年产140万吨焦炭焦化厂硫铵工段初步设计

年产140万吨焦炭焦化厂硫铵工段初步设计
年产140万吨焦炭焦化厂硫铵工段初步设计

太原理工大学化学化工学院

《化工设计》课程设计说明书

项目名称: 年产70万吨焦炭焦化厂硫铵工段初步设计设计人姓名:

专业班级: 化学工程与工艺0803

指导教师: 李安民

设计时间: 2011年11月——2011年12月

目录

第一章概述

1设计依据--------------------------------------------------------------------3 2硫铵生产方法的确定----------------------------------------------------------5 第二章饱和器法硫铵生产工艺

1工艺流程图及流程叙述--------------------------------------------------------7 2硫铵工段的正常操作制度------------------------------------------------------8 3硫铵工段的工艺操作参数------------------------------------------------------9 4车间工艺布置---------------------------------------------------------------10 第三章化工计算

1计算原始数据---------------------------------------------------------------12 2小时生产能力计算 ----------------------------------------------------------13 3氨平衡计算-----------------------------------------------------------------13

4 水平衡的计算---------------------------------------------------------------14

5 热平衡计算-----------------------------------------------------------------15 第四章设备选型

1饱和器基本尺寸-------------------------------------------------------------20 2旋风式除酸器的基本尺寸-----------------------------------------------------22 第五章设备结构图叙述及附表

1设备结构图叙述-------------------------------------------------------------23 2 工艺设备一览表-------------------------------------------------------------26 致谢-----------------------------------------------------------------------27参考文献--------------------------------------------------------------------28

第一章、概 述

1设计依据

(1) 设计项目名称:年产70万吨焦炭焦化厂硫铵工段初步设计 (2) 生产能力:年产干硫铵2.7万吨

(3) 生产方法:饱和器法(外部除酸式),又称半直接法 (4) 硫铵主要质量标准:

硫铵的主要质量标准

游离酸(

(5) 硫铵的物理化学性质: 硫铵的分子式为

,分子量为132.16。其生成反应式如下:焦炉煤气在喷淋

饱和器内环形空间通过时,受到循环使用的硫酸喷淋,煤气中的氨与硫酸接触而发生中和反应:2()424

423

SO NH

SO H NH

=+ 当喷淋的硫酸酸度过量时,则生成酸式盐硫酸氢铵,

其反应式: 44

423

H S O NH SO H NH

=+ 随着饱和器内溶液中含氨达到饱和的程度,

酸式盐又可转变成中性盐,即硫铵,其反应式为:()424

4

4

3

SO NH

HSO

NH

NH =+

已知的生成热为279500千卡/千摩尔

的生成热为11000千卡/千摩尔

的生成热为210800千卡/千摩尔

则中和热为

试验测定得,用纯硫酸吸收气态氨生成硫铵时,其生成热为65300千卡/千摩尔; 当用76%的硫酸在饱和器中生成硫铵时,其生成热为413千卡/千克。硫铵分子结晶时放出

的结晶热为19.7千卡/千克或2600千克/千摩尔。纯态硫铵带有咸味,为白色的透明长菱形晶体。商品硫铵的晶体也可呈椭圆形或正方形,其色泽略呈绿色(或灰色、黄色、浅蓝色)。其先型尺寸平均不超过0.5毫米。硫铵的水溶液呈弱酸性,1%溶液的PH值为5.7,硫铵晶体溶于水时要吸收热量,其吸收热为15千卡/千克。

20℃时硫铵晶体的比重为1.766,自由堆积比重随结晶力度的大小波动于780—830千克/的范围内。280℃时硫铵开始分解,并放出氨气而变为酸式硫酸铵;当温度为513℃时,则完全分解为氨气及硫酸。硫铵结晶能吸收空气中的水分而粘结成块,在空气湿度大、结晶粒度小和含水量高时尤甚。潮湿的硫铵结晶对钢铁水泥及麻袋均有不同程度的腐蚀作用。硫铵遇石灰、水泥灰分解放出氨气,因此能破坏建筑物的强度。硫铵的其他性质见下表:

硫铵饱和溶液的蒸汽压力表

(6)硫铵的主要用途:

硫铵主要用于农业施氮肥。化学纯硫铵含氮量为21.2%或含氨量为25.78%,易溶于水。适用于农田后,大部分铵离子被吸附称为土壤的一个组成部分,减少了流动性,不易流失。植物吸收的能力比吸收的能力大得多,因为植物制造蛋白质所需氮素比硫素多。失去铵离子的酸根与土壤中的钙离子结合生成石膏,使土壤中所含的碱性化合物分解,结果土壤中的酸性逐渐提高,故土地连续使用硫铵10—15年后,要用石灰改变土壤的酸性。

氮肥中的氮素被植物吸收的量占施用量的百分率,称为肥料的利用率。硫铵对水稻的利用率为65%,对大麦和小麦约为55%,而一般肥料对水稻、大麦和小麦的利用率仅为20%。故硫铵施与燕麦、小麦、棉花、马铃薯、水稻、大麻等农作物均有良好的效果。

(7)煤炼焦时氨的形成及产率:

烟煤在高温炼焦过程中,煤质要发生一系列的物理化学变化。炼焦初期析出的初次产物经二次热解后,生成组分十分复杂的炼焦煤气、焦油、苯族烃以及氨、硫化氢、氰化氢和高

温炼焦化学产品。

氨的产率取决于炼焦的工艺条件及原料煤的性质。这里所指的工艺条件是指结焦时间、炼焦温度、炉顶空间温度、煤气从碳化室逸出速度等。至于煤料的水分及粒度,只对氨的产率起间接影响,且在工业生产情况下,煤料的水分及粒度一般波动不大,故与氨的产率关系不甚密切。在工业高温炼焦条件下,干煤的全焦产率为65%—75%,转变为氨的氮量约占干煤中总氮量的15%—20%,若干煤中的总氮量平均为2%,即氮对干煤的产率为0.3%—0.4%,

每吨干煤料的煤气发生量平均为300—320,因此,出炉煤气中的含氨量为8—13g/。

对烟煤来说,煤中大量的氮是结合在开链的和环形化合物的氨基衍生物组成之内,。在炼焦过程中,煤的部分氮化物被分解,并以不同的形式分布于炼焦挥发产物之中,而另一部分氮则残留在焦炭里面。绝大部分氨是煤中有机物的氨基部分分解而成的。这些氨基部分可能直接存与煤中,也可能使炼焦过程中由其他更复杂的氮化物热解而成。比较起来,后一种的可能性更大。此外,少量的氨还可能由元素直接合成:

但是合成氨的反应是一种剧烈的放热反应,同时也是可逆反应,,故在炼焦过程中,还会有氨解离成元素氮和氢的反应发生。可见,氨的产率与美的含氮量之间存在着密切的关系。煤的变质程度越深,氮的含量越低。

研究表明,对氨的产率起决定性作用的是煤中氮的存在形式和焦炉火道温度。

2硫铵生产方法的确定

目前绝大多数焦化厂都用硫酸吸收煤气中的氨来制取硫铵。根据工艺过程的不同,生产硫铵的方法可分为间接法、直接法和半直接法。此外,焦化厂还可以用石膏、芒硝或用煤气中的硫化氢代替硫酸来生产硫铵。

(1)间接法在现在生产硫酸方法未被提出之前,焦化厂曾用硫酸中和稀氨水,然后蒸发溶液而来制取固体硫铵。这种方法后来进一步得到完善,即形成了所谓间接法。

间接法生产硫铵的工艺过程为:煤气在洗氨塔中用水洗涤,氨被吸收,得到稀氨水,送去蒸馏。由蒸氨塔逸出的氨,进入饱和器后被硫酸吸收而得硫氨。这种方法要消耗大量水蒸气,而且蒸发设备庞大,经济效果不佳。现今不采用。

(2)直接法这种方法的工艺过程为:出炉煤气在煤气集气管中被循环氨水冷却,除去其中的焦油,进入间接式初步冷却器。煤气在初步冷却器冷凝出的氨水补充到循环

氨水中去,而煤气中所含的水汽量,恰好相当于配煤水分和化合水分的总和。煤气

从初步冷却器出来,温度约为60~70℃,进入电扑焦油器,除去其中之焦油雾滴。然后带着全部氨经预热器进入饱和器。氨和硫酸结合而成硫氨。煤气出饱和器经除酸器,进入冷却到直接式冷却器,冷却到适宜温度,进入鼓风气。采用直接法生产硫铵虽然有很多优点,但因过多的设备处于负压状态,在生产上不安全,故在工业上未被采用。

