等离子体共振纳米天线

等离子体共振纳米天线
等离子体共振纳米天线

(a) Si 100nm 80nm Au CL SEM =50nm CL λ0=560nm SEM

(b) CL λ0=600nm

References

1. L. Novotny, and N. van Hulst. Antennas for light. Nat. Photon. 5, 83–90 (2011).

2. T. Coenen et al. Directional emission from a single plasmonic scatterer. Nat. Commun. 5, 3250 (2014).

表面等离子体共振实验

表面等离子体共振实验 姚付强 2012326690046 应用物理学12(2)班 实验目的: 1. 了解全反射中消逝波的概念。 2. 观察表面等离子体共振现象,研究共振角随液体折射率的变化关系。 3. 进一步熟悉和了解分光计的调节和使用。 实验原理: 当光线从光密介质照射到光疏介质,在入射角大于某个特定的角度(临界角)时,会发生全反射现象。但在全反射条件下光的电场强度在界面处并不立即减小为零,而会渗入光疏介质中产生消逝波。若光疏介质很纯净,不存在对消逝波的吸收或散射,则全反射的光强并不会衰减。反之,若光疏介质中存在能与消逝波产生作用的物质时,全反射光的强度将会被衰减,这种现象称为衰减全反射。 如果在这两种介质界面之间存在几十纳米的金属薄膜,那么全反射时产生的消逝波的P 偏振分量将会进入金属薄膜,与金属薄膜中的自由电子相互作用,激发出沿金属薄膜表面传播的表面等离子体波。表面等离子体共振原理如图所示。 对于某一特定入射角,消逝波平行于金属(电介质)界面的分量与表面等离子体波的波矢(或频率)完全相等,两种电磁波模式会强烈地耦合,消逝波在金属膜中透过并在金属膜与待测物质界面处发生等离子体共振,导致这部分入射光的能量被表面等离子体波吸收,能量发生转移,反射光强度显著降低,这种现象被称为表面等离子体波共振。 当发生共振时,表面等离子体共振角与液体折射率的关系由以下公式表示 2 2 122 10Re Re )sin(n n n sp +=εεθ 其中 sp θ 为共振角, 0n 为棱镜折射率,2n 为待测液体折射率,1Re ε 为金属介电

常数的实部。 实验仪器 表面等离子体共振实验仪器装置如图所示。主要由分光计、激励光源、偏振片、硅 光电池、光功率计、半圆柱棱镜(内充液体介质)。 实验内容 1. 调整分光计 2. SPR传感器中心调整 3. 测量某一液体的共振角 数据处理 最大光强为126 光强126 121 115 107 97 92 91 83 86 87 88 89 93 1.0 0.96 0.91 0.85 0.77 0.73 0.72 0.66 0.68 0.69 0.70 0.71 0.74 相对光 强 63 65 66.5 68 69.5 71 72.5 73 73.5 74 75.5 77 78.5 入射角 (°)

表面等离子体共振原理及其化学应用

表面等离子体共振原理及其应用 李智豪 1.表面等离子体共振的物理学原理 人们对金属介质中等离子体激元的研究, 已经有50多年的历史。1957年Ritchie发现, 高能电子束穿透金属介质时, 能够激发出金属自由电子在正离子背景中的量子化振荡运动, 这就是等离子体激元。后来,人们发现金属薄膜在入射光波照射下, 当满足特定的条件时, 能够激发出表面等离子体激元, 这是一种光和自由电子紧密结合的局域化表面态电磁运动模式。由于金属材料的吸收性质,光波沿金属表面传播时将不断被吸收而逐渐衰减, 入射光波的能量大部分都损耗掉了, 造成反射光的能量为最小值, 这样就把反射光谱的极小值与金属薄膜的表面等离子体共振联系了起来。 1.1 基本原理[1] 光与金属物质的相互作用主要是来自于光波随时间与空间作周期性变化的电场与磁场对金属物质中的电荷所产生的影响,导致电荷密度在空间分布中的变化以及能级跃迁与极化等效应,这些效应所产生的电磁场与外来光波的电磁场耦合在一起后,表达出各种不同光学现象。 等离子体是描述由熔融状态的带电离子所构成的系统,由于金属的自由电子可当作高密度的电子流体被限制于金属块材的体积范围之内,因此亦可类似地将金属视为一种等离子体系统。当电磁波在金属中传播时,自由电子会随着电场的驱动而振荡,在适当条件下,金属中传播之电磁波其电场振荡可分成两种彼此独立的模态,其中包含电场或电子振荡方向凡垂直于电磁波相速度方向的横波模态,以及电场或电子振荡方向凡平行波的传播方向纵波模态。对于纵波模态,自由电子将会沿着电场方向产生纵向振荡的集体运动,造成自由电子密度的空间分布会随时间之变化形成一种纵波形式之振荡,这种集体运动即为金属中自由电子之体积等离子体振荡。 金属复介电常数的实部相对其虚部来说,往往是一个较大的负数,金属的这种光学性质,使金属和介质的界面处可传输表面等离子波,使夹于两介质中间的金属薄膜可传输长程表面等离子波。这两类表面波具有不同于光导波的独特性质,例如,有效折射率的存在范围大、具有场

