柴油机及轴系振动平衡1资料

柴油机及轴系振动平衡1资料
柴油机及轴系振动平衡1资料

3.4柴油机及推荐轴系的振动和平衡

3.4.1活塞、连杆的运动及受力

3.4.1.1活塞连杆的运动

1.活塞的位移x

α=0°时,x=0(即活塞在上止点);当α=180°时,x=2R=s(即活塞在下止点);当α=90°或270°时,x=R+λR/2>R。即当α=90°或180°时,活塞不在行程中央,而在α<90°或α>270°的某一位置时,活塞位移x=R(行程中央位置)。2.活塞的速度x.

当α=0°时(上止点)或α=180°时(下止点),x.=0,即在上下止点处活塞的运动速度均为零,而活塞运动的最大速度x.max则出现在α<90°或α>270°的某一位置。

3.活塞的加速度x..

当α=0°时,x..达最大值:x..max=Rω2 (1+λ),方向向下;当α=180°时,x..=-Rω2 (1-λ),方向向上。活塞在上止点时的加速度在数值上大于活塞在下止点时的加速度。在α<90°或α>270°的某个位置x..=0(活塞速度最大)。

1. 在曲轴连杆机构中,连杆比λ通常是指()。

A.活塞直径D与曲柄半径R之比 B.曲柄半径R与连杆长度L

C.连杆长度L与曲柄半径R之比 D.连杆长度L与活塞直径D之比

2. 曲轴半径R与连杆长度L之比用λ表示,通常低速柴油机的λ值为()。

A.1/3~1/4 B.1/3~1/5 C.1/4~1/5

D.1/5~1/6

3. 活塞位移x是曲轴转角α的函数,下列表述错误的是()。

A.当α=0°时,则x=0 B.当α=90°时,则x=R

C.当α=180°时,则x=2R D.当α=270°时,

则x=R+R/2λ

4. 与活塞位移x与无关的是()。

A.曲轴半径R B.曲轴转角α C.连杆比λD.曲轴回转角速度ω

5. 柴油机在运行过程中,其活塞运动规律是()。A.活塞在上止点时,速度最大,加速度最大 B.活塞在行程中央时,速度最大,加速度为零

C.活塞在下止点时,速度为零,加速度为零 D.活塞在行程中点附近某点,速度最大,加速度为零

6. 活塞运动的最大速度是出现在行程的()。A.上止点 B.下止点 C.接近行程中点 D.行程中点

7. 活塞运动的最小速度是出现在行程的()。A.止点 B.接近止点 C.行程中央 D.接近行程中央

8. 活塞运动的最大加速度是出现在行程的()。A.上止点处 B.接近止点处 C.行程中央 D.接近行程中央

9. 活塞运动的加速度为零的点是出现在行程的()。

A.上止点 B.接近行程中央 C.行程中央 D.下止点

10. 柴油机活塞运动速度和加速度绝对值的变化规律是()。

A.活塞在上止点时速度最大,加速度为零 B.活塞在上止点时速度为零,加速度最大

C.活塞在上止点时,速度和加速度都为零 D.活塞在上止点时,速度和加速度都最大

11. 柴油机活塞运动的速度和加速度,当活塞下行靠近行程中央时()。

A.加速度最大,速度为零 B.速度最大,加速度

为零

C.速度和加速度都最大 D.速度和加速度均为零

12. 活塞速度的方向由向上变为向下且速度变化最大,是发生在行程()。

A.上止点 B.下止点 C.行程中点偏上 D.行程中点偏下

13. 活塞速度的方向由向下变为向上且速度变化最大,是发生在行程()。

A.上止点 B.下止点 C.行程中点偏上 D.行程中点偏下

14. 活塞加速度的方向由向下变为向上且加速度变化最大,是发生在行程()。

A.上止点 B.下止点 C.α=<90°接近中点D.α=>270°接近中点

15. 活塞加速度的方向由向上变为向下且加速度变化最大,是发生在行程()。

A.上止点 B.下止点 C.α=<90°接近中点D.α=>270°接近中点

16. 活塞加速度的方向()。

Ⅰ.在上止点,加速度方向朝上Ⅱ.在上止点,加速度方向朝下Ⅲ.在下止点,加速度方向朝上Ⅳ.在

下止点,加速度方向朝下

A.Ⅰ+Ⅱ B.Ⅰ+Ⅲ C.Ⅱ+Ⅲ D.Ⅱ+Ⅳ17. 活塞加速度在上、下止点处绝对值大小比较()。

A.上止点的大于下止点 B.下止点的大于上止点C.上止点的等于下止点 D.上止点或大于或小于下止点

18. 在曲轴连杆机构中,若曲轴按稳定角速度回转时,活塞做()。

A.匀速直线运动 B.匀加速直线运动 C.变速直线运动 D.匀减速直线运动

19. 当活塞由上止点运行到下止点(α=0°~180°)过程中,活塞速度和加速度方向变化是()。A.速度一直向上,加速度由向上变向下 B.速度一直向下,加速度由向下变向上

C.加速度一直向下,速度由向下变向上 D.加速度一直向上,速度由向上变向下

20. 当活塞由下止点运行到上止点(α=180°~360°)过程中,活塞速度和加速度方向变化是()。A.加速度一直向上,速度由向上变向下 B.加速度一直向下,速度由向下变向上

C.速度一直向上,加速度由向上变向下 D.速度

一直向下,加速度由向下变向上

21. 当曲柄从极左运行到极右位置(α=270°~90°)过程中,活塞速度和加速度方向变化是()。A.速度向下,加速度由向下变这向上 B.速度向上,加速度由向下变为向上

C.加速度向下,速度由向上变为向下 D.加速度向上,速度由向下变为向上

22. 当曲柄从极右运动到极左位置(α=90°~270°)过程中,活塞速度和加速度方向变化是()。A.速度向下,加速度由向上变为向下 B.速度向上,加速度由向下变为向上

C.加速度向下,速度由向上变为向下 D.加速度向上,速度由向下变为向上

23. 下述说法正确的是()。

A.连杆比λ是指连杆长度L与曲柄半径R之比

B.当曲柄转角α=90°时,活塞位x=R(R为曲柄半径)

C.活塞运行的最大加速度出现在行程中央

D.当曲柄从极左运行到极右位置(α=270°~90°)过程中,活塞速度由向上变向下,加速度向下

24. 二次曲柄的曲柄半径和曲柄角加速度分别为()。

A.λR/2,2ω B.λR/4,2ω C.λR/4,ωD.λR/2,ω

25. 一次曲柄的曲柄半径和曲柄角加速度分别为()。

A.R,ω B.λR,ω C.λR/4,2ω D.R,2ω

Bcbdd caabb babcd cacbc cddba

3.4.1.2曲柄连杆机构的受力分析

1.气体力F g

作用在曲柄连杆机构上的气体力F g与柴油机的工作过程和负荷有关。即使在负荷一定的情况下,气体力F g也是周期交变的,即气体力F g随曲轴转角α而变。

F g的变化周期为柴油机的一个工作循环,方向沿气缸中心线向下。

2.曲柄连杆机构的惯性力

曲柄连杆机构的惯性力有:活塞组件往复运动所产生的往复惯性力;曲柄不平衡回转质量回转运动所产生的回转惯性力(离心力);连杆运动所产生的惯性力。曲柄连杆机构的惯性力主要和运动件的质量及运动时的加速度有关。