(3)半直接法现代焦化厂广泛采用的是半直接法生产硫铵。我国多以饱和器作为氨的吸收器,国外则有以硫酸洗氨塔代替饱和器的趋势,即所谓无饱和器法生产硫铵。

采用饱和器或硫酸洗氨塔生产硫铵,实质上都属于半直接法。半直接法生产硫铵的

工艺过程为:出炉煤气在初步冷却器中冷却到25~30℃,进入鼓风机。加压后,经

电捕焦油器,煤气预热器.进入饱和器。在初步冷却器中冷凝下来的氨水全部与集气管循环氨水混合。多余的混合氨水送如氨蒸馏器中,蒸馏出的氨气也送入饱和器,并和煤气中的氨一起为硫酸吸收而得硫铵。由于该法工艺过程简单,生产成本低,故为国内外焦化厂普遍采用。

(4)不用硫酸制取硫铵的方法由于国民经济各部门对硫酸的需要量很大,焦化厂不用硫酸制取的方法,一向为人们注意。以下简单是几种不用硫酸制取硫氨的方法。

①用石膏制取硫铵将石膏粉碎呈粉末后,按气体或液体法进行反应:

将所得的硫铵溶液用真空过滤器过滤。除去碳酸钙沉淀后的滤液中,约含硫铵40%,将其送入蒸发器进行蒸发,得到结晶硫铵。然后经分离与干燥得到最后成品。

这种工艺过程复杂,需要的设备较多,耗用的蒸汽量很大,氨的回收率低,因此经济效果很差。由于该过程的副产品是碳酸钙,所以最好与水泥厂联合生产。

②用芒硝制取硫铵芒硝与气态二氧化碳,氨与水按以下方式进行反应:

将反应所得溶液送去过滤分离,除去Na

2HCO

3

沉淀,而滤液用少量硫酸中和后,送入结晶设

备浓缩结晶。所得结晶经分离、干燥后即为产品。按该法生产硫铵时,可以得到碳酸氢钠副产品。

据文献资料报道,采用该法制取硫铵时,硫酸钠的利用率高达98.5%。硫酸用量对1吨硫铵约为144千克。硫铵质量很高,不含有游离酸,含氮量可达21%。此外,每吨干煤料可得到碳酸氢钠约为9公斤。

但是,在焦化厂实现上述工艺过程是有困难的。单是加工硫铵溶液,就需混合、结晶、中和和蒸发等许多工序。处理碳酸氢纳的装置同样也很复杂。此外,采用该法在技术经济上的合理性,还得进一步研究。

③用工业废气中的二氧化硫制取硫铵一些焦化厂靠近烧结铁矿的烧结厂或燃烧高硫煤的大型发电厂。在这种情况下,焦化厂利用烧结厂或发电厂工业废气中的二氧化碳来制取硫铵是很理想的。

这种方法的实质在于焦化厂生产的浓氨水在吸收器中与废气中的二氧化硫作用,生成亚硫酸氢铵和亚硫酸铵。当有硫化氢存在时,溶液在加热器中发生分解,生成硫代硫酸铵:

当溶液中硫代硫酸铵达到一定浓度后,剩余的亚硫酸氢铵和硫代硫酸铵作用,生成硫铵和元素硫:

但此法尚在试验研究阶段,工业中并未采用。

综上所述,综合权衡利弊,本次设计采用第三种方法,即半直接法。

第二章、饱和器法硫铵生产工艺

1工艺流程图及流程叙述

外置除酸器饱和器法生产硫铵的工艺流程见下图

如上图所述:炼焦煤气经初冷器冷却到25℃—35℃,其中部分氨气以冷凝氨水形式析出。冷却后的煤气被鼓风机加压,使经电补焦油器,然后进入煤气预热器3,用间接蒸汽加热至60℃-70℃,煤气预热的目的在于保持饱和器的水平衡,以免饱和器内母液因煤气中水汽的冷凝而被冲淡。预热后的煤气沿中央煤气管进入饱和器6,并经煤气分配伞从酸性母液中鼓泡而出,其中氨即为硫酸吸收。煤气出饱和器后进入除酸器2,以分离所夹带的酸雾,然后煤气去粗笨工段。

母液中不断有硫铵生成,当其呈过饱和状态后便有硫铵结晶析出。用结晶泵8将饱和器底部的硫胺浆即送至结晶槽11,使之沉淀分离。结晶槽上的母液满流至回流槽7,然后流回饱和器。结晶槽底部较浓的料浆被送入离心机10进行离心过滤。为降低产品游离酸含量,在离心机中用温水洗涤滤饼。离心分离后的滤液则由回流槽返回饱和器。

离心机后的硫铵,通常含水2-3%。为使其水分降至0.5%以下,湿硫铵经皮带运输机送入沸腾式干燥机进行干燥。干燥后的硫铵即为产品。

为使饱和器内母液酸度和温度均匀,同时使小粒结晶呈悬浮状态以利其成长,母液需要搅拌。为此,饱和器内的母液不断地经满流管流入满溜槽4,然后用循环泵5将其送入饱和器底部经喷射式搅拌器喷出,使母液进行强烈的搅拌。

2硫铵工段的正常操作制度

正常操作时,为使饱和器内母液酸度保持在4-6%的范围内,需从硫铵高置槽1连续的

往饱和器中补充新硫酸。饱和器的阻力通常为450-500毫米水柱。但生产一段时间后,由于硫铵结晶沉积在壁器上和煤气泡沸伞等处,而使其阻力增加,有时可达700毫米水柱以上。为消除饱和器阻力的增加和防止其堵塞,应定期进行饱和器的酸洗和水洗,以溶解其内的结晶沉积物。此时,所制造的过量母液经满溜槽流至母液贮槽12中暂时贮存,待饱和器内母液不足时,再用母液泵9将其送回使用。

除酸器、循环泵、结晶泵和母液管道,也应定期用温水洗涤,以防被硫铵结晶堵塞。

经初冷器后,煤气尚含焦油雾,而鼓风机后则降为0.2-0.53

g。当设置电补焦油器

/Nm

时,煤气中的焦油雾含量则降至。焦油雾在饱和器中受硫酸的作用而聚合呈树脂状的酸焦油。酸焦油的真比重为1.24-1.26。由于它往往夹带着气泡,故视比重通常不超过1.10。正常操作时,母液比重为1.27-1.30,酸焦油能浮于液面上,并随母液流入满溜槽,在此用人工定期捞除。

酸焦油是硫铵工段生产的废物,至今还为找到利用它的好办法。

在饱和器的操作过程中,母液往往会起泡沫。严重时,饱和器和满流槽内的母液几乎全部呈泡沫状态。此时,母液比重大大降低,煤气有经满流槽水封窜出的危险,母液起泡沫的原因可能是以下几种。(1)母液中含有大量机械杂质,他们使酸焦油呈细分散状而不再与母液分层。(2)当母液中的砷化物与煤气中的硫化氢生成胶状的硫化砷时,会使酸焦油粘附其上而不再与母液分层。(3)苯族烃与浓硫酸作用而生成的磺酸盐,也会使母液起泡沫,故硫胺工段最好不使用浓度在94%以上的浓硫酸,也不希望使用再生酸,因为前者会促使煤气中的苯族烃磺化,而后者本身就含有磺酸盐。(4)母液中硫铵结晶的浓度过低时,酸焦油和其他机械杂质不易与母液分层。故当饱和器进行酸洗和水洗“灭晶”时,母液最容易起泡沫。

当发现母液起泡沫时,应立即经回流槽向饱和器中加入少量洗油或其他油类。当母液的表面张力降低后,泡沫便会消除。

煤气中的氨在饱和器中被吸收得很完全。按现行技术操作规程的规定,饱和器后煤气含氨量不得超过0.033

g,亦即氨的回收率约在99.6%以上。我国大多数焦化厂的操作表

/Nm

明,上述规定时可以达到的。

采用饱和器法生产硫铵时,每产一吨硫铵的硫酸和水、电、蒸汽的消耗定额大致如下表:

3硫铵工段的工艺操作参数

(1)预热前粗气温度预热器前粗气温度与出冷气后粗气温度及其经鼓风机加压后的温升有关。预热器前的粗气温度一般为25—35℃。

(2)预热器粗气温度为了蒸发饱和器中多余的水分,保持饱和器内水平衡,防止母液被稀释,进入饱和器的粗气必须进行预热。为不使预热温度过高,影响硫胺质量,除降低粗气初冷湿度外,必须严格控制进入饱和器内的水量。

(3)母液湿度母液温度过高过低均对晶体成长不利,因此饱和器在保持水平衡且保证母液不被稀释的条件下,保持相宜的稳定操作温度。

饱和器内母液液面上的水蒸气分压与楚饱和器粗煤气中水蒸气相平衡时的母液温度为最低温度。母液液面上的水蒸气分压一般应为煤气中水蒸气分压1.3-1.5倍(此值成为偏离平衡系数),于此相应的母液温度即为母液的适宜温度。