表面等离子体

LSPs和PSPs的区别 局域表面等离子体(Localized Surface plasmons, LSPs)和传播型表面等离子体(Propagating surface plasmons. PSPs)同属于表面等离子体(SPs)1。 表面等离子体(SP)是存在于金属与电介质截面的自由电子的集体振荡2。SPR是由于入射激光在特殊波长处局域电磁场增强,物理机制是表面增强拉曼散射(Surface-enhanced Raman scattering, SERS)和尖端增强拉曼散射(Tip-enhanced Raman scattering, TERS)。 入射光的电场分量诱导球形金属粒子的表面等离子体共振的原理分析(即图1的解读)3。 当入射光照射到贵金属(如:金、银,见脚注1、3)时,在纳米颗粒表面形成一种振荡电场,纳米颗粒中的自由传导电子在振荡电场的激发下集体振荡,入射光子频率与金属纳米颗粒的自由电子云的集体振动频率相等(入射光波长一定)时,发生局域表面等离子体共振(LSPR)。亦可解释为入射光在球形颗粒表面产生电场分量,电子的共谐振荡与激发其的振荡电场频率相同时发生共振,诱导产生LSPR 3。 对于LSPs而言,颗粒内外近场区域的场强会被极大增强,原因是:纳米粒子的尺寸远小于入射光波长,使得电子被束缚在纳米粒子周围局域振荡,导致场强增大。 对于PSPs(部分文章中称为:SPPs4,金属与介质界面上的电子集体激发振荡的传播型表面电磁波),其表面等离子激元(即TM模式)如上图所示。在SPPs 的情况下,沿金属介质界面,等离子体在X和Y方向上传播,在Z方向上衰减, 1等离激元学[M]. 东南大学出版社, 2014. 2 Zhang Z, Xu P, Yang X, et al. Surface plasmon-driven photocatalysis in ambient, aqueous and high-vacuum monitored by SERS and TERS[J]. Journal of Photochemistry & Photobiology C Photochemistry Reviews, 2016, 27:100-112. 3邵先坤, 郝勇敢, 刘同宣,等. 基于表面等离子体共振效应的Ag(Au)/半导体纳米复合光催化剂的研究进展[J]. 化工进展, 2016, 35(1):131-137. 4王五松, 张利伟, 张冶文. 表面等离子波导及应用[J]. 中国光学, 2015(3):329-339.

表面等离子体共振

表面等离子共振技术(Surface
张颖娱 综述
Plasmon Resonance SPR)
学号 10281036
生物物理系
摘要 : SPR 是一种物理光学现象,而且 SPR 对金属表面附近的折射率的变化极为敏感,利用这一性 质,将一束平面单色偏振光以一定角度入射到镀有薄层金膜的玻璃表面发生全反射时,若入射光的波向量与 金膜内表面电子的振荡频率匹配,光线即耦合入金膜引发电子共振,即表面等离子共振。以 SPR 原理设计的 生物传感器近来引起广泛的重视。 关键词 表面等离子共振 生物传感器 薄膜
1900 年,由 Wood 发现了光波通过光栅后,光频谱发生了小区域损失,这是关于 SPR 这一电磁场效应的最 早记载。1941 年,FanoU 发现这种“Wood 异常”是由于等离子波造成的。1958 年,Turbader 首先对金属薄膜 采用光的全反射激励的方法,观察表面等离子共振现象。 此后,至 60 年代 Otto 以及 1971 年 Kretschmann 分别 发表了里程碑性质的文章,激发了人们应用 SPR 于传感机制的热情,而 Kretschmann 结构也为 SPR 型传感器 奠定了基础。目前 SPR 被尝试用于测量各种物质的结构、特性及其的相互作用等。 1 SPR 生物传感器的基本原理: (如图 2 所示) 表面等离子振动是金属表面自由电子的一种集团运动,代表了一种表面带电的量子振动。在激励 SP 的 通常方法中,光入射在金属薄膜上,产生衰减场,衰减场的穿透深度 dp 为:
(1) 通常要求金属薄膜小于 60mm,达到衰减场中的 TM(横磁波)极化能量耦合并激发等离子态,耦合的数 量、 等离子体的强度受到了金属两侧材料的影响,如果在金属薄膜一侧加一层待测物质,试样与金属薄膜的耦 联影响了结构的折射率,从而影响了反射光、衰减以及等离子体共振。所以,可以把 SPR 型传感器看作等离 子体耦联效率的度量计。基原理如图 2 所示, 其中:
上述两个公式分别为沿表面传播的波矢量,其中:λ为入射光波长,εm 为金属介电常数 的实部,εd 为金属外介质的介电常数,np 为透镜的折射率,θ为入射光与表面法线的夹角。发生共振时,入射 光与法线的临界角为:
θ=arcsin[εmεd(εm+εd)εg]1/2
(4)
显然,共振角受到折射率(或介电常数)的影响,此时,金属膜外侧的衰减场为:

