苯加氢工艺流程

苯加氢工艺流程
苯加氢工艺流程

××××化工有限公司10万吨/年粗苯加氢精制装置工艺流程

2008年10月份

第一章工艺流程说明

1. 加氢100单元

1.1 概述

加氢100单元包括蒸发部分,反应部分,和稳定塔。

蒸发部分主要包括预蒸发器E-101A/E和带有多段蒸发器重沸器E-102A/B的多段蒸发器T-101。预反应器R-101和带有主反应器加热炉H-101的主反应器R-102构成反应部分的关键设备。

原料(焦化轻油=COLO)在反应部分进行处理,像硫、氧和氮化合物杂质,在升温和加压下经过催化剂加氢处理掉。

另外,导致形成聚合物和结焦的不饱和碳氢物,石蜡和二烯烃变成饱和。芳香烃几乎完全保存下来。

所需要的新鲜氢气由制氢单元提供。

通过换热器的特殊结构来回收热量,用反应后的出料作为一个热源。

1.2 工艺描述

焦化轻油(COLO)由罐区粗苯罐V-6101A/B/C/D,经粗苯泵送到主装置区。首先经原料过滤器F-101A/B(过滤器的作用是除掉可能在焦化轻油中存在的固体颗粒和聚合体)进入原料缓冲槽V-101,然后流到原料泵P-101A/B。经过这个泵,原料被升压到大约3.35Mpa(g)操作压力,与从循环气压缩机C-102A/B来的循环气体混合,通过预蒸发器的混合喷嘴J-101A进入预蒸发器E-101A中,在预蒸发器E-101A-E中原料与主反应物流逆向预热和部分蒸发,然后通过多段蒸发器重沸器的混合喷嘴J-102送到多段蒸发器的底部。

多段蒸发器底部操作压力大约是2.77/3.05 Mpa(g)(SOR,CaseB/EOR,CaseC)和操作温度大约是209℃(CaseA)到213℃(CaseC)。蒸发所需总热量是由被反应物料加热的多段蒸发器重沸器E-102A/B 来提供。最底塔盘下的液体在多段蒸发器混合喷嘴J-103与从隔阻器来的蒸气混合,喷回塔内。少量的焦化轻油(大约是总原料量的10%)作为回流送入多段蒸发器的顶部。为了避免物料进一步处理的任何困难,从底部将一定量的高沸点化合物作为残油排出。残油被释放到残油闪蒸槽V-103,在大约0.2 Mpa (g)低压下轻馏分被闪蒸出以蒸气形式送回到原料缓冲槽V-101。剩余的高沸点液体通过残油泵P-105A/B送出界区。

从多段蒸发器T-101顶部出来蒸气状的物料经过蒸发加热器E-103逆向被反应物料进一步加热。然后以最低198℃(SOR,CaseA)到219℃(EOR,CaseA)送到预反应器R-101的底部。逆流而上经过催化剂床层,在活性很高的NiMo催化剂上二烯烃和苯乙烯基本上被饱和。由于是放热反应,反应器出口温度上升到大约210-230℃,这取决于催化剂使用周期和进口温度。预反应器物料的温度通过E-103由主反应器产品物料来控制。高沸点液体化合物从R-101底部抽出送到残油闪蒸槽V-103。预反应器出来的物料通过主反应器换热器E-104被主反应物料加热,然后在主反应加热炉H-101中进一步加热。主反应器顶部的进口温度在280℃(SOR,allCases)到343℃(EOR,CaseB)之间变动。

考虑到新催化剂开工,由于催化剂高活性可以将主反应器进口温度降到大约260℃。

此外,假如开工和催化剂再生时也用H-101。

在R-102,物料从上而下经过CoMo催化剂床层,发生脱硫、脱氮和烯烃饱和。由于放热反应,反应器的出口温度上升到308℃(SOR,Case B)和370℃(EOR all Cases),氢气的分压最低为1.81Mpa(a)。

在预反应器R-101中,二硫化碳、包括少量的硫组分和聚合体像烯烃和苯乙烯形成的化合物通过在硫化过的NiMo催化剂加氢处理去掉,催化剂的活性温度范围为185-230℃。主要反应如下:烯烃和其它不饱和碳氢物的转化

环戊二烯+氢气=环戊烯烃

C5H6+H2=C5H8

环己二烯+氢气=环己烯烃

其它二烯烃+氢气=单烯烃

CnH2n-2+H2=CnH2n

苯乙烯+氢气=乙基苯

C8H8+H2=C8H10

茚+氢气=二氢化茚

C9H8+H2=C9H10

甲基-苯乙烯+氢气=甲基-乙基苯

C9H10+H2=C9H12

硫化物的加氢

二硫化碳+氢气=甲烷+硫化氢

CS2+4H2=CH4

乙基硫醇+氢气=乙烷+硫化氢

C2H6S+H2=C2H6+H2S

预反应器物料通过主反应器R-102中专门硫化过的CoMo催化剂进行加氢处理,不饱和烯烃和相应的不饱和化合物完全反应。主要是噻吩的硫化物、氧化物和氮组分转化为碳氢物、硫化氢、水和氨。为了避免产量损失,芳香环抑制加氢。主要的反应如下:

直链烯烃和带有支链烯烃的饱和

单烯烃+氢气=烷烃

CnH2n+H2=CnH2n+2

环烯烃的饱和

单环烯烃+氢气=环烷烃

CnH2n-2+H2=CnH2n

硫化物加氢

C4H4S+4H2=C4H10+H2S

氧化物的加氢

酚+氢气=苯+水

C6H6O+H2=C6H6+ H2O

氧茚+氢气=乙基苯+水

C8H6O+3H2=C8H10+ H2O

氮化物的加氢

嘧啶+氢气=戊烷+氨

C5H5N+5H2=C5H12+NH3

吡咯+氢气=丁烷+氨

C4H5N+4H2=C4H10+NH3

甲基吡啶+氢气=己烷+氨

C6H7N+5H2=C6H14+NH3

芳香烃加氢(不希望的反应)

苯+氢气=环己烷

C6H6+3H2=C6H12

甲苯+氢气=甲基环己烷

C7H8+3H2=C7H14

乙基苯+氢气=乙基环己烷

C8H10+3H2=C8H16

其它芳香烃+氢气=其它环己烷

在操作周期期间,反应器R-101和R-102中催化剂活性将降低。在脱焦操作期间,利用蒸汽和空气燃烧催化剂上的沉淀物可以恢复全部活性。

主反应产品物料经过换热器E-104,E-103,E-102A/B冷却,并在E-101A-E部分冷凝。通过软水泵P-102A/B连续将软水缓冲槽V-104来的软水注入,来溶解E-101C,E-101B和E-101A下游中像NH4Cl 和NH4HS这样盐的沉积物。

通过反应产品冷却器E-106反应物料最后将冷却到40℃。随后物流在分离器V-102中分离成气相和两个液相。由注入水产生的累积的废水主要从分离器的分水包中抽出并排出界区。

通过循环气捕集槽V-105,气相作为循环气送到循环气压缩机C-102A/B。

在压缩到所要求的压力大约 3.3/3.4Mpa(a)(SOR/EOR)后,循环气体再流回到反应部分。通过提供反应部分的新氢气来控制反应的压力。新氢气由制氢单元供应。新氢气经过补充氢气压缩机C-101A/B 压缩达到大约2.3Mpa(g),然后通过V-105送到循环气体压缩机C-102A/B。

分离器V-102中液相碳氢物在稳定塔物料预热器E-107中开始预先加热到大约100℃,随后送到稳定塔T-102。稳定塔T-102在大约0.5 Mpa(g)压力和相应的顶部温度大约90℃下运行。T-102底部条件是大约0.52 Mpa(g)和158℃。

必要的外部热量通过热油加热稳定塔再沸器E-108来提供。

从稳定塔顶部离开的溶解气和产品蒸气在稳定塔冷凝器E-109部分冷凝和冷却到大约67℃,送到稳定塔的回流槽V-106。在此,气体从液相中分离出来送到稳定塔排放气冷却器E-110进一步冷却和分离少量冷凝的碳氢物。最终稳定塔的排放气送出界区。收集到V-106分水包中少量的废水送到界区外的废水处理。稳定塔回流槽V-106中的液体产品通过稳定塔回流泵P-103A/B作为回流送回到稳定塔的顶部。

从稳定塔底部抽出的BTX馏分通过稳定塔物料预热器E-107加热稳定塔的进料,再送到预蒸馏200单元。

2.3预蒸馏200单元

2.3.1概述

合同工厂由下面部分构成:

预蒸馏塔T-201

热油系统

原料部分,100单元加氢处理BTXS物料在200单元加工处理,

适当的苯/甲苯部分被回收作为萃取蒸馏300单元的物料。底部物料直接送到二甲苯蒸发400单元。2.3.2工艺过程描述

看工艺流程图UBS-VT-FB-00005,UBS-VT-FB-00011。

2.3.2.1预蒸馏塔T-201

从加氢精制100单元来的BTXS物料通过流量控制直接送到预蒸馏200单元。

在预蒸馏200单元,加氢处理BTXS物料分离成塔顶部的相当于BT馏份苯/甲苯和塔底部的相当于XS馏份二甲苯。蒸馏在塔顶大约0.064Mpa(g)压力下运行。

从塔顶来的BT蒸气在预蒸馏冷凝器E-203冷凝,收集到预蒸馏回流槽V-202中。通过预蒸馏回流泵P-202A/B将蒸馏所要求的回流送回到预蒸馏塔T-201。

剩余的BT馏份通过泵P-202A/B直接送到萃取蒸馏300单元的塔T-301中,对纯苯和甲苯进行回收。

预蒸馏塔T-201底部通过预蒸馏重沸器E-202被加热到大约190℃(Case B)-197℃(Case C)。底部产品XS馏份通过预蒸馏底部泵P-201A/B送到二甲苯塔T-401,回收混合二甲苯。

2.3.2.2热油系统

工艺过程所需要的热是通过一个单独热油系统来提供的。这个热油系统是一个封闭的循环系统,加热粗苯精制中一些设备消耗。

器(PK-201-F01)、热油过滤器(PK-201-F02a/ab)、热油膨胀/存贮槽(PK-201-V02)、热油排放槽(PK-201-V03)、热油循环泵ⅠⅡ和Ⅲ(PK-201-P01A/B/C, PK-201-P02A/B, PK-201-P03A/B)和热油填充泵(PK-201-P04)。

合成热交换液体T55用作热油。T55提供了包括热稳定性和低蒸气压的高温性能。以大约240℃温度从不同消耗者回来的热油首先进入热油的循环泵ⅠPK-201-P01A/B/C。常设的过滤器(PK-201-F02 A/B)安装在这些泵的旁路,允许过滤少量液体回到泵入口。