饱和器母液温度一般宜为50-55℃,以利于生成大粒度结晶硫胺。

(4)母液酸度和加酸制度由经验知,设计时母液酸度宜取4-6%。为保持酸度稳定平时应连续加酸。中加酸时母液酸度为12-14%,大加酸时为18-22%。

(5)母液循环量设计时,母液循环量应为干硫铵产量的30倍,以制取大粒度硫铵晶粒。

(6)母液中的结晶的浓度(晶比)晶比即母液中所含结晶的体积对母液与结晶总体积的百分比。为有利于氨的吸收、减少搅拌阻力和有利于结晶的长大,晶比不宜过大,一般宜取40-50%。

(7)结晶槽中结晶层的厚度结晶槽中应保持一定厚度的结晶层,一般为结晶槽高度的1/3.结晶层厚度小,离心机的进料浓度波动大,使产品含水量和游离酸过多;厚度过大,大量结晶同母液一起满流到饱和器,易造成管道和饱和器堵塞。

(8)离心机水洗温度和洗水量离心机的水洗温度和洗水量影响硫胺的游离酸含量和水分含量。洗水温度一般宜为60-80℃,这样既能洗去结晶表面油类杂质,又能降低滤液粘度,提高分离效率,降低硫铵游离酸含量。为使硫铵的游离酸含量和水分保持正常,离心机的洗水量应为干硫铵产量的6%。

(9)饱和器和除酸器的洗水量饱和器的酸洗和水洗是定期进行的,洗水量虽各厂的工

作制度不同而异。

4车间工艺布置

(1)工艺布置原则

①硫铵工段由煤气预热、硫铵、离心干燥、包装及酸库组成,应考虑铁路和公路运输

的方便。

②硫铵仓库应布置在主厂房一侧。

③酸库易单独布置。

(2)饱和器系统设备布置原则

①饱和器中心与主厂房外墙之间的距离,宜按下列数值:直径6250的饱和器,不小

于12米;直径5500的饱和器,10米;直径4500、3000、2000的饱和器,7—10米。

②饱和器锥形底距防腐地坪应不小于400毫米。

③满流槽布置在靠近母液槽一侧。

④当满流槽基础标高低与防腐地坪标高时,应将基础设在坑内,坑沿高出地坪200毫

米,焊在槽壁上的挡板应遮住坑沿。

⑤由满流槽至酸焦油分离槽的母液管的坡度应大于0.005。

⑥水封槽的液封高度应不小于风机全压。

⑦酸泵应成组集中布置。蹦基础周围应设置带地板的小地沟以引漏夜至集液坑进行中

和。

⑧加酸管上应设置视镜和调节性能良好的节流阀,以控制加酸量。

(3)设计参数

(4)离心干燥系统设备布置原则

①硫铵操作室楼层标高,应按下列原则确定:由结晶槽至离心机的母液能顺利自流;

应使离心机分离出的母液自流入饱和器内;由螺旋输送机至干燥器的溜槽,其倾角不小于52度。

②由干燥器至硫铵贮斗的溜槽的倾角不小于45度。

③硫铵贮斗出料口距仓库地坪的距离,用人工包装时应不小于1900毫米。

(5)其他注意事项

④检修饱和器机组可设置电动或手动桥式吊车。在饱和器机组一侧并在起吊设备作业

范围内应留有放一个饱和器机组的检修用地。当采用其他方式起吊设备时,在设计中应考虑检修时所需空间和平面位置,作业场第应足够。

⑤所有设备的检修应考虑必要的起吊装置

(6)生产制度

本车间采用每年300个工作日,每个工作日24小时,五班三倒,前一班推后30分钟交班,后一班提前30分钟接班。

第三章、化工计算

1计算原始数据

2小时生产能力计算

3氨平衡计算

1.氨的产量:

2.剩余氨水量:查相关文献知,30℃时,1N煤气被水汽饱和后含水汽35.2g.

3.剩余氨水中含氨量:

4.煤气带入饱和器的氨量:

5.煤气带出饱和器的氨量:

6. 氨水蒸馏塔后废水量为:

1.250—氨水蒸馏塔用直接蒸汽加热后使废水增多的系数

7.由氨水蒸馏塔的氨气带入饱和器的氨量:

8.饱和器中被硫酸吸收的氨量:

11.干硫铵产量

12.硫酸消耗量100%的硫酸)

折合76%的硫酸为

13.氨的损失率:

氨平衡计算结果表

4 水平衡的计算

1.煤气带入饱和器的水量:

2.氨分缩器后氨气带入的水量:

由相关资料知:氨分缩器后蒸汽中氨的含量为10%,则

,

,

3.由76%(质量分数)硫酸带入的水分:

4.离心机洗水量:离心机洗水量一般为干硫铵重量的6%,

故带入的水量为:

5.饱和器和除酸器的洗水量:

饱和器的酸洗、水法定期进行,洗水量随各厂工作制度不同而异,设饱和器与除酸器每班酸洗和水洗各一次,每次酸洗、水洗带来的水量为5吨,则洗水量为:

6.带入饱和器的总水量为:

7.带入饱和器的总水量应全部被煤气带走,故出饱和器的每干煤气应含水汽:

与此水汽含量相应的煤气露点约为40℃

8.每干煤气中水汽体积:

故混合气体中水汽所点的体积百分比为:

9.饱和器后湿煤气的绝对压力为:

此时水汽的分压为:

由此,要使多余水分被煤气带走,母液液面上的水汽压力应大于60.69mmHg

相关资料显示:60℃时,结晶硫铵浓度为40%-50%。

当母液中(NH

4)

2

SO

4

的浓度为42%,酸度分别为4%与8%时,查母液表面饱和水蒸气压力

与温度的关系图,知

当酸度为4%时,与60.69mmHg相应的温度为44℃。

当酸度为8%时,与60.69mmHg相应的温度为49℃。

由以上可知:要使进入饱和器的水分全部蒸发,在上述两种情况下,母液温度应大于分别为44℃或49℃。

5 热平衡计算

因有关参考数据均比较早,故这里先依旧例仍用Cal为热量单位。

输入热量

1煤气带入饱和器的热量

设煤气预热器后的实际温度为t,则

⑴干煤气带入的热量:

0.36-干燥气比热。Kcal/(m3.℃)

⑵水汽带入的热量:

水在0℃时的平均潜热

0.438Kcal/(kg.℃)------水汽在0-80℃时的平均比热。

⑶氨带入的热量:

0.5Kcal/(kg.℃)------氨的比热:

煤气中所含的苯族烃,硫化氢及其它组分在饱和器中未被吸收,可忽略。至于吡啶在饱和器中被吸收,但量很少,亦可忽略。

2氨气带入的热量Q

2

⑴氨带入的热量:

98----分缩器后氨汽温度℃

0.508----98℃氨的比热

⑵水汽带入的热量

3硫酸带入的热量

0.45------76%H

2SO

4

的比热(

20------H

2SO

4

的温度(℃)

4洗涤水带入的热量

60------离心机、饱和器洗涤水温度(℃)

0.999-----60℃时水的比热

5结晶槽回流母液带入的热量:

由经验知,回流母液量一般为硫铵产量的10倍。实践表明,当母液温度稳定的保持在50-55℃范围,对大晶粒结晶最为适宜,同时由水平衡计算知,母液温度应大于44℃或49℃,同时大于出饱和器煤气的露点40℃。设结晶槽回流母液和循环母液的温度均为48℃,则

0.64-------母液的比热

6循环母液带回的热量:

同样由经验知循环母液量一般为硫铵产量的30倍,温度取48℃

7化学反应Q

7

(1)H

2SO

4

与NH

3

的中和热:

可按反应前后物质的生成热求出.

(

则中和热为:

故每小时生产3758.47kg硫铵的中和热为:

(2)硫铵结晶热:

19.7------硫铵结晶热

(3)硫酸的稀释热:

每分子硫酸的稀释热可用下计算:

这里母液中酸度取6%,则

-----酸度6%时水分子数与硫酸分子数之比 n

1

酸度为76%时水分子数与硫酸分子数之比 n

2----------

则:

则硫酸的总稀释热为:

饱和器的输入热量:

输出热量:

,,饱和器后煤气温度设为60℃

1煤气带出热量Q

1

干煤气带出的热量:

水汽带出的热量:

,

2去结晶槽母液带出的热量,设母液温度为55℃

, 3循环母液带出的热量

4硫铵带出的热量

0.34-----结晶硫铵的比热

5饱和器外壁热损失:

结合相关资料,以上参数可大概估算为:

F-饱和器外表面,对于6。25M直径的饱和器可取300M2

K-传热系数,取

t

-饱和器外壁温度,取40℃

T

-大气温度,取20℃

t

B

总输出热量:

由得:

t=62.2℃

(整理)年产80万吨焦化厂洗苯工段设计说明书

太原理工大学

摘要 苯是一种具有危害的化学品,在煤气中是一种杂质,如果煤气中含有粗苯,在居民使用中会出现燃烧不完全,冒黑烟等现象,对后续工段的工艺也有影响,同时,粗苯是一种有用的化学品,是重要的化工原料,经过分离可以分离出苯、甲苯、二甲苯等化学品,因此从粗煤气中提取出来粗苯不仅具有环保意义,而且具有经济价值。终冷洗苯工段就是将硫铵工段输送来的粗煤气进行降温冷却,使粗煤气温度降到最佳吸收温度,同时可以脱除粗煤气中的萘进行回收,然后送入洗苯塔用洗油进行吸收,将粗苯分离出来。终冷塔设计为两段式,分别用循环水和冷却水进行冷却,洗苯塔采用填料吸收塔进行吸收,使用塑料孔板波纹填料。 关键词:终冷洗苯洗油

Abstract Benzene is a hazardous chemical impurity in the gas. If the gas contains benzene, the phenomenon of incomplete combustion, black smoke take place when residents use it. It also affects the process of follow-up section. At the same time, crude benzene is a useful chemicals, an important chemical raw material and it can be separated to benzene, toluene, xylene and other chemicals after the separation. Crude benzene extracted from the crude gas not only has environmental significance, but also has economic value. Final cold and wash benzene section is a section of cooling down the crude gas transported from thiamine section so that the temperature of the crude gas can be the best absorption temperature, while the removal and recovery of naphthalene in the crude gas can be done. Then it is transported into the washing benzene tower in which the wash oil absorbed the benzene. The final cooling tower is designed as two-stage tower. It cools the gas using circulating water and cooling water. The wash benzene tower take use of the packed absorption tower plastic corrugated plate packing. Keywords: final cold wash benzene wash oil

年产3000吨丙烯氰(AN)合成工段换热器工艺设计1

年产3000 吨丙烯氰合成工段换热器工艺设计

目录 一、设计说明 (3) 1.1 概述 (3) 1.2丙烯腈生产技术的发展概况 (3) 1.2.1国外的发展情况 (3) 1.2.2国内的发展情况 (4) 1.3 世界X围内产品的生产厂家、产量 (6) 1.4世界X围内生产该产品的所有工艺及其分析 (7) 1.4.1环氧乙烷法 (7) 1.4.2 乙炔法 (7) 1.4.3丙烯氨氧化法 (7) 1.5设计任务 (8) 二、生产方案 (8) 2.1 工艺技术方案及原理 (8) 2.2 主要设备方案 (9) 2.2.1催化设备 (9) 2.2.2控制系统 (10) 三、物料衡算和热量衡算 (10) 3.1 生产工艺及物料流程 (10) 3.2 小时生产能力 (14) 3.3 物料衡算和热量衡算 (14) 3.3.1反应器的物料衡算和热量衡算 (14) 3.3.2废热锅炉的热量衡算 (17) 3.3.3空气饱和塔物料衡算和热量衡算 (18) 3.3.4 氨中和塔物料衡算和热量衡算 (21) 3.3.5换热器物料衡算和热量衡算 (27) 3.3.6丙烯蒸发器热量衡算 (32) 3.3.7丙烯过热器热量衡算 (33) 3.3.8氨蒸发器热量衡算 (33) 3.3.9气氨过热器 (34) 3.3.10 混合器 (34) 3.3.11 空气加热器的热量衡算 (35) 3.3.12吸收水第一冷却器 (36) 3.3.13 吸收水第二冷却器 (36) 四、主要设备的工艺计算 (37) 4.1 空气饱和塔 (37) 4.2 水吸收塔 (40) 4.3 合成反应器 (43) 4.4 废热锅炉 (45) 五、环境保护要求 (46) 5.1丙烯腈生产中的废水和废气及废渣的处理 (46) 六、参考文献 (50) 1设计说明

焦化厂工艺流程.pdf

焦化厂主要生产车间:备煤车间、炼焦车间、煤气净化车间及其公辅设施等,各车间主要生产设施如下表所示:序号系统名称主要生产设施 1 备煤车间煤仓、配煤室、粉碎机室、皮带机运输系统、煤制样室 2 炼焦车间煤塔、焦炉、装煤设施、推焦设施、拦焦设施、熄焦塔、筛运焦工段(包括焦台、筛焦楼) 3 煤气净化车间冷鼓工段(包括风机房、初冷器、电捕焦油器等设施);脱氨工段(包括洗氨塔、蒸氨塔、氨分解炉等设施);粗苯工段(包括终冷器、洗苯塔、脱苯塔等设施) 4 公辅设施废水处理站、供配电系统、给排水系统、综合水泵房、备煤除尘系统、筛运焦除尘系统、化验室等设施、制冷站等 3、炼焦的重要意义由高温炼焦得到的焦炭可供高炉冶炼、铸造、气化和化工等工业部门作为燃料和原料;炼焦过程中得到的干馏煤气经回收、精制可得到各种芳香烃和杂环混合物,供合成纤维、医药、染料、涂料和国防等工业做原料;经净化后的焦炉煤气既是高热值燃料,也是合成氨、合成燃料和一系列有机合成工业的原料。因此,高温炼焦不仅是煤综合利用的重要途径,也是冶金工业的重要组成成分。 政策性风险煤炭是我国最重要的能源之一,在国民经济运行中处于举足轻重的地位,焦化行业属于国家重点扶持的行业。为建立大型钢铁循环结构,在钢铁的重要生产基地和炼焦煤生产基地建设并经营现代化大型焦化厂符合我国产业政策和经济结构调整方向,也是焦化工业发展的一个前景。 五、原料煤的准备 备煤车间的生产任务是给炼焦车间提供数量充足、质量合乎要求的配合煤。其工艺流程为:原料煤→受煤坑→煤场→斗槽→配煤盘→粉碎机→煤塔。 1、煤的接收与储存原料煤一般以汽车火车的方式从各地运输过来,邯钢焦化厂的原料煤主要来自邢台的康庄、官庄,峰峰和山西等地。当汽车、火车到达后,与受煤坑定位后,用螺旋卸煤机把煤卸到料仓里,当送料小车开启料仓开口后,用皮带把煤料运到规定位置。注意:每个料仓一次只能盛放同一种类别的煤。为了保证焦炉的连续生产和稳定焦炉煤的质量,应根据煤质的类别用堆取料机把运来的煤卸放在煤场的各规定位置。邯钢焦化厂的备煤车间用的气煤、肥煤、焦煤和瘦煤四种,按规定分别堆放在煤场的五个区。 2、煤原料的特性及配煤原则

小结(硫铵工段)

硫铵工段小结(9月5日—9月20日)1工艺流程 实习一段时间后,绘制工艺流程图如下: 煤气 氨汽 12 34 5 6 7 5 8 6 9 10 11 12 13 1415 16 17 硫酸 煤气 1:预热器; 2:饱和器; 3:满流槽; 4:母液贮槽;5:结晶槽; 6:离心机; 7:输送机; 8:干燥器 9:硫铵贮斗; 10:热风机; 11:旋风除尘器; 12:湿式除尘器; 13:大母液泵; 14:结晶泵; 15:小母液泵; 16:送风机; 17:引风机 硫铵工艺流程图 2工艺说明 来自冷鼓工段的煤气,经煤气预热器,加热到70-80℃进入硫铵饱和器上段的喷淋室,来自蒸氨工段的氨汽在煤气进入饱和器前与其混合。在饱和器内煤气分成两股沿饱和器内壁与内除酸器外壁的环形空间流动,并与喷洒的循环母液逆流接触,煤气与母液充分接触,使其中的氨被母液中的硫酸所吸收,生成硫酸铵,然后煤气合并成一股,沿原切线方向进入饱和器内的除酸器,分离煤气中夹带的酸雾后进入洗脱苯工段。 在饱和器下部取结晶室上部的母液,用大母液泵连续抽送至上端喷淋室。从饱和器满流口引出的母液,经加酸后,由水封槽溢流流入满流槽,然后通过小母液泵抽送至饱和器喷淋管,经喷嘴喷洒吸收煤气中的氨。饱和器母液中不断有硫

