边坡变形监测表

边坡变形监测表
边坡变形监测表

6#提升泵站边坡变形监测记录表

工程名称:柳东新区官塘片区污水收集系统第四合同段工程基坑类别:一级基坑形式:大放坡基坑深度:9.6米编号:

监测A基准点假设坐标:X=100.0000m,Y=100.0000m,监测B基准点假设坐标:X=165.1216m,Y=100.0000m,基准点A假定高程10.0000m 首次观测值:1# X=114.3319,Y=108.2477;2# X=122.2399,101.8003;3# X=134.6206,101.5069;4# X=142.7016,113.3899;5# X=138.2261,121.8172 6# X=126.3452,Y=120.9463 .首次观测高程:1#:8.15896 2#:8.20475 3#:8.15873 4#:8.12030 5#:8.10826 6#:8.24767

累计位移:1#: 2#: 3#: 4#: 5#: 6#: 累计沉降:1#: 2#: 3#: 4#: 5#: 6#:

监测人:技术负责人:监理:

6#提升泵站边坡变形监测记录表

监测人:技术负责人:监理:

6#提升泵站边坡变形监测记录表

变形监测方案

三亚市解放路(新风街-和平街)地下人防工程 兼顾道路改造工程 变形监测施工方案 中国二十冶集团有限公司 三亚市解放路地下人防兼顾道路改造工程项目经理部 2014年8月

目录 一、工程概况 (4) 二、监(检)测编制依据 (5) (一)、采用的主要规范、标准 (5) (二)、专业测量执行标准 (5) (三)、鉴定执行标准 (6) (四)、监(检)测执行标准 (6) (五)、监(检)测记录 (6) 三、影响本工程监(检)测的几种不利因素: (6) 四、本工程整体监(检)测方案 (7) (一)监(检)测内容 (7) (二)本工程监(检)测步骤 (7) (三)本工程监(检)测方法 (7) 1、竖向沉降位移监测 (7) 2、基坑支护桩位移监测 (7) 3、降水井、回灌兼观测井液面高度监测 (8) 4、人防本体竖向沉降监测 (8) 5、周边建(构)筑物裂缝监测 (8) 6、对周边建(构)筑物构件强度检测 (9) 7、结构加固补强 (9) (四)监测频率 (9) (五)监测报警 (10) 五、内页分析及成果整理 (10) 六、人员安排 (10) 七、时间安排 (11)

八、监测检查注意事项 (11) (一)质量保证技术组织措施 (11) 1、项目专人负责制: (11) 2、持证上岗制度: (11) 3、检查人员分级制度: (11) 4、三级审核制度: (11) (二)安全技术组织措施 (12) 1、安全措施 (12) 2、高空安全保障措施 (14) (三)文明施工技术组织措施 (15)

一、工程概况 1、工程名称:三亚市解放路人防兼顾道路拓宽工程 2、工程地点:三亚市解放路(新风街---和平路) 3、结构形式:无梁楼盖板结构,建筑结构类别为乙类,正常使用年限50年,抗震烈度为6度。 4、总建面积:本工程总建筑面积约为67910㎡。主体工事长约1023m,宽33.4m,局部宽度?m。整体地下两层 5、人防等级:甲类核6级,常6 级人防工程,2个二等人员掩体部,14个物资库。 6、口部及风井:总计有29个出地面口,两侧总计有?个出地面风井。 7、地下埋深:地下一层顶板位于,中板位于,地下二层底板位于 8、支护形式:(附图) (1)挡土桩采用H300@800工字钢,钢长20-22米。 (2)截渗墙:采用深层搅拌水泥土,P.C32.5水泥用量300Kg/m3 9、降水井和回灌及监测井:降水井72个,回灌及监测井14眼。 10、高程点:面坐标系,高程为1985国家高程基准 图1:整体平面图 。 图2:解放路1轴至26、129轴至146轴剖面图

浅析边坡变形监测方法

浅析边坡变形监测方法 核心提示:边坡变形监测对边坡稳定性的判断、防灾救灾对策的制定具有重要价值。边坡地面变形监测方法有:简易观测法、设站观测法、仪表观测法以及远程观测法;边坡地下变形监测方法有:测斜法、应变测量法、重锤法、时间域反射技术以及微震监测技术。 边坡按其成因可分为自然边坡和人工边坡,按介质成份可分为土质边坡和岩质边坡。对于不同的边坡工程,其成因、组成成份各不相同,地质构造和地应力的分布更是千差万别,这样就决定了边坡监测是一个复杂的系统工程,它不仅跟监测手段的高低与仪器设备的优劣息息相关,也与监测技术人员对岩土体介质的了解程度和工程情况的掌握程度密不可分[1]。因而对边坡进行监测时,应在充分了解工程地质背景的基础上,选择相应的方法和手段。 1边坡变形规律 从边坡变形的角度来划分,边坡的状态可分为初始蠕变、稳定蠕变和加速蠕变三个阶段。初始变形阶段,变形速率小,变形趋势不明显,一般在该阶段不一定发生破坏的征兆,监测系统的设计要求精度较高,侧重于长期监测。稳定蠕变阶段,边坡变形发展加快,有时变形宏观可见,坡面或坡顶可能出现张裂缝,坡脚也有可能出现剪切裂缝。此阶段位移量开始增大,监测系统设计要求测试敏感部位,量程和精度均要考虑[2]。加速蠕变阶段,边坡变形速率大,变形趋势明显,监测系统设计对监测仪器的要求可适当降低,侧重于短期监测。 边坡变形的监测内容包括:地面大地变形、地表裂缝、地下深部变形及支护结构的变形,具体的内容选择应根据边坡的等级、地质条件、加固结构特点等综合考虑。 2边坡地表变形监测方法 2.1简易观测法 简易观测法是通过人工观测边坡中坍塌、沉降、地面鼓胀、地表裂缝等现象,适用于监测发生病害的边坡,定期对崩坍、滑坡等宏观变形迹象进行观测,能够从宏观上掌握变形动态及其发展趋势。简易观测法结合其它方法的监测结果,可以大致判定边坡所处的变形阶段并预测短时期内坡体的滑动趋势。简易观测法虽然操作简单,但对于变形速率较大的边坡仍然是十分有效的监测方法。 2.2设站观测法 设站观测法是在边坡上设立变形观测点,在变形区影响范围之外稳定地点设置固定观测站,使用测量仪器定期测量变形区内网点的三维位移变化的一种监测方法。设站观测法包括近景摄影测量、大地测量及GPS测量等。 2.3仪表观测法