热油送到热油加热炉(PK-201-H01),加热到280℃。热油流量达到大约686m3/h。燃烧器点燃焦炉煤气和由燃烧空气鼓风机(PK-201-C01A/B)提供的空气。工艺过程最大的吸收热大约为15.0MW。在炉有效率最小为85%下,燃烧炉的负载为17.7 MW。

由于多个消耗者不同的温度标准,安装了一个三回路系统。热油的最高温度是由带有热油进口温度达到280℃(回路1)的汽提塔重沸器E-308和二甲苯塔重沸器E-401来决定的。因而,热油炉PK-201-H01出口最高温度选择为280℃。

回路2的热消耗者是预蒸馏重沸器E-202,萃取蒸馏重沸器E-303和溶剂再生蒸发器E-316。为了排除形成油膜温度的风险,热油供应250℃温度被考虑,这通过热油循环泵Ⅱ(PK-201-P02A/B)加入冷的热油来完成。

由于同样的原因,第三回路(回路3)在热油进口温度200℃下运行,准备给稳定塔再沸器E-108和BT塔再沸器E-312提供所需要的热量。通过热油循环泵Ⅲ(PK-201-P03A/B)加入冷的热油来达到回路3中热油温度200℃。

热油膨胀/存贮槽(PK-201-V02)是由一个放置在存贮槽上面的膨胀槽构成。膨胀槽容许热油的膨胀和排放热油老化过程中产生的低沸点成份。槽以一定的海拔放置在循环泵的上游,以至于槽正常水平面位于系统中最高点。存贮槽能够容纳热油系统的整个总量。热油膨胀/存贮槽需要氮气来密封。为了避免在低温下增加热油的粘性,热油存贮槽由外部低压蒸汽盘管加热。

在回路中所有的低点都与热油排放槽PK-201-V03相连。排放槽配有液下热油填充泵PK-201-P04,通过该泵热油可以回到热油存贮槽。热油填充泵也可以用来补充回路热油。需要用氮气密封。热油排放槽配有外部低压蒸汽盘管。

2.4 萃取蒸馏300单元

2.4.1 概述

BT萃取蒸馏300单元的物料是上游的预蒸馏塔T-201的顶部BT馏份,直接来源于200单元。

单元物料包括苯、甲苯和非芳香烃。在萃取蒸馏单元,通过溶剂甲酰吗啉将苯和甲苯与非芳香烃分离。通过加入甲酰吗啉作为溶剂,使蒸气压力改变,通过蒸发非芳香烃能从芳香烃(苯和甲苯)中除去。

合同工厂300单元包括下面部分:

B/T萃取蒸馏塔

汽提塔

溶剂再生

真空单元

BT塔

萃取蒸馏塔(ED-塔)顶部蒸气中的少量溶剂通过分馏法从非芳香烃中分离出去。

ED-塔的底部产品是由包括芳香烃和很少量非芳香烃的溶剂(富溶剂)构成,送到汽提塔T-302中。在汽提塔中,在真空下通过蒸馏纯芳香烃作为顶部产品产出。

从汽提塔底部出来的汽提热溶剂(贫溶剂)送到一些换热器换热,最后循环回到萃取蒸馏塔的顶部。

部分贫溶剂间歇性的送到溶剂再生槽,真空下将少量的高沸点产品蒸馏出。再生溶剂回到溶剂回路。浓缩的高沸点产品/聚合体间断地装到桶内。

从汽提塔顶部来得BT馏份(纯芳香烃)送到BT塔T-303,在BT塔中纯苯作为顶部产品回收。顶部蒸气在BT塔冷凝器E-313冷凝,通过BT-塔回流泵P-306A/B一部分打回流,一部分在苯冷却器E-315中冷却后送出界外。在塔的底部回收纯甲苯,经甲苯冷却器E-314冷却后送出界区。

2.4.2 伍德的萃取蒸馏过程的工艺特性(莫非兰)

莫非兰工艺的一个特性就是用在很多方面优于传统溶剂的甲酰吗啉(NFM)作为溶剂。N-甲酰吗啉的优点描述如下:

N-甲酰吗啉CH2 CH2 H

4-甲酰吗啉O N C

4-吗啉羧基醛CH2 CH2O

甲酰吗啉结构

选择性和溶剂有效性最佳结合:

溶剂的高选择性和有效性是有效萃取蒸馏的先决条件。这些是N-甲酰吗啉的显著特性。因此,从分别含有高残留组分的物料中回收高纯度的芳香烃是可能的,这以前仅可以通过昂贵的液液萃取来做的。

涉及到高纯度芳香烃回收的一个问题是石蜡和烷烃杂质的分离,这些杂质和芳香烃有同样范围的沸点,经常形成共沸化合物。如果要求高产量和高纯度,这个问题不能通过简单蒸发来经济地解决。

在莫非兰萃取蒸馏工艺中,甲酰吗啉的高选择性和有效性结合改变了物料成分的蒸气压力,石蜡、烷烃以这样方式通过蒸发除掉。

和目前所用的其它提纯过程如液-液萃取、加压蒸馏、共沸蒸馏或结晶化比较,采用N-甲酰吗啉的萃取蒸馏提供了一个解决很多分离问题的最佳方法。

持久的热稳定性:

在220℃连续操作下,N-甲酰吗啉允许76×103Kj(18000kcal)/m2/hr的热交换率。

无腐蚀影响:

N-甲酰吗啉显弱碱性。与水1:1混合的样本PH值为8.6。在连续操作中,这个PH值不会改变。在设备中没腐蚀发生。这样碳钢始终可以被用。在相似的条件下,很多溶剂用到现在形成了酸性分解物,这会产生腐蚀。

好的化学稳定性:

溶剂对聚合或结胶的敏感性是极其低的。溶剂消耗和溶剂再生费用也相应的很低。

尽管在通常情况下,物料中不包含氯化物,它们仅仅可能通过作液压试验的水进入循环中,但在NFM循环中积累了氯化物。NFM循环中,氯化物会引起腐蚀增加。

过程中用于水压试验和冲洗的水在NFM加入前应可能彻底从过程中除掉。在操作过程中,水会导致NFM分解。

无毒性:

N-甲酰吗啉几乎没有毒。这是进行田鼠、老鼠和兔子试验的结果。N-甲酰吗啉也没有刺激影响。通过微生物的生物分解试验,表明N-甲酰吗啉对废水提纯单元生态没有毒害影响。

低价格:

N-甲酰吗啉以有利的价格进行大规模生产。自从1969年来,在商业化规模工厂甲酰吗啉作为溶剂用,取得了很大成功。

N-甲酰吗啉在欧盟、美国和日本注册。N-甲酰吗啉由BAST AG生产。

其它特性:

在页底图表1显示了NFM的一些物理数据和特性。从安全观点来说,闪点和自燃点是如此高以至于没必要去采取具体措施。

分子量115

沸点(1.013bar) 243℃

熔点23℃

闪点 125℃ 自燃点 370℃ PH-值(与水1:1混合) 8.6 热熔: 在20℃=1.76kj/kg ﹒k 在50℃=1.84kj/kg ﹒k 在100℃=2.01kj/kg ﹒k 在150℃=2.22kj/kg ﹒k

在沸点(1.013bar)的汽化热: 443.8 kj/kg 折射指数n D 25: 1.484 粘度(30℃): 6.68cp; 5.85cst

与苯和甲苯任意比混合,与水任意比混合,不与C 6-C 9-碳氢物形成共沸物 图表1:N-甲酰吗啉(NFM )的特性 纯NFM 的温度不允许下降到大约30℃以下,因为这有凝固的危险。如果必要,通过用芳香烃稀释可以降低凝固点(看下面图表2)。

-35

-30-25-20-15-10-505101520250%

10%

20%

30%40%50%60%70%80%

90%

100%

S o l i d i f i c a t i o n T e m p .

°C %wt. N-formylmorpholine (NFM)

图表2:在大气压下N-甲酰吗啉(NFM )的凝固点 2.4.3 工艺过程描述

看PID 图:

UBS-VT-FB-00006, UBS-VT-FB-00007, UBS-VT-FB-00008

2.4.

3.1萃取蒸馏塔T-301

从200单元来的(BT 馏份)物料在流量的控制下直接送到ED 塔T-301的中部。经过ED 进料预

ED塔T-301在顶部压力为大约0.1Mpa(g)下运行,并由两部分构成:萃取蒸馏发生的底部和通过分馏法从非芳香烃中回收溶剂的上部。

在ED塔萃取蒸馏部分(底部),芳香烃(苯,甲苯)通过溶剂NFM从非芳香烃中分离出。溶剂送入萃取蒸馏部分的顶部,而物料送入该部分的中部。

分离所要求的溶剂条件是溶剂/物料比率约为6-7kgNFM/kgED-物料,并ED塔进口温度大约为120℃。所要求溶剂温度通过溶剂冷却器E-302出口温度的控制来调整。

从萃取蒸馏部分出来的蒸气包括了几乎全部的非芳香烃,较少的芳香烃和微量的溶剂。溶剂在ED 塔的溶剂回收部分(上部)回收。

从ED塔T-301顶部出来不含NFM的非芳香烃蒸气通过ED冷凝器E-306冷凝,收集到ED回流槽V-301(在大约72℃)。

部分液态非芳香烃通过ED回流泵P-302A/B作为回流送回到ED塔T-301顶部,剩余部分通过非芳香烃冷却器E-307冷却到40℃并作为残油产品送出界区。

为了循环非芳香烃到E-301上游的ED塔物料管线,提供一个附加管线。

在大约175℃下,ED塔的底部产品由溶剂和溶解的芳香烃(富溶剂)构成。富溶剂通过ED塔底部泵P-301A/B送到汽提塔T-302,为了从溶剂中提取芳香烃。

对于ED塔萃取蒸馏所需要的热量通过ED重沸器E-304和E-305与热贫溶剂换热和通过ED重沸器E-303用热油来提供。

2.4.