表面等离子体共振传感器剖析

表面等离子体共振传感器 程玉培 1433591 摘要:表面等离子体子共振(SPR) 技术是一种简单、直接的传感技术。它通过测量金属表面附近折射率的变化, 来研究物质的性质。表面等离子体子共振传感器已经成为生物传感器研究领域的热点。 关键词表面等离子体子共振传感器生物分子间相互作用 前言 生物化学是运用化学的理论和方法研究生命物质的边缘学科。其任务主要是了解生物的化学组成、结构及生命过程中各种化学变化。化学的核心是化学键,即分子间的相互作用,而要研究生命过程中的各种化学变化,归根到底就是要研究生物分子之间的相互作用。生物分子之间的相互作用是生命现象发生的基础,研究生物分子之间的相互作用可以阐明生物反应的机理,揭示生命现象的本质。近年来,研究生物分子之间相互作用的技术不断出现,其中表面等离子体共振(Surface Plasmon Resonance,SPR)在生物学以及相关领域的研究应用取得了很大进展,SPR技术可以现场,实时地测定生物分子间的相互作用而无需标记,可以连续监测吸附和解离过程,并可以进行多种成分相互作用的研究。 1 表面等离子体共振传感器概述 1.1 表面等离子体共振传感器简介 表面等离子体子共振( surface plasmon resonance , SPR) 是一种物理光学现象。利用光在玻璃界面处发生全内反射时的消失波, 可以引发金属表面的自由电子产生表面等离子体子。在入射角或波长为某一适当值的条件下, 表面等离子体子与消失波的频率和波数相等,二者将发生共振, 入射光被吸收, 使反射光能量急剧下降, 在反射光谱上出现共振峰(即反射强度最低值) 。当紧靠在金属薄膜表面的介质折射率不同时, 共振峰位置将不同。 1.2 表面等离子体共振传感器研究背景及现状 表面等离了体共振效应的发现可以追溯到上世纪初。关于SPR效应的最早记载是源于1902年Wood发现光波通过光栅后,光频谱出现小区域内的能量损失现象。1941年,Fano针对这一现象根据金属和空气界面上表面的电磁波理论和边界条件进行了详尽的解释。1957年,当高能电了通过金属薄膜时,Ritchie发现能量损耗不仅发生在体积等离了体频率处,在更低频率处也发生了,于是认为这与金属薄膜界面特性有关。1958年,Turbader为了观察SPR现象,对金属薄膜采用光的全反射激励的方法。 1960年,Stern和Farrell首次提出了表面等离

