串联直流稳压电源(电子)

串联直流稳压电源(电子)
串联直流稳压电源(电子)

串联直流稳压电源讲稿

--彭岚峰设计

一、简易串联型稳压电源原理分析

图1.1是简易串联稳压电源,T1是调整管,D1是基准电压源,R1是限流电阻,R2是负载。由于T1基极电压()B T U 1被D1固定在1D U ,T1发射结电压()BE T U 1在T1正常工作时基本是一个固定值(一般硅管为0.7V ,锗管为0.3V ),所以输出电压()BE T D U U U 110-=。当输出电压远大于T1发射结电压时,可以忽略()BE T U 1,则10D U U ≈。

图1.1 简易串联稳压电源电路

下面我们分析一下串联稳压电源的稳压工作原理:

假设由于某种原因引起输出电压o U 降低,即T1的发射极电压()E T U 1降低,由于1D U 保持不变,从而造成T1发射结电压()BE T U 1上升,从而引起T1基极电流

()B T I 1上升。由三极输出动态曲线图(图1.2)可知,T1压降()CE T U 1将迅速减小,

输入电压UI 更多的加到负载上,o U 得到快速回升。

这个调整过程可以使用下面的变化关系图表示:

o U ↓→()E T U 1↓→1D U 恒定→()BE T U 1↑→()B T I 1↑→()CE T U 1↓→o U ↑

当输出电压上升时,整个分析过程与上面过程的变化相反,这里我们就不再重复,只是简单的用下面的变化关系图表示:

o U ↑→()E T U 1↑→1D U 恒定→()BE T U 1↓→()B T I 1↓→()CE T U 1↑→o U ↓

图1.2 三极输入、输出动态曲线图

从电路的工作原理可以看出,稳压的关键有两点:一是稳压管D1的稳压值

1D U 要保持稳定;二是调整管T1要工作在放大区且工作特性要好。

由于直接通过输出电压o U 的变化来调节T1的管压降()CE T U 1,这样控制作用较小,稳压效果还不够理想。因此这种稳压电源仅仅适合一些比较简单的应用场合。

二、串联负反馈稳压电源原理分析

由于简易串联稳压电源输出电压受稳压管稳压值得限制无法调节,当需要改变输出电压时必须更换稳压管,造成电路的灵活性较差;同时由输出电压直接控制调整管的工作,造成电路的稳压效果也不够理想。所以必须对简易稳压电源进行改进,增加一级放大电路,专门负责将输出电压的变化量放大后控制调整管的

工作。由于整个控制过程是一个负反馈过程,所以这样的稳压电源叫串联负反馈稳压电源。

1、原理分析

图2.1 串联负反馈稳压电路电路图

图2.1是串联负反馈稳压电路电路图,其中T1是调整管,D1和R2组成基准电压,T2为比较放大器,R3~R5组成取样电路,R6是负载。其电路组成框图见图2.2。

图2.2 串联负反馈稳压电路组成框图

假设由于某种原因引起输出电压o U 降低时,通过R3~R5的取样电路,引起T2基极电压()B T U 2成比例下降,由于T2发射极电压()E T U 2受稳压管D1的稳压值控制保持不变,所以T2发射结电压()BE T U 2将减小,于是T2基极电流()B T I 2减小,由三极管输出动态曲线图可知,T2管压降()CE T U 2增加,导致其发射极电压

()C T U 2上升,即调整管T1基极电压()B T U 1将上升,由三极管输出动态曲线图可知,

T1管压降()CE T U 1减小,使输入电压in U 更多的加到负载上,这样输出电压o U 就上升。这个调整过程可以使用下面的变化关系图表示:

o U ↓→()B T U 2↓→1D U 恒定→()BE T U 2↓→()B T I 2↓→

()CE T U 2↑→1D U 恒定→()C T U 2↑→()B T U 1↑→()CE T U 1↓→o U ↑

当输出电压升高时整个变化过程与上面完全相反,这里就不再赘述,简单的用下图表示:

o U ↑→()B T U 2↑→1D U 恒定→()BE T U 2↑→()B T I 2↑→

()CE T U 2↓→1D U 恒定→()C T U 2↓→()B T U 1↓→()CE T U 1↑→o U ↓

与简易串联稳压电源相似,当输入电压in U 或者负载等其他情况发生时,都会引起输出电压o U 的相应变化,最终都可以用上面分析的过程说明其工作原理。

在串联负反馈稳压电源的整个稳压控制过程中,由于增加了比较放大电路T2,输出电压o U 的变化经过T2放大后再去控制调整管T1的基极,使电路的稳压性能得到增强。T2的β值越大,输出的电压稳定性越好。