沉降观测及基坑变形监测方案计划

一、测区概况 1、地理位置 待建的秦皇岛恒大城位于秦皇岛市火车站北侧,本次涉及沉降观测及基坑变形监测建筑物为:5#、6#地块(6#地块1、2标;5#地块、6#地块3、4标)拟建的住宅及商业建筑,该标段位于规划北港大街南侧,迎宾北路由标段中间穿过。 项目工程为剪力墙结构,桩筏、筏板基础,一般为地下2层,地上5—49层。该项目由荆州市晴川建筑设计院有限公司设计,恒大地产集团秦皇岛恒大城房地产开发有限公司投资建设,本工程地基基础设计等级为甲级。依据设计要求,本工程按国家规范,在施工及使用期间均进行沉降观测。 本次沉降观测工程范围主要包含住宅及配套工程。基坑监测部分指根据设计图纸要求需要进行基坑监测部分。 二、工作任务 恒大城5#、6#地块3、4标段建筑沉降观测具体情况如下表所示:

按《规范》要求建筑物沉降观测点建点后,从±0开始进行两次测量,并取各点两次高程中数作为该点的初始高程,结构封顶前按上表设计的次数监测;竣工前按封顶后间隔1个月、2个月、竣工前;竣工后第一年监测3次数;第二年监测2次。个别建筑在外装修前还需重新布设观测点,换点后应同时测量2次(取其平均数做为起始值)。每栋建筑封顶后还应监测约8次;合计344

次;5#、6#地块沉降观测总计观测次数为771次。 5#、6#地块沉降观测点布设具体位置详见沉降观测布点示意图。 按《建筑变形测量规程》及甲方要求,本工地建筑物沉降进行至主体竣工验收及使用运行两年,当沉降速度小于0.04mm/d,可以认为已进入稳定阶段,否则应增加观测次数,本方案中规定的观测次数仅作为参考。 但是当监测过程中发生下列情况之一时,必须立即报告委托方,同时应及时增加观测次数或调整监测方案: 1、变形量或变形速率出现异常变化; 2、变形量达到或超出预警值; 3、周边或开挖面出现塌陷、滑坡; 4、建筑本身、周边建筑及地表出现异常; 5、由于地震、暴雨、冻融等自然灾害引起的其他变形异常情况。 如需另外增加观测次数,甲乙双方另行协商。 三、测量技术依据: 1、《城市测量规范》(GJJ885)(GJJ8-99) 2、《建筑变形测量规范》(JGJ 8--2007) 3、《国家一、二等水准测量规范》(GB/T12897-2006) 4、《建筑基坑工程技术规范》(YB 9258-97) 5、《工程测量规范》(GB50026—93) 6、经甲方审批的《秦皇岛恒大城5#、6#地块沉降观测及基坑变形监测方 案》 四、水准基点及沉降监测点的布设

边坡变形监测技术分析

边坡变形监测技术分析 ?简介:边坡的开挖、加固和防护,是矿山、水利、交通等领域中常涉及的工程项目,而边坡的稳定性,是工程技术人员经常关注和研究的课题。目前,我国对于边坡施 工中的监测工作还不够重视,往往是在工程出现险情时,或是在项目实施过程中才 开始考虑监测问题,导致工作被动,应该在项目开展的初期就着手边坡变形监测工 作。 ?关键字:边坡变形监测,技术分析,边坡监测技术 边坡的开挖、加固和防护,是矿山、水利、交通等领域中常涉及的工程项目,而边坡的稳定性,是工程技术人员经常关注和研究的课题。目前,我国对于边坡施工中的监测工作还不够重视,往往是在工程出现险情时,或是在项目实施过程中才开始考虑监测问题,导致工作被动,应该在项目开展的初期就着手边坡变形监测工作。 1 边坡变形监侧的作用 在土木工程各个建设领域中,通过边坡工程的监测,可以起到以下作用。 1. 1 评价边坡施工及其使用过程中边坡的稳定性,并作出有关预测预报,为业主、施工单位及监理提供预报数据,跟踪和控制施工过程,合理采用和调整有关施工工艺和步骤,取得最佳经济效益。 1.2 为防止滑坡及可能的滑动和蠕变提供及时支持。预测和预报滑坡的边界条件、规模滑动方向、发生时间及危害程度,并及时采取措施,以尽量避免和减轻灾害损失。 1. 3 监测已发生滑动破坏和加固处理后的滑坡,监测结果是评价滑坡处理效果的尺度。 1.4 为进行有关位移反分析及数值模拟计算提供参数。 2 边坡工程监测的方法 目前,我国边坡变形监测方法主要采用简易观测法、设站观测法、仪表观测法和远程监测法等。 2.1 简易观测法 简易观测法是通过人工观测边坡中地表裂缝、鼓胀、沉降、坍塌、建筑物变形及地下水位变化、地温变化等现象。