表面等离子共振技术的研究

表面等离子共振技术的研究 摘要:通过对表面等离子共振技术的原理研究,从而深入介绍表面等离子共振传感技术在现代生物科技和医学上的广泛应用,以及探讨未来表面等离子共振技术的应用领域和趋势。 关键词:表面等离子共振技术生物应用医学应用 表面等离子共振技术,英文简写SPR。随着SPR技术成为分析生物化学、药物研究和食物监控领域[1-3]中的一个不可缺少的部分,SPR生物传感器的应用将更加趋向多样化,特别是它在小分子检测盒脂膜领域的新兴应用将使其在未来药物发现和膜生物学中扮演一个越来越重要的角色。近几年,其发展尤为迅猛,随着SPR仪器的不断完善和生物分子膜构建能力的不断增强,SPR生物传感器应用前景极为广阔。 一、表面等离子共振技术简介 表面等离子共振技术,英文简写SPR。1983 年,瑞典科学家Liedberg 首次将SPR 技术应用于抗体抗原相互作用的测定,由此产生了世界上第一只SPR 生物传感器[4]由于SPR生物传感器作为一种强有力的动态检测手段,具有实时检测、无需标记、耗样量少等突出优点,在生物工程、医学、食品工业等多个领域都有广阔的应用前景,引起了世界范围的研究热潮[5]。 1.表面等离子共振技术的原理 表面等离子体共振又称SPR(Surface Plasmon Resonance),是一种物理光学现象[6],它是由于入射光激发表面等离子体产生表面等离子波而形成的。当一束p偏振光在一定角度范围内入射到两种不同介质界面,如端面蒸镀有一层约50nm厚金膜的棱镜端面时,在棱镜与金膜界面将产生表面等离子波,当入射光波的传播常数与表面等离子波的传播常数相匹配时,引起金膜内自由电子产生共振,即表面等离子共振,入射光的一部分能量在金属表面发生迁移,从而使反射光在一定角度范围内大大减弱,使反射光在一定角度内完全消失的入射角为共振角。如果用于检测分析分子之间的反应动态时,先在芯片表面固定一层生物分子识别膜,然后将待测样品流过芯片表面,如果样品中有能够与芯片表面的生物分子识别膜相互作用的分子,引起金膜表面样品质量和折射率变化,从而导致共振角变化。通过实时监测SPR共振角所反映的生物分子动态结合和解离过程,可以获得被分析物的浓度、亲和力、动力学常数和特异性等信息。 二、表面等离子共振技术的应用 SPR生物传感器由于具有无需标记、在线检测、可再生、无样品前处理等优点[7],在生命科学、药物残留、食品检测、疾病机理等方面有着广泛的应用前景。

表面等离子体激元简介

表面等离子体激元简介一.表面等离子体激元表面等离子体(Surface Plasmons)的出现提供了一种在纳米尺度下处理光的方式。表面等离子体通常可以分成两大类——局域表面等离子体共振(Localized Surface Plasmon Resonance)和表面等离子体激元(Surface Plasmon Polaritons)。局域表面等离子体共振专指电磁波与尺寸远小于波长的金属纳米粒子中的自由电子的相互耦合,这种等离子体只有集体共振行为,不能传播,但可以向四周环境辐射电磁波。局域表面等离子体共振可以通过光直接照射产生。表面等离子体激元指的是在金属和电介质分界面上传播的一种元激发Excitations),这种元激发源自电磁波和金属表面自由电子集体共振的相互耦合。表面等离子体激元以指数衰减的形式束缚在垂直于传播的方向,由于它的传播波矢要大于光在自由空间中的波矢,电磁波被束缚在金属和电介质的分界面而不会向外辐射,也正是因为这种独特的波矢特性,表面等离子体激元的激发需要满足一定的波矢匹配条件。二.SPPs的激发和仿真方法由于SPSs的波矢量大于光波的波矢量,或者说SPPs的动量与入射光子的动量不匹配,所以不可能直接用光波激发出表面等离子体波。为了激励表面等离子体波,需要引入一些特殊的结构达到波矢匹配,常用的结构有以下几

种:(1)棱镜耦合:棱镜耦合的方式包括两种,一种是Kretschmannt方式;另一种是Otto方式。(2)采用波导结构(3)采用衍射光栅耦合(4)采用强聚焦光束(5)采用近场激发。目前主要的仿真方法有以下三种(1)时域有限差分法(finite difference time domain,FDTD):FDTD方法是把Maxwell方程式在时间和空间领域上进行差分模拟,利用蛙跳式(leaf flog algorithm)空间领域内的电场和磁场进行交替计算,电磁场的变化通过时间领域上更新来模仿。优点是能够直接模拟场的分布,精度比较高,是目前使用较多的数值模拟方法之一。(2)严格耦合波法(rigorous coupled—wave analysis,RCWA):该方法是分析光栅的有利工具,它是基于严格的矢量maxwell 方程来分析。由于在很多的表面等离子的结构中都会引入衍射光栅结构,所以RCWA方法也被越来越多的学者用来分析相关的问题,并且取得了不错的效果。(3)限元法(finite element method,FEM):该方法是从变分原理出发,将定义域进行有限分割,离散成有限个单元集合。通过区域剖分和分偏差值,把二次泛函的极值问题化为普通多元二次函数的极值问题,后者等价于一组多元线性代数方程的求解。该方法分析的是一种近似结果,不过很多的问题能近似模拟,目前应用也比较广泛。三.SPPs的若干应