铵晶核生成,且沿饱和器内的中心管道进入下端的结晶室,在此,大量循环母液的搅动,晶核逐渐长大成大颗粒结晶沉积在结晶室底部,用结晶泵将其连同一部分母液送至结晶槽,在此分离的硫铵结晶和少量母液排放到离心机内进行离心分离,滤除母液,离心分离出的母液与结晶槽溢流出来的母液一同自流回饱和器。 从离心机分离出的硫铵结晶,由螺旋输送机送至沸腾干燥器,经热空气干燥后进入硫铵贮斗,然后称量包装进入成品库。沸腾干燥器用的热空气是由送风机从室外引入,空气经热风器,用煤气点燃后送入,沸腾干燥器排出的热空气经旋风除尘器捕集夹带的的细粒硫铵结晶后,由排风机抽送至湿式除尘器,进行再除尘后排入大气。 从罐区来的硫酸进入硫酸高位槽,经控制机构自流入饱和器的满流管,调节饱和器内溶液的酸度。硫酸高位槽溢流出的硫酸,进入硫酸贮槽,当硫酸贮槽内的硫酸到一定量时,用硫酸泵送回硫酸高位槽作补充。 硫铵饱和器是周期性的连续操作设备。应定期加酸补水,当用水冲洗饱和器时,所形成的大量母液从饱和器满流口溢出,通过插入液封内的满流管流入满流槽,再经满流槽流至母液贮槽,暂时贮存。满流槽和母液槽液面上的酸焦油可用人工捞出。而在每次大加酸后的正常生产过程中,又将所贮存的母液用母液泵送回饱和器作补充。此外,母液贮槽还可供饱和器检修、停工时,贮存饱和器内的母液用。 3生产技术指标 母液的酸度:4—6%; 大加酸时的酸度:8—10%; 洗水温度应保持在≥60℃; 水洗操作时间:≤1h; 硫酸消耗不超过850kg/t; 预热器后煤气温度70—90℃; 饱和器母液温度:50—55℃; 饱和器后煤气含氨:≤30mg/m3; 饱和器阻力:1—5KPa,不大于6KPa; 预热器阻力:500Pa;

焦化厂硫铵、蒸氨工段操作规程

焦化厂硫铵工段安全技术操作规程 一、工艺流程 1、硫铵工序 由冷鼓送来的煤气,经蒸汽预热后,进入喷淋式饱和器的上段喷淋室,在此分两股沿饱和器内壁与内除器的环形空间流动,并循环的母液充分接触,氨被吸收后煤气合并成一股,沿切线方向进入饱和器内除酸器,分离煤气中夹带的酸雾,后送往粗笨工段。 在饱和器下端结晶室上部的母液,用循环泵连续抽出送至上段喷淋室进行喷洒,吸收煤气中的氨,并循环搅动母液以改善硫铵结晶过程。 饱和器在生产时母液中不断有硫铵结晶生产,由上段喷淋室内的降液管流至下段结晶室的底部,用结晶泵将其连同一部分母液送至结晶沉降,然后排放至离心机内进行离心分离,滤除母液并用热水洗涤结晶,离心滤除的母液与结晶槽满流出来的母液一同自流同饱和器下段的母液中。 从饱和器满流口溢流出的母液,通过插入液封内的满流管流入满流槽,满流槽内的母液用小母液泵送至饱和器顶部用于二次喷洒洗铵之用。 买来的硫酸、放入硫酸地下槽后,用液下泵打往硫酸贮槽,在通过硫酸泵打往高位槽,然后自流加入满流槽,当硫酸高位槽的液位高时,可满流回硫酸贮槽,在定期用泵打往高位槽以作补充之用。

饱和器定期补水,并用水冲洗饱和器,所形成的大量母液即由满流槽至母液贮槽,用于给饱和器补液用。 带入母液中的焦油,在饱和器上段喷淋室内由满流口满流至满流槽,在饱和器下段结晶上部由焦油排出口排出至满流槽,满流至母液贮槽,定期捞出。 当硫酸高位槽的液位高时,可满流硫酸贮槽,再定期用泵送回高位槽以作补充。 从离心机卸出的硫铵产品,由螺旋输送机送至沸腾式干燥器,进行干燥后进入储料斗,,然后称量,推包,封袋,送入成品库,干燥冷却器顶部排出的尾气,经旋风分离,再经过水浴器过滤洗涤尾气中夹铵颗粒,由排风机排至大气。 2、蒸铵工序 从萃取脱酚工段来的剩余氨水首先进入氨水贮槽,然后由氨水泵送入换热器预热至约90℃在进蒸氨塔顶,氨水在塔内逐级而下与蒸汽反复接触使NH3转移到汽相中,最后从塔底排入废水槽再次分离重油,废水泵从废水槽中把温度较高的废水送入换热器与氨水进行热交换,温度降低后的废水通过管道送往生化站作进一步的处理后排放,或送往熄焦池熄焦。 a、碱液流程 买来的碱液首先存入液碱槽,通过碱液泵打往高位槽,在通过调节阀,流量计自流入氨水泵吸入管道内,碱液与氨水在管道和泵中混合反应使固定氨转化为游离NH3以便在蒸

年产30万吨合成氨脱碳工段工艺设计

年产30万吨合成氨脱碳 工艺项目 可行性研究报告 指导教师:姚志湘 学生:魏景棠

目录 第一章总论 (3) 1.1 概述 (3) 1.1.1 项目名称 (3) 1.1.2 合成氨工业概况 (3) 1.2 项目背景及建设必要性 (4) 1.2.1 项目背景 (4) 1.2.2 项目建设的必要性 (4) 1.2.3 建设意义............................................................................. 错误!未定义书签。 1.2.4 建设规模 (4) 第二章市场预测 (6) 2.1国内市场预测 (6) 2.2 产品分析 (6) 第三章脱碳方法及种类.. (7) 3.1 净化工序中脱碳的方法. (7) 3.1.1 化学吸收法 (7) 3.1.2 物理吸收法 (8) 3.1.3 物理化学吸收法................... (8) 3.1.4 固体吸收法 (10) 3.2碳酸丙烯酯(PC)法脱碳基本原理 (10) 3.2.1 PC法脱碳技术国内外的情况 (10) 3.2.2 发展过程 (10) 3.2.3 技术经济 (11) 3.2.4 工艺流程 (11) 3.2.5 存在的问题及解决方法 (12) 3.2.6 PC脱碳法发展趋势 (13)

第一章项目总述 2.1 概述 1.1.1项目名称 年产30万吨合成氨脱碳工段工艺设计 1.1.2合成氨工业概况 1898年,德国A.弗兰克等人发现空气中的氮能被碳化钙固定而生成氰氨化钙(又称石灰氮),进一步与过热水蒸气反应即可获得氨: CaCN2+3H2O(g)→2NH3(g)+CaCO3 在合成氨工业化生产的历史中,合成氨的生产规模(以合成塔单塔能力为依据)随着机械、设备、仪表、催化剂等相关产业的不断发展而有了极大提高。50年代以前,最大能力为200吨/日,60年代初为400吨/日,美国于1963年和1966年分别出现第一个600t/d 和1000t/d的单系列合成氨装置,在60-70年代出现1500-3000t/d规模的合成氨。 世界上85%的合成氨用做生产化肥,世界上99%的氮肥生产是以合成氨为原料。虽然全球一体化的发展减少了用户的选择范围,但市场的稳定性却相应地增加了,世界化肥生产的发展趋势是越来越集中到那些原料丰富且价格便宜的地区,中国西北部有蕴藏丰富的煤炭资源,为发展合成氨工业提供了极其便利的条件。 2.2 项目背景及建设必要性 1.2.1 项目背景 我国是一个人口大国,农业在国民经济中起着举足轻重的作用,而农业的发展离不开化肥。氮肥是农业生产中需要量最大的化肥之一,合成氨则是氮肥的主要来源,因而合成氨工业在国民经济中占有极为重要的位置。 我国合成氨工业始于20世纪30年代,经过多年的努力,我国的合成氨工业得到很大的发展,建国以来合成氨工业发展十分迅速,从六十年代末、七十年代初至今,我国陆续引进了三十多套现代化大型合成氨装置,已形成我国特有的煤、石油、天然气原料并存和大、中、小规模并存的合成氨生产格局。目前我国合成氨产能和产量己跃居世界前列。 但是,由于在我国合成氨工业中,中小型装置多,技术基础薄弱,国产化水平低,远远不能满足农业生产和发展的迫切需要,因此,开发新技术的同时利用计算机数学模型来提高设汁、生产、操作和管理等的核算能力,促进设计、管理和生产操作的优化,从而推动合成氨工业发展,提升整体技术水平,己成为国内当前化学工程科研、工程设计的重要课题。

焦化厂工艺流程文字叙述及流程图

备煤 炼焦所用精煤,一方面由外部购入,另一方面由原煤经洗煤后所得,洗精煤由皮带机送入精煤场。精煤经受煤坑下的电子自动配料称将四种煤按相应的比例送到带式输送机上除铁后,进入可逆反击锤式粉碎机粉碎后(小于3mm占90%以上),经带式输送机送至焦炉煤塔内供炼焦用。 炼焦 装煤推焦车在煤塔下取煤,捣固成煤饼后,按作业计划从机侧推入炭化室内。煤饼在炭化室内经过一个结焦周期的高温干馏,炼成焦炭并产生荒煤气。 炭化室内的煤饼结焦成熟后,由装煤推焦机推出并通过拦焦机的导焦栅送入熄焦车内。熄焦车由电机牵引至熄焦塔熄焦。熄焦后的焦炭卸至凉焦台,冷却后送往筛焦楼进行筛分和外运。 煤在干馏过程中产生的荒煤气汇集到炭化室的顶部空间,经上升管、桥管进入集气管。700℃的荒煤气在桥管内经过氨水喷洒后温度降至85℃左右,煤气和冷凝下来的焦油氨水一起经吸煤气管道送入煤气回收车间进行煤气净化及焦油回收。 焦炉加热燃用的净化煤气经预热器预热至45℃左右进入地下室,通过下喷管把煤气送入燃烧室立火道,燃烧后的废气经烟道、烟囱排入大气。 冷鼓