建筑物沉降观测和基坑变形监测点布设及报告2

2、监测点的布设 2.0.1基坑顶部竖向位移 监测点布设在基坑边坡顶部的,应沿基坑周边布置,基坑周边中部、阳角处应布置监测点。监测点间距不宜大于20m,每边监测点数目不应少于3个。监测点宜设置在基坑边坡坡顶上。 监测点布设在在围护墙上的,应沿围护墙的周边布置,围护墙周边中部、阳角处应布置监测点。监测点间距不宜大于20m,每边监测点数目不应少于3个。监测点宜设置在冠梁上。 2.0.2基坑顶部水平位移 监测点的布设同2.1 基坑顶部竖向位移,宜为共用点。 2.0.3坑外土体深层水平位移 深层水平位移监测孔宜布置在基坑边坡、围护墙周边的中心处及代表性的部位,数量和间距视具体情况而定,但每边至少应设1个监测孔。 2.0.4 地下水位 水位监测点应沿基坑周边、被保护对象(如建筑物、地下管线等)周边或在两者之间布置,监测点间距宜为20~50m。相邻建(构)筑物、重要的地下管线或管线密集处应布置水位监测点;如有止水帷幕,宜布置在止水帷幕的外侧约2m处。 2.0.5 锚(杆)索拉力 锚(杆)索的拉力监测点应选择在受力较大且有代表性的位置,基坑每边跨中部位和地质条件复杂的区域宜布置监测点。每层锚杆的拉力监测点数量应为该层锚杆总数的1~3%,并不应少于3根。每层监测点在竖向上的位置宜保持一致。每根杆体上的测试点应设置在锚头附近位置。 2.0.6支护桩桩身力

支护桩桩身力监测点应布置在受力、变形较大且有代表性的部位,监测点数量和横向间距视具体情况而定,但每边至少应设1处监测点。竖直方向监测点应布置在弯矩较大处,监测点间距宜为3~5m。 2.0.7支撑力 支撑力监测点的布置应符合下列要求: 1、监测点宜设置在支撑力较大或在整个支撑系统中起关键作用的杆件上; 2、每道支撑的力监测点不应少于3个,各道支撑的监测点位置宜在竖向保持一致; 3、钢支撑的监测截面根据测试仪器宜布置在支撑长度的1/3部位或支撑的端头。钢筋混凝土支撑的监测截面宜布置在支撑长度的1/3部位; 4、每个监测点截面传感器的设置数量及布置应满足不同传感器测试要求。2.0.8 围护墙侧向土压力 围护墙侧向土压力监测点的布置应符合下列要求: 1、监测点应布置在受力、土质条件变化较大或有代表性的部位; 2、平面布置上基坑每边不宜少于2个测点。在竖向布置上,测点间距宜为2~5m,测点下部宜密; 3、当按土层分布情况布设时,每层应至少布设1个测点,且布置在各层土的中部; 4、土压力盒应紧贴围护墙布置,宜预设在围护墙的迎土面一侧。 2.0.9土体分层竖向位移 土体分层竖向位移监测孔应布置在有代表性的部位,数量视具体情况确定,并形成监测剖面。同一监测孔的测点宜沿竖向布置在各层土,数量与深度应根据具体情况确定,在厚度较大的土层中应适当加密。 2.0.10立柱竖向位移 立柱的竖向位移监测点宜布置在基坑中部、多根支撑交汇处、施工栈桥下、

高速公路高边坡监控量测方案

高边坡监控量测方案 目录 第一章编制依据 (2) 第二章适用范围 (2) 第三章工程概况 (2) 一、高边坡地理位置 (2) 二、工程地质及水文地质情况 (2) 三、气象及气候 (3) 第四章监测目的 (3) 第五章监测工作的内容及项目 (4) 一、监测工作的内容 (4) 二、监测工作的项目及作用 (4) 第六章监控量测仪器 (5) 第七章具体监测方法与数据处理 (5) 一、地面位移量测 (5) 1、量测点及断面布置 (5) 2、量测频率 (7) 3、量测方法 (7) 4、量测注意事项 (7) 5、量测数据的整理 (7) 二、深层位移(测斜)量测、锚杆锚索应力监测、人工巡回监测 (8) 1、深层位移(测斜)量测、 (8) 2、锚杆锚索应力监测 (9) 3、人工巡回监测 (9) 4、量测数据记录整理、分析与反馈 (9) 三、地质和防护描述 (11) 四、监控量测数据的处理 (11) 五、位移管理标准 (12) 1、控制标准 (12) 2、监测管理基准 (12) 3、监测数据的分析与预测 (13) 4、信息反馈与成果提交形式 (13) 第八章监控量测管理系统 (13) 一、组织机构 (13) 二、管理流程 (14) 三、量测要求 (15) 四、保证体系 (16)

高边坡监控量测方案 第一章编制依据 1、叙古高速公路古蔺段段第A合同段施工设计图纸。 2、公路路基施工技术规范(JTG F10-2006) 3、公路工程质量检验评定标准(JTG F80/1-2004) 4、公路工程施工安全技术规范(JGJ076-95) 第二章适用范围 本监控量测方案适用于叙古高速公路古蔺段A标段A4高边坡监控量测作业。 第三章工程概况 一、高边坡地理位置 本合同段内高边坡防护共有2处,其里程桩号分别是K9+849~K9+920右侧,K11+409~K11+480右侧,最大边坡高度25.6m,长度合计142m。 二、工程地质及水文地质情况 (一)工程地质情况 1、K9+849~K9+920右侧,长度71m,挖方最大边坡高度25.6m,场区地貌上属于剥蚀残丘地貌。路堑位于山坡中下部,边坡岩层,粉质粘土,褐红色,可塑性,粘土厚度1.20米,下伏为强分化砾岩。 2、K11+409~K11+480右侧,长度71m,挖方最大边坡高度25.1m,场区地貌上属于剥蚀残丘地貌。路堑位于山体中部,粉质粘土,褐红色,可塑性,粘土厚度1.29米,下伏为强分化砾岩。 (二)水文地质情况: 工程区构造单元上属于扬子准地台上扬子台坳的川东南陷褶束大娄山褶皱构造带。根据测区的地质地貌、地层岩性、地质构造、主要区分为两个工程地质区1:碎屑沉降工程地质区2:松散岩组工程地质区。工程区内地下水主要分为第四空隙水、基岩裂隙水、碳酸盐岩溶水三类。