(1)往复惯性力F j往复惯性力F j为集中在活塞销

(或十字头销)中心处的往复运动质量m j在做不等速往复运动时产生的惯性力。

往复惯性力的方向与活塞加速度的方向相反,作用线与气缸中心线平行。略去往复质量重心与气缸中心线的微小偏移(如单滑块十字头、活塞冷却机构引起的偏移),可以认为往复惯性力的作用线与气缸中心线重合。

(2)离心惯性力F R离心惯性力F R为集中在曲柄销中心处的不平衡回转质量M

的惯性力。

离心惯性力的方向与向心加速度的方向相反,永远是离心的。它的作用线与曲柄中心线重合,并随曲柄按角速度ω回转。

(3)连杆力偶M L连杆力偶M L为连杆转动惯量在连杆摆动时产生的惯性力偶。连杆力偶作用在连杆摆动平面内,其数值大小交变,方向交变。当连杆摆到气缸中心线左侧时,M L为逆时针方向;当连杆摆到气缸中心线右侧时,M L为顺时针方向。连杆力偶数值较小。3.合力F

在活塞上作用着气体力F g和往复惯性力F j的合力F为F=F g+F j,合力f作用在气缸中心线连杆小端处。由于气体力F g和往复惯性力F j都随曲轴转角变化,其

合力F的大小和方向也随曲轴转角而变化。

4.侧推力F N与连杆推力F L

作用力F在活塞销处分解为两个力:一个分力F N 垂直于气缸壁(或导板),称为侧推力;另一个分力F L沿连杆中心线,称为连杆推力。

侧推力F N的大小、方向交变,作用在十字头导板或气缸壁上。连杆推力FL的数值大小交变,作用在曲柄销上,而方向是否交变则取决于机型。

5.切向力F T和法向力F Z

连杆推力F L在曲柄销处又可分解为两个分力:一个分力F T垂直于曲柄中心线,称为切向作用力;另一个分力F Z沿着曲柄中心线,称为法向作用力。

将F L移至主轴承处并沿水平和垂直方向分解为F′和N F'',其中F′等于合力F。这说明在活塞销处承受的合力通过曲柄连杆机构最终传递到主轴承上。此外,在主轴承上还作用着不平衡回转质量的离心惯性力F R。

6.柴油机的输出力矩和倾覆力矩

切向力F T对曲轴中心线形成的力矩F T·R为柴油机的单缸输出力矩,由于切向力F T的大小是随着气体力F g、往复惯性力F j和曲轴转角α的变化而变化的,输出力矩F T·R也是交变的。此外由于气体力F g和往复惯

性力F j的合力F的作用,在柴油机机体垂直于气缸中心线方向作用着一对大小相等、方向相反的力F N和N F'',力间距离为h,它们构成了柴油机的倾覆力矩,在数值上同柴油机各瞬时输出力矩大小相等而方向相反。但作用在不同的一部件上。柴油机的输出力矩作用在柴油机之外被驱动的机械上(如螺旋桨、发电机等),而倾覆力矩则作用在柴油机机体上。因此二者不能抵消。

1. 柴油机在工作中产生的气体力将直接作用在()。

A.气缸盖 B.气缸套 C.活塞顶 D.A+B+C 2. 曲柄连杆机构中的往复惯性力是由()产生的。A.活塞和连杆 B.连杆和曲轴 C.活塞和曲轴D.活塞、连杆和曲轴

3. 通过力学模型的简化可知,曲柄连杆机构中的离心惯性力是由()产生的。

A.活塞和连杆 B.连杆和曲轴 C.活塞和曲轴D.活塞,连杆和曲轴

4. 作用在活塞销(或十字头销)上的合力f,主要是由()组成的()。

A.摩擦力和气体力 B.往复惯性力和气体力

C.往复惯性力和离心惯性力 D.气体力和离心惯

性力

5. 作用在活塞顶上的气体力与()。

A.柴油机工作过程和运动部件质量有关 B.柴油机工作过程和运动部件质量无关

C.工作过程无关而与运动部件质量有关 D.工作过程有关而与运动部件质量无关

6. 作用在曲柄连杆机构的惯性力()。

A.与柴油机的负荷和转速均有关 B.与柴油机的负荷和转速均无关

C.与柴油机的负荷有关,而与转速无关 D.与柴油机的负荷无关,而与转速有关

7. 作用在曲柄连杆机构的惯性力与柴油机的转速有下列关系()。

A.与转速成正比 B.与转速的平方成正比 C.与转速的三次方成正比 D.与转速的四次方成正比8. 曲柄连杆机构的惯性力与()有关。

A.柴油机负荷 B.柴油机转速 C.柴油机工作过程 D.喷油提前角

9. 作用在曲柄连杆机构上的力主要有()。

A.气体力 B.惯性力 C.连杆力偶 D.A+B +C

10. 作用在曲柄连杆机构上的惯性力主要有()。

A.活塞组件的往复惯性力 B.回转质量的离心惯性力 C.连杆力偶 D.A+B+C

11. 根据柴油机运动部件受力分析,柴油机连杆的承载情况一般可认为()。

A.四冲程柴油机连杆承受拉压交变应力,而二冲程柴油机承受单向压应力

B.四冲程柴油机连杆承受单向压应力,而二冲程柴油机承受拉压交变应力

C.两者都承受拉压交变应力

D.两者都只承受单向压应力

12. 二冲程柴油机活塞从上止点下行时,其上半个行程的往复惯性力的方向是()。

A.向上 B.向下 C.交变 D.为零

13. 二冲程柴油机往复惯性力绝对值最大是在()。A.上止点(α=0°)附近 B.下止点(α=180°)附近

C.曲柄水平极左(α=270°)附近 D.曲柄水平极右(α=90°)附近

14. 曲柄连杆机构的惯性力与()成正比。

A.负荷 B.转速平方 C.转矩 D.转速

15. 工作时受各缸交变的气体力、往复惯性力和离心惯性力作用的部件是()。

发动机表面结构振动与辐射噪声的关系

第3章发动机表面振动与辐射噪声关系的系统研究 所谓发动机噪声除了进、排气噪声和风扇噪声外,主要是指由发动机外表面辐射出来的噪声,而辐射噪声与发动机表面结构振动有着密切的关系。系统地研究发动机表面振动与辐射噪声之间的关系,对于发动机噪声源预测和降低辐射噪声有着极其重要的意义。 3.1内燃机的表面振动 结构的表面振动和辐射噪声之间的关系非常复杂,通常无法确定。通过对噪声和单源振动测定的比较研究可知,大约有50%没有确切的关系。声场环境的影响、声的传播方向、结构振动的频率和相位的不均匀性,以及精确的数学模型极为复杂等因素导致精确的解析分析不可能实现。随机因素的影响和影响因素的随机性使得研究人员转而采用统计分析的方法来完成对振动和噪声辐射之间关系的研究[77-81]。 发动机结构振动可用其模态振型来表示,发动机结构振动的模态振型是由发动机设计所决定的,发动机质量分布、刚度和阻尼决定了其模态频率及其各阶模态之间的频率间隔。 柴油机是一种结构复杂、变工况运行的动力机械。柴油机的表面振动特性决定了其辐射噪声特性。为此,作者对一典型的直列柴油机-CY6102BZQ型柴油机的表面振动进行了实验测试与研究。实验框图如下:

实验仪器如下: 仪器名称 型号生产厂 传感器YJ2-1(665) 杨州无线电二厂 YJ2-1(667) 杨州无线电二厂 YD-42(24) 杨州无线电二厂 9024(2) 北戴河传感器技术研究所 电荷放大器7021 磁带机TEAC XR-30C TEAC CORP. Made in Japan 光线示波器 抗混滤波器DLF-6 北京东方振动和噪声技术研究所数据采集与分析系统INV306D 北京东方振动和噪声技术研究所测功机Y120-S 中国启东测功设备厂 测点布置如下:

第4章-振动与波动-

第4章 振动与波动题目无答案 一、选择题 1. 已知四个质点在x 轴上运动, 某时刻质点位移x 与其所受合外力F 的关系分别由下列四式表示(式中a 、b 为正常数).其中不能使质点作简谐振动的力是 [ ] (A) abx F = (B) abx F -= (C) b ax F +-= (D) a bx F /-= 2. 在下列所述的各种物体运动中, 可视为简谐振动的是 [ ] (A) 将木块投入水中, 完全浸没并潜入一定深度, 然后释放 (B) 将弹簧振子置于光滑斜面上, 让其振动 (C) 从光滑的半圆弧槽的边缘释放一个小滑块 (D) 拍皮球时球的运动 3. 欲使弹簧振子系统的振动是简谐振动, 下列条件中不满足简谐振动条件的是 [ ] (A) 摩擦阻力及其它阻力略去不计 (B) 弹簧本身的质量略去不计 (C) 振子的质量略去不计 (D) 弹簧的形变在弹性限度内 4. 当用正弦函数或余弦函数形式表示同一个简谐振动时, 振动方程中不同的量是 [ ] (A) 振幅 (B) 角频率 (C) 初相位 (D) 振幅、圆频率和初相位 5. 如T4-1-5图所示,一弹簧振子周期为T .现将弹簧截去一半, 仍挂上原来的物体, 则新的弹簧振子周期为 [ ] (A) T (B) 2T (C) 3T (D) 0.7T 6. 三只相同的弹簧(质量忽略不计)都一端固定, 另一端连接 质量为m 的物体, 但放置情况不同.如T4-1-6图所示,其中一个平放, 一个斜放, 另一个竖直放.如果让它们振动起来, 则三 者的 [ ] (A) 周期和平衡位置都不相 同 (B) 周期和平衡位置都相同 (C) 周期相同, 平衡位置不同 (D) 周期不同, 平衡位置相同 7. 如T4-1-7图所示,升降机中有一个做谐振动的单摆, 当升降 机静止时, 其振动周期为2秒; 当升降机以加速度上升时, 升降机中 的观察者观察到其单摆的振动周期与原来的振动周期相比,将 T 4-1-6图 T 4-1-5图

汽车发动机振动噪声测试实用标准系统

附件1 汽车发动机振动噪声测试系统 1用途及基本要求: 该设备主要用于教学和科研中的振动和噪声测量,要求能够测量试验对象的振动噪声特性(频率、阶次、声强等),能对试验数据进行综合分析。该产品的生产厂应具有多年振动噪声行业从业经验,有较高的知名度和影响力。系统软件和硬件应该为成熟的模块化设计,同时具有很强的扩展能力,能保证将来软件和硬件同时升级。 2设备技术要求及参数 2.1设备系统配置 2.1.1数据采集系统一套; 2.1.2数据测试分析软件一套; 2.1.3传声器 2个; 2.1.4加速度计 2个; 2.1.5声强探头 1套; 2.1.6声级校准器 1个; 2.1.7笔记本电脑一台 2.2数据采集、控制系统技术要求 2.2.1主机箱一个;供电采用9~36V直流和 200~240V交流; 2.2.2便携式采集前端,适用于实验室及现场环境; 2.2.3整机消耗功率<150W; 2.2.4工作环境温度:-10?C ~50?C; 2.2.5中文或英文WindowsXP下运行,操作主机采用笔记本电脑; 2.2.6输入通道数:4个以上,其中2个200V极化电压输入通道、不少一个转速输入通道; 2.2.7输入通道拥有Dyn-X技术,动态围160dB; 2.2.8每通道最高采样频率:≥65.5kHz,最大分析带宽:≥25.6kHz; 2.2.9系统留有扩充板插槽,根据需要可以进一步扩充;数据采集前端可同时连接多种形式传感器,包括加速度计、转速探头、传声器、声强探头等; 2.2.10系统具有堆叠和分拆能力,多个小系统可组成多通道大系统进行测量。大系统可分拆成多个小系统独立运行; 2.2.11采集前端的数据传输具备二种方式之一:①通过10/100M自适应以太网传输至PC; ②通过无线通讯以太网技术传输至PC,通信距离在100米以上。使测量过程更为灵活方便,方便硬件通道和计算机系统扩展升级;

NVH 特性概述

NVH特性概述 摘要:通过对汽车振动以及噪声控制的分析研究,简要介绍汽车NVH特性的概念以及主要研究方法,并提出汽车NVH控制的基本途径。 关键词:汽车;振动;噪声;特性;研究;控制 Abstract:This article briefly introduces the conception and research method of automobile NVH characters by analyzing the vibration and the noise of automobiles,then brings forward the basic approach of controlling automobile NVH. Key words:automobile;vibration;noise;character;research;control 噪声(Noise)、振动Vibration)与声振粗糙度(Harshness)统称为NVH,NVH 特性是衡量汽车设计和制造质量好坏的一个综合性问题,它给汽车用户所带来的感受也是最直接和最表面的。声振粗糙度(Harshness)是指噪声和振动的品质,是描述人体对振动和噪声的主观感觉的,不能直接用客观测量方法来度量。由于声振粗糙度描述的是振动和噪声使人不舒适的感觉,因此有人称Harshness为不平顺性。又因为声振粗糙度经常用来描述冲击激励产生的使人极不舒适的瞬态响应,因此也有人称Harshness为冲击特性。另外乘员在汽车中的舒适性感受以及忧郁汽车振动引起的汽车零部件强度和寿命问题都属于NVH的研究范畴,此外还包括汽车零部件由于振动引起的强度和寿命等问题。车辆的NVH问题是国际汽车业各大整车制造企业和零部件企业关注的问题之一。有统计资料显示,整车约有1/3的故障问题是和车辆的NVH问题有关系,而各大公司有近20%的研发费用消耗在解决车辆的NVH问题上。从NVH的观点来看,汽车是一个由激励源(发动机、变速器等)、振动传递器(由悬架系统和连接件组成)和噪声发射器(车身)组成的系统。汽车NVH特性的研究应该以整车作为研究对象,但由于汽车系统极为复杂,因此,经常将它分解为多个子系统进行研究,如发动机子系统(包括动力传动系统),底盘子系统(主要包括悬架系统),车身子系统等。 1、汽车振动 如果把汽车作为一个系统来研究,汽车本身就是一个具有质量,弹簧和阻尼的振动系统。由于汽车内部各部分的固有频率不同,汽车在行驶中常因路面不平、车速和运动方向的变化,车轮、发动机和传动系统的不平衡,以及齿轮的冲击等各种外部和内部的激励作用而极易产生整车和局部的强烈振动。汽车的这种振动是汽车的动力性能得不到充分的发挥,经济型变坏,同时,还要影响汽车的通过性、操作稳定性和平顺性,使得乘员产生不舒服和疲乏的感觉,甚至损坏汽车的零部件和运载的货物,缩短汽车的使用寿命。 汽车振动和一般的振动问题一样,可以用研究机械振动的方法来研究汽车振