3.2汽提塔T-302

在汽提塔T-302,芳香烃(苯和甲苯)在真空下通过蒸发从溶剂中分离出来。为了降低沸腾的温度,塔在塔顶压力大约为0.035Mpa(a)下运行。通过这种方式,避免了NFM的分解和降低了所要求的进口热量。

加热底部到大约210℃所需要的热量是通过汽提塔重沸器E-308由热油提供给汽提塔底部的。

以大约55℃从汽提塔顶部出来的芳香烃蒸气在汽提塔冷凝器E-310冷凝,收集到汽提塔回流罐V-302。

顶部的部分纯芳香烃(苯和甲苯)产品将送到BT塔T-303。

冷凝的部分芳香烃作为回流送回到汽提塔T-302的顶部。通过汽提回流泵P-304A/B,回流液送回到塔中,起到在汽提塔顶部除去溶剂蒸气上升的作用。在物料进口处闪蒸蒸发的溶剂被芳香烃回流液洗涤,进而进入底部。提供一条到E-301上游ED塔物料管线的附加管线,是为了循环部分或全部顶部产品(纯芳香烃和不合格产品)。

从汽提塔底部抽出的汽提热贫溶剂通过汽提底部泵P-303A/B送到ED重沸器Ⅱ和ED重沸器Ⅲ(E-304和E-305),BT塔重沸器ⅡE-317和ED进料预热器E-301进行热回收。

最终,贫溶剂通过溶剂冷却器E-302冷却到所要求的溶剂物料温度约120℃,送到ED 塔T-301的顶部。

汽提塔T-302真空是通过萃取蒸馏真空单元PK-301产生的。过程中的NFM溶剂用作液环真空泵的循环密封液。为了去除密封液中吸收的苯/甲苯和降热,通过真空单元的溶剂泵部分循环密封液送到汽提塔T-302。等量的贫溶剂从贫溶剂循环系统中通过溶剂再生冷凝器E-311送回到真空单元PK-301。2.4.3.3萃取蒸馏真空单元PK-301

萃取蒸馏真空单元PK-301产生汽提塔和溶剂再生的真空。

真空泵是用NFM溶剂作为密封介质的液环泵。

从溶剂冷却器E-302来的少量NFM通过溶剂再生冷凝器E-311(在此用作冷却器)连续送到真空单元的溶剂槽。通过液位控制,多余的NFM从真空单元溶剂槽抽出,凭借真空单元的溶剂泵送到汽提塔T-302。

当再生停止时,仅一个液环真空泵在运转去维持汽提塔T-302的真空。

在正常操作下,第二个液环真空泵通常作为汽提系统的备用泵,或如果再生进行,该泵作为溶剂

加入到真空单元溶剂槽的氮气作为密封气体,替代放空管线中冷凝气和稀释泄漏到系统中任何气体。附加的氮气作为液环真空泵气体平衡器。真空单元溶剂槽的排放气释放到主反应器加热炉H-101中烧掉。

为了避免NFM溶剂结晶,真空单元的所有管线和设备都必须保温和配有伴热。

2.4.

3.4溶剂再生

溶剂再生单元包含带有内部盘管热油加热溶剂再生蒸发器E-316的溶剂再生槽V-303和溶剂再生冷凝器E-311。所需要的真空通过真空单元PK-301中备用的液环真空泵来产生。

除了根据操作中经验(NFM的暗度)之外,工厂正常操作期间溶剂发生再生,通常一年进行两次(每次两周)。再生的频率和持续时间必须适当。

对于再生,热贫溶剂的部分物料(汽提塔T-302底部物料)间歇性的送到溶剂再生槽V-303,在真空(在再生最后阶段约为0.005Mpa(a))下从少量的高沸点物分解/聚合产品中蒸馏出。

从溶剂再生槽V-303上升的再生溶剂蒸气在溶剂再生冷凝器E-311冷凝,通过真空单元溶剂槽和真空单元的溶剂泵送回到溶剂回路中。溶剂再生槽V-303浓缩的聚合体间歇性放入桶里。废物体积量很小,它可以在界区外分批烧掉或混合到重燃油中。

溶剂再生冷凝器E-311有两个作用:

正常操作期间,真空单元密封液(循环溶剂)的冷却

溶剂再生期间,附加作为再生溶剂的冷凝。

溶剂再生单元的所有管线都必须保温和配有伴热。溶剂再生槽V-303和溶剂再生冷凝器E-311需要保温。持续提供的冷却水必须确保一个不达到NFM凝固点(23℃)的温度。

2.4.

3.5 BT塔T-303

苯和甲苯分离通常是对BT馏份(纯芳香烃)两相蒸馏,苯在塔顶部回收,甲苯在塔的底部。

来自汽提塔回流槽V-302的BT馏份物流通过汽提回流泵P-304A/B排出,以约51℃送到BT塔T-303。

从BT塔T-303顶部约97℃出来的纯苯蒸气在BT塔冷凝器E-313冷凝,液体收集在BT塔的回流槽V-304中。

蒸馏所需要的回流液通过BT塔回流泵P-306A/B送回塔内。苯产品通过苯冷却器E-315送出界区。

塔底部产品甲苯在约139℃下回收,通过BT塔底部泵P-305A/B经过在甲苯冷却器E-314最终冷却和粘土处理器R-301A/B送出界区。

通过在BT塔重沸器ⅠE-312用热油和在BT塔重沸器ⅡE-317用贫溶剂使塔再沸。

2.4.4工艺特性

2.4.4.1萃取蒸馏塔

萃取蒸馏部分用作分离芳香烃和包含在物料中的非芳香烃。这个分离在通常的蒸馏条件下是不可能完成。仅因为加入萃取蒸馏塔顶部N-甲酰吗啉溶剂的作用,芳香烃与非芳香烃选择性分离发生了。

萃取剂NFM的作用是以它改变成分蒸气压力的特性为根据的。这意味着原先有低沸点或大约与非芳香烃有相同沸点的溶解在NFM中的芳香烃,降低挥发性,因而可以在ED塔T-301底部抽出。几乎不在NFM中溶解非芳香烃蒸气从萃取蒸馏部分顶部出来,进入ED塔的溶剂回收部分。

万一负荷变化,预先设定的溶剂比值不变。

ED塔的再沸、ED物料流量和贫溶剂流量通过内部相关控制回路直接控制。

操作ED塔的目标是:

维持塔底部富溶剂中非芳香烃浓度在十分低的标准下来满足苯/甲苯萃取规定的质量。

确保顶部产品中含芳香烃和溶剂成分尽可能的少,始终都在精制油质量规定范围内。

如果原料物流的温度和溶剂比率保持常数(适用于物料成分不变),这个目标可以完成。

从ED塔萃取蒸馏部分的顶部进入的萃取剂NFM不是回流液,因为萃取剂自身基本不蒸发。萃取剂起到洗涤上升蒸气中芳香烃的作用,鉴于非芳香烃蒸气仅微量被溶解。在正常操作下,NFM与碳氢物

ED塔顶部蒸气的流量是由热平衡来决定的。温度轻微的改动将促使蒸气流量的改动很大。ED塔的热平衡是很敏感的,当偏离平衡时,蒸气流速会显著改变。

在底部恒定的加热下,高贫溶剂物料温度或碳氢物料温度促使高蒸气流速。这意味,温度的精确控制是正常控制的最基本先决条件。

ED塔热油重沸的结果决定了塔顶部萃取蒸馏部分再吸收数量的状况。萃取蒸馏部分的顶部填料温度规定了那些条件,并可用来调节外部热量输入的基本要求。

沿着ED塔的NFM、芳香烃和非芳香烃的混合物的组成分布对萃取蒸馏系统的操作有很大的影响。这将在下面显示图表3中的苯、非芳香烃和NFM例子中描述。

对于一个给定的温度,有个组成范围,发生分离成两个液相。低于临界点,苯、非芳香烃和NFM 的混合物相互间不再完全溶解,该临界点在被称为浊点等温线显示出。

在NFM中苯、甲苯以任意比相溶。

非芳香烃在NFM中的溶解是相当少。溶解性很大程度依据非芳香烃成份。

正如在图表3中看到的,随着温度的增加两相区域将减小。这意味着非芳香烃在NFM溶解增加:NFM中苯成分增加

温度增加

正如这个例子,包括:37wt.-%n-己烷和63wt.-%甲基-环戊烷非芳香烃混合物在图表3中考虑。

应用图表3的例子

查出成分(点A)

65.0wt.-%NFM/7.5wt.-%非芳香烃/27.5wt.-%苯

表示相溶和非溶面积(点B)

维持20wt.-%非芳香烃,最少25wt.-%苯溶解需要50℃;如果温度低于45℃,将形成两相。

考虑到在低苯NFM中高非芳香烃,低温下两个异类液相形成:

含碳氢物饱和NFM相,比重较大

含非芳香烃成份的碳氢物相,比重较小

混合物的沸腾现象改变很大程度上依据那有多少液相。

当仅仅一个液相存在时,溶解在NFM中碳氢物的沸点将升高,这是由于萃取剂NFM的特殊功能。

只要一形成两个液相,混合物的沸点将降到形成的碳氢物相的沸点,因为它现在构成两个蒸气压力。这效果与往连续的碳氢物蒸发中加汽提蒸气是相似的。在恒定的温度下,如果在NFM中碳氢物浓缩以两液相形成的方式来改变,沸点升高并会导致顶部排出液相。

这些相互作用清楚地解释在浊点下蒸发是不可能的。正常操作下,蒸发必须在来自浊点充足的范围中进行,因为在操作条件下那没有关于这个距离的直接规则。

在正常操作下,气相的分离必须避免通过控制足够的温度和因此在蒸气中大量的芳香烃成分。

因此,ED塔萃取蒸馏部分必须一直以这样方式操作,和不可避免的芳香烃部分和由“饱和”产生的微量的NFM部分一起所有的非芳香烃丛萃取蒸馏部分顶部以蒸气态离开,并流到溶剂回收部分。

在开工和停车期间,两相范围必须被反复讨论过。

因为热量是通过NFM提供的,溶剂必须先加入。如果从碳氢物料产生相关地大量的蒸气,芳香烃方面的顶部蒸气产生。

因为在NFM高温度下,非芳香烃的溶解度会增加,所以分离一直避免通过维持足够高NFM物料温度。

NFM物料温度的增加将促使蒸气流量,这是由于顶部产品中增加了芳香烃的成分。

NFM物料温度至少必须充分的高,以确保非芳香烃(包括不可避免芳香烃成分)重部分也能通过ED塔萃取蒸馏部分的顶部排出。

在太低的NFM物料温度下,非芳香烃重部分将冷凝,并部分直接和富溶剂送到汽提塔,因此污染了从汽提塔出来的纯芳香烃。

2.4.4.2汽提塔

汽提塔可以被认为一个为从NFM中分离轻苯和甲苯的正常蒸馏系统。为了降低底部温度在210℃下,操作在部分真空下进行。在最高温度210℃,NFM分解可避免,并所要求的加热也降低。

保持在贫溶剂中芳香烃成分尽可能的低是很重要的,是为了完成ED塔中精制油产品(非芳香烃)中想得到低的芳香烃浓度。当将贫溶剂加入到ED塔时,所含有的芳香烃蒸发,与非芳香烃蒸气混合,因此在非芳香烃中芳香烃浓度增加。