边坡变形监测方案

边坡变形监测方案 XXXX标 边坡变形监测专项方案 编制: 审核: 批准: XXXXX公司 2016年12月01日 XXX标 边坡变形监测方案 一、工程概况: 我公司承建的XXX标段,桩号范围3+400~6+950。主要建设内容包括:XXXXX.。本工程等级为II等;河道堤防级别为3级,施工临时工程为5级。防洪标准:防洪标准为50年一遇。供水标准:农业灌溉供水设计保证率为95%。 二、监测内容: 本标段边坡监测主要是指路堤边坡监测,监测内容为人工巡视、裂缝观测、坡面观测观测。 1、人工巡视和裂缝观测:人工巡视是一项经常性的工作,我标将安排专职安全员坚持每天进行巡视,对图纸较差处、渗水严重处、边坡较陡处进行重点巡视、检查。当坡体表面发现裂缝时安全员立即采取措施和报告监测组。

边坡变形监测方案 2、坡面观测:边坡坡面的变形观测是指在平台上设置坡面变形观测点,利用GPS进行测量。通过数据处理分析,分析坡面几何外观的变化情况,绘制坡面各点在施工过程中的水平位移变化情况,从而了解边坡滑动范围和滑动情况,提供预警信息,它是一种简单,直接的宏观监测方法。 二、监测方案的实施 1、基准控制点和监测点的布设 1.1基准网的建立 选择通视良好、无扰动、稳固可靠、远离形变护坡高度3倍比较稳定的地方埋设工作基点,其中工作基点采用有强制归心装置的观测墩,照准标志采用强制对中装置的觇牌,埋设在加固坎上,地质较为稳定,本标段工作基点选择桩号点。 变形点布置在边坡变形较大并能严格控制变形的边坡边沿位置。在边坡顶上每100m布置变形监测点,编号分别为左1-32,右1-32。以及对南岸6+581,南岸4+390、北岸5+160、4+000-4+100段附件的建筑物等进行加密监测。 1、顶部用沉降钉垂直植入混凝土中,孔深不小于50mm,基准点与各点位埋设完毕等候5天后,水泥凝固稳定后方可开始进行观测。 2、监测精度及频率要求 根据设计图纸及国家相关规范要求,边坡的变形观测如下: 水平位移监测网主要技术要求为:2.1 边坡变形监测方案

边坡变形监测方案

. 滑坡变形监测 案

测绘科学与技术学院 测绘工程1004 1010020414 东波. . 2013年5月23日 目录 1工程概况 (2) 2监测目的与意义 (2) 3监测项目和测点的数量 (3) 3.1技术依据 (3) 3.2坐标系统 (3) 3.3技术法 (3) 3.4位移监测基准点布设和观测技术要求 (3) 3.5变形观测点的布设和观测技术要求 (4) 3.6监测控制网分三部分: (5) 3.7位移监测监测点的保护 (7)

4 监测项目的检测期和频率 (7) 5 监测仪器设备及选型 (8) 6 监测人员的配置 (8) 7 监测项目控制基准 (9) 8 监测项目资料的整理与分析 (9) 9 监测报告送达的对象和时限 (9) 10 监测注意事项 (9) 专业资料. . 工程概况1项目地处市临潼区芷阳湖位置,东靠骊山主峰、西依西临高速、北邻迎宾大道,属于芷阳湖旅游区的黄金地带,地理位置相当优越。项目所在区域,环境优美气候适宜,是临潼区著名旅游开发区。纵横的交通网络体系,路公交车在此经过,并设立了站点,交通路、307路、306915914路、十分便利、发达。临潼新家园、科技大学、工程大学等相伴左右,生活资,相150 m,横宽约60m40源十分丰富。滑坡总体坡度°~60°,纵长约°,为小型土质滑85,推测滑动向为40m,预计量约为36万m对高差约3坡。滑坡前部为芷阳湖景区,如若发生滑坡将受到重威胁。另外滑坡体破坏导致大量水土流失,不利于水土保持工程的开展;给当地地质环境和社会环境造成很大的影响。对此,市区高度重视,并对该滑坡实施应急治理。,需要对该滑坡进行变形监根据该滑坡应急

隧洞施工期收敛变形监测方案样本

目录 1工程概况 (1) 2 执行技术规范和编制依据 (1) 3 资源配置 (1) 3.1 人员配置 (1) 3.2 设备配置 (2) 4 隧洞变形监测技术要求 (2) 5 隧洞变形监测方案 (3) 5.1 监测方案设计原则 (3) 5.2 洞内施工期变形监测 (3) 5.3 变形监测频率 (4) 5.4 变形监测方法及数据处理 (5) 6 隧洞沉降观测 (6) 6.1 沉降变形测量点的布设 (6) 6.2 沉降观测方法及频次 (7) 6.3 沉降观测精度要求 (8) 7 测量记录及资料管理 (8)

1 工程概况 吉林省中部供水辽源干线施工三标段工程项目位于四平市伊通满族自治县、辽源市东辽县。标段桩号33+949~49+657, 线路全长15.708km。主要施工内容包括: 隧洞、PCCP管道、钢管道、附属建筑物、交叉工程、出水闸工程、交通工程及其它临时工程等, 其中, 隧洞长11.347km, 成洞洞径2.6m; PCCP管道直径2.2m, 长3.937km; 钢管道( 包含钢管外包混凝土段) 直径2.2m, 长0.424 km。 本标段线路总体走向由北向南, 地势由高到低再到高, 地貌单元主要有河谷堆积地形(漫滩阶地)、剥蚀堆积地形(波状台地)和构造剥蚀地形(低山丘陵)。沿线山势起伏, 植被较发育, 洞室最大埋深135m。本标段穿越地层岩性主要有新生界第四系全新统冲积堆积层、中更新统冲洪积堆积、始渐新统泥岩和砂岩, 侵入岩为燕山及华力西期花岗岩和花岗闪长岩等。其中2#隧洞根据地质资料划分围岩类别为: Ⅱ类围占42.7%、Ⅲ类围岩占24. 0%、Ⅳ~Ⅴ类占33.3%。3#隧洞根据地质资料划分围岩类别为: Ⅱ类围占20.9%、Ⅲ类围岩占33.9%、Ⅳ~Ⅴ类占45.2% 2 执行技术规范和编制依据 施工测量依据如下: 《工程测量规范》 GB50026- 《水利水电工程施工测量规范》 DL/T5173- 《建筑变形测量规范》 JGJ8- 《铁路隧道监控量测技术规程》 Q/CR9218- 3 资源配置 3.1 人员配置 主要监测人员见表3.1。

