为节地与室外环境、节能与能源利用、节水与水资源利用、节材与材料资源利用、室内环境质量、施工管理、运营管理,每类指标均包括控制项和评分项。在节能与能源利用这个指标方面,采用空调热回收系统,对绿色建筑评价有积极重要影响作用。 2.1 对空气热回收的评价 《标准》第5.2.13条,排风能量回收系统设计合理并允许可靠,评价分值为3分。要求达到以下两项之一即可:(1)在空调系统中,利用排风对新风进行预热(预冷)处理,降低新风负荷,且排风热回收装置的额定热回收效率不低60%。(2)采用带热回收的新风和排风双向换气装置,且双向换气装置的额定热回收效率不低于55%。目前市场上的空气热回收装置基本都能满足上述要求,大部分的热回收设备的效率在60%以上。 2.2 对余热废热利用的评价

热回收技术原理及其在冷水机组上的应用

热回收技术原理及其在冷水机组上的应用 1.前言 本世纪头二十年,我国经济将继续保持平稳较快的增长态势,然而能源的相对短缺已越来越成为制约我国经济持续健康发展的瓶颈,这一矛盾在今后相当长的时期内将长期存在,并且有愈加明显的趋势,同时,经济的高速发展也是以牺牲环境为代价的,如今人们赖以生存的环境已不堪重负。为此,国家确立了“节约与开发并重,节约优先”的能源方针,并提出“科学发展观”,“构建社会主义和谐社会”的全新发展理念。随着生活水平的不断提高和生产条件的日益改善,人们对生产生活环境也提出了更加严格的要求,如今,各类冷水机组已成为重要的实现方式,但伴随的却是巨大的能源消耗。因此,节能降耗理应成为全社会共同的责任,更是摆在每一家空调制造企业面前重大的课题。 2.单级蒸气压缩式制冷循环 压缩机吸收来自蒸发器的低温低压气态制冷剂,压缩成高温高压的制冷剂蒸气排入冷凝器,冷凝为中温(30℃—50℃)高压的制冷剂液体,经膨胀阀节流降压为低温低压的液态制冷剂(实际为气液混合物),进入蒸发器吸收被冷却介质的热量,成为低温低压的气态制冷剂,回到压缩机,完成一个制冷循环。 由热力学第一定律可知,φk=φ0+Pin 式中,Pin—压缩机吸收并压缩制冷剂消耗的功率; φ0—制冷剂在蒸发器吸收的热量,即制冷量; φk—系统通过冷凝器放出的热量。 3.热回收技术 3.1热回收原理 机组经冷凝器放出的热量通常被冷却塔或冷却风机排向周围环境中,对需要用热的场所如宾馆、工厂、医院等是一种巨大的浪费,同时给周围环境也带来一定的废热污染。 热回收技术就是通过一定的方式将冷水机组运行过程中排向外界的大量废热回收再利用,作为用户的最终热源或初级热源。 压缩机排出的高温高压气态制冷剂先进入热回收器,放出热量加热生活用水(或其它气液态物