在汽提塔底部没有液位控制的特殊要求。NFM是循环产品,仅仅最初填充到设备中。从汽提塔底部流出的量等于加入到汽提塔中的量减去汽提塔顶部产品的量。由于加入到汽提塔的量已经由ED塔的底部控制了,所以在汽提塔的底部没有进一步的液位控制了。

2.5 二甲苯蒸发400单元

2.5.1 概述

合同工厂400单元是由二甲苯塔T-401组成。

物料,预蒸馏塔T-201的底部产品,分离成顶部的C8成分,侧线采出回收的二甲苯和底部的C9成分。二甲苯产品和混合的C8/ C9成分送出界区。

2.5.2 工艺过程描述

看工艺流程图UBS-VT-FB-00009

大气压(0.064Mpa(g))和顶部温度大约151℃进行蒸馏。

顶部蒸气,包括少量的主要是C8非芳香烃和乙基苯,在二甲苯塔冷凝器E-402中冷凝,收集到二甲苯塔回流槽V-401。二甲苯塔回流泵P-402A/B将C8-馏份主要部分作为回流送回到二甲苯塔,而剩余部分与底部产品C9成分混合,因为很小量。在大约223℃下,沸腾的混合物通过二甲苯塔底部泵P-401A/B 经过C9冷却器E-403送出界区。

混合二甲苯产品作为侧线采出物料回收,并经过二甲苯冷却器E-404冷却和流量控制后由二甲苯泵P-403 A/B送出界区。

对于蒸馏过程所需要的热量通过热油加热二甲苯塔重沸器E-401来提供。

粗苯工艺流程

1.装置概况及工艺过程 1.1装置概况 粗苯加氢装置由制氢、加氢精制、萃取蒸馏、酸性水处理、酸性气处理、公用工程系统等单元组成。年处理焦化粗苯原料10万吨。其主要工艺过程是将粗苯原料经过脱重组分塔脱除C9以上重组分后经两级加氢处理(预加氢和加氢净化)。原料通过预反应器催化剂床层逆流向上,使双烯烃、苯乙烯、二硫化碳进行加氢脱除和双烯饱和,再通过主反应器催化剂床层进行加氢处理,使烯烃发生饱和反应生成饱和烃。硫、氧、氮等化合物被加氢转化烃类、硫化氢、水及铵盐被脱除,芳烃转化被抑制。处理后的物料经稳定塔除去溶解于物料中的硫化氢后进入萃取蒸馏系统。在环丁砜的作用下将芳烃和非芳烃分离。分离出的混合芳烃经苯塔、甲苯塔、二甲苯塔精馏分离,生产纯度极高的苯、甲苯、混合二甲苯产品及少量的C8—、C8+溶剂油。生产过程中产生的酸性水经酸性水汽提处理后送至污水处理厂,酸性气经酸性气处理装置脱除硫化氢制取硫磺。 1.2工艺流程简述 1.2.1加氢工艺流程 自罐区泵送来的焦化粗苯原料经过滤器FT-1101/A、B,再经主反应产物/脱重组分塔进料换热器E-1101(管程)换热后入脱重组分塔C-1101,在塔内进行轻、重组分分离,塔顶汽相经脱重组分塔顶冷却器E-1102(壳程)冷凝冷却后进入塔顶回流罐V-1101,不凝气经真空机组排放至火炬燃烧。液体经脱重塔回流泵P-1101/A、B加压后部分回流,部分送入加氢进料缓冲罐V-1102。塔底重苯经塔底泵P-1103/A、B 加压后送入脱重组份塔底冷凝器E-1104(管程)冷却后送往罐区。脱重塔底设两台再沸器E-1103/A、B和两台塔底循环泵P-1102/A、B 强制循环。再沸器热源采用导热油。为防止物料聚合结焦在脱重塔进料线注入阻聚剂。 加氢进料缓冲罐V-1102的轻苯经反应进料泵P-1104/A、B 加压后入轻苯预热器E-1105(管程)预热后与K-1101/A、B送来的循环氢气混合后依次进入轻苯蒸发器E-1106/A、B、C(管程),在轻苯蒸发器内被加热蒸发的轻苯和

C8苯乙烯抽提蒸馏工艺简介

C8苯乙烯抽提工艺(1)工艺流程总框图 (2)C8切割单元 1.原料组成 C8切割 单元 苯乙炔加氢 单元 抽提蒸馏 单元 苯乙烯精制 单元混合C8C9原料 C8馏分 C9馏分去C9树脂厂 粗苯乙烯 广东新华粤石化股份有限公司苯乙烯装置工艺流程框图 加氢C8馏分苯乙烯产品去罐区来自乙烯厂 C8抽余油返乙烯厂

2.工艺流程 3.质量要求 4.操作指标 5.操作难点

(3)苯乙炔加氢单元 1. 原料要求 2.工艺流程 3.质量要求 C8加氢油中苯乙炔含量<30PPm 4.操作指标 (4)苯乙烯抽提蒸馏单元1.抽提蒸馏单元工艺流程总框图

2.原料组成 抽提蒸馏塔(T-301) C8原料贫溶剂 溶剂回收塔(T-302) 富溶剂 (溶剂+苯乙烯) 粗苯乙烯去脱色单元 溶剂再生塔(T-303) 溶剂+水蒸汽 抽余油水洗塔(T-304) 抽余油 水汽提塔(T-305) 洗涤水(含微量油) 塔顶罐集水槽水(含微溶剂、C8芳烃) 去除焦系统 塔顶罐集水槽水(含微量苯乙烯) 洗涤后的水(含微量溶剂、油) 含溶剂水(浓缩) 自产蒸汽 抽余油去罐区

●由C8馏分组成表,可知其的主要组分有: ?乙苯(136℃) ?对二甲苯(138.4℃) ?间二甲苯(139.1℃) ?邻二甲苯(144.4℃) ?苯乙烯(145.15℃) ●苯乙烯和邻二甲苯的沸点差只有0.75℃ ●因此一般蒸馏不能把苯乙烯从C8 组分中分离出来。 3.抽提蒸馏(萃取精馏)原理 利用环丁砜复合溶剂对不饱和的烯烃族有极强的亲和力,从而使苯乙烯与二甲苯和乙苯相比较,具有低的挥发性。基于这种特性,苯乙烯在抽提蒸馏(萃取精馏)塔中被分离出来。 4.C8苯乙烯抽提蒸馏单元主要设备 ●抽提蒸馏塔(T-301) ●溶剂回收塔(T-302) ●溶剂再生塔(T-303) ●抽余油反萃塔(T-304) ●水汽提塔(T-305) 5.抽提蒸馏塔(T-301) ●该塔是利用溶剂分离苯乙烯和C8芳烃的主要设备。 ●抽提蒸馏塔(T-301)可划分为三部分: A、溶剂回收段:塔的顶段(溶剂进料口以上) B、抽提精馏段:塔的中段(C8馏分进料口与溶剂进料口之间) C、苯乙烯提浓段:塔的下段(C8馏分进料口以下) ●抽提蒸馏塔(T-301)可划分为三部分: 贫溶剂C8溶剂回收段抽提精馏段苯乙烯提浓段

年产10万吨苯加氢工艺设计

第一章工艺设计说明书 1.1概述 苯加氢项目包括生产设施和生产辅助设施,主要为:制氢、加氢、预蒸馏、萃取、油库、装卸台等。生产高纯苯、硝化级甲苯、二甲苯、非芳烃、溶剂油等。苯、甲苯、二甲苯(简称BTX)等同属于芳香烃,是重要的基本有机化工原料,由芳烃衍生的下游产品,广泛用于三大合成材料(合成塑料、合成纤维和合成橡胶)和有机原料及各种中间体的制造。纯苯是重要的化工原料,大量用于生产精细化工中间体和有机原料,如合成树脂、合成纤维、合成橡胶、染料、医药、农药。它还是重要的有机溶剂。我国纯苯的消费领域主要在化学工业,以苯为原料的化工产品主要有苯乙烯、苯酚、己内酰胺、尼龙66盐、氯化苯、硝基苯、烷基苯和顺酐等。在炼油行业中也会用作提高汽油辛烷值的掺和剂。甲苯是一种无色有芳香味的液体,除用于歧化生产苯和二甲苯外,其化工利用主要是生产甲苯二异氰酸脂、有机原料和少量中间体,此外作为溶剂还用于涂料、粘合剂、油墨和农药与大众息息相关的行业等方面。国际上其主要用途是提高汽油辛烷值或用于生产苯以及二甲苯,而在我国其主要用途是化工合成和溶剂,其下游主要产品是硝基甲苯、苯甲酸、间甲酚、甲苯二异氰酸酯等,还可生产很多农药和医药中间体。另外,甲苯具有优异的有机物溶解性能,是一种有广泛用途的有机溶剂。二甲苯在化工方面的应用主要是生产对苯二甲酸和苯酐,作为溶剂的消费量也很大。间二甲苯主要用于生产对苯二甲酸和间苯二腈。焦化粗苯主要含苯、甲苯、二甲苯等芳香烃,另外还有一些不饱和化合物、含硫化合物、含氧化合物及氮化合物等杂质。粗苯精制就是以粗苯为原料,经化学和物理等方法将上述杂质去除,以便得到可作原料使用的高纯度苯。近年来,国内许多钢铁企业的焦化项目纷纷上马,焦化粗苯的产量迅速增加,为粗苯加氢精制提供了丰富的原料。 1.1.1项目的来源 随着我国化工行业的快速发展,近年来苯下游产品产能增长较快,尤其是苯乙烯、苯酚、苯胺、环己酮等生产装置的大量建设,对苯、甲苯、二甲苯等重要的有机化工原料需求大增,而国内苯系列产品生产能力增长缓慢,不能满足市