发动机噪声与振动

发动机运转时,燃烧噪声,机械噪声和空气动力噪声是主要噪声源。 通常把燃烧时气缸压力通过活塞、连杆、曲轴、主轴承传至机体,以及通过气缸盖等引起发动机结构表面振动而辐射出来的这部分噪声,称为燃烧噪声。发动机的燃烧噪声,是在气缸中产生的。燃烧过程中,气缸内的压力波冲击燃烧室壁,气体自身产生的振动,这种振动及辐射噪声呈高频特性。气缸内压力在一个工作循环内呈周期变化,激起气缸内部机件的振动,其频率与发动机转速有关,通过发动机机体向外辐射噪声,这种振动及辐射噪声呈低频特性。其强弱程度,取决于压力增长率及最高压力增长率的持续时间。 发动机的机械噪声,是指在气体压力和惯性力的作用下,使运动部件产生冲击和振动而激发的噪声。主要有活塞敲击噪声、供油系噪声、配气机构噪声、正时系统噪声、辅机系统噪声、轴承噪声、不平衡惯性力引起的机体振动和噪声等。发动机工作时,由于冲击、摩擦、旋转不均匀和不平衡力作用等原因,激起零部件的机械振动而产生噪声。特别是当激振力频率与零部件的固有频率相一致时,会引起激烈的共振和噪声。发动机的机械噪声随转速的提高而迅速增加。 空气动力噪声,是气体流动(如周期性进气、排气)或物体在空气中运动,空气与物体撞击,引起空气产生的涡流,或者由于空气发生压力突变,形成空气扰动与膨胀(如高压气体向空气中喷射)等而产生的噪声。一般说来,空气动力噪声是直接向大气辐射的。主要分成进气噪声、排气噪声和风扇噪声。 汽车噪音改善材料和方法: 1、发动机噪,路噪,胎噪都属于结构噪音,它的主要产生是震动,最合理的解决办法就是制震。加入减振板配合吸音垫,能很好解决路噪和胎噪。弓I擎噪这个问题我们应理性去看待,引擎声的大小随发动机转速的不同而产生程度不同的噪音,它没有一个恒定的标准,但是,引擎的转速是由车辆行驶状态和驾驶人员操控的。对引擎的声音除了驾驶人员的控制外,汽车隔音工程还能再进一步的改善,具体施工部分如下:(1)引 擎盖的施工能延缓前盖板因温度过高而掉漆,并能减少发动机噪音通过上盖传出的噪音。(2)挡火墙内外部分施工可改善引擎发动后低频音的传入。施工后引擎声变得更加纯净,驾驶人员会有更好的操纵感。如果要引擎声有较明显的改善,施工部分是比较复杂的,具有一定高难度的作业,具体施工部分与步骤有以下几点:①拆开仪表台,完全处理挡火墙内部②卸下发动机,完全处理档火墙外部这个施工对引擎噪音的减少 效果是比较明显的,但是施工过程可能会对车体原有设备造成改变和影响,笔者一般不建议对此部分进行施工操作,对于引擎声应理性善待,不应过分追求引擎声的控制,让引擎发挥它应有的动力感。 2、路噪和胎噪是因为轮胎和路面摩擦产生震动和噪音,所以减震是最好的方法,用减振板或专用减振板和吸音垫及车门密封条对叶子板和车地板及车门进行全面施工可以从减震、吸音、隔音三个源头改善胎噪和路噪。 3、风噪是因为风的压力超过车门的密封抗阻力而形成,所以加强密封阻力是最直接最根本的解决方法,车门密封条和内心密封条就能很好解决这一问题。

制动噪声及振动介绍

1.制动噪音及振动介绍 1.1声学基本术语 声音: 由物体的振动所造成的,并经弹性界质以声波的方式将能量传送出. 频率:单位时间內质点振动的周数(Hz) 声压: 振动强度(Pa)0,00002 < p < 200 [Pa] 为避免以Pa来表达声音或噪音,使用分贝(dB)这个标度。该标度以20μPa 作为参考声压值,并定义这声压水平为0分贝. 分贝值= 20 log(p/p ref) dB

6.Rattle 7.Clonk 8.Wire-brush 9. Chirp 10.Creak 1.LF-Squeal 2.HF-Squeal 3.(Hot-)Judder 4.Groan 5. Moan 制动尖叫(Squeal)是制动刹车时最主要的噪音,可以通过减少振动来最小化噪音.制动时最常见十种噪音及振动问题 1.2制动噪音及振动的分类 500 1 k 10 k 20 k Hz Brake Shudder < 100Hz Groan Moan High Frequency Squeal LF Squeal Wire Brush

Shudder Groan/Moan LF squeal HF squeal Pad Calliper Rotor Knuckle Suspension Bea r ing Tire

1.3制动尖叫 1.3.1 一般知识 -由刹车片和制动盘摩擦引起,在一个或多个共振频率下发生; -主要由制动盘发出,制动盘充当了扩音器的功能。

影响低频尖叫的主要因素(低频尖叫1-3KHz) 制动盘制动钳转向节悬挂刹车片 -盘厚度偏差-钳体-刚性-刚度-摩擦系数-材质-支架-模态频率-模态频率-材质 -表面处理-紧固件-材质/质量/ -材质/质量/ -尺寸形状 阻尼特性阻尼特性 -导向支架-减振片 -活塞尺寸/材质

汽车NVH振动与噪声分析

汽车NVH介绍

1.NVH现象与基本问题 2.噪声与振动源 3.NVH传递通道 4.NVH的响应与评估 5.NVH试验 6.NVH的CAE分析 7.NVH开发 8.汽车声品质

动态性能 静态性能 汽车的性能 ?汽车的外观造型及色彩 ?汽车的内室造型、装饰、色彩?内室及视野 ?座椅及安全带对人约束的舒适性 ?娱乐音响系统?灯光系统?硬件功能 ?维修保养性能?重量控制 ?噪声与振动(NVH )?碰撞安全性能?行驶操纵性能?燃油经济性能?环境温度性能?乘坐的舒适性能?排放性能?刹车性能?防盗安全性能?电子系统性能?可靠性能 NVH 是汽车最重要的指标之一

汽车所有的结构都有NVH问题 ?车身 ?动力系统 ?底盘及悬架 ?电子系统 ?…… 在所有性能领域(NVH,安全碰撞、操控、燃油经 济性、等)中,NVH是设及面最广的领域。

什么是NVH? NVH : N oise, V ibration and H arshness ?噪声Noise: ●是人们不希望的声音 ●注解: 声音有时是我们需要的 ●是由频率, 声级和品质决定的 ●频率范围: 20-10,000 Hz ?振动Vibration ●人身体对运动的感觉, 频率通常在0.5-200 Motion sensed by the body, mainly in .5 hz-50 hz range ●是由频率, 振动级和方向决定的 ?不舒服的感觉Harshness ●-Rough, grating or discordant sensation