全新风、全排风系统热回收方案

全新风、全排风系统热回收方案 前言:针对本项目A7#车间采用的全新风、全排风系统热量回收装置,列举备选方案,逐一分析优劣及选定施工方案的理由。最终依照现场情况,选定方案。 因生产工艺需要,A7#布病车间JK-B、JK-C、JK-D、JK-F、K-H 5个系统采用的全新风,房间直排模式。此设计方案,虽然能够有效保证生产安全,避免生产过程中的病菌等有毒物质危害人体,但是机组能耗过大,浪费严重,不满足现今提倡的节能环保,绿色生产的理念。 经过探讨,考虑针对现已完成的施工内容,进行有限度的改造,增设热回收装置,利用排风中的余冷和余热来预处理新风,以达到降低空调机组的冷热负荷,较少能耗,提高空调系统经济性、环保性的目的。 A7#布病车间内机组均为全年性空调,设有独立新风和排风的系统,送风量大于3000m3/h,新、排风之间的设计温差大于8℃,对室内空气品质要求较高。以上条件均满足空调排风空气中热回收系统的设计要求。 热回收装置分为显热和全热交换器两种。考虑到新风中显热和潜热能耗的比例构成是选择显热和全热交换器的关键因素。在严寒地区宜选用显热回收装置;而在其他地区,尤其是夏热冬冷地区,宜选用全热回收装置。依照呼和浩特所处的地理位置,属严寒地区,宜采用显热回收。 方案1:转轮式热回收装置 转轮式热交换器一般应用于空调设备的送排风系统中,排风和新风以相逆方向渡过旋转的蓄热体转轮,过程中释放和吸收能量,将排风中所蕴含的热或冷量转移到新风中。 1)为了保证回收效率,要求新、排风的风量基本保持相等,最大不超1:0.75。如果实际工程中新风量很大,多出的风量可通过旁通管旁通。 2)转轮两侧气流入口处,宜装空气过滤器。特别是新风侧,应装设效率不低于30%的粗效过滤器。

制冷机组余热回收讲义

中央空调制冷机组余热回收讲义 一.常用的计量单位: 1.压力: 1)米制单位:公斤力每平方厘米:Kg / cm2; 标准大气压:符号:atm ,海平面大气压力。 换算:1 atm = 760 mmHg = 101.325 KPa = 0.98 Kg / cm2。 2). 国际制单位:帕:Pa ( N / m2) ; 1000Pa = 1K Pa ; 1000000 Pa = 10 Pa = 1 M Pa 单位换算:1 Kg / cm2= 0.1 M Pa = 100 K Pa ; 2.热、能、功单位: A.米制单位:卡(Cal):1公斤水温度升1℃所需热能。 1000 Cal = 1 Kcal (大卡)。 千瓦时:Kwh ; B.国际单位:焦耳(J)、千焦耳; 3.热流、功率单位: A.米制单位:千卡每小时;Kcal /h; B.国际单位:瓦(W)、千瓦(KW); 换算:1千瓦(KW)= 860 Kcal (大卡)/h ; 1RT = 3.517 Kw 4. 制冷系数 = 制冷量÷消耗的功 能效比(COP):每耗电1千瓦得到的制冷量。

二.空气调节: 空气调节是一门维持室内良好的热环境的技术。热环境是指室内空气的温度、湿度、空气流动速度、洁净度、新鲜度等。空调系统的作用是根据使用对象的要求使各参数达到规定的指标。 空调系统的组成五个部分:空气处理设备;冷源和热源;空调风系统;空调水系统;控制、调节装置。 三.提供冷源方式——蒸气压缩式制冷循环: 1.原理:液体蒸发时吸收热量, 2. 基本概念: 1)液体的沸腾温度(饱和温度)随液体所处的压力而变化,压力越低液体的饱和温度也越低;如:1Kg液态R22在0.584Mpa压力时的沸腾温度为5℃,吸热量(制冷量)为201.246KJ/Kg;在0.64MPa压力时的沸腾温度为8℃,吸热量(制冷量)为198.695 KJ/Kg。不同液体的沸腾温度与压力、吸热量也各不相同。因此,只要根据制冷所用液体(制冷剂)的热力性质,并创造一定的压力条件,就可获得所要求的低温。 2).制冷工质:(制冷剂、冷媒、雪种); 常用有:氨(R717)、氟里昂等; 氟里昂:R11:一氟三氯甲烷 R12:二氟二氯甲烷 R13:三氟一氯甲烷 R22:二氟一氯甲烷