氯苯的工艺流程

5.工艺路线叙述 从上述生产机理知工艺路线:苯与氯气在FeCl3催化下连续氯化得氯化液,再经水洗、中和、,粗馏、精馏除去过量苯和多氯苯而得到成品氯化苯.反应放出的氯化氢用水吸收制成盐酸;多氯苯回收为邻,对位二氯苯。 具体工艺流程为: A:原料的干燥 氯气由氯干燥系统(或液氯液化后的废气)送来,经氯气缓冲器,并跨过一定的高度经阀门控制从下部进入氯化反应器。氯气缓冲器的作用有①缓冲作用,可减少氯压的波动,保证氯气平稳进塔;②分离作用,氯气进入系统常带有一定杂质,缓冲器内设挡板,可使氯气系统中的分散的细微颗粒受撞击而被捕集下来,达到净化氯气消除杂质的作用,确保氯气质量和管道畅通. 纯苯首先进入原苯计量槽,经苯干燥器脱去其中水分进入干苯贮槽,由干苯泵打入干苯高位槽,利用位差,经转子流量计控制从下部进入氯化反应器。 苯的干燥曾使用过两种方法:①共沸蒸馏法;②食盐﹑氯化钙,固碱干燥法,共沸蒸馏法,即利用苯中少量水可在沸腾同时汽化蒸出釜内存留物中含苯较低的原理进行脱水干燥的。此法可加苯后进行间断蒸馏,也可中部进料连续蒸馏,预馏出的苯水混合物经过冷凝后进入苯水分离器沉降分离,苯返回原苯贮槽,干苯含水可达0。02%以下,此法所得干苯质量好,其特点是耗蒸汽,需一套设备,操作麻烦,而且回收苯不能进行干燥。因此现同行均采用食盐,氯化钙,固碱干燥法,利用某些无机盐及金属氧化物有从苯中回收水分的能力,它是根据干燥剂只溶于水不溶于苯的性质,将需要干燥的苯按序从充满干燥剂的容器中通过,苯的含水被干燥剂表面吸附,干燥剂溶解后聚积成盐水颗粒,盐水颗粒比重远大于苯,沉降至容器底部被间断排放,使经干燥后的苯中含水显著降低. B:苯的氯化 苯的氯化为高温沸腾连续氯化,自苯高位槽下来的干苯,经苯转子流量计进入氯化器之底部;通过缓冲器的氯气,经π型管进入氯化器底部与苯并流而上,通过铁环层,进行氯化反应。氯化器内苯和氯气有三氯化铁催化剂(苯中的三氯化铁浓度达到0。01%,就可达到氯化反应的需要)的催化作用发生取代反应生成氯化液含苯,氯苯,氯化氢和少量的多氯苯,保持苯过量以使氯化反应完全并抑制多氯苯的生成。氯化器为钢制,内衬瓷砖,装带铁环作触媒(约7m),氯化为放热反应,氯化器自下而上,温度逐渐升高,液相温度控制在70~ 85oC 之间,反应温度的调节,借助于干苯流量的调节而实现,热量由蒸发出苯的汽化潜热带出,从而实现温度的控制,生成物氯化液由氯化器上部侧面溢流出来,进入液封(此液封高度约5m)。其目的是阻止盐酸气体随氯化液带出,一般情况下,氯化液的密度控制在0.03~0.95/15oC范围内,重量组成约含氯化苯25~35%,每班并定期从氯化器底部放酸水至缓冲器.生成的氯化氢气体连同蒸汽从氯化器顶部的升气管引出,经过一段,二段,三段石墨冷凝器,冷凝下来的苯经酸苯分离器返回氯化器重新反应,为使苯完全脱除,进一步使用深冷降膜吸收脱去气相中的苯,最后尾气中氯化氢气体经水吸收转化为盐酸,其余气体经水流喷射泵抽吸放空. C:尾气的吸收

年产20万吨乙苯脱氢制苯乙烯装置工艺设计毕业论文设计

(此文档为word格式,下载后您可任意编辑修改!) 毕业设计 20万吨年乙苯脱氢制苯乙烯装置工艺设计 摘要 苯乙烯是最重要的基本有机化工原料之一。本文介绍了国内外苯乙烯的现状及发展概况,苯乙烯反应的工艺条件,乙苯脱氢制苯乙烯催化剂,苯乙烯的生产方法和生产工艺。 本设计以年处理量20万吨乙苯为生产目标,采用乙苯三段催化脱氢制苯乙烯的工艺方法,对整个工段进行工艺设计和设备选型。根据设计任务书的要求对整个工艺流程进行了物料衡算,并利用流程设计模拟软件Aspen Plus对整个工艺流程进行了全流程模拟计算,选用适宜的操作单元模块和热力学方法,建立过程模型进行稳态模拟计算并绘制了带控制点的工艺流程图。在设计过程中对整个工艺流程进行了简化计算,将整个流程分为了反应和精馏分离两个部分,利用计算机模拟计算结果对整个工艺流程进行了模拟优化,并确定了整套装置的主要工艺尺寸。 由于本设计方案使用计算机过程模拟软件Aspen Plus进行仿真设计,减少了实际设计中的大量费用,对现有工艺进行改进及最优综合具有重要的实际意义。 关键词:乙苯,苯乙烯,脱氢,Aspen Plus,模拟优化

Abstract Styrene Monomer(SM)is one of the most important organic chemicals. This article describes the present situation and development of styrene at conditions, catalyst for ethylbenzene dehydrogenation to styrene, styrene production methods and production processes. This design is based on the annual targets, ethylbenzene three-stage dehydrogenation using styrene in the process, the entire section in the process design and equipment selection. According to the requirements of the design of the mission statement of the entire process the material balance, process design simulation software Aspen Plus simulation of the whole process of the entire process, choose the appropriate operating unit module and thermodynamic methods, process model for steady-state simulation and draw the P&ID diagram. The entire process in the design process, simplify the calculation, the whole process is divided into reaction and distillation to separate the two parts, the use of computer simulation results on the entire process flow simulation and optimization, and determine the size of the main process of the entire device . This design using computer simulation software Aspen Plus simulation designed to reduce the substantial costs of the actual design, to improve the existing process and optimal synthesis ,Aspen Plus,Simulation and optimization

苯加氢制环己烷

四、苯加氢制环己烷 环己烷主要(占总产量90%以上)用来生产环己醇、环己酮及己二酸,后三者是制造尼龙-6和尼龙-66的重要原料。环己烷还用作树脂、油脂、橡胶和增塑剂等的溶剂。 用作尼龙原料的高纯度的环己烷主要由苯加氢制得。 工业上苯加氢生产环己烷有气相法和液相法两种。虽然美国杜邦公司早已开发成功气相加氢工艺,但大多数工厂仍采用液相加氢工艺,例如美国的Uop公司,法国石油研究所(IFP)等。气相法的优点是催化剂与产品分离容易,所需反应压力也较低,但设备多而大,投资费用比液相法高。 1.反应原理 (1)化学反应在反应条件下,苯与氢可能发生下面各种反应:

+nH2→C+CH4(4)

反应(1)若为气相法固定床,用还原Ni 作催化剂,反应温度为65~250℃,压力 0.5~3.5MPa;若为液相加氢,采用骨架镍或还原Ni为催化剂,反应温度为160~220℃,压力2.7MPa左右,环己烷收率在99%以上。反应(2)和(4)在250℃左右的低温下不显著,它们可能是由第Ⅷ族金属催化的氢解型机 理引起的,也可能是由双功能催化剂的加氢裂解型机理引起的。双功能催化剂为具有加氢催化活性的某些金属(如Pt,Pd或Ni)负载在酸性载体(SiO2或SiO2/Al2O3)上构成,在载体上往往存在强酸中心,它对反应(2)和(4)有明显促进作用。因此,选择非酸性载体可以避免这种加氢裂解作用。反应(3)是环己烷的异构化,它往往被酸催化,在200℃下,异构化反应达到平衡时环己烷生成甲基环 戊烷的转化率为68%,将温度升高到300℃时其转化率达83%,因此也必须选择不会引起这种异构化反应的催化剂。在镍催化剂 上,250℃时才开始产生甲基环戊烷。 (2)热力学平衡由反应(1)可知,苯加氢生成环己烷的反应是一个放热的体积(摩尔数)缩小的可逆反应。在127℃时的平衡常

苯乙烯工艺流程

苯乙烯装置工艺流程叙述 一、乙苯工艺流程简述 本工艺包设计的乙苯装置界区内包括烃化反应系统(亦称烃化反应系统)、苯回收系统、乙苯回收系统、多乙苯回收系统、烷基转移反应系统(亦称反烃化反应系统)。为解决反应器在再生时停产影响,也是为了规避放大风险,烃化反应系统设计成反应器R-2101A/B、加热炉F-2101A/B、换热器E-2101A/B;E-2102A/B;E-2103A/B两套并联操作。 来自罐区的新鲜苯、油水分离器的回收苯、精馏工段回收的循环苯在T-2201苯回收塔汇合,用苯循环泵P-2201A/B泵入苯进料气化器E-2101A/B的壳程,管程的高压蒸汽将其加热而气化,气相苯分别进入两套苯换热器E-2103A/B的壳程,与管程的高温反应器出料换热而被过热。过热后的苯被分成两股:主苯流和急冷苯流。主苯流进入反应器进料加热炉F-2101A/B被加热到反应温度,进入烃化反应R-2101A/B。 界区外的原料乙醇用乙醇进料泵P-2101A/B加压,进入工艺水换热器E-2204,与苯塔回流罐底部排出的油水混合物换热回收热量,温度升至接近泡点,导入E-2102A/B乙醇蒸发器,用高压蒸汽将其气化,分段进入两台并联的烃化反应器。 在R-2101A/B中,乙醇发生脱水反应生成乙烯与水蒸汽,继而苯和乙烯发生烃化反应,生成乙苯及少量二乙苯、多乙苯等。为稳定反应器的温度,每段催化剂床层之间都有与进料乙醇蒸气相混合的急冷苯进入,使反应温度在适当范围内。反应器出料依次通过苯换热器E-2103A/B管程和苯回收塔再沸器E-2201管程被冷却后,便进入苯回收塔T-2201进行精馏分离。T-2201塔顶馏出苯、水和轻组分尾气,塔底则采出粗乙苯。罐区来的新鲜苯用新鲜苯泵P—2302A/B加压后通过乙苯/苯换热器冷E-2208与来自乙苯塔回流泵的产品热乙苯换热,进入苯塔回流罐V—2201,补充回流罐的液位。苯塔回流泵将回流罐的一部分苯打入T-2201塔顶。T-2201塔底采出的粗乙苯则送至乙苯回收塔T-2202进一步加工。 在T-2201塔顶共沸馏出的水冷凝进入回流罐V-2201,由于高温下苯与工艺水有乳化现象,将大部分是水的乳化液从回流罐底部导出,与乙醇进入反应器的量按1:1的比例排入工艺水换热器E-2204B管程,将热量交换给进料乙醇,然后进一步进入工艺水冷却器E-2205壳程,用循环水冷却到40℃-15℃消除乳化现象,进入油水分离系统,分出的工艺水经汽提脱苯后作为废热回收系统的补充水,苯则回用。 苯塔回流罐V-2201导出的气相进入苯塔尾冷器,将水蒸汽与苯进一步冷凝下来,凝液自流到V-2201底部乳化液导出管,不凝气则通过苯塔的压力控制排放到反烃化加热炉F-2102进口,进一步利用回收其中的乙烯与苯。 在乙苯塔T-2202中,塔顶气在乙苯塔冷凝器E—2207管程被软水冷凝,进入乙苯塔回流罐V—2202。一部分作为回流液打回T—2202,另一部分热乙苯通过乙苯/苯换热器E—2208将热量传给来自罐区的新鲜苯,作为本单元的精制乙苯产品而输往苯乙烯单元或罐区,E—2202中的软水则被蒸发成低压蒸汽送苯乙烯工段综合利用。 T-2202塔底采出物送入多乙苯(PEB)回收塔T-2203实现精馏分离。可循环组分二乙苯由T-2203塔顶馏出,通入PEB回收塔冷凝器E-2211管程,同壳程的水换热而被冷却冷凝。冷凝液在PEB 回流罐V-2203中实现汽/液分离。二乙苯被泵送到F—2102导入反烃化反应系统进行烷基转移反应以增产乙苯。由V-2203析出的不凝气则被PEB塔真空泵P—2206A/B抽吸,从而使二乙苯回收塔T-2203实现真空操作。T-2203塔底产物多乙苯残油送至界外。 由二乙苯回流泵P-2205A/B排出的二乙苯与来自E—2208的新鲜苯汇合,一同进入反烃化加热炉F—2102对流段预热,先后进入反烃化加热器E—2104A与反烃化换热器E—2104B,被中压蒸汽完全气化,并回收反烃化出料热量,返回F-2102对流段,被进一步加热到反烃化反应温度,再被导入反烃化反应器R-2102。在R-2102中,PEB同苯发生烷基转移反应,生成乙苯。R-2102的出料先后通过反烃化换热器E—2104B的管程和反烃化反应器出料蒸汽发生器E-2105的管程而被冷却冷凝,进