第四章 表面等离子体共振技术总结

第四章表面等离子体共振技术 --学习总结通过表面等离子体共振技术的学习,我主要掌握了以下的一些基本知识: 一、金属表面的等离子体振动 表面等离子体振动,其角频率ωs与体积等离子体的不同,它们之间存在以下关系: 则这种特殊表面的等离子体振动的角频率ωms为:Array 二、产生表面等离子体共振的方法 面等离子体波(Surface plasma wave,SPW) 质中逐渐衰减。表面等离子体波是TM极化波,即横波,其磁场矢量与传播方向垂直,与界面平行,而电场矢量则垂直于界面。 在半无穷电介质和金属界面处,角频率为 式中c是真空中的光速,εm和εa分别是金属和电介质的介电常数。表面等离 εm=εmr+iεmi)。金属的εmr/εmi 电磁波在真空中的速度c与在不导电的均匀介质中的速度v之比称为电介质的折射率n: 则:Array 频率为ω 要使光波和 (ka)总是在ω( 从不交叉,即ω( 因此, 要设法移动ω( 的。

场在金属与棱镜的界面处并不立即消失,而是向金属介质中传输振幅呈指数衰减的消失 kev为: 通过调节θ 共振,有: 由上式可见,若入射光的波长一定,即ωa一定时,ns 条件;若θ0一定时,ns改变,则必须改变ωa 波长λ来实现。此时θ0和λ分别称为共振角和共振波长。 右图为典型的SPR光谱 三、SPR传感器 1、基本原理 表面等离子体子共振的产生与入射光 的角度θ、波长λ、金属薄膜的介电 常数εs及电介质的折射率ns有关, 发生共振时θ和λ分别称为共振角度 和共振波长。对于同一种金属薄膜, 如果固定θ,则λ与ns有关;固定λ, 则θ与ns有关。 如果将电介质换成待测样品,测出共 振时的θ或λ,就可以得到样品的介 电常数εs或折射率ns;如果样品的化 学或生物性质发生变化,引起ns的改 变,则θ或λ也会发生变化,这样, 检测这一变化就可获得样品性质的变 化。 固定入射光的波长,改变入射角,可 得到角度随反射率变化的SPR光谱;同样地,固定入射光的角度,改变波长,可得到波长随反射率变化的SPR光谱。SPR光谱的改变反映了体系性质的变化。 2、基本结构 一般来说,一个SPR传感器的包括:光学系统、敏感元件、数据采集和处理系统。 敏感元件主要指金属薄膜及其表面修饰的敏感物质,用于将待测对象的化学或生物信息转换成折射率的变化,是SPR传感器的关键。从SPR的原理可知,实际上是样品的折射率的变化引起SPR光谱的变化。 4种检测方式: 1.角度调制:固定λin,改变θin 2.波长调制:固定θin ,改变λin 3.强度调制:固定θin 、λin,改变光强 4.相位调制:固定θin 、λin,测相差 3、应用 用SPR可获得的信息: 1.两个分子之间结合的特异性 2.目标分子的浓度 3.结合以及解离过程的动力学参数

表面等离子共振技术

表面等离子共振技术 北京大学力学系生物医学工程专业2003级,郭瑾 摘要:表面等离子共振技术自80年代发展起来后,目前在生物医学领域已有了广泛应用,发挥着重要作用。本文就表面等离子共振技术的原理和其在蛋白质组学、抗原-抗体研究和药物筛选中的应用做了简要阐述。 关键词:表面等离子共振,隐失波,蛋白质组学,抗原-抗体相互作用,药物筛选 表面等离子共振技术(surface plamon resonace technology,SPR 技术)是上个世纪80年代发展起来的以生物传感芯片(biosensor chip)为中心的一种新技术,由Biacore AB公司开发。此后人们开始研究用各种方法改进SPR的性能、简化仪器系统,并试图用SPR技术测量不同的生化物质,如DNA-DNA间的生物特异性相互作用【1】,蛋白质折叠机制的研究【2】,微生物细胞的检测【3】,抗体-抗原分子相互作用的研究【4】等。本文对于表面等离子共振技术的原理和其在生物医学领域的应用作了简要的综述。 一、表面等离子共振技术的原理 全内反射是一种普遍存在的光学现象。考虑一束平面光波从介质1表面进入到介质2中。入射光在介质1表面上一部分发生反射,另一部分则透射进介质2。入射角和透射角之间满足关系式: n1sinθ1=n2sinθ2 这里n1是介质1的折射率,n2是介质2的折射率。当入射角增大,增大到临界角θc 时,这时的透射角为90°;当入射角继续增大到大于临界角时,光不再透射进介质2,也就是发生了全反射。由snell定律可知: θ2=90° θc=sin-1(n2/n1) 由上式可知,当n2