由焦炉送来的80-83℃的荒煤气,沿吸煤气管道入气液分离器。经气液分离后,煤气进入初冷器进行两段间接冷却;上段用32℃循环水冷却煤气,下段用16-18℃低温水冷却煤气,使煤气冷却至22℃,然后经捕雾器入电捕焦油器除去悬浮的焦油雾后进入鼓风机,煤气由鼓风机加压送至脱硫工段。 在初冷器下段用含有一定量焦油、氨水的混合液进行喷洒,以防止初冷器冷却水管外壁积萘,提高煤气冷却效果。 由气液分离器分离出的焦油氨水混合液自流入机械化氨水澄清槽,进行氨水、焦油和焦油渣的分离。分离后的氨水自流入循环氨水中间槽,用泵送到焦炉集气管喷洒冷却荒煤气,多余的氨水(即剩余氨水)送入剩余氨水槽,焦油自流入焦油中间槽,然后用泵将焦油送至焦油贮槽,静置脱水后外售,分离出的焦油渣定期用车送至煤场掺入精煤中炼焦。 脱硫 来自冷鼓工段的粗煤气进入脱硫塔下部与塔顶喷淋下来的脱硫 液逆流接触洗涤后,煤气经捕雾段除去雾滴后全部送至硫铵工段。 从脱硫塔中吸收了H2S的脱硫液送至再生塔下部与空压站来的压缩空气并流再生,再生后的脱硫液返回脱硫塔塔顶循环喷淋脱硫,硫泡沫则由再生塔顶部扩大部分排至硫泡沫槽,再由硫泡沫泵加压后送熔硫釜连续熔硫,生产硫磺外售。熔硫釜内分离的清液送至溶液循环槽循环使用。

130万吨焦化厂粗笨工段工艺的设计

1 绪论 1.1炼焦煤气中回收苯族烃的意义 炼焦化学工业是煤炭综合利用的专业。煤在炼焦时除了有75%左右变成焦炭外,还有25%左右生成各种化学品及煤气,为了便于说明将煤炭炼焦时的产品列出如下:(单位:2 /Nm g) 75%25% 250~450 80~120 30~45 8~16 6~30 2~2.5 1.0~ 2.5 8~12 0.4~0.6? ? ? ? ? ? ? ←??????→? ??????? 2水煤汽焦油汽粗苯氨 焦炭煤荒煤气硫化氢 其它硫化物(CS,噻吩等) 氰化物 萘 吡啶盐基 由此看来,从荒煤气中粗苯的含量来看,回收粗苯是十分必要的。 焦炉煤气经硫铵工段后进入粗苯工段,进行苯族烃的回收并制取粗苯,目前我国焦化工业生产的苯类产品仍占很重要的地位。 1.2粗苯的性质 粗苯是多种芳烃族和和其它多种碳氢化合物组成的复杂混合物,粗苯的主要成分是苯、二甲苯、甲苯及三甲苯等,此外,还含有一些不饱和化合物,硫化物及少量的酚类和吡啶碱类。在用洗油回收煤气中的苯族烃时,则尚有少量轻质馏分掺杂在其中。 粗苯是谈黄色的透明液体,比水轻,不溶于水。在贮存时,由于轻质不饱和化合物的氧化和聚合所形成的树脂状物质能溶于粗苯使其着色并很快地变暗。在常温下,粗苯的比重是0.891~0.92kg/L。粗苯是易燃易爆物质,闪点12℃.粗苯蒸汽在空中的浓度达到1.4~7.5%(体积)范围内时,及形成爆炸性的混合物。 粗苯质量的好坏以实验室蒸馏时180℃前蒸馏出量的百分数来确定,粗苯的沸点范围是75~200℃,180℃前溜出量越多,粗苯质量越好;在180℃后的溜出物则为溶剂油。 粗苯易燃易爆,要求工段必须严禁烟火,并对电动机加以防爆。 粗苯的组成取决于炼焦配煤的组成及炼焦产物在炭化室内热解程度,粗苯各组分的平均含量见下表(表1-1)。

年产20万吨氯碱盐酸工段工艺设计

1引言 盐酸,又称氢氯酸,是氯化氢的水溶液。亦是氯碱企业中最基本的无机酸和化工原料之一,也是氯碱厂做好氯气产品生产能力平衡的关键产品和大宗的化学合成法产品。 氯碱,即氯碱工业,也指使用饱和食盐水制氯气氢气烧碱的方法。工业上用电解饱和NaCl 溶液的方法来制取NaOH 、Cl 2和H 2,并以它们为原料生产一系列化工产品,称为氯碱工业。 工业上利用氢气与氯气合成的方法生产氯化氢,因此盐酸是氯碱工业的重要产品。 1.1盐酸概况 1.1.1物理性质 盐酸是无色液体,具有腐蚀性,是氯化氢的水溶液(工业用盐酸会因有杂质三价铁盐而略显黄色)。氯化氢分子量36.46,密度大于空气,标准状态下的密度为1.639g /L ,临界温度为51.54℃,临界压力为8314kPa 。氯化氢气体在水中的溶解度很大,随着氯化氢的分压的升高而增加,随着温度的上升而降低。 在化学上人们把盐酸和硫酸、硝酸、氢溴酸、氢碘酸、高氯酸合称为六大无机强酸,有刺激性气味。由于浓盐酸具有挥发性,挥发出的氯化氢气体与空气中的水蒸气作用形成盐酸小液滴,所以会看到酸雾。 主要成分:氯化氢,水。 熔点(℃):-114.8(纯HCl) 沸点(℃):108.6(20%恒沸溶液) 相对密度(水=1):1.20 相对蒸气密度(空气=1):1.26 饱和蒸气压(kPa):30.66(21℃) 溶解性:与水混溶,浓盐酸溶于水有热量放出。溶于碱液并与碱液发生中和反应。能与乙醇任意混溶,溶于苯。 氯化氢在101.3kPa 压力下,沸点为—85℃,凝固点为—114.2℃。 氯化氢的比热容在常压下15℃时为0.8124kJ /kg ℃,在0—1700℃范围内,可按下式计算(其误差为1.5%) 50.7557511.2505C T -=+?10 (8-1),式中,T 为绝对温度K 。 15℃时盐酸的密度与浓度之间的关系

焦化厂硫铵工段设计毕业设计说明书

XXX 大学 本科生毕业设计 姓名:学号: 学院: 专业: 设计题目:焦化厂硫铵工段设计 指导教师:职称:教授 年月

中国矿业大学毕业设计任务书 学院专业年级学生姓名 任务下达日期: 毕业设计日期: 毕业设计题目:120万吨焦化厂硫铵工段设计 毕业设计主要内容和要求: 1.按照设计规模并根据焦化设计规范的要求,对焦化厂硫铵工段的生产进 行工艺论证,确定工艺流程。 2.根据工艺流程和设计规范进行工艺物料平衡,水平衡和热量平衡计算, 根据计算结果进行设备选型。 3.对硫铵工段的生产设备和工艺管道进行设计布置,绘制硫铵生产的工艺 流程图,总平面布置图,设备与工艺管道平面图和立体图,绘制一张主要设备的装配图。 4.根据生产要求,对硫铵工段设计的非工艺技术部分提出设计要求,根据 岗位设置与岗位操作编制岗位人员编制。 5.进行硫铵工段的建设投资估算和产品生产成本的经济技术分析。 6.编制设计说明书。 院长签字:指导教师签字:

指导教师评语(①基础理论及基本技能的掌握;②独立解决实际问题的能力;③研究内容的理论依据和技术方法;④取得的主要成果及创新点;⑤工作态度及工作量;⑥总体评价及建议成绩;⑦存在问题;⑧是否同意答辩等): 成绩:指导教师签字: 年月日

评阅教师评语(①选题的意义;②基础理论及基本技能的掌握;③综合运用所学知识解决实际问题的能力;③工作量的大小;④取得的主要成果及创新点;⑤写作的规范程度;⑥总体评价及建议成绩;⑦存在问题;⑧是否同意答辩等): 成绩:评阅教师签字: 年月日

大学毕业设计答辩及综合成绩

内容摘要 本设计为年产焦炭120万吨焦化厂回收车间硫铵工段的工艺设计,该焦化厂拟建于徐州市西北郊区.本设计内容包括:生产原理、工艺流程、计算及设备的选型、工艺布置、操作规程、成本估算、经济分析等。 本设计采用技术成熟的饱和器法中半直接法来回收煤气中的氨,工艺流程如下:从冷凝工段来得煤气首先进入煤气预热器,然后进入饱和器,在饱和器内,煤气中的氨与硫酸反应生产硫铵,硫铵经后续操作分离,从饱和器出来的煤气经除酸器后送往粗苯工段。 工艺计算包括饱和器的物料和热量平衡计算,通过计算来确定母液的适宜温度和煤气预热温度。通过对主要设备如饱和器、除酸器、煤气预热器、沸腾干燥器、蒸氨塔、循环泵、结晶泵等的计算。 同时根据本设计的规模,对工段的工艺布置原则作了简要说明,对工段生产操作也作了简要说明,对非工段部分提出了一些具体要求,通过岗位操作定员知道本工段需要职工人员数。 根据本设计的规模,对投资和赢利情况作了估算。 最后,给出了图纸目录及说明。 本设计在老师的悉心指导下,同学的帮助下完成,在此表示感谢!!!