边坡变形监测方案

滑 坡 变 形 监 测 案 测绘科学与技术学院 测绘工程1004 东波1010020414

2013年5月23日 目录 1工程概况 (2) 2监测目的与意义 (2) 3监测项目和测点的数量 (3) 3.1技术依据 (3) 3.2坐标系统 (3) 3.3技术法 (3) 3.4位移监测基准点布设和观测技术要求 (3) 3.5变形观测点的布设和观测技术要求 (4) 3.6监测控制网分三部分:5 3.7位移监测监测点的保护 (7) 4监测项目的检测期和频率 (7) 5监测仪器设备及选型 (8) 6监测人员的配置 (8) 7监测项目控制基准 (9) 8监测项目资料的整理与分析 (9) 9监测报告送达的对象和时限 (9) 10监测注意事项 (9)

1工程概况 项目地处市临潼区芷阳湖位置,东靠骊山主峰、西依西临高速、北邻迎 宾大道,届丁芷阳湖旅游区的黄金地带,地理位置相当优越。项目所在区 域,环境优美气候适宜,是临潼区著名旅游开发区。纵横的交通网络体系, 914路、915路、307路、306路公交车在此经过,并设立了站点,交通 十分便利、发达。临潼新家园、科技大学、工程大学等相伴左右,生活资 源十分丰富。滑坡总体坡度40 0?60°,纵长约150 m,横宽约60m ,相 对高差约40m,预计量约为36万m3,推测滑动向为85 °,为小型土质滑坡。滑坡前部为芷阳湖景区,如若发生滑坡将受到重威胁。另外滑坡体破坏导致大量水土流失,不利丁水土保持工程的开展;给当地地质环境和社会环境造成很大的影响。对此,市区高度重视,并对该滑坡实施应急治理。 根据该滑坡应急治理工程《施工图设计报告》,需要对该滑坡进行变形监 测。 2监测目的与意义 1、通过测量滑坡的垂直位移量与位移速度,确认芷阳湖景区是否安全 2、通过对滑坡变形及环境条件的监测,掌握施工期滑坡体变形动态,利用 监测结果作为判断滑坡稳定状态。 3、实时验证设计案和施工治理效果,为地质灾害预测和环境治理提供必要的 依据。 4、超前预报,确保监测期间工作人员,当地居民生命财产安全 3监测项目和测点的数量 3.1技术依据

边坡变形监测(分享借鉴)

一、监测点布置及监测方法 1、坡顶水平位移和垂直位移观测 a、在开始监测前,用全站仪对各测点反复测量多次,待数值稳定后取平均值作为初始坐标值,以后每次测量时用全站仪强制对中测出各个观测点的即时坐标,记录在专用观测表内,与初始坐标相比,计算出累计位移量。前后两次累计位移量之差,即得前后两次的位移量。观测结果当天处理,按规定格式报监理、业主和施工方,根据实测结果及时提供边坡顶时间—水平位移曲线 b、在开始监测前,用高精度水准仪配合铟钢尺,对各测点反复测量多次,待数值稳定后取平均值作为初始高程值,以后每次测量时用高精度水准仪配合铟瓦尺用观测高程的方法测出各个观测点的高程,记录在专用观测表内,与初始高程相比,计算出累计沉降量。前后两次累计沉降量之差,即得前后两次的沉降量。观测结果当天处理,按规定格式报监理、业主和施工方,根据实测结果及时提供边坡顶时间—沉降曲线 (3)、监测频率 观测时间应根据位移速率、施工现场情况、季节变化情况确定,原则上每周一次,雨季每周两次,暴雨之后连续三天,在边坡顶沉降位移加速期间和发现不良地质情况时逐日连续观测。 (4)、观测数据整理 每次外业观测结束后按规范进行内业整理,按时提交监测成果资料。 (5)、观测数据应用 边坡变形按一级边坡控制,边坡变形的预警值为:水平位移和垂直位移累计值大于 35mm,日均位移速率大于2.0mm/天;当坡顶沉降、水平位移观测数据出现预警值后,监测人员应立即向建设方、设计、监理和施工单位汇报,以利各方及时进行原因分析,商讨和提出解决措施,确保边坡的安全。 2、支护结构沉降和位移观测 按要求在支护结构顶部设置观测点,观测要求与方法同坡顶水平位移和垂直位移观测。 二、监测技术要求 1、人工巡视

基坑变形监测方案 (1)