苯加氢制环己烷

苯加氢制环己烷 四、苯加氢制环己烷 环己烷主要(占总产量90%以上)用来生产环己醇、环己酮及己二酸,后三者是制造尼龙-6和尼龙-66的重要原料。环己烷还用作树脂、油脂、橡胶和增塑剂等的溶剂。 用作尼龙原料的高纯度的环己烷主要由苯加氢制得。 工业上苯加氢生产环己烷有气相法和液相法两种。虽然美国杜邦公司早已开发成功气相加氢工艺,但大多数工厂仍采用液相加氢工艺,例如美国的Uop公司,法国石油研究所(IFP)等。气相法的优点是催化剂与产品分离容易,所需反应压力也较低,但设备多而大,投资费用比液相法高。 1.反应原理 (1)化学反应在反应条件下,苯与氢可能发生下面各种反应 : +nH2→C+CH4 (4) 反应(1)若为气相法固定床,用还原Ni作催化剂,反应温度为65~250℃,压力0.5~3.5MPa;若为液相加氢,采用骨架镍或还原Ni为催化剂,反应温度为160~220℃,压力 2.7MPa左右,环己烷收率在99%以上。反应(2)和(4)在250℃左右的低温下不显著,它们可能是由第Ⅷ族金属催化的氢解型机理引起的,也可能是由双功能催化剂的加氢裂解型机理引起的。双功能催化剂为具有加氢催化活性的某些金属(如Pt,Pd或Ni)负载在酸性载体(SiO2或SiO2/Al2O3)上构成,在载体上往往存在强酸中心,它对反应(2)和 (4)有明显促进作用。因此,选择非酸性载体可以避免这种加氢裂解作用。反应(3)是环己烷的异构化,它往往被酸催化,在200℃下,异构化反应达到平衡时环己烷生成甲基环戊烷的转化率为68%,将温度升高到300℃时其转化率达83%,因此也必须选择不会引起这种异构化反应的催化剂。在镍催化剂上,250℃时才开始产生甲基环戊烷。 (2)热力学平衡由反应(1)可知,苯加氢生成环己烷的反应是一个放热的体积(摩尔数)缩小的可逆反应。在127℃时的平衡常 数为7×10,在227℃时为1.86×10。氢压和温度对环己烷中苯的平衡浓度的影响示于图3-2-18。由图3-2-18可见,低温和高压对反应是有利的。相反,反应(2)和(4)则受到抑制;环己烷异构化反应是一个等摩尔反应,压力对反应影响不大。温度对反应(3)平衡的影响示于图3-2-19。由图3-2-19可知,甲基环己烷的平衡浓度随温度的提高而上升。为抑制

粗苯加工工艺流程图

第一节粗苯精制苯基本原理 精苯车间加工的原料是外购粗苯和轻苯。其主要组分是苯及同系物、苯、甲苯、二甲苯等占80%—95%,此外还有脂肪烃、环烷烃、不饱合化合物以及少量硫化物、吡啶碱类、酸类如洗油的低沸点馏份。 粗苯的各种主要组份皆在180℃前馏出。 由于粗苯、轻苯是一种比较复杂的混合物,故其本身用途不大、但经加工以后所得的多和纯产品的却是重要的化工原料,具有很高的经济价值。粗苯精制的目的在于获得尽可能多的苯族纯产品,同时对其它组份尽可能加以综合得用。 (一)硫酸洗涤净化法基本原理 粗苯中含有5—12%的不饱合化合物及其它杂质,并主要分布在14℃以后和79℃以前馏出物中。 粗苯经两苯塔是除去140℃以后重苯中的不饱合化合物,以获得轻苯和重苯两种产品。 轻苯初馏的目的是切除79℃以前不饱合化合物及二硫化碳。所得混合馏份还含有与苯族产品沸点相接近不饱合化合物及硫化物杂质,可以采用化学方法加以净化。 1、经常使用的是硫酸洗涤净化法,其主要化学方法如下: (1)不饱合化合物的聚合反应 不饱合化合物在硫酸作用下很容易发生聚合反应,低沸点化合物易生成粘度大,不溶于混合份及硫酸的极深度的聚合物。引起化合物的夹带损失。所以必须先经过初馏除去低沸点不饱合化合物。高沸点不饱合化合物聚合程度较差,一般只生成可溶混合份的二聚物,三聚物。 (2)加成反应 硫酸各不饱合化合物还能生成酸式脂和中式脂,前者溶于硫酸中,后者溶于混合份中。低沸点不饱合化合物与硫酸生成中性脂,在吹苯中,中性脂加热分解,放出腐蚀设备的酸性物质,故初馏时尽可能地把低沸点物质清除。 (3)清除噻吩反应 噻吩在浓硫酸的催化作用下能和高沸点不饱合化合物共聚生成溶于混合物的共聚物,反应迅速完全,噻吩还能直接溶于硫酸中,但溶解速度很慢。 (4)苯族烃和不和化合物共聚反应 苯族烃在浓酸的催化作用下和不饱合化合物发生共聚反应生成能溶解于混合物的共聚物。(5)苯族烃的磺化反应 苯族烃与浓硫酸作用能发生磺化反应而造成苯族烃的损失。 2、影响硫酸洗涤的方要因素 (1)反应温度 最适宜的反应温度为35—45℃,温度过低反应缓慢而达不到净化要求,温度过高苯族烃磺化反应以及不饱合化合物的共聚反应加剧,因而使苯族烃损失增加。 (2)硫酸浓度 硫酸浓度过低达不到净化要求,浓度过高磺化反应加剧,苯族烃损失增加,因此先择较适宜的硫酸浓度为93—95%。 (3)硫酸和混合份的比例 在保证洗涤质量要求的前提下,酸油比例愈小愈好。不仅降低酸耗,而且可以减轻苯族烃的磺化反应。 (4)反应时间 酸洗净化反应所需时间与反应温度、硫酸浓度、酸油化、搅拌合程度等因素有关。一般反应时间为十分左右,时间过短,反应效果差,势必增加酸耗,时间过长,磺化反应加剧,苯族烃损失增加,所以反应器必须立即加水,使浓硫酸反应终止。

苯乙烯试验报告

苯乙烯试验报告 1.过程合成与分析 苯乙烯(Phenylthylene/SM),是非常重要的化工原料。我国苯乙烯主要用于生产聚苯乙烯、ABS树脂、SAN树脂、不饱和聚酯树脂、丁苯橡胶、丁苯胶乳以及苯乙烯系热塑性弹性体等。近几年国内苯乙烯产能不断扩大,目前已经超过400万吨/年。 苯乙烯系列树脂的产量在世界五大合成材料的产量中仅次于聚乙烯和聚氯乙烯而名列第三位。苯乙烯主要用于生产苯乙烯系列树脂及丁苯橡胶,也是生产离子交换树脂及医药品的原料之一,此外,苯乙烯还可用于制药、染料、农药以及选矿等行业。苯乙烯系列树脂的产量在世界合成树脂中居第三位,仅次于PE、PVC。苯乙烯的均聚物――聚苯乙烯(PS)是五大通用热塑性合成树脂之一,广泛用于注塑制品、挤出制品及泡沫制品3大领域。近年来需求发展增长旺盛。苯乙烯、丁二烯和丙烯腈共聚而成的ABS树脂是用量最大的大宗热塑性工程塑料,是苯乙烯系列树脂中发展与变化最大的品种,在电子电器、仪器仪表、汽车制造、家电、玩具、建材工业等领域得到了广泛应用。中国已经成为世界ABS最大的产地和消费市场之一。 已知工业化的苯乙烯的生产主要采用两种方法: (一)乙苯脱氢法 乙苯脱氢法是目前国内外生产苯乙烯的主要方法,其生产能力约占世界苯乙烯总生产能力的90%。它又包括乙苯催化脱氢和乙苯氧化脱氢两种生产工艺。 1、乙苯催化脱氢工艺 乙苯催化脱氢是工业上生产苯乙烯的传统工艺,由美国Dow化学公司首次开发成功。目前典型的生产工艺主要有Fina/Badger工艺、ABB鲁姆斯/UOP工艺以及BASF 工艺等。 (1)ABB鲁姆斯/UOP工艺。用超加热器将蒸汽过热至800℃,与原料乙苯一起进入绝热反应器。反应温度550-650℃,常压或负压,蒸汽/乙苯质量比为1.0-1.5。通过脱氢反应器所生成的脱氢产物经冷凝器冷凝后进入乙苯/苯乙烯分离塔,塔底分出苯乙烯,塔顶馏出未反应的乙苯。将乙苯中的苯和甲苯分出后返回脱氢反应器重复利用。 (2)Fina/Badger工艺。Fina/Badger工艺通常与美孚/ Badger乙苯工艺联合签发许可。该工艺采用绝热脱氢,高温蒸汽提供脱氢需要的热量并降低进料中乙苯的分压和抑制结焦。蒸汽过热至800-950℃,与预热器内的乙苯混合后再通过催化剂,反应温度为560-650℃,压力为负压,蒸汽/乙苯质量比为1.5-2.2。反应器材质为铬镍,反应产物在冷凝器中冷凝。Fina/ Badger与 ABB Lummus公司一起几乎垄断了世界苯乙烯生产专利市场。 (3)BASF工艺。BASF工艺的特点是用烟道气直接加热的方式提供反应热,这是与绝热反应的最大不同点。脱氢过程中反应产物与原料气系统进行热交换,列管间加折流挡板,使加热气体径向流动,烟道气进口温度为750℃,出口温度为630℃,可用来预热进料的气体,使乙苯的进料温度达到585℃,直接与管内脱氢催化剂接触反应。出口气体经急冷、换热,再经空气冷却,分离脱氢尾气(H2、CH4、CO2等)、水和油,上层脱氢料液送精馏工序制得苯乙烯。 乙苯催化脱氢法的技术关键是寻找高活性和高选择性的催化剂。一开始采用的是锌系、镁系催化剂,以后逐渐被综合性能更好的铁系催化剂所替代。目前,国外苯乙烯催化剂主要有南方化学集团公司开发的Styromax-1、Styromax-2、Styromax-4以及Styromax-5型催化剂;美国标准催化剂公司推出的C-025HA、C-035、C-045型催化剂;德国BASF公司开发的S6-20、S6-20S、S6-28、S6-30催化剂;Dow化学公司开发出的D-0239E型绝热型催化剂等。我国开发成功的催化剂主要有兰州石油化工公司研究院的315、335、345、355系列催化剂;厦门