(完整版)年产45万吨乙醇精馏工段工艺设计毕业设计

年产45万吨乙醇精馏工段工艺设 计 The Process Design of Ethanol Refining Section of 450 kt/a

目录 摘要 ....................................................................................................................... Abstract ................................................................................................................引言 .......................................................................................................................第一章绪论....................................................................................................... 1.1 国内乙醇工业的发展现状 ....................................................................................... 1.2 精馏塔的相关概述 ................................................................................................... 1.2.1精馏原理及其在化工生产上的应用..................................................................... 1.2.2精馏塔对塔设备的要求......................................................................................... 1.2.3常用板式塔类型及本设计的选型......................................................................... 1.2.4本设计所选塔的特性.............................................................................................第二章工艺流程选择与原材料的计算............................................................. 2.1 乙醇精馏工艺流程的概述 ....................................................................................... 2.2 乙醇原料的计算 ..................................................................................................... 2.2.1理论玉米秸秆葡萄糖消耗量................................................................................. 2.2.2实际玉米秸秆耗量 .................................................................................................第三章精馏设备的设计内容............................................................................. 3.1 塔板的工艺设计 ....................................................................................................... 3.1.1精馏塔全塔物料衡算............................................................................................. 3.1.2理论塔板数的确定 ................................................................................................. 3.1.3精馏塔操作工艺条件及相关物性数据的计算..................................................... 3.1.4塔板主要工艺结构尺寸的计算.............................................................................

焦化生产工艺流程

焦化生产工艺流程 焦化生产 炼焦生产是以一定特性的洗精煤为原料,在焦炉中密闭高温干馏,使之分解炭化生产出焦炭和焦炉煤气,再通过各种化工单元,对焦炉煤气进行净化,并回收其中的焦油、硫铵、粗苯、硫磺等化工产品。 一、备煤车间 1、概述 备煤主要由煤场、受煤坑及转运站、粉碎机室及高架栈桥等设施组成。用以完成煤场内煤的配合、堆放、上料、粉碎等任务,最终得到按一定比例配合好的炼焦煤,运送到焦炉煤塔中备用。本工程备煤系统采用两级粉碎的工艺方案。备煤系统能力是按年产90万吨的捣固焦炉生产能力而配套设计的。备料、粉碎及配煤能力为360t/h。 2、工艺流程 进厂的洗精煤按不同煤种卸在各自的堆场、分类堆存。贮煤塔需要供煤时,精煤堆场的各种煤分别由装载机将煤送入各自受煤坑内的受煤漏斗,受煤坑下部设有可调容积式给料机将煤送入破碎机,可调容积式给料机控制各种煤量大小,通过控制给煤速度达到精确配煤目的。此工艺既提高了配煤效果,又降低了投资。粘结性差的本地煤和晋城无烟煤通过受煤坑、可调容积式给料机进入PFCK可逆反击锤式破碎机粉碎至小于1mm粒度达到75%以上。粉碎后的弱粘结煤再与未经破碎的焦煤共同进入PFJ反击式破碎机再次破碎并混合,将其中的焦煤粉碎至 3mm以下。完成粉碎、混合、粉碎三个过程的配合煤最后由带式输送机将煤运至贮煤塔,供焦炉炼焦使用。 备煤工艺的关键在于将粘结差的本地煤和无烟煤由PFCK可逆反击锤式破碎机进行高细度破碎后再与未经粉碎的焦煤共同进入粗粒度的PFJ反击式破碎机进行粉碎。如此设计的目的是使弱粘结煤的粒度小于主焦煤的粒度,粉碎并混合后,不同粒度的煤料能够形成更合理的颗粒级配,提高煤料的堆密度,并使主焦煤与弱粘结煤或不粘结煤能够项目包裹,从而达到更好的捣固和结焦效果。该技术是实现大量采用当地廉价的非炼焦煤生产优质冶金焦炭的关键之一。 —1—. 二、焦化车间 1、概述 炼焦车间主要由2×45孔550-D型,炭化室高5.5m蓄热室式捣固焦炉,双4t。100×10联火道、废气循环、下喷、单热式焦炉及配套设施组成。年产焦炭采用湿法熄焦。炼焦车间主要用以完成启闭炉门、捣固煤饼、装煤、炼焦、推焦、拦

煤化工厂硫铵工段设计论文中英文摘要资料

学号:201007010122 HEBEI UNITED UNIVERSITY 毕业设计说明书中英文摘要 G RADUATE D ESIGN A BSTRACT 设计题目:年产110万吨焦化厂硫铵工段设设计 学生姓名:张忆一 专业班级:10化工1班 学院:化学工程学院 指导教师:高筠教授 2014年6月6日

摘要 本设计为焦油加工厂硫铵工段的工艺设计。首先,设计中简要的介绍了我国煤化工发展现状及前景,之后阐述了荒煤气中氨回收的作用和意义,本设计还讲到了我国现阶段钢铁企业回收氨的现状。之后介绍了焦化厂氨回收工艺和当前氨回收技术状况。之后着重介绍了硫酸铵生产的方法,生产硫铵的方法及途径很多,除了焦化厂中回收氨硫铵工艺,还有如以合成氨为原料生产硫酸铵的工艺等等。另外,最新开发的硫铵生产工艺为硫铵提供了新的来源,将副产的亚硫酸铵产品用过量的硫酸分解,吸吸再用气氨中和过量的硫酸,制得合格的液体硫酸铵。液体硫酸铵经浓缩、冷却结晶分离,即可得到固体硫酸铵。 在工艺流程选择中,首先介绍了硫铵的性质及用途,然后从化学原理及硫胺生成的结晶原理两方面介绍了硫酸铵生产工艺原理。之后讲了硫酸铵结晶的影响因素及控制,优质硫酸铵要求结晶颗粒大,色泽好,强度高,这主要起决于硫酸铵在母液中成长的速率及形成的结晶形壮,对硫酸铵结晶有影响的因素很多,主要有:母液酸度和浓度、母液中的杂质、母液的搅拌等。接着着重介绍了硫铵生产工艺流程,包括鼓泡式饱和器法制取硫铵,喷淋式饱和器法制取硫铵,酸洗法制取硫铵。 通过各种制取硫铵的工艺的比较,本设计选择了喷淋式饱和器法制取硫铵。喷淋包和器分为上下两段,上段为吸收室,下段为结晶室。由上个工段来的煤气进入喷淋包和器的上段,分成两路沿包和器水平方向流动。每股煤气均经过数个喷头,用含游离酸的母液喷洒,以吸收煤气中的氨。两股煤气汇合后从切线方向进入饱和器中心旋风分离部分,除去夹带的酸雾滴,从上部中心出口管离开到下一个工段。 饱和器的上段与下段以降液管连通,喷洒吸收氨后的母液从降液管流至结晶室底部,不断搅拌母液,使硫铵晶核长大。带有小颗粒的母液上升至结晶室上部,大部分至母液循环泵,少部分至母液加热器,用蒸汽加热使母液温度升高。一方面溶解母液中的小颗粒结晶,减少晶核数量,另一方面保持饱和器内的水平衡(或用煤气预热器维持水平衡),混合后的两部分母液进入大的母液循环泵,送经饱和器的上段进行循环、喷洒。饱和器的上段设满流管,保持液面并封住煤气,使其不能进入下段,母液在上段与下段之间不断循环,使母液中的晶核不断长大,沉降在结晶室底部,用结晶泵抽至结晶槽,经离心分离,干燥后得成品硫铵。 本设计结合喷淋式饱和器法支取硫酸铵工艺对年产110万吨焦化厂硫铵工段设计。本设计内容包括:生产原理、工艺流程、计算及设备的选型、工艺布置、操作规程、成本估算等。本工艺采用主要设备:蒸氨塔,喷淋式饱和器,煤气预热