为什么要做NVH? ?NVH对顾客非常重要 ?NVH的好坏是顾客购买汽车的一个非常重要的因素. ?NVH影响顾客的满意度 ?在所有顾客不满意的问题中, 约有1/3是与NVH有关. ?NVH影响到售后服务 ?约1/5的售后服务与NVH有关

船舶柴油机的轴系扭转振动的分析与研究

船舶柴油机的轴系扭转振动的分析与研究 【摘要】本文通过一些国内因轴系扭转振动而引起的断轴断桨的事故实例,来分析引起轴系扭转振动的主要原因,分析扭振主要特性,并提取一些减振和防振的基本控制措施。 【关键词】船舶柴油机轴系扭振危害分析措施 在现代船舶机械工程中,船舶柴油机轴系扭转振动已经成为一个很普遍的问题,它是引起船舶动力装置故障的一个很常见的原因,国内外因轴系扭转而引起的断轴断桨的事故也屡见不鲜,随着科学水平的提高和航运业的发展,人们越来越重视船舶柴油机组的轴系扭转振动,我国《长江水系钢质船舶建造规范》和《钢质海船入级与建造规范》(简称《钢规》)和也均规定了在设计和制造船舶过程中,必须要向船级社呈报柴油机组的轴系扭转振动测量和计算报告,以此来表明轴系扭转振动的有关测量特性指标均在“规范”的允许范围内。 1 船舶柴油机轴系扭转振动现象简介 凡具有弹性与惯性的物体,在外力作用下都能产生振动现象。它在机械,建筑,电工,土木等工程中非常普遍的存在着。振动是一种周期性的运动,在许多场合下以谐振的形式出现的,船舶振动按其特点和形式可分为三种,船体振动,机械设备及仪器仪表振动,和轴系振动。船舶柴油机轴系振动按其形式可分为三种:扭转振动,纵向振动,横向振动。柴油机扭转振动主要是由气缸内燃气压力周期性变化引起的,它的主要表现是轴系上各质点围绕轴系的旋转方向来回不停的扭摆,各轴段产生不相同的扭角。纵向振动主要是由螺旋桨周期性的推力所引起的。横向振动主要是由转抽的不平衡,如螺旋桨的悬重以及伴流不均匀产生的推力不均匀等的力的合成。 船舶由于振动引起的危害不但可以产生噪音,严重影响旅客和船员休息,还会造成仪器和仪表的损害,严重的时候甚至出现船体裂缝断轴断桨等海损事故,直接影响船舶的航行安全。而在船舶柴油机轴系的三种振动中,产生危害最大的便是扭转振动,因扭转振动而引起的海损事故也最多,因此对扭转振动的研究也最多。而且当柴油机轴系出现扭转振动时,一般情况下,船上不一定有振动的不适感,因此这种振动也是最容易被忽视的一种振动形式,一旦出现扭转振动被忽视,往往意味着会发生重大的事故。更应该注意的是,当发动机运转在主临界速度时,自由端的传动齿轮箱往往容易发生齿击或噪声大的现象,这时检查时会发现齿轮有点蚀或剥落等磨损现象,严重时会有断齿事故。有时在强共振的情况下,轴系中的某些位置只要数分钟运行就能自行发热,稍有疏忽,就可能造成断轴断桨的海损事故。 2 船舶柴油机因扭振而引起的断轴断桨的事故及分析 (1)广西海运局北海分局所属沿海货轮400吨桂海461、462、463,三条

柴油机的噪声测试(左文芝)

柴油机的噪声测试 左文芝 摘要:本文通过实例介绍了柴油机噪声测量方法和过程,分析了存在的问题并提出了改进的建议。 关键词:噪声测量点声压级声功率级误差 引言 柴油机在正常工作状况下,气缸内气体燃烧、进排气、柴油机部件运动、附带的油、水泵等的运动等都会产生噪声,特别是船用柴油机,由于工作环境特殊,可能会给操作者和其他长时间暴露在噪声中的人员造成生理、心理等方面的健康伤害,国家质量技术监督局发布了《船用柴油机辐射的空气噪声限值》(GB11879-89)和《船用柴油机辐射的空气噪声测定方法》(GB/T9911-1988),要求船用柴油机制造商在设计和生产中对柴油机噪声进行控制,而精确测定柴油机噪声值对柴油机的设计、生产和改进提供有效的依据。以下以我公司开发的5210ZLC-5型柴油机噪声测试为例介绍测试过程。 1 测量过程 1.1测量环境:理想的测试环境只有一个反射面(地面),无其他反射物,最好是消声室;具有坚硬平坦地面的户外开阔地;满足要求的柴油机试验车间;我们测试在柴油机试车台,车间长宽高为150×50×20米,砖混结构。 1.2柴油机的安装:要求柴油机安装在弹性支承上,柴油机不应带齿轮箱和其他被驱动的机械,否则应把结构振动和外带接卸产生的噪声作为外加噪声处理,在噪声测试时,周围其他机械噪声应尽可能小,否则视情况进行背景噪声修正。 1.3测试设备:要求符合GB/3785中规定的Ⅰ型或Ⅰ型以上声级计,用于频谱分析的1/1或1/3倍频滤波器符合GB/3421的要求,声级计经过计量部门周期校准合格,使用前用声校准器标定,我们用的是国营红声器材厂生产的ND2型声级计,配1/1倍频滤波器。 1.4测点确定:假想包络柴油机的最小的一个长方体为基体(长宽高分别为l1l2),根据《船用柴油机辐射的空气噪声测定方法》,通过公式计算出包络柴油机并l 3 在其上布置测量点的假想长方体,其表面作为测量表面(长宽高分别为2a 2b c),

发动机结构振动及噪声预测

发动机结构振动及噪声预测 作者:奇瑞发动机工程研究邓晓龙 发动机是影响汽车NVH性能的最主要的因素,在发动机的设计阶段就深入进行振动噪声性能的预测与优化,已经成为发动机开发的基本流程,是发动机自主研发过程中的重要工作。 国内外对发动机结构噪声的预测做了大量研究,中低频结构噪声预测方法已趋成熟。结构振动响应与辐射噪声之间的关系非常复杂,目前根据强迫振动响应计算辐射噪声的计算方法主要有平板理想化法、有限元法和边界元法等。噪声预测技术的发展使得发动机在设计阶段进行噪声评价成为可能。 本文探讨了适于进行动力总成振动及结构噪声预测的方法;建立了动力总成各主要部件的有限元模型,通过AVL EXCITE软件进行了动力学分析,并计算发动机的振动响应。进行NVH的性能提升的最重要的就是首先要找到主要振动及噪声源,并开展有针对性的工作。为了更明确发动机的主要声源,采用自编软件,根据表面振动速度结果进行了主要表面的辐射声功率排序,最后进行结构噪声预测。 发动机结构振动预测 进行发动机结构振动及噪声预测,涉及到大量的研究工作,主要工作包括各部件有限元建模、子结构模态提取,EXCITE模型搭建,主要激励计算,动力学分析,振动响应计算,表面辐射声源排序,声边界元建模和空间声场预测等工作。 1. 动力总成有限元模型 动力总成有限元模型包括缸体、框架、缸盖、油底壳、缸套、进气歧管、排气歧管、气门室罩盖、4个悬置支架、变速器壳体、变速器传动轴及齿轮等。由于研究的动力总成的4个悬置支架中有3个是安装在变速器上,所以加入变速器壳体的有限元模型,这样可以更准确地模拟动力总成的振动情况,特别是怠速工况下的振动。图1所示为动力总成的有限元网格。同样需建立曲轴组件的有限元网格,曲轴组件包括曲轴、飞轮、扭转减振器、皮带轮和正时齿轮等部件。