苯加氢简介

苯加氢作业区简介 一、概况 苯加氢作业区位于鞍钢厂区西北部,原址矿渣山,占地面积4.5万平方米,2007年10月破土动工,2009年8月将投产运行。其项目是采用德国伍德公司专利加氢技术,低温低压加氢萃取工艺法,是国内焦化企业单套生产能力最大,具有易燃易爆特性的石化类工艺项目,属重大危险源、省甲级要害部位。 苯加氢项目固定资产投资为37756.36万元(含外汇1186.42万美元), 铺底流动资金2171.20万元。 苯加氢工艺有6个生产单元及其它辅助设施组成,主要主要生产高纯苯、甲苯、二甲苯、重苯残油、非芳烃及C9馏分。广泛用作制造合成纤维、合成橡胶、炸药、塑料、医药和染料、油漆等产品的原料,也可用作树脂工业以及作为溶剂用于涂料、农药和橡胶加工工业等。 苯加氢作业区及辅助设施自动化控制水平较高,安全性能高,能耗低,环境保护效益明显,其加氢产品质优价高,可以出口外销。增产的非芳烃可以作为燃料销售,创建很可观的经济效益。是国内目前生产能力最大,技术最先进的苯加氢工艺装置。 二、工艺特点

粗苯中主要含有苯(约70%)、甲苯(约14%)、二甲苯(约4%)和三甲苯等芳香烃,其总含量占85%以上,这些物质都是重要的化工原料。此外,粗苯中还含有不饱和化合物(烯烃)、含硫化合物(噻吩)、含氧化合物(苯酚)及含氮化合物(吡啶)等杂质。粗苯精制工艺是以粗苯为原料,经化学和物理等方法提纯精制为高纯度苯类产品的过程。 1、加氢分类及国内情况 粗苯加氢根据操作条件不同,可分为高温加氢(580-630℃,6.0Mpa),中温加氢(480-550℃,5.0Mpa)及低温加氢(300-380℃,4.0Mpa)。宝钢一期引进的是莱托法高温脱烷基工艺;北京焦化厂的苯加氢装置,是焦耐院自行开发设计的中温加氢工艺;石家庄焦化厂于97年引进并建成了国内第一套5万t/a低温加氢装置是德国K·K公司(现为伍德公司)的技术,其加氢工艺是德国BASF公司开发经K·K 公司改进的,萃取蒸馏工艺是莫菲兰(MORPHYLANER)法,近三年,太化、昆钢等企业先后从德国伍德公司引进低温加氢工艺并相继投产。 2、装置组成及工艺流程 本装置共分以下几个部分: 1)加氢部分:蒸发器、闪蒸槽、反应器、高压分离槽、稳定塔; 2)蒸馏部分:预蒸馏塔、萃取蒸馏塔、汽提塔、二甲苯

苯乙烯流程图

课题:乙苯脱氢生产苯乙烯 授课内容: ●乙苯脱氢生产苯乙烯反应原理 ●乙苯脱氢生产苯乙烯工艺流程 知识目标: ●了解苯乙烯物理及化学性质、生产方法及用途 ●掌握乙苯脱氢生产苯乙烯反应原理 ●掌握乙苯脱氢生产苯乙烯工艺流程 能力目标: ●分析和判断影响反应过程的主要因素 ●分析和判断主副反应程度对反应产物分布的影响 思考与练习: ●乙苯脱氢生产苯乙烯反应中有哪些副反应? ●影响乙苯脱氢生产苯乙烯反应过程的主要因素有哪些? ●绘出乙苯脱氢生产苯乙烯工艺流程图 授课班级:

授课时间: 年 月 日 第二节 乙苯脱氢生产苯乙烯 一、概述 1.苯乙烯的性质和用途 苯乙烯的化学结构式如下: 苯乙烯又名乙烯基苯,系无色至黄色的油状液体。具有高折射性和特殊芳香气味。沸点为145 ℃,凝固点 -30.4℃,难溶于水,能溶于甲醇、乙酸及乙醚等溶剂。 苯乙烯在高温下容易裂解和燃烧,生成苯、甲苯、甲烷、乙烷、碳、一氧化碳、二氧化碳和氢气等。苯乙烯蒸气与空气能形成爆炸混合物,其爆炸范围为1.1%~6.01%。 苯乙烯具有乙烯基烯烃的性质,反应性能极强,如氧化、还原、氯化等反应均可进行,并能与卤化氢发生加成反应。苯乙烯暴露于空气中,易被氧化成醛、酮类。苯乙烯易自聚生成聚苯乙烯(PS )树脂。也易与其他含双键的不饱和化合物共聚。 苯乙烯最大用途是生产聚苯乙烯,另外苯乙烯与丁二烯、丙烯腈共聚,其共聚物可用以生产 ABS 工程塑料;与丙烯腈共聚可得AS 树脂;与丁二烯共聚可生成丁苯乳胶或合成丁苯橡胶。此外,苯乙烯还广泛被用于制药、涂料、纺织等工业。 2.生产方法 工业生产苯乙烯的方法除传统乙苯脱氢的方法外,出现了乙苯和丙烯共氧化联产苯乙烯和环氧丙烷工艺、乙苯气相脱氢工艺等新的工业生产路线,同时积极探索以甲苯和裂解汽油等新的原料路线。迄今工业上乙苯直接脱氢法生产的苯乙烯占世界总生产能力的 90%,仍然是目前生产苯乙烯的主要方法,其次为乙苯和丙烯的共氧化法。本节主要介绍乙苯脱氢法生产苯乙烯。 二、反应原理 1.主、副反应 CH=CH 2 CH=CH 2

苯加氢工艺

苯加氢工艺--基本原理及工艺流程 §1.2基本原 理 粗苯加氢根据其催化加氢反应温度不同可分为高温加氢和低温加氢。在低温加氢中, 由于加氢油中非芳烃与芳烃分离方法的不同, 又分为萃取蒸馏法和溶剂萃取法。 低温催化加氢的典型工艺是萃取蒸馏加氢(K. K 法) 和溶剂萃取加氢。在温度为300~370℃, 压力2.5~3.0MPa 条件下进行催化加氢反应。主要进行加氢脱除不饱和烃, 使之转化为饱和烃; 另外还要进行脱硫、脱氮、脱氧反应, 与高温加氢类似, 转化成H2S、NH3、H2O 的形式。但由于加氢温度低, 故一般不发生加氢裂解和脱烷基的深度加氢反应。因此低温加氢的产品有苯、甲苯、二甲苯。 §1.3苯加氢工艺流程 1.3.1PSA制氢工艺说明 PSA制氢单元由预处理单元和变压吸附单元两部分组成,采用PLC程序控制系统;预处理单元由一台气液分离器、两台变温吸附器、一台解吸气加热器、一台解吸气冷却器、13台程控阀和一系列调节阀、手动阀组成;预处理单元采用变温吸附(TSA)原理吸附甲醇驰放气中携带的甲醇组分,在吸附剂选择吸附条件下,低温吸附除去原料气中杂质组分,高温下脱附这些杂质而使吸附剂获得再生。整个操作过程在1.70MPa压力下进行,两台预处理器交替工作,每个吸附器在一次循环中均需经历吸附、逆放、加热、冷吹、充压共五个工艺步骤;变压吸附单元由一台产品气缓冲罐、一台解吸气缓冲罐、31台程控阀以及一系列调节阀和手动阀组成;变压吸附单元采用变压吸附(PSA)原理分离气体的工艺,从甲醇弛放气中提取纯氢气,在吸附剂选择吸附条件下,高压吸附除去原料气中杂质组分,低压下脱附这些杂质而使吸附剂获得再生。整个操作过程是在环境温度下进行的,五个吸附塔交替工作,每个吸附器在一次循环中均需经历吸附,一均降,二均降,顺放,三均降,逆放,冲洗,三均升,二均升,隔离,三均升,终充,共12个工艺步骤,五台吸附器在程序的安排上相互错开,以保证原料气连续输入和产品气不断输出;变压吸附主工艺采用5-1-3/P工艺,即5塔在线、1塔吸附、同时进行3次均压工艺 1.3.2加氢精制单元工艺说明 从预处理单元或者罐区轻苯罐泵送过来的轻苯(或者两者混合物),首先经轻苯过滤器过滤后进入轻苯缓冲槽V-101,然后由原料高速泵P-101A/B对轻苯原料进行升压至3.4~4.4MPa后轻苯分为两部分,其中约90%的轻苯进入预蒸发器E-101与从循环气体压缩机C-102A/B来的循环气体经预蒸发器混合喷嘴J-101A 混合循环,轻苯经过五个连续的预蒸发器与主反应产物换热升温后部分蒸发,出口形成135~155℃的气液混合物进入多段蒸发器T-101的混合喷嘴J-102,与从