螺杆式热回收冷水机组应用的介绍

1.引言 随着经济的日益发展和人类生活水准的不断提高,空调的应用也越来越普及。而空调在适应经济发展和满足人类需求的同时,也给人类带来了巨大的能源消耗负担和其他如温室效应等负面影响,因此,减少空调的能源消耗,寻求空调可持续发展之路,已成为空调设计所面临的一个重要和首要的问题。在论述本文的内容以前,有必要对空调的能耗进行分类,并对已有的空调节能技术也作一些分类比较。 2.空调能耗的分类 空调制冷要使用电力或蒸汽;空调水、气输送要消耗电力;冬季空调要使用电力或油、煤等自然能源,不同的季节、不同的空调系统有不同的能耗。但就分类而言,可归结分为两类:电力消耗和热能消耗。而电力消耗最总仍可归结为热能消耗(自然能发电除外),因此,从环保的角度来看,空调的所有能耗均为热能消耗,都有CO2温室气体的排放代价。 具体来看,空调系统中,所有电力驱动设备,都存在电力消耗;各种锅炉、溴化锂冷水机组等则存在热能消耗,在一般情况下,夏季空调,除溴化锂制冷机组以外,均以电力消耗为主;冬季空调,则以热能消耗为主,但同时存在电力消耗。各种气源、水源、地源空调系统仅消耗电力。 3.空调节能技术分类和比较 作为对空调节能技术不断探索的回报,在空调设计中,已有很多成熟的技术和相关的产品可运用。具体可分为三种类型: 3.1 节省型:通过追求高效率,优化系统和加强自动控制的运用,来节省空调运行能耗, 减少或避免能源浪费,从而节省能源。如:选用高效率产品,优化系统配置,采用变风量或变水量、二次回风等节能系统及其他运行控制节能技术等。 就其节省的能耗而言,既节省空调动力消耗,也节省一些空调热能消耗。 3.2 自然能利用型:通过合理使用自然能,而减少空调能源消耗,如:新风供冷,冷却水供冷,气源,水源及地源供冷供热等自然能利用技术等。 自然能利用型主要节省空调热能消耗,值得注意的是,其节省的热能是相当可观的。此外,节省了空调热能消耗,也就减少了相应的CO2排放量,因而具有良好的环保优势和可持续发展特性。 3.3 热回收型:通过对热能的再回收,实现热能的二次利用,从而减少空调的能源消耗。如新排风热回收技术。根据产品的不同,又可分为:转轮式或固定板翅式全(显)热交换式热回收,盘管式热回收,热泵式热回收等方式。其他如冷水机组生活热水热回收等等。 就上述各热回收方式所节省的能耗来分析,夏季一般主要节省空调电力能耗,当采用溴化锂主机时,节省的是空调热能消耗。冬季一般主要节省空调热能消耗,当采用自然能利用型主机如气源热泵时,节省的是空调电力能耗。总之,同样具有良好的环保优势和可持续发展特性。 由于热回收型冷水机组在以前的应用中,较多采用串联型冷凝器,由于机组这样的结构设计的原因,热回收量一般最高仅为制冷负荷的30%至40%。而且,热回收量随着冷负荷的减少很快下降,不能相对稳

水冷冷水机组热回收介绍

水冷冷水机组热回收方式分类 目前水冷冷水机组有冷却水热回收与排气热回收两种方式。 1)冷却水热回收是在冷却水出水管路中加装一个热回收换热器,如图1所示。这样可以使“热水”从冷却水出水中回收一部分热量。虽然热水的出水温度小于冷却水的出水温度,但是冷水机组的制冷量与COP基本不变。 2)采用排气热回收的冷水机组通常采用增加热回收冷凝器,在冷凝器中增加热回收管束以及在排气管上增加换热器的方法。目前常见的是采用热回收冷凝器,如图2所示。从压缩机排出的高温、高压的制冷剂气体会优先进入到热回收冷凝器中将热量释放给被预热的水。冷凝器的作用是将多余的热量通过冷却水释放到环境中。值得注意的是热水的出水温度越高,冷水机组的效率就越低,制冷量也会相应地减少。 3热回收冷水机组关注点 1)最大热回收量