振动故障诊断及其转子平衡

振动故障诊断及其转子平衡 一、振动基础理论知识简介 1、基本概念: ▲振动:一个弹性体或弹性系统(几个弹性体连在一起)离开其平衡位置做周期性往复运动就叫振动。 其振动量有:极值(峰值),其中单峰值X m,峰-峰值X m-m,X m-m=2 X m;平均值(X i)和均方根值(有效值-X S)。 ▲简谐振动:能用一项正弦或余弦函数表示其运动规律的周期性振动,现场发生的一些复杂振动均是几种不同频率的简谐振动的合成,因此一些资料或书籍均以简谐振动为主加以分析和研究。 X=A.cos(ωt+Φ) ▲通频振幅、基频振幅/基频相位:目前测量振动的仪表按功能来分有两种,一种只能测量振幅值,称为振动表;另一种除能测量幅值外,还能测量振动相位和不同频率下的振动分量,称作振动仪。 振幅有两个含义:1.振幅的表示方法;2.振幅中所含的频率成分。 描述振动的几个物理量: 振动速度:X=A.sin ωt 振动位移:Y=dx/dt=ωt sin(ωt+900) 振动加速度:Z= d2x/dt2=ω2t sin(ωt+1800) X、Y、Z:ω相同,A(最大位移),ωA,ω2A; Y比X矢量超前900;Z比X矢量超前1800。

表示振动强度,位移是最有效的;表示振动平均能量的振动速度是有效的;表示振动冲击强度,振动加速度是最有效的。 ▲极值(幅值)、有效值、平均值的关系: X S =Xm Xi 2 1223600= 极值(幅值):单峰值X (t )=1;峰-峰值=2 平均值:( X )=A dt t x T T 636.0)(10=? 均方根值(有效值):X S =A dt t x T T 707.0120 =?)( 三者之间的关系:双振幅近似等于3倍的有效值或平均值。 轴承振动烈度是以振动速度的均方根值, 我们现在一直沿用的是轴承振动位移峰-峰值S P-P ,国外和国内某些制造厂有用轴承烈度表示 振动,上述换算关系只是指单一频率的振动,如果是混频振动不能直接换算。 ▲通频振幅:用普通振动表(不带滤波器)测得的振幅值是各种频率振动分量的叠加值,如果振幅是由几种不同频率的周期振动叠加而成,其叠加后的振动仍是周期振动,A 在各个周期内保持不变,仪表指示稳定,如果表记示值不稳定,说明由非周期成分存在。 ▲基频振幅:通频振动只能反映物体总的状态,如果要反映振动故障的性质和计算转子重量,就要获取基频振幅。所谓基频振幅是指基波振动频率(机组振动的基波频率等于转子工作频率)下运动量值按正弦规律变化的幅值。测取的方法是采用可调滤波器,可调滤波器

汽车整车制动系统噪音路试规范

汽车整车制动系统噪音路试规范 1 适用范围 本标准为吉利汽车研究院和各基地进行乘用车整车制动系统噪音路试依据和标准,不涉及台架试验部分,主要测试整车制动过程中的噪音情况。 2 试验目的 2.1 获得制动器总成制动噪音类型、频次和发生条件,进行主观评分。 2.2 验证制动器总成和悬架系统等相关零部件整改或者变更(包括材料和结构)对制动噪音的影响。 2.3 试验过程通过不同制动压力,温度条件和行驶工况,来再现和模拟正常行驶工况下产生的噪音,(如在不同速度和制动系统温度下的直行,转弯,坡道,包括前进和后退方向)。 2.4 根据获得的数据和信息,提出降低制动噪音的方案和措施。 3 试验依据 本标注使用SAE 主观打分标准(N45),主观打分值分数从1到10,1表示最差噪音评分,而10表示没有噪音发生。 3.1 SNI 定义 SNI= 总制动次数 (噪音评分值) 噪音出现次数VER )(?∑

3.2 SNI 接受标准 3.3 ONI 定义 ONI= 总制动次数 强度因数 噪音出现次数?∑)( 3.4 ONI 接受标准 3.5 主要制动噪声 3.5.1 尖叫:1~10kHz 发生在制动过程或非制动过程。 3.5.2 刮擦声: 在一定范围内,几个同时发生的高频噪声,声音类似一种持续变化的嘶嘶声。 3.5.3 闷叫:100~450Hz 发生在制动过程中或非制动过程,表现为车体共振引起的低频声和振动,在向前、向后和转弯行驶中,低行驶速度及低制动压力条件下发生,最初制动时系统湿度高。

3.5.4 吱嘎声:150~200Hz, 受通风盘肋条数影响 仅在车内感受到,该噪声频率随车速降低而降低。 3.5.5 吱吱声:40~100Hz, 1、低频低压噪声:低频噪声发生在升温降温循环之后,速度在25km/h左右,在车辆停止之前发生持续时间很长。 2、低频低压低温噪声:主要发生在自动变速箱车辆上;在交通灯路口或者坡道上,带着制动并且车辆速度小于2km/h 时发生的噪音,制动片从静态摩擦切换到动态摩擦时发生滑动现象。 4 试验要求 4.1 要求提供两辆以上工装车。各项功能完备,性能优良。 4.2 依照此标准的测试车辆必须装备认可状态的新制动盘和/鼓,新摩擦片/蹄片: 1、所测试盘式制动器不得超过300℃高温; 2、所测试鼓式制动器不得超过150℃高温; 3、所测试的制动盘需要进行盘面跳动测量,测试点位于制动盘外周向内10mm处。 4.3 整个测试过程要在车窗开启的状态下,路面干燥下进行噪音试验最适宜;在试验前必须固定所有车身附件,以免产生额外噪音,影响测试结果. 5 基本测试方法 5.1 车辆速度:0~50km/h 5.2 温度范围(摩擦片温度):<80℃, 80~100℃,100~150℃,150~200℃,升温过程结束后进行相反的降温过程,直至温度降至80℃以下。 5.3 制动压力范围:3~5bar,5~10bar,10~15bar,15~20bar,20~25bar,25~30bar,30~35bar,40~45bar,对于每个温度区间,只允许进行两个压力的测试。 5.4 噪声出现后,记录车速,主缸压力,摩擦片温度;同时用FFT噪音分析仪读取噪声频率和分贝值(dBA),并用SAE评分标准(N45)对噪音评分。 注意:摩擦片加热过程在试验中只能进行一次,否则会引起摩擦片/蹄片物理性质和化学性质的变化。 5.5 试验程序