丙烯腈合成工段的工艺设计

丙烯腈合成工段的工艺设计 前言 毕业设计是培养学生运用理论知识进行实际设计能力的重要实践教学环节,是理论与实际结合的重要连接点。在教师指导下毕业设计可以培养我们独立思考,运用所学到的基本理论并结合生产实际的知识,综合的分析和解决工程实际问题的能力。 本次毕业设计所设计的内容为年产6万吨丙烯腈合成工段的工艺设计,通过认真细听老师课堂上讲解和任务布置,我们了解到了为完成设计需要查找资料的方向,并进行了细心的查阅,掌握了基本的理论知识。对于刚进行设计的人来说,学会收集、理解、熟悉和使用各种资料,正是设计课程需要培养的重要方面,化工设计非常强调标准规范。但是并不是限制设计的创造和发展,因此遇到与设计要求有矛盾时,经过必要的手续可以放弃标准而服从设计要求。通过设计应知道如何查取数据知道如何查找资料对丙烯腈合成工段的工艺设计有了一个全新的 认识,知道如何选取相关数据参数,建立一个工程概念,知道工程和理论的区别。对于物料衡算和热量衡算、主要设备的工艺计算(反应器)等都有一个全新的认识和了解,知道如何使用手册和资料,认识工程。

一、产品的性状、用途、国内外市场情况 1.1 丙烯腈简介 丙烯腈是一种重要的有机合成单体,在丙烯产品系列中居第二,仅次于聚丙烯,是三大合成材料(纤维、橡胶、塑料)的重要化工原料,主要用来生产聚丙烯腈纤维(腈纶)、丙烯腈- 丁二烯-苯乙烯(ABS)塑料、苯乙烯(AS)塑料、丙烯酰胺等。丙烯腈在合成纤维、合成树脂等高分子材料中占有显著地位,应用前景广阔。除此之外,丙烯腈聚合物与丙烯腈衍生物也广泛应用于建材及日用品中 1.2 丙烯腈物化性质 1.2.1 丙烯腈物理性质 无色或淡黄色液体,有特殊气味,分子量:53.06 沸点:77.3℃冰点:-83.5 ℃生成热:184.2 kJ/mol(25℃) 燃烧热:1761.5 kJ/mol 聚合热:72.4 kJ/mol 蒸汽压:11.0KPa(20℃) 闪点:0℃自燃点:481℃爆炸极限:在空气中 3.0%~17%(体积)油水分配系数:辛醇/水分配系数的对数值为-0.92 毒性:剧毒,毒作用似氢氰酸溶解性:溶于丙酮、苯、四氯化碳、乙醚、乙醇等有机溶剂,微溶于水 1.2.2 丙烯腈化学性质 丙烯腈由于分子结构带有C=C双键及-CN键,所以化学性质非常活泼,可以发生加成、聚合、腈基及氢乙基化等反应。聚合反应和加成反应都发生在丙烯腈的C=C 双键上,纯丙烯腈在光的作用下能自行聚合,所以在丙烯腈成品及丙烯腈生产过程中,通常要加少量阻聚剂,如对苯酚甲基醚(阻聚剂MEHQ)、对苯二酚、氯化亚铜和胺类化合物等。除发生自聚外,丙烯腈还能与苯乙烯、丁二烯、乙酸乙烯、丙烯酰胺等发生共聚反应,由此可制得合成纤维、塑料、涂料和胶粘剂等。丙烯腈经电解加氢偶联反应可以制得已二腈。氰基反应包括水合反应、水解反应、醇解反应等,丙烯腈和水在铜催化剂存在下,可以水合制取丙烯酰胺。氰乙基化反应是丙烯腈与醇、硫醇、胺、氨、酰胺、醛、酮等反应;丙烯腈和醇反应可制取烷氧基丙胺,烷氧基丙胺是液体染料的分散剂、抗静电剂、纤维处理剂、表面活性剂、医药等的原料。丙烯腈与氨反应可制得1,3 丙二胺,该产物可用作纺织溶剂、聚氨酯溶剂和催化剂。 1.3 丙烯腈的用途

焦化厂工艺介绍

焦化一期工艺流程简介

焦化厂一期年产200万吨焦化项目介绍 一、2012年焦化厂产品生产计划及产率 单位产品名称产量计划产率(%) 焦化厂 焦炭200(万吨) 焦油99998吨5% 硫磺2873吨0.15% 硫铵14363吨0.75% 粗苯27194吨 1.42 供甲醇煤气量55000(万m3/h) 二、焦化厂产品质量指标 单位产品指标项目质量指标合格率 焦化厂二级冶 金焦 合 格 率 灰分≤13.5% 100% 挥发份≤1.8% 硫分≤0.80% 反应后强度≥55% 100% 冷强度合格率 M40≥80% 100% M25≥88% 100% M10≤7.5% 100% 80焦 合 格 率 灰分≤18.1% 100% 挥发份≤1.8% 硫分≤1.0% 固定碳合格率≥80% 100% 冷强度合格率 M40≥78% 100% M25≥88% 100% M10≤7.5% 100% 焦炭质 量区间 控制 班次灰分控制区间合 格率 12.9%~13.5% ≥95.0% 17.5%~18.1% ≥90.0% 焦炭水分≤8% 超水扣吨煤焦油合格率100% 硫酸铵合格率100% 粗苯合格率100% 焦炭各 粒级产 率 二级焦 40以上占比≥73.5% 10mm以下占比≤5.0% 80焦 25以上占比≥93.5% 10mm以下占比≤5.0% 焦炉煤 气 硫化氢含量≤150mg/NM3 ≥96% 氨含量≤40mg/NM3 苯含量≤4000mg/NM3 焦油/粉尘含量≤50mg/NM3 氧含量≤0.7%(体积)

三、焦化厂主要工艺流程介绍: 焦化厂由6个车间组成,包括4个生产车间:备煤车间、炼焦车间、化产车间(煤气净化车间)、污水处理车间,两个辅助车间:储运车间、机修车间。 1、备煤工艺 备煤工艺为先配煤后粉碎工艺;该工艺是将原料煤按一定比例配合后再进行粉碎的工艺。外购的炼焦精煤由汽车运来后自卸于受煤坑,经受煤坑下叶轮给煤机将精煤给入煤1带式输送机, 再经煤2带式输送机将煤送入堆取料机,把煤堆入精煤储场。自洗煤厂的炼焦精煤由皮带通廊送来,由煤3带式输送机将煤送入堆取料机,把煤堆入精煤储场。两种来煤方式均可不落煤场直接经煤4带式输送机把煤送往配煤仓。煤场采用不同每种轮流上煤。上煤时,由堆取料机取煤,经堆取料机主皮带、煤4带式输送机,转运至可逆带式输送机。由可逆带式输送机将煤送入可逆配仓带式输送机,卸入配煤仓。煤仓后设计为双系列。配煤仓下设电子自动配料秤,将各种煤按相应的配合比例配送到仓下的备1带式输送机,除铁后,送入可逆反击锤式破碎机,煤被破碎至<3mm占82%以上后,经备2、备3、备4、备5带式输送机,送入1#煤塔内;另一系列配送至仓下的备6带式输送机,除铁后,送入可逆反击锤式破碎机,煤被破碎至<3mm占82%以上后,经备7、备8、备9、备10、带式输送机,送入2#煤塔内,供焦炉使用。

年产一万吨聚苯乙烯聚合工段工艺设计

. 毕业设计 题目:年产1万吨聚苯乙烯聚合车间工艺设计学院: 专业: 姓名: 学号: 指导老师: 完成时间:

设计说明 本次设计主要是针对年产1万吨聚苯乙烯聚合车间工艺的设计。设计的内容主要包括绪论、聚苯乙烯的聚合机理、聚合工艺介绍、物料衡算、反应釜的设计、热量衡算、自动控制等几部分。本设计采用的是热引发本体聚合的生产工艺,在确定工艺流程的基础上对以下几部分进行了设计计算:物料衡算、反应釜的设计、热量衡算等。本次设计年理论产值是一万吨经计算投料每小时需投入苯乙烯1288.8kg,甲苯175.69kg,每小时生成的聚苯乙烯计算后可知,年产量为1.08万吨。符合设计的要求。釜体容积14.33m3,釜体高度 3.18m。共需反应热为24000000KJ。 关键词:热引发本体聚合聚苯乙烯苯乙烯预聚釜聚合釜

Design Description This design is mainly aimed at the annual output of 10000 tons of polymerization polystyrene workshop process design. Design content mainly includes the introduction, polystyrene introduced the polymerization mechanism, polymerization process, material balance, the design of the reaction kettle, heat balance, automatic control and so on several parts. This design USES a thermal bulk polymerization production process, the technological process is determined on the basis of calculation in design of the following sections: the design of the material balance and the reaction kettle, heat balance, etc. The design theory of value is ten thousand tons of calculating charge per hour need for styrene 1288.8 kg, 175.69 kg, toluene per hour generated polystyrene after calculation, the annual output of 10800 tons. In line with the requirements of design. The kettle body volume of 14.33 m3, body height of 3.18 m. The total heat of reaction of 24000000 kJ. . Keywords:Heat cause Bulk polymerization polystyrene styrene The performed kettle Polymerization kettle

相关文档
最新文档