等离子振动吸收原理

张文俊论文: Ag 纳米晶的引入可使玻璃上转换蓝、红光由三光子吸收转变为双光子吸收。由于局域场表面等离子体共振增强以及Ag 与Tm3 + 之间的能量转移,使得含Ag 纳米晶玻璃的荧光强度比不含Ag 纳米晶的玻璃提高了约5 倍; 当玻璃中引入Ag 纳米晶后,上转换机理除了Tm3 + 和Yb3 + 离子之间的能量传递之外,Ag 纳米晶的局域表面等离子体共振( LSPR) 也势必对荧光发射机理产生影响[2]。首先,Ag 纳米晶利用LSPR 方式将980 nm 泵浦激光能量转移到Tm3 + 的激发态3H5能级,再通过无辐射衰减到亚稳态3F4能级,同时Tm3 + 的1G4→3F4所产生的辐射跃迁能量通过ET 过程传递给Ag 纳米晶,再通过LSPR 又将能量传递到Tm3 + 的亚稳态3F4能级,最终产生3F4→1G4能级跃迁。由此可见,整个跃迁过程为双光子吸收过程。这与图8( b) 上转换发光强度与抽运功率的关系也是一致的。此外,据相关文献报道,Ag 纳米晶对荧光增强的作用不仅针对980 nm 泵浦有效,而且在1 050 nm激光泵浦下的掺Tm 碲锌玻璃[7] 上转换发光强度的原因有以下3 点: ( 1) Ag 纳米颗粒SPR 带局域场增强。( 2) Ag 纳米颗粒向Tm3 + 离子的能量转移。由于金属银纳米颗粒的SPR 带延伸至近红外区,因此Ag 纳米颗粒会吸收部分980 nm 抽运光并向Tm3 + 离子转移[13]。 ( 3) Tm3 + 离子向Ag 纳米颗粒的SPR 能量传递。 通常,提高荧光输出的主要方式是靠提高局域场来实现,同时Ag 纳米颗粒与Tm3 + 离子之间的能量传递也是提高荧光强度的另一有效途径。因为Ag 纳米颗粒可提高Tm3 + 离子附近的光密度,这相当于改变了Tm3 + 离子光子吸收的数量。因此,Ag 纳米颗粒到Tm3 + 离子的能量传递,可理解为金属发射出弱的光致发光所致。 某硕士论文: 由于荧光物质的暗毒性限制了活细胞内荧光分子的浓度,荧光分子浓度低将导致活细胞中单分子荧光信号较弱,提高荧光信号强度需要增大激发光强度,但较高的激发光强度又会引起较快的光漂白使得荧光分子光稳定性下降,且弱的荧光信号容易受到背景或拉曼信号的干扰。金属表面增强荧光是指分布于金属 纳米结构表面或粒子附近的荧光分子的发射强度较之在自由空间的信号明显增强的现象。荧光分子邻近于金属纳米材料表面,将提高荧光分子的荧光强度[10,11】,在不改变仪器的信噪比条件下,使得分子荧光检测更加容易实现[12,13】。 人们已经在褶 皱金属表面【21,22】、粗糙金属表面【231、光滑金属表面【241、金属纳米粒子表面实现的金属表面增强荧光,并随着人们发现表面增强荧光的激发态寿命减小,伴随着光降解减弱而受到越来越多重视。 2006年Krishanu Ray通过改变银岛膜纳米粒子与荧光分子问LB单层膜的厚度,实现不同的荧光增强倍数,无LB膜,荧光强度得到最大为32倍的增大,当膜后为90nm时的得到最小为4倍的荧光增强,增强倍数随膜厚衰减变化的规律,与理论计算符合【391。同时发现随着膜厚的增加,荧光寿命也逐渐增加 荧光寿命被定义为从激发态到基态的平均弛豫时间。 表面等离子体(Surface Plasmon,SP)是指金属表面沿着金属介质界面传播的电子疏密波。 当光的波长与金属表面的等离子振动频率相当时,产生局域表面等离子共振(LSPR)。 表面等离子体共振简单的说是金属表面电子在光的照射下与光波之间产生的共振现象。 对于粗糙的金属表面或是金属纳米粒子,则存在另一种非传播模式的自由电子集体振荡模式——局域表面等离子体共振(LSPR)。