柴油机及轴系振动平衡1

3.4柴油机及推荐轴系的振动和平衡 3.4.1活塞、连杆的运动及受力 3.4.1.1活塞连杆的运动 1.活塞的位移x α=0°时,x=0(即活塞在上止点);当α=180°时,x=2R=s(即活塞在下止点);当α=90°或270°时,x=R+λR/2>R。即当α=90°或180°时,活塞不在行程中央,而在α<90°或α>270°的某一位置时,活塞位移x=R(行程中央位置)。2.活塞的速度x. 当α=0°时(上止点)或α=180°时(下止点),x.=0,即在上下止点处活塞的运动速度均为零,而活塞运动的最大速度x.max则出现在α<90°或α>270°的某一位置。 3.活塞的加速度x.. 当α=0°时,x..达最大值:x..max=Rω2 (1+λ),方向向下;当α=180°时,x..=-Rω2 (1-λ),方向向上。活塞在上止点时的加速度在数值上大于活塞在下止点时的加速度。在α<90°或α>270°的某个位置x..=0(活塞速度最大)。 1. 在曲轴连杆机构中,连杆比λ通常是指()。

A.活塞直径D与曲柄半径R之比 B.曲柄半径R与连杆长度L C.连杆长度L与曲柄半径R之比 D.连杆长度L与活塞直径D之比 2. 曲轴半径R与连杆长度L之比用λ表示,通常低速柴油机的λ值为()。 A.1/3~1/4 B.1/3~1/5 C.1/4~1/5 D.1/5~1/6 3. 活塞位移x是曲轴转角α的函数,下列表述错误的是()。 A.当α=0°时,则x=0 B.当α=90°时,则x=R C.当α=180°时,则x=2R D.当α=270°时, 则x=R+R/2λ 4. 与活塞位移x与无关的是()。 A.曲轴半径R B.曲轴转角α C.连杆比λD.曲轴回转角速度ω 5. 柴油机在运行过程中,其活塞运动规律是()。A.活塞在上止点时,速度最大,加速度最大 B.活塞在行程中央时,速度最大,加速度为零 C.活塞在下止点时,速度为零,加速度为零 D.活塞在行程中点附近某点,速度最大,加速度为零

汽车摩擦制动噪声研究进展与发展趋势

2007年(第29卷)第5期 汽 车 工 程Aut omotive Engineering 2007(Vol .29)No .5 2007089 汽车摩擦制动噪声研究进展与发展趋势 原稿收到日期为2006年4月13日,修改稿收到日期为2006年7月4日。 黄学文1 ,张金换1 ,董光能2 ,谢友柏 2 (11清华大学汽车安全与节能国家重点实验室,北京 100084; 21西安交通大学润滑理论及轴承研究所,西安 710049) [摘要] 总结汽车摩擦制动噪声的产生机理、噪声特点和影响因素,回顾并分析抑制和防治制动噪声的理论 与工程研究进展,提出开发新型高阻尼摩擦制动材料来降低或抑制制动噪声的思路和措施。 关键词:摩擦学系统;摩擦;制动噪声 Pr ogress and Devel opment Trend of Research on Fricti on 2induced B rake Squeal of Vehicles Huang Xuewen,Zhang J i n huan,D ong Guangneng &X i e Y ouba i 11Tsinghua U niversity,S take Key Laboratory of A uto m otive Safety and Energy,B eijing 100084; 21Theory of Lubrication and B earing Institute,X i πan J iaotong U niversity,X i πan 710049 [Abstract] The generati on mechanis m ,features and influencing fact ors of brake squeal caused by fricti on 2induced vibrati on are summarized .The theory and research p r ogress on the supp ressi on and p reventi on measures of brake squeal are revie wed and analyzed .Finally,the idea on devel opment of ne w fricti on materials with high da mp 2ing for reducing brake squeal is pointed out . Keywords:Tr i bo 2syste m;Fr i cti on;Brake squea l 前言 汽车制动时产生的尖叫声和振颤声是城市交通噪声的组成部分之一,它既影响汽车乘坐的舒适性,又污染环境,损害人们的健康。开发与研制新型和环境友好的绿色高效摩擦制动系统、抑制制动噪声已成为重要的研究方向。 1 制动噪声的产生和特点 制动摩擦噪声的产生不仅与经典的摩擦振动理论有关,还受到制动系统自身结构和复杂的工况条件的强烈影响,是目前摩擦振动和噪声控制研究领域的重点、热点和难点。如果制动器设计不合理、摩擦材料的老化或制动工况的改变,制动时就可能引起强烈的振动,向环境中辐射制动噪声。制动器的振动不仅包括摩擦材料特性引起的摩擦振动,还包 括机械部件振动特性引起的部件振动 [1] 。 制动时干摩擦接触物体间的摩擦力增大,使摩擦副接触表面的瞬间摩擦系数增大,在制动力作用下接触比压增加,瞬间温度突然升高,接触表面出现局部凸起点“粘着”与“分离”,引起摩擦特性发生变化。表现为接触面比压的增大而使摩擦材料磨损增加,因而摩擦副各构件间相对位置发生变化,从而出现振动;对高速时的强制制动,这种振动尤为剧烈。 摩擦振动与摩擦材料的硬度、表面处理、压缩弹性率、拉伸强度、气孔率、黏弹性、摩擦因数-温度关 系曲线、摩擦因数-速度关系曲线等参数有关。摩擦振动的趋势随着表面接触压力的增加而增加,也随着摩擦材料表面温度的升高而加强。 相对滑动速度增加时,摩擦因数也随着变化,因而出现振动噪声的可能性也会增加。摩擦因数-速度曲线的负斜率是产生制动噪声的重要因素之一 [2] 。制动器部件的摩擦振动是由于作为相对速度 函数的摩擦因数变化的结果,而相对速度又产生于

发动机振动特性分析与试验

发动机振动特性分析与试验 作者:长安汽车工程研究院来源:AI汽车制造业 完善的项目前期工作预示着更少的项目后期风险,这也是CAE工作的重要意义之一。在整机开发的前期(概念设计和布置设计阶段),由于没有成熟样机进行NVH试验,很难通过试验的方法预测产品的NVH水平。因此,通过仿真的方法对整机NVH性能进行分析甚至优化显得十分重要。 众所周知,发动机NVH是个复杂的概念,包括发动机的振动、噪声以及个体对振动和噪声的主观评价等。客观地说,噪声与振动也相互联系,因为发动机一部分噪声由结构表面振动直接辐射,另一部分由发动机燃烧和进排气通过空气传播。除此之外,发动机附件(如风扇)也存在噪声贡献。本文仅考虑发动机结构振动问题,即在主轴承载荷、燃烧爆发压力和运动件惯性力的作用下,对发动机结构振动进行分析以及与试验的对比。发动机结构噪声的激励源主要包括燃烧爆发压力、气门冲击、活塞敲击、主轴承冲击、前端齿轮/链驱动和变速器激励等,这些结构振动又通过缸盖罩、缸盖、缸体和油底壳等传出噪声。 发动机结构振动分析方法简介 图1 发动机结构振动分析方法 如图1所示,发动机结构噪声分析方法包括以下几个步骤: 1. 动力总成FE建模及模态校核 建立完整的短发动机和变速器装配的有限元模型;对该有限元模型进行模态分析,通过分析结果判断各零件间连接是否完好;通过分析结果判断动力总成整体模态所在频率范围是否合理,零部件的局部模态频率是否合理,若存在整体或局部模态不合理的情况,需要对结构进行初步更改或优化。