佳·克拉项目 基坑变形监测方案 编制: 甘肃统建建筑装饰工程集团有限公司 佳·克拉项目部 二○一七年九月二十日

目录

附图一:基坑监测点平面布置图

一、编制依据 1、佳·克拉基坑开挖图; 2、佳·克拉岩土工程勘察报告; 3、兰州理工大学建筑勘察设计院《佳·克拉项目基坑支护结构设计》《佳·克拉项目基坑降水设计》; 4、《工程测量规范》GB50026-2007; 5、《建筑工程施工质量验收统一标准》GB50300-2013; 6、《湿陷性黄土地区建筑基坑工程安全技术规程》JGJ167-2009; 7、《建筑基坑工程检测技术规范》GB50497-2009; 8、《建筑变形测量规范》JGJ8-2007; 9、基坑监测强制性条文。 二、工程概况 (一)工程简介 工程名称:佳·克拉。 工程地点:拟建场地位于甘肃省天水市秦州区吴家崖村,场地北邻吴家崖村田地。东侧为吴家崖村,南临山水嘉园1#地块,西临佳·水岸华庭C地块。拟建场地近南北宽约,东西长约。 本工程±绝对标高为。地下二层,地上A塔十八层,B塔十五层,商铺为地上三层。结构形式主楼为剪力墙结构,裙楼为框架结构。本工程基础采用筏板,东塔筏板厚度为1800mm,开挖深度为;西塔筏板厚度为1500mm,开挖深度为,,商铺为300厚的防水板,开挖深度为。 本基坑安全级别属于一级基坑。

(二)地层岩性 在勘察深度范围内,拟建场地地层自上而下依次分布为: al):该层分布于整个勘察场地,属第四系冲积产物;黄褐色,坚硬-硬塑; ①粉质粘土(Q 4 土质均匀,含少量植物根系和少量泥岩碎屑,孔隙较发育,有光泽,无瑶震反应,干强度中等,韧性一般,层厚为~,层面标高~。 al+pl):该层除区域缺失外,基本分布于整个勘察场地,冲、洪积成因,青灰色, ②圆砾(Q 4 重型动力触探试验修正值=~击,中密-密实,接触排列,磨圆度较好,颗粒形状呈圆状-亚圆状,级配较好,颗粒间充填物以中粗砂为主,含少量粉土,骨架颗粒成分主要为变质岩、石英岩和花岗岩等,中风化,圆砾一般粒径为~,偶含卵石及漂石。层面埋深~,厚度~,层面标高~。 ③强风化泥岩(N):该层分布于整个场地,半成岩,褐红色-灰绿色,微裂隙及风华裂隙较发育,中密-密实,矿物成分以蒙脱石、绿泥石,高岭石、白云母等为主,泥钙质胶结,碎屑结构,中厚层状构造,岩芯呈短柱状,具有遇水易软化的特点,强风化泥岩岩体基本质量等级Ⅴ级。层面埋深~,厚度~,层面标高~。 ④中风化泥岩(N):该层分布整个场地,半成岩,褐红色-灰绿色,见微裂隙,致密;矿物成分以蒙脱石、绿泥石、高岭石、白云母、长石、石英等为主,泥钙质胶结,碎屑结构,巨厚层状构造,岩芯呈短桩状,具有遇水易软化的特点,未经扰动时坚硬,岩体基本质量等级为Ⅳ级。层面埋深~,勘察厚度~(未揭穿),层面标高~。 (三)气象 天水市气候类型属暖温带轻冰冻中湿区,据天气气象局资料,本区多年平均气温℃,极端最高气温℃,极端最低气温℃,历年最冷月相对湿度平均62%,最热月平均湿度73%,年最大降水量,降水多集中在7、8、9月份,多暴雨,夏季多东北风,夏季平均风速s,冬季多东风,冬季平均风速s,30年遇最大风速s,年雷暴日天,年沙暴日天,年雾日数天,历年最大积雪厚度15cm,地表有季节性冻土,标准冻土深度,场地内无地表水。 (四)地下水 根据区域水文地质资料和勘察结果,拟建场地地下水为第四系松散岩类孔隙潜水,②圆砾

边坡变形监测方案计划

形 监 测 方 案 测绘科学与技术学院 测绘工程1004 王东 波1010020414 2013 年 5 月23 日

目录 1工程概况 (2) 2监测目的与意义 (2) 3监测项目和测点的数量 (2) 3.1技术依据 (2) 3.2坐标系统 (3) 3.3技术方法 (3) 3.4位移监测基准点布设和观测技术要求 (3) 3.5变形观测点的布设和观测技术要求 (4) 3.6监测控制网分三部分: (5) 3.7位移监测监测点的保护 (6) 4监测项目的检测周期和频率 (6) 5监测仪器设备及选型 (6) 6监测人员的配置 (6) 7监测项目控制基准 (7) 8监测项目资料的整理与分析 (7) 9监测报告送达的对象和时限 (7) 10监测注意事项 (7)

1工程概况 项目地处西安市临潼区芷阳湖位置,东靠骊山主峰、西依西临高速、北 邻迎宾大道,属于芷阳湖旅游区的黄金地带,地理位置相当优越。项目所 在区域,环境优美气候适宜,是临潼区著名旅游开发区。纵横的交通网络体系,914路、915路、307路、306路公交车在此经过,并设立了站点,交通十分便利、发达。临潼新家园、西安科技大学、西安工程大学等相伴 左右,生活资源十分丰富。滑坡总体坡度40°?60。,纵长约150 m,横 宽约60m,相对高差约40m预计方量约为36万m3,推测滑动方向为85 °,为小型土质滑坡。滑坡前部为芷阳湖景区,如若发生滑坡将受到严重威胁。另外滑坡体破坏导致大量水土流失,不利于国家水土保持工程的开展;给当地地质环境和社会环境造成很大的影响。对此,市区高度重视,并对该 滑坡实施应急治理。根据该滑坡应急治理工程《施工图设计报告》,需要对该滑坡进行变形监测。 2监测目的与意义 1、通过测量滑坡的垂直位移量与位移速度,确认芷阳湖景区是否安全。 2、通过对滑坡变形及环境条件的监测,掌握施工期内滑坡体变形动态,利用监测结果作为判断滑坡稳定状态。 3、实时验证设计方案和施工治理效果,为地质灾害预测和环境治理提供必要的依据。 4、超前预报,确保监测期间工作人员,当地居民生命财产安全。 3监测项目和测点的数量 3.1技术依据 本监测方案的技术依据主要有:JGJ 8- 2007建筑变形测量规范;GB50026- 2007工程测量规范;GB/T12897- 2006国家一、二等水准测量规范;GB/T 18314- 2009全球定位系统(GPS)测量规范;DZ/T 0219- 2006滑坡防治工程设计与施工技术规范;该滑坡应急治理工程施工图设计报告监测控制网主要用于坡顶的位移和沉降方面的监测。