表面等离子共振技术

表面等离子共振技术 Surface Plasmon Resonance technology,SPR 北京大学基础医学院05级医学实验 马吟醒 朱倩 薛夏沫 黄辰 [摘要] 表面等离子共振技术,英文简写SPR,是从20世纪90年代发展起来的一种新技术,其应用SPR原理检测生物传感芯片(biosensor chip)上配位体与分析物之间的相互作用情况,广泛应用于各个领域。本综述主要介绍SPR的历史、工作原理、应用以及研究发展的前景。 [完成时间] 2008年6月 [引言] 1902年,Wood在一次光学实验中,首次发现了SPR现象并对其做了简单的记录,但直到39年后的1941年,一位名叫Fano的科学家才真正解释了SPR现象。之后的30年间,SPR 技术并没有实质的发展,也没能投入到实际应用中去。1971年Kretschmann为SPR传感器结构奠定了基础,也拉开了应用SPR技术进行实验的序幕。1983年,Liedberg首次将SPR 用于IgG与其抗原的反应测定并取得了成功。1987年,Knoll等人开始研究SPR的成像。到了1990年,Biacore AB公司开发出了首台商品化SPR仪器,为SPR技术更加广泛的应用开启了新的乐章。简言之,SPR是用来进行实时分析,简单快捷的监测DNA与蛋白质之间、蛋白质与蛋白质之间、药物与蛋白质之间、核酸与核酸之间、抗原与抗体之间、受体与配体之间等等生物分子之间的相互作用。SPR在生命科学、医疗检测、药物筛选、食品检测、环境监测、毒品检测以及法医鉴定等领域具有广泛的应用需求。 [正文]

一、表面等离子共振原理: 1.消逝波: 根据法国物理学家菲涅尔所提出的光学定理: n1 sinθ1 = n2 sinθ2 可知,当光从光密介质射 入光疏介质,入射角增大到某一角度,使折射角达 到90°时,折射光将完全消失,而只剩下反射光, 这种现象叫做全反射。(图1)当以波动光学的角度来研究全反射时,人们发现当入射光到达界面时并不是直接产生反射光,而是先透过光疏介质约一个波长的深度,再沿界面流动约半个波长再返回光密介质。则透过光疏介质的波被称为消逝波。(图2) 图1 图2 2.等离子波 等离子体通常指由密度相当高的自由正、负电荷组成的气体,其中正、负带电粒子数目几乎相等。把金属表面的价电子看成是均匀正电荷背景下运动的电子气体,这实际上也是一种等离子体。当金属受电磁干扰时,金属内部的电子密度分布会变得不均匀。因为库仑力的存在,会将部分电子吸引到正电荷过剩的区域,被吸引的电子由于获得动量,故不会在引力与斥力的平衡位置停下而向前运动一段距离,之后电子间存在的斥力会迫使已经聚集起来的电子再次离开该区域。由此会形成一种整个电子系统的集体震荡,而库仑力的存在使得这种集体震荡反复进行,进而形成的震荡称等离子震荡,并以波的形式表现,称为等离子波。 3.SPR光学原理