2. 动力总成模态压缩 缩减有限元模型,得到动力总成的刚度、质量、几何以及自由度信息,用于多体动力学分析。 3. 运动件简化模型建立 发动机中的部分动件不用进行有限元建模,可作简化处理,形成梁-质量点模型,用于多体动力学分析。其中包括:活塞组、连杆组和曲轴及其前后端。 4. 动力总成多体动力学分析 在定义了动力总成各零部件间连接并且已知各种载荷的情况下,对动力总成进行时域下的多体动力学分析,并对得到的发动机时域和频域下的动态特性进行评判,同时,其输出用于结构振动分析。 5. 动力总成结构振动分析 基于多体动力学分析结果,对整个动力总成有限元模型进行强迫振动分析,得到发动机本体、变速器以及各种外围件的表面振动特性,进行评判和结构优化。 实例分析 1. 分析对象 以一款成熟的直列四缸1.5L发动机为平台,针对其结构振动问题,对其进行结构振动CAE 分析,并与其台架试验结果相比较。发动机的部分参数如下:缸径75mm,冲程85mm,缸间距84mm,最大缸压6MPa。 2. 坐标定义 为了便于以后叙述,对动力总成进行了坐标定义(见图2)。

振动与波动

第10章 振动与波动 一. 基本要求 1. 掌握简谐振动的基本特征,能建立弹簧振子、单摆作谐振动的微分方程。 2. 掌握振幅、周期、频率、相位等概念的物理意义。 3. 能根据初始条件写出一维谐振动的运动学方程,并能理解其物理意义。 4. 掌握描述谐振动的旋转矢量法,并用以分析和讨论有关的问题。 5. 理解同方向、同频率谐振动的合成规律以及合振幅最大和最小的条件。 6. 理解机械波产生的条件。 7. 掌握描述简谐波的各物理量的物理意义及其相互关系。 8. 了解波的能量传播特征及能流、能流密度等概念。 9. 理解惠更斯原理和波的叠加原理。掌握波的相干条件。能用相位差或波程差概念来分析和确定相干波叠加后振幅加强或减弱的条件。 10. 理解驻波形成的条件,了解驻波和行波的区别,了解半波损失。 二. 内容提要 1. 简谐振动的动力学特征 作谐振动的物体所受到的力为线性回复力,即 kx F -= 取系统的平衡位置为坐标原点,则简谐振动的动力学方程(即微分方程)为 x t x 2 2 2d d ω-= 2. 简谐振动的运动学特征 作谐振动的物体的位置坐标x 与时间t 成余弦(或正弦)函数关系,即 )cos(?+ω=t A x 由它可导出物体的振动速度 )sin(?+ωω-=t A v 物体的振动加速度 )cos(?+ωω-=t A a 2 3. 振幅A 作谐振动的物体的最大位置坐标的绝对值,振幅的大小由初始条件确定,即 2 v ω+ = 20 20 x A 4. 周期与频率 作谐振动的物体完成一次全振动所需的时间T 称为周期,单位时间内完成的振动次数γ称为频率。周期与频率互为倒数,即 ν= 1T 或 T 1=ν 5. 角频率(也称圆频率)ω 作谐振动的物体在2π秒内完成振动的次数,它与周期、 频率的关系为 ω π = 2T 或 πν=ω2

发动机噪声及振动

汽车噪声与振动 ——理论与应用 汽车噪声的传递有固体波动和气体波动两种传播形式。通常500Hz以下的低、中频率噪声主要以固体波动形式传播,而在较高的频带内则以空气传播为主。 第十章发动机的振动

第十一章发动机的噪声 在相同条件下,柴油机的排气噪声要比汽油机的排气噪声大,二冲程内燃机的排气噪声要比四冲程的大。柴油机的排气声呈明显的低频性,能量主要集中在基频及其倍频的频率范围内;中频范围主要是排气管内气柱振荡的固有音;高频范围主要包括燃烧声和气流高速通过气口的空气动力噪声。 发动机两种噪声:纯音和混杂音。纯音是窄频带的,用抗性消音器;混杂音是宽频带的,用阻性消声器。 抗性消声器:将能量反射回声源,从而抑制声音。 阻性消声器:声能被吸声材料吸收并转化成热能,从而消声。

发动机噪声估算: 1、柴油机声功率级 )lg( 30)lg(1057b b b W n n P n L ++≈ (dBA ) 式中:W L ——柴油机声功率级; b P ——柴油机标定功率(kW ); b n ——柴油机标定转速(r/min ); n ——柴油机实际转速(r/min )。 2、柴油机机体表面辐射声功率级的近似公式 柴油机机体表面辐射的31倍频程声功率级近似计算公式如下: )lg(2010001000) 1(lg 1052)(b b b b W n n f f m P P n f L +? ? ????+++≈ 式中:f ——31倍频程中心频率(Hz ); m ——柴油机质量(kg )。 3、汽油机声功率级估算 )lg( 50)lg(1057b b b W n n P n L ++≈ (dBA ) 以上公式只是估算,公式已显陈旧。 机体结构特性: 结构特性主要指振型、固有频率和传递函数。

车用发动机设备噪声形成原因及控制措施(新编版)

车用发动机设备噪声形成原因及控制措施(新编版) Security technology is an industry that uses security technology to provide security services to society. Systematic design, service and management. ( 安全管理 ) 单位:______________________ 姓名:______________________ 日期:______________________ 编号:AQ-SN-0038

车用发动机设备噪声形成原因及控制措施 (新编版) 1.噪声的主要危害 噪声污染不仅对人们的自我感觉和工作能力产生消极的影响,而且能导致健康严重失调、疲劳、早期失聪、高血压、神经疾病等。 2.车用发动机噪声的形成与对策 发动机噪声主要包括燃烧噪声、机械噪声、进排气噪声、冷却风扇及其他部件发出的噪声。燃烧噪声是在可燃混合气体燃烧时,因气缸内气体压力急剧上升冲击发动机各部件,使之振动而产生的噪声。柴油中的十六烷值不合适或喷油时间过于提前,会引起发动机工作粗暴,使噪声急剧增大。汽油机由于过热、汽油品质不良和点火提前角过大等原因造成高频爆炸声、敲缸。 发动机内部的燃烧过程和结构振动所产生的噪声,是通过发动

机外表面以及与发动机外表面刚性连接结构的振动向大气辐射的,因此称为发动机表面噪声。根据发动机表面噪声产生的机理,又可分为燃烧噪声和机械噪声。燃烧噪声主要是由于气缸内周期性变化的压力作用而产生的,与发动机的燃烧方式和燃烧速度密切相关;机械噪声是发动机工作时各运动件之间及运动件与固定件之间作用的周期性变化的力所引起的,它与激发力的大小和发动机结构动态特性等因素有关。一般来说,低转速时,燃烧噪声占主导地位,高转速时,机械噪声占主导地位。 降低燃烧噪声,需改善燃烧条件,提高燃烧质量,以达到圆滑的压力波形。采用合理布置火花塞和气门以及采用合适的燃烧室型式和冷却方式即可以达到最有效的燃烧。在燃油方面,汽油的辛烷值越高,点火质量及抗爆振性能越好;对柴油机来说,要选择合适的十六烷值的柴油,如果达不到,可加入点火加速剂,提高点火质量,这样可有效地防治因燃油燃烧引起的噪声。 机械噪声包括活塞敲击声、气门机构冲击声、正时齿轮运转声等。减小活塞敲击声,可采取减小活塞与缸壁之间的间隙和使活塞

相关文档
最新文档