热回收冷水机组的热回收量在理论上是制冷量和压缩机做功量之和,某些机组最大热回收量可达总冷量的100%。在部分负荷下运行时,其热回收量随冷水机组的制冷量减少而减少。 2)最高热水温度 热回收冷水机组以制冷为主,供热为辅。热水温度越高,则冷水机组的COP越低,甚至会使机组运行不稳定。一般需加其他热源提高热水温度 3)热水温度/热量的控制 热水回水温度控制方案:机组在部分负荷下运行时,热回收量减少,热水的回水温度不变而出水温度降低,使热水(冷却水)的平均温度降低,减少冷凝器与蒸发器压差,冷水机组的COP相对较高。 热水供水温度控制方案:效果相反,可能导致冷水机组运行不稳定。 4热水回水/供水温度控制方案比较 如图3所示,比较热水回水/供水温度控制方案: 1)在100%负荷时,冷却水的供、回水温度为41OC和35OC,其温差为6OC,平均温度为38OC。 2)在50%负荷时,冷却水的流量不变,供、回水温差是100%负荷温差的50%,即为3OC。 3)热水回水温度控制方案:冷却水的回水温度恒定为35OC,由于供、回水温差为3OC,故冷却水的供水温度变为38OC,供、回水的平均温度为36.5OC,比100%负荷时低1.5OC。冷水机组COP相对较高,冷水机组运行稳定性好。 4)热水供水温度控制方案:冷却水的供水温度恒定为41OC,由于供、回水温差为3OC,故冷却水的回水温度变为38OC,供、回水的平均温度为39.5OC,比100%负荷时高1.5OC。冷水机组COP相对较低,可能导致冷水机组运行不稳定。 5排气热回收热量控制原理 图4为排气热回收冷水机组控制原理图,它利用从压缩机排出的高温气态制冷剂向低温处散热的原理,提高标准冷凝器的水温,促使高温气态制冷剂流向热回收冷凝器,将热量散给热回收冷凝器的水流中。通过

螺杆式风冷热泵热回收系统在酒店项目中的应用

EKAS螺杆式风冷冷水(热泵)热回收系统 ——在深圳某酒店项目中的应用 一、项目简介 此酒店是五星级商务度假酒店,总建筑面积约16000平方米,其中空调面积约10000平方米,酒店拥有各式客房265间/套,设有高级客房、豪华客房、行政客房、豪华行政客房、商务套房、豪华商务套房、总统套房等七种房型。中西餐、酒吧齐备,豪华气派的粤菜餐厅、时尚现代的西餐厅,酒店会议宴会设施完善,网球场,游泳池,棋牌室等娱乐康体设施丰富。 二、设计依据 主要相关标准和规范 1)《采暖通风与空气调节设计规范》(GB50019-2003) 2) 《公共建筑节能设计标准》(GB50189-2005) 3)《通风与空调工程施工质量验收规范》(GB50243-2002) 4) 中国建筑环境分析专用气象数据集 三、设计参数 四、设计方案 酒店空调面积为10000平米,按平均冷负荷指标为140W/ m2,总冷负荷1400kW,平均热负荷指标为60W/ m2,总热负荷为600kW;客房需热水按300L/套?天计算,265间客房,需热水80吨,桑拿需要热水按每天需要80吨,总需用热水量为160吨55℃生活热水,假定机组工作9小时制取所需生活热水量,则机组的热回收量为831kW。 根据酒店建筑的使用特点