Al纳米颗粒表面等离子体共振峰可控性研究_马守宝

A O S 网络预出版: 标题:Al纳米颗粒表面等离子体共振峰可控性研究 作者:马守宝,刘琼,钱晓晨,洪瑞金,陶春先 收稿日期:2017-03-21 录用日期:2017-05-18 DOI:10.3788/aos201737.0931001 引用格式: 马守宝,刘琼,钱晓晨,洪瑞金,陶春先. Al纳米颗粒表面等离子体共振峰可控性研究[J].光学学报,2017,37(09):0931001. 网络预出版文章内容与正式出版的有细微差别,请以正式出版文件为准! ————————————————————————————————————————————————————您感兴趣的其他相关论文: 1064 nm分振幅光偏振测量仪的多层介质分束镜的设计和制备 袁文佳 沈伟东 章岳光 郑晓雯 沐 雯 方 波 杨陈楹 刘 旭 浙江大学光电科学与工程学院现代光学仪器国家重点实验室, 浙江 杭州 310027 光学学报,2017,37(5):0531001 激光诱导薄膜等离子体点燃时间及其影响因素 汪桂霞 苏俊宏 徐均琪 杨利红 吴慎将 西安工业大学光电工程学院, 陕西 西安 710021 光学学报,2017,37(4):0431001 南极大型天文望远镜主镜膜层防霜方法 王晋峰 王烨儒 田杰 中国科学院国家天文台南京天文光学技术研究所, 江苏 南京 210042 光学学报,2017,37(4):0431002 基于柔性显示器件的氧化铝介电层室温制备 姚日晖 郑泽科 曾勇 胡诗犇 刘贤哲 陶瑞强 陈建秋 蔡炜 宁洪龙 徐苗 王磊 兰林锋 彭俊彪 华南理工大学材料科学与工程学院高分子光电材料与器件研究所, 发光材料与器件国家重点实验室,广东 广州 510640 光学学报,2017,37(3):0331001 基于VO2相变的热致型智能辐射器设计 蒋蔚 李毅 陈培祖 伍征义 徐婷婷 刘志敏 张娇 方宝英 王晓华 肖寒 上海理工大学光电信息与计算机工程学院, 上海 200093 光学学报,2017,37(1):0131001 网络出版时间:2017-05-19 17:48:25 网络出版地址:https://www.360docs.net/doc/724161610.html,/kcms/detail/31.1252.o4.20170519.1748.012.html

表面等离激元

表面等离子体共振波长 1.共振波长的基本求解思路 表面等离激元(SP)是指在金属和电介质界面处电磁波与金属中的自由电子藕合产生的振动效应。它以振动电磁波的形式沿金属和电介质的界面传播,并且在垂直离开界面的方向,其振幅呈现指数衰减。表面等离激元的频率与波矢可以通过色散关系联系起来。其垂至于金属和电解介质界面方向电磁场 可表达为: 式中表示离开界面的垂直距离,当时取+,时取一。式中为虚数,引起电场的指数衰减。波矢平行于方向,,其中为表面等离子体的共振波长。由表达式可见,当时,电磁场完全消失,并在时为最大值。 函数,以及电介质的介电常数来求解表面等离激元的的色散 关系,由公式: ,可 得到等离激元色散关系式为: ,如果假设和都为实数,且 ,则可获得一个较为复 杂的色散关系式 其中, (从实部可以计算SPPs 的波长 '2/x SPP K λπ=,SPPs 的传播距离SPP δ主要决定于虚部''2SPP SPPs k δ=

2. 金属表面等离体子频率的求解 当波矢较大或者时, 的值趋向于SP ωω=对于自由电子气,,是金属体电子密度,是电子有效质 量,是电子电荷。因此,随增大而减小。 (1)具有理想平面的半无限金属 全空间内电势分布满足拉普拉斯方程:由于在方向上介质和金属都是均匀的,所以可令解的形式为 得拉普拉斯方程的解 由以及边界条件: 可以得到介质与金属相对电容率之间的关系: ,假设介质的相对电容率为与

频率无关的常数,由金属相对电容率的表示式可知因此金属表面等离体子频率为当介质为真空时,得到金属表面等离体子频率为 (2)金属中存在着大量的价电子,它们可以在金属中自由地运动.由于价电子的自由移动性及电子间存在着库仑相互作用,所以在金属内部微观尺度上必然存在着电子密度的起伏.由于库仑作用的长程性,导致电子系统既存在集体激发(即等离体子振荡),也存在个别激发(即准电子).而在小波矢近似下只存在集体激发,故可以将电子密度的傅里叶分量作为集体坐标来描述这种关联,在k 一0的极限下,有式中为单位体积内的电子数.由此方程可以得到金属内等离体子振荡频率 从以上讨论及推导可以看出,金属等离体子振荡实际上是在库仑作用参与下的高粒子数密度系统中电子的集体运动,等离体子就是电子集体振荡的能量量子.由于库仑势场是纵场,因此等离体子是纵振动的量子.以上所讨论的情况没有考虑到金属边界的影响,即认为金属是无限大的,计算得到的频率为块状金属中的体相等离体子频率. 3.金属介电常数的求解 (1)另外,根据Drude 自由电子气模型,理想金属的介电方程可写为: 22()1p i ωεωωτω =-- ,p ω是等离子体振荡频率,,τ是散射速率描述电子运动遭遇散射而引起的损耗, 161311.210/, 1.4510p rad s s ωτ-=?=?对于银,。 (2)球状金属的SP 介电常数可由以下公式给出: 式中为金属周围环境的介电常数。从公式可以得到无限多的模式,在 时得到最低阶介电模式。由于光子通过这些介电模式藕合进入SP ,

相关文档
最新文档