边坡变形观测报告

边坡变形观测报告-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

四四九厂2008年暴雨灾害恢复重建项目(宿舍区地质灾害整治工程二期) 边坡稳定性监测报告 报告编号:结构(07)2011-009

注意事项 1、报告未盖本公司“检测试验专用章”无效。 2、复制报告未重新加盖本公司“检测试验专用章”无效。 3、报告无批准、审核、编写、检测人签字无效。 4、报告涂改、缺页无效。 5、对检测报告若有异议,应于收到报告之日起十五日内向本检 测单位提出。

工程名称:委托单位:设计单位:建设单位:施工单位:监理单位:勘察单位:监测单位:监测地点:监测日期: 检测:编写: 校核: 审核:批准:

目录 1.工程概况 (5) 2. 监测目的与监测内容 (6) 2.1监测目的 (6) 2.2监测内容 (5) 3. 监测依据 (5) 4. 监测方法 (6) 4.1仪器设备 (6) 4.2基准网设置 (6) 4.3变形监测点设置 (6) 4.4观测精度及方法 (7) 4.5边坡调查 (7) 4.6监测频率与周期 (7) 5. 监测结果与分析 (7) 5.1边坡监测结果 (7) 5.2边坡调查结果 (9) 5.3边坡稳定性分析 (9) 6.结论与建议 (9) 附图 1、边坡监测点布置图(附图1、附图2)

1.工程概况 四四九厂2008年暴雨灾害恢复重建项目(宿舍区地质灾害整治工程二期)位于梧州市钱鉴路南西侧,面积约0.02km2,该地段楼房、厂房较多,建筑物多为开山傍水而建,人类工程活动较强烈,山坡、河岸边坡较陡且植被较发育。2006年6月8日,由于持续降雨导致山坡坡体浅层土体饱水,四四九厂宿舍区出现了不同程度的滑坡,危及坡脚宿舍的安全。根据现场调查,现状地质灾害的危害程度中等,如不及时进行治理,则会影响正常的生活。 滑坡区地处寒武系黄洞口组风化砂岩低丘分布区,自然边坡坡角15~38°,坡高20~50m;坡脚人工边坡坡角40~75°,坡高8~33m。地形起伏较大,局部边坡较陡地段,覆盖土体的自重下滑分力较大。滑坡区岩土组成从上至下为:素填土①;砖红色粘土②;全风化砂岩③;强风化砂岩④。素填土①结构松散,透水性好;砖红色粘土②,全风化砂岩③透水性差,属相对隔水层,在强降雨作用下,雨水渗至相对隔水面受阻,在层面附近形成饱水带,强度降低,而发生滑坡。 梧州市建筑设计院对四四九厂2008年暴雨灾害恢复重建项目(宿舍区地质灾害整治工程二期)进行设计,由梧州市建联建筑有限公司进行地质灾害治理施工。地质灾害治理分A、B两个治理点,A治理点主要是对边坡采用锚杆格构护坡进行防护,对坡顶的挡土墙行加固,B治理点主要是对边坡采用锚杆格构护坡进行防护,其中B0+00-B0+25段要拆除现有产生裂缝的挡土墙再设高6m的挡墙。 边坡治理施工完成后,受建设单位委托,我公司对边坡进行变形监测,以检验边坡治理的效果。 2. 监测目的与监测内容 2.1监测目的 为保证边坡在运行过程中的安全,须对边坡进行监测,以分析其变形趋势,判断运行状态的稳定性与危险性,作出实时预警预报。 2.2监测内容 挡墙顶的水平位移及垂直位移、边坡变形及坡面裂缝。

公路高边坡安全监测

公路高边坡安全监测

公路高边坡的安全监测 摘要:在参阅相关文献的基础上,对目前常用的边坡稳定性监测方法进行了介绍,以研究区公路高边坡为例,对研究区高边坡的地质条件和变形机理进行了分析,重点研究了利用位移计进行边坡内部位移的监测;通过对观测数据的分析,得出了研究区高边坡的近期的形变特点。 关键词:公路高边坡;监测;位移计 0 引言 自20世纪90年代以来,随着我国经济建设发展,对公路交通的要求也越来越高。我国是一个多山的国家,山区的面积约占全国总面积的70%,由于地貌、地质条件限制和公路线形的制约,高填、深挖引起的边坡问题已十分普遍。上世纪80年代初期,我国路线等级低,高填深挖较少,高边坡问题还没有引起足够的重视。由于缺乏对高边坡稳定性的系统研究,以及没有供设计部门应用的成熟经验,常出现高边坡失稳破坏的现象,造成巨大的社会经济损失。因此,公路边坡的稳定性研究和监测已成为道理工程急需解决的重要研究课题。 边坡的地质条件复杂多变,要在工程设计阶段准确无误地预测边坡岩土体稳定状况,不仅依赖于合理的设计和施工,而且取决与贯穿工程全过程的安全监测,目前,监测工作已成为边坡工程施工的重要环节。监测工作对正确评估边坡的安全状态、指导施