1)夏天制冷冬季采暖 2)提供24小时生活热水使用 根据酒店的使用情况将分为三个工作状况: 制冷 夏季工作状况 免费提供生活热水 过渡季节工作状况制取生活热水 采暖 冬季工作状况 制取生活热水 使用方案 项目选用EK空调EKAS系列螺杆式风冷冷水(热泵)热回收系统,采用风冷热泵机组+风冷全热回收方案。选1台EKAS225AR0风冷热泵,制冷量764.1kW,制热量792.9kW,再加2台EKAS095AR0SR 风冷全热回收机组的,每台制冷量328.3kW,热回收量455.2kW。3台机组总的制冷量1420kW,大于1400kW设计负荷,满足冷负荷的需求;热泵机组的制热量792.9kW,大于600kW设计负荷,满足总冬季热负荷的需求;总热回收量910.4kW,大于831kW 设计负荷,满足热水负荷需求。在夏季3台机组同时共同运行,制冷同时可以免费回收热量,供洗浴、桑拿、厨房用生活热水。过度季节2台EKAS095AR0SR风冷全热回收机组运行螺杆式空气源热水器的模式可以单独提供生活热水;冬季EKAS225ARO风冷热泵机组运行制热满足酒店采暖需求,2台EKAS095AR0SR全热回收机组运行螺杆式空气源热水器的模式单独提供生活热水。这3台机组共同配合使用满足酒店的全年的空调和生活热水负荷的需求。

热泵全热回收新风机特点设计要点说明

热泵全热回收新风机特点与设计要点传统的新风处理有三种方式 1.风机直接抽排(优点:设备投资小。缺点:能源浪费严重.室外高温高湿空气直接补充到室内.室内低温低湿空气直接排出室外双重浪费.对整个空调系统有不利的影响负荷过大结露等现象发生.且舒适度达不到要求) 2.纸芯全热交换新风机(优点:利用室内和室外的温差起到一定的节能作用。缺点:节能效果不明显只能降个三四度.纳米换热膜要更换否则容易积尘造成污染.风压过大时容易击穿造成室内外空气交叉污染,换热效率不高且无法除湿造成结露等现象发生) 3.冷水风柜处理(优点:通过利用主机系统的冷冻水降温效果明显.有一定的除湿作用。缺点:消耗主系统能量才能对室外空气降温.冬季或者过度季节不开空调的情况下无法处理新风.排风要另外排风系统承担.不仅消耗着主系统能量且低温低湿空气白白排出室外造成能源浪费,只侧重于温度的监控而对于湿度却难以满足温湿平衡的要求空气过于干燥引起空调病) 热泵全热回收新风机具有以下优势: 一、利用低温低湿的室内排风作为冷凝器的冷却空气,既利用了室 内排风的显热(温差),又利用了室内排风的潜热(湿度差),冷凝效果大大优于直接采用室外空气作为冷却空气,避免了因空气置换通风而造成的能量损失;同样,机组制热时利用室内

排出的高温低湿的空气作为蒸发器侧的换热热源,与传统中央 空调系统相比新风负荷能耗节省50%左右。热泵全热交换新 风机利用排风进行热交换使得室内由于人体活动等产生的 CO2以及飞沫.人类活动产生的被单飘飞的绒.毛.头屑等等 得以及时排出室外大大提高了室内空气品质。 二、夏季运行时,机组蒸发器温度比冷水风柜盘管温度低,除湿效 果更明显。 三、冬季运行时,机组可对新风进行升温加湿处理,大大提高室内 的舒适性能。(此项为选装项,如觉得无加湿要求,可不加装加 湿器)。 四、机组运行灵活一体化设计没有室外机,还有有以下优点: 1、过渡季节利用全新风承担室内负荷,仅运行送、排风机实现自 动换气,而无需启动压缩机,同时也无需配置独立换气通风系 统,节能效果更加明显。 2、冬季可热泵运行,对新风进行升温处理。 3、新排风独立不会造成交叉污染还可选装红外线紫外线臭氧消 毒等附带功能 4、在室内空调机不运行时,也可对新风独立进行温、湿度处理。五.由于室内相对湿度可一直维持在60%以下,较高的室温(26℃)就可以达到热舒适要求。这就避免了由于相对湿度太高,只得把室温降低(甚至降到20℃),以维持舒适度要求的问题。既降低

相关文档
最新文档