苯加氢项目

粗苯经脱重组分后由高压泵提压加入预反应器,进行加氢反应,在此容易聚合的物质,如双烯烃、苯烯烃、二硫化碳在有活性的Ni-Mo催化剂作用下液相加氢变为单烯烃。由于加氢反应温度低,有效的抑制双烯烃的聚合。加氢原料可以是粗苯也可以是轻苯,原料适应性强。预反应物经高温循环氢汽化后经加热炉加热到主反应温度后进入主反应器,在高选择性Co-Mo催化剂作用下进行气相加氢反应,单烯烃经加氢生成相应的饱和烃。硫化物主要是噻吩,氮化物及氧化物被加氢转化成烃类、硫化氢、水及氨,同时抑制芳烃的转化,芳烃损失率应〈0.5%。反应产物经一系列换热后经分离,液相组分经稳定塔将H2S、NH3等气体除去,塔底得到含噻吩〈0.5mg/kg的加氢油。由于预反应温度低,且为液相加氢,预反应产物靠热氢汽化,需要高温循环氢量大,循环氢压缩机相对大,且要一台高温循环氢加热炉。 工艺流程简图如下: ??加氢条件;加氢为液相,反应温度800C,压力3.0~4.4MPa。主反加氢为气相加氢,反应温度300~ 3800C,压力 3.0~4.0MPa。由于液相加氢温度较低,加氢可以是粗苯加氢也可以是轻苯,对原料适应性强,经过预反后的原料需由循环氢汽化,循环氢量大,经预反应器和主反应器加氢后得到加氢油在高分器中分离出循环气循环使用,分离出的加氢油在稳定塔排出尾气后进入预分馏塔,塔底的C8馏分去二甲苯塔生产混合二甲苯,塔顶分离出的苯、甲苯馏分进入萃取蒸馏塔分离出非芳烃后经汽提塔和纯苯塔得到高纯苯和高纯甲苯产品。预反应器加氢采用的新氢是用PSA法制得的氢气。

来自制氢工序的1.0~1.2MPa(G)新鲜氢气首先进入氢气缓冲罐,分离掉其中的游离水和机械杂质,然后经氢气压缩机加压至3.5MPa(G)送入加氢系统;加氢来的循环氢气进入循环氢压机分液罐,分离掉其中的游离水和机械杂质,最后进入循环氢压机,加压至3.5MPa(G),送到加氢工序。 加氢工序 经过预处理后的轻苯由加氢原料油泵从罐区打入原料油换热器与加氢反应气换热后与加热后的循环氢同时进入蒸发器的底部进行混合汽化。经循环氢压机加压后的循环氢气先进入氢气换热器与加氢反应气换热后与经预热后的轻苯油混合后进入蒸发器下部,使轻苯汽化。从蒸发器底部排出含有聚合物的蒸发残油,经蒸发残油过滤器除渣后,去重质苯油水分离器。将顶部排出苯类蒸汽和氢气的混合气体,由顶部进入预反应器,在NiMo 催化剂的作用下不饱和化合物加氢饱和,反应后的油气与氢的混合物,从预反应器底部出来进入油气换热器,升温后进入主反应器加热炉,加热后进入两个串联的主反应器,在CoMo系催化剂的作用下,进行脱硫、脱碳、脱氧、脱烷基和非芳烃裂解反应。为控制反应器内的温升,在两个串联的主反应器之间加入新氢。 从主反应器出来的加氢混合气体,经过一系列换热器、降温后进入油气冷却器冷却到25~30℃,气液两相全部进入高压分离器进行气、液分离。分离出的气相循环使用。分离出来的加氢油去进行精馏提纯。 为了抑制苯的聚合,从阻聚剂高位槽将阻聚剂计量后加入输送轻质苯油的管道中,用泵将阻聚剂送入阻聚剂高位槽。二硫化碳贮槽和二硫化碳计量泵是加氢催化剂活化过程中用来预硫化催化剂用的,二硫化碳计量泵将二硫化碳贮槽中的CS2液按计量打入系统,以达到预硫化催化剂的目的。软水贮槽中的软水,用软水加压泵将软水打入软水高位槽,再经过计量后加入加氢产物中可溶解和洗去部分杂质;为了使循环氢反应所需要的氢气浓度需连续排放一部分循环氢气至煤气管道,同时由压缩机向系统补充一部分新鲜氢气以维持系统平衡。 预精馏工序 由高压分离器来的加氢油进入稳定塔。稳定塔塔底用蒸汽加热的稳定塔再沸器连续加热,加氢油在塔内蒸馏,C5以下的烃类和溶解在加氢油中的H2S等酸性气体被蒸出由塔顶排出。塔顶馏出物经稳定塔冷凝器冷冷凝却后进入稳定塔油水分离器,经分离后的冷凝液一部分用稳定塔回流泵送到塔顶打回流,另一部分送至罐区贮存,稳定塔油水分离器排出的不凝性气体排入驰放气管道。稳定塔塔底排出BTX馏分。 BTX馏分进入预蒸馏塔中部精馏,环己烷等烃类与苯和甲苯物由塔顶排出,经冷凝器冷凝冷却后进入油水分离器,经分离后的冷凝液一部分用回流泵送到塔顶打回流,另一部分送至罐区待进一步精制(即BT组分)。塔底釜液送至罐区待进一步精制。 精馏工序 来自罐区的BT组分进入萃取塔中部。萃取塔塔底用萃取塔再沸器连续加热,甲酰吗啉为萃取剂。碳四、碳五以及碳六碳七的饱和烃由塔顶排出。塔顶馏出物经冷凝器冷凝后一部分用萃取塔回流泵送到塔顶打回流,另一部分为非芳烃送至罐区贮存。 来自萃取塔塔底的富溶剂进入中部回收溶剂。溶剂再生塔塔底用一个以蒸汽加热的溶剂塔再沸器连续加热,苯

苯乙烯生产工艺

课题:乙苯脱氢生产苯乙烯 第二节 乙苯脱氢生产苯乙烯 一、概述 1.苯乙烯的性质和用途 苯乙烯的化学结构式如下: 或者 系无色至黄色的油状液体。具有高折射性和特殊芳香气味。沸点为145 ℃, 凝固点 -30.4℃,难溶于水,能溶于甲醇、乙酸及乙醚等溶剂。 苯乙烯在高温下容易裂解和燃烧,生成苯、甲苯、甲烷、乙烷、碳、一氧化碳、二氧化碳和氢气等。苯乙烯蒸气与空气能形成爆炸混合物,其爆炸范围为1.1 %~6.01%。 苯乙烯具有乙烯基烯烃的性质,反应性能极强,如氧化、还原、氯化等反应均可进行,并能与卤化氢发生加成反应。 苯乙烯暴露于空气中,易被氧化成醛、酮类。苯乙烯易自聚生成聚苯乙烯(PS )树脂。也易与其他含双键的不饱和化合物共聚。 苯乙烯最大用途是生产聚苯乙烯,另外苯乙烯与丁二烯、 丙烯腈共聚,其共聚物可用以生产 ABS 工程塑料;与丙烯腈共聚可得AS 树脂;与丁二烯共聚可生成丁苯乳胶或合成丁苯橡胶。此外,苯乙烯还广泛被用于制药、涂料、纺织等工业。 工业生产苯乙烯的方法除传统乙苯脱氢的方法外, 出现了乙苯和丙烯共氧化联产苯乙烯和环氧丙烷工艺、乙苯气相脱氢工艺等新的工业生产路线, 同时积极探索以甲苯和裂解汽油等新的原料路线。迄今工业上乙苯直接脱氢法生产的苯乙烯占世界总生产能力的 90%,仍然是目前生产苯乙烯的主要方法,其次为乙苯和丙烯的共氧化法。本节主要介绍乙苯脱氢法生产苯乙烯。 二、反应原理 1. 主、副反应 主反应: 催化剂 +H 2 △H Φ 在主反应发生的同时,还伴随发生一些副反应,如裂解反应和加氢裂解反应: +H 2 +C H 4 4 +H 2 H 6 +2H 2O +2CO 2+3H 2 高温下生碳 8C+5H 2 此外,产物苯乙烯还可能发生聚合,生成聚苯乙烯和二苯乙烯衍生物等。 CH 3 CH=CH 2 CH=CH 2 CH 2—CH 3 CH=CH 2 CH 2—CH 3 CH 4 CH 2—CH 3 CH 2—CH 3 CH 2—CH 3 CH 2—CH

年产20万吨乙苯脱氢制苯乙烯装置工艺设计毕业设计

毕业设计 20万吨/年乙苯脱氢制苯乙烯装置工艺设计 摘要 苯乙烯是最重要的基本有机化工原料之一。本文介绍了国内外苯乙烯的现状及发展概况,苯乙烯反应的工艺条件,乙苯脱氢制苯乙烯催化剂,苯乙烯的生产方法和生产工艺。 本设计以年处理量20万吨乙苯为生产目标,采用乙苯三段催化脱氢制苯乙烯的工艺方法,对整个工段进行工艺设计和设备选型。根据设计任务书的要求对整个工艺流程进行了物料衡算,并利用流程设计模拟软件Aspen Plus对整个工艺流程进行了全流程模拟计算,选用适宜的操作单元模块和热力学方法,建立过程模型进行稳态模拟计算并绘制了带控制点的工艺流程图。在设计过程中对整个工艺流程进行了简化计算,将整个流程分为了反应和精馏分离两个部分,利用计算机模拟计算结果对整个工艺流程进行了模拟优化,并确定了整套装置的主要工艺尺寸。 由于本设计方案使用计算机过程模拟软件Aspen Plus进行仿真设计,减少了实际设计中的大量费用,对现有工艺进行改进及最优综合具有重要的实际意义。 关键词:乙苯,苯乙烯,脱氢,Aspen Plus,模拟优化

Abstract Styrene Monomer(SM)is one of the most important organic chemicals. This article describes the present situation and development of styrene at home and abroad, styrene reaction conditions, catalyst for ethylbenzene dehydrogenation to styrene, styrene production methods and production processes. This design is based on the annual handling capacity of 200,000 tons of ethylbenzene production targets, ethylbenzene three-stage dehydrogenation using styrene in the process, the entire section in the process design and equipment selection. According to the requirements of the design of the mission statement of the entire process the material balance, process design simulation software Aspen Plus simulation of the whole process of the entire process, choose the appropriate operating unit module and thermodynamic methods, process model for steady-state simulation and draw the P&ID diagram. The entire process in the design process, simplify the calculation, the whole process is divided into reaction and distillation to separate the two parts, the use of computer simulation results on the entire process flow simulation and optimization, and determine the size of the main process of the entire device . This design using computer simulation software Aspen Plus simulation designed to reduce the substantial costs of the actual design, to improve the existing process and optimal synthesis has important practical significance. Keywords:Ethylbenzene,Styrene,dehydrogenation,Aspen Plus,Simulation and optimization

相关文档
最新文档