工、反馈和修改设计、改进边坡设计方法等多方面都具有非常重要的意义,监测技术的引入使边坡工程的设计和施工在安全稳定和经济合理的协调统一中起到了不可或缺的桥梁作用。由于边坡位移监测系统较易建立,测值也较可靠,所以边坡监测都以位移监测为主。而边坡变形破坏过程中的累计位移是揭示边坡变形甚至破坏最直观的信息,能更有效地预测边坡变形的破坏时刻。因此,在工程实践中对边坡变形破坏过程的位移把握就显得十分重要。 本文以研究区的公路高边坡为例,对工程范围内公路高边坡的变形监测进行研究。 1 研究区公路高边坡概况 1.1 地质条件 研究区边坡为砂页岩段,自然坡度为40度左右,浅表部为坡残积块碎石土,其下为伏基岩为砂岩与页岩互层产出,以砂岩占多数,页岩为薄层状并表现为挤压揉皱,部分为层间挤压破碎带。浅表岩体强风化强卸荷,为层状-碎裂、层状-镶嵌结构的v级岩体,岩体强卸荷水平深度30-40m. 1.2 变形机理 研究区的边坡为一套完整性差且强烈风化卸荷松弛的层状-镶嵌碎裂结构岩体,岩体内不存在影响边坡整体失稳的贯穿性结构面。边坡开挖后,岩体松弛回弹,随着开挖向低高程进行,应力

边坡工程监测的内容和方法

边坡工程监测的内容和方法

黄土地区公路高边坡防护技术 一、研究背景 中国黄土分布面积约为63.1万km2,约占国土面积6.6%,主要分布在北纬33°~47°,东经75°~127°之间。西部地区黄土分布面积约27. 5万km2,占中国黄土总面积的43.7%,占西部地区国土面积的50%—60%以上。 黄土分布区,沟壑纵横,黄土冲沟及河谷区谷坡陡峻,滑坡、崩塌、滑塌、泥流等地质灾害非常发育,给公路建设带来许多困难。而作为长大线状构造物的高速公路,在这沟壑纵横,谷坡陡峻的鸡爪形地貌背景下,由于一系列技术条件的限制,不可避免的要进行大量开挖,形成黄土高边坡。如:陕西省铜川~黄陵一级公路,在黄土地区路线长度15km,因开挖路基,形成高度大于30m高边坡40余处,边坡最高达88m。

我国现行的《公路路基设计规范》中,只涉及到高度小于30米的路堑边坡的设计,而大于30米的公路黄土高边坡设计没有规范可循,对公路黄土高边坡防护技术还处于探索阶段。正因如此,本课题将从西部地区非饱和黄土物理力学性质,西部地区已建成公路黄土高边坡营运现状,黄土高边坡冲刷实验,黄土高边坡可靠度概念下的优化设计,黄土高边坡防护技术等方面展开研究,以便为西部高速公路建设中黄土高边坡设计与施工提供科学依据。 二、主要研究目标和研究内容 本项目以黄土地区重大公路工程为依托,采用“点”与“面”结合、室内试验与现场试验相结合以及理论计算与实体工程验证相结合的技术手段,重点解决公路黄土高边坡稳定性评价、坡型设计、边坡防护等技术难题,提出一套适合黄土高边坡的稳定性分析、设计和防护方法,从而大大提高公路黄土高边坡设计与防护的科学性与经济性,改善公路沿线的生态环境。本项目的主要研究内容包括:公路黄土高边坡地质结构模型研究;黄土土性参数统计分析研究;非饱和黄土强度实验研究;公路黄土高边坡稳定性分析研究;公路黄土高边坡推荐设计坡型研究;公路黄土高边坡防护技术研究;公路黄土高边坡防护决策支持系统研建。 三、主要研究成果 1、基于现场调查和室内试验,总结出八类黄土高边坡地质结构模型,为黄土地区公路高边坡稳定性分析、设计与防护提供了重要依据。 2、通过直剪、控制吸力的三轴试验与先进的三轴CT试验,研究了非饱和黄土抗剪强度、结构强度与基质吸力(含水量)之间的关系及原状黄土剪切过程中的细观结构损伤规律,提出了实用的非饱和黄土抗剪强度公式和非线弹性本构模型,使非饱和黄土抗剪强度理论研究上了一个新台阶。 3、首次开展了原状黄土边坡变形破坏机理的离心模拟试验研究,结合CAT数值模拟分析,提出了黄土高边坡的变形破坏模式,得出黄土边坡起始剪切破坏发生于坡高1/3处、

高层建筑物变形监测方案设计

目录 第1章绪论.................................................................... II 1.1 建筑物变形观测的概述................................................ II 1.1.1 变形产生的原因和类型........................................... II 1.1.2 变形观测的主要任务............................................ III 1.1.3 变形观测的目的和意义........................................... IV 1.2 建筑物变形观测的概况................................................. V 1.2.1 我国的变形监测工作发展过程...................................... V 1.2.2 高层建(构)筑物的变形特点.................................... VII 1.2.3 其它建(构)筑物的主要变形特点............................... VIII 1.2.4 我国开展变形监测工作的主要内容............................... VIII 1.3 变形监测的精度和频率.............................................. VIII 1.3.1 制约变形监测质量的主要因素................................... VIII 1.3.2 变形监测的频率.................................................. X 1.3.3 变形监测频率确定的基本方法..................................... XI 1.3.4 沉降稳定期的确定............................................... XI 第2章位移观测............................................................... XII 2.1 倾斜观测的陈述..................................................... XII 2.2 一般建筑物的倾斜观测............................................... XII 2.3 特殊建筑物的倾斜观测.............................................. XIII 2.4 建筑物主体倾斜观测................................................. XIV 2.4.1 主体倾斜观测的方法............................................. XV 2.4.2 主体倾斜观测的周期............................................ XVI 2.4.3 倾斜观测实例................................................. XVII 2.4.4 建筑物水平位移观测.......................................... XVIII 2.5 裂缝观测........................................................... XIX 2.5.1 裂缝观测的概述................................................ XIX 2.5.2 裂缝观测的方法................................................. XX 2.6 挠度观测.......................................................... XXII 2.6.1 建筑物基础挠度观测........................................... XXII 2.6.2 弹性挠度观测................................................. XXII 2.6.3 建筑物主体挠度观测........................................... XXII 2.7 日照和风振变形监测............................................... XXIII

相关文档
最新文档