2、输出电压的计算

前面我们还说到R3~R5是取样电路,由于取样电路并联在稳压电路的输出端,而取样电压实际上是通过这三个电阻分压后得到。在选取R3~R5的阻值时,可以通过选择适当的电阻值来使流过分压电阻的电流远大于流过T2基极的电流。也就是说可以忽略T2基极电流的分流作用,这样就可以用电阻分压的计算方法来确定T2基极电压()B T U 2。

当R4滑动到最上端时T2基极电压()B T U 2为:

()O B T U R R R R R U 5

435

42+++=

此时输出电压o U 为:

()()()125

45

43

25

45

43D BE T B

T O U U R R R R R U R R R R R U ++++=+++=

这时的输出电压是最小值。

当R4滑动到最下端时T2基极电压()B T U 2为:

()O B T U R R R R U 5

435

2++=

此时输出电压o U 为:

()()()125

5

4325

5

43D BE T B

T O U U R R R R U R R R R U +++=

++=

这时的输出电压是最大值。

以上计算中,当()BE T U 2<<1D U 时可以忽略()BE T U 2的值。

通过上面的计算我们可以看出,只要合适选择R3~R5的阻值就可以控制输出电压o U 的范围,改变R3和R5的阻值就可以改变输出电压o U 的边界值。

3、增加输出电流

当输出电流不能达到要求时,可以通过采用复合调整管的方法来增加输出电流。一般复合调整管有四种连接方式,如图2.3所示。

图2.3 复合调整管的四种连接方式

图2.4中的复合管都是由一个小功率三极管T2和一个大功率三极管T1连接而成。复合管就可以看作是一个放大倍数为21T T ββ,极性和T2一致,功率为T1管的最大功率,而其驱动电流只要求()B T I 2。

图2.4是一个实用串联负反馈稳压电源电路图。此电路采用图2.3(a)中的复合管连接方法来增加输出电流大小。另外还增加了一个电容C2,它的主要作用是防止产生自激振荡,一旦发生自激振荡可由C2将其旁路掉。

图2.4 串联负反馈稳压电源电路图

三、串联负反馈稳压电源电路设计实例

这一节我们综合运用前面各章节的知识,根据给定条件实际设计一个直流稳压电源,通过这个设计实例更好的掌握串联负反馈稳压电源的设计。

1、电路设计指标

⑴、直流输出电压o U :3V ~15V ; ⑵、最大输出电流o I :1A ;

⑶、电网电压变化±10%时,输出电压变化小于±1%;

2、电路选择

由于桥式整流、电容滤波电路十分成熟,这里我们选择桥式整流、电容滤波电路作为电源的整流、滤波部分。由于要求电源输出电压有一定的调整范围,稳压电源部分选择串联负反馈稳压电路。同时由于对输出电流要求比较大,调整管必须采用复合管。综合这些因素可以初步确定电路的形式,如图3.1所示。

图3.1 串联负反馈稳压电源设计实例电路

3、变压部分参数计算

这一部分主要计算变压器B1次级输出电压()O B U 1和变压器的功率1B P 。 一般整流滤波电路有2V 以上的电压波动(即纹波电压,设为ΔUD )。调整管T1的管压降()CE T U 1应维持在3V 以上,才能保证调整管T1工作在放大区。整流输出电压最大值为15V 。根据第二章《常用整流滤波电路计算表》可知,桥式整流输出电压是变压器次级电压的1.2倍。得下列计算公式:

()()()()()V

V V V V U U U U MAX D CE R O B 67.162.1202

.115322

.111=÷=÷++=÷+?+=

当电网电压下降-10%时,变压器次级输出的电压应能保证后续电路正常工作,那么变压器B1次级输出电压()OMIN B U 1为:

A

F

()()V

U U O B OMIN B 5.189.067.169

.011=÷=÷= 当电网电压上升+10%时,变压器B1的输出功率最大。此时变压器B1次级输出电压()OMAX B U 1为:

()()V

V U U MAX B OMAX B 35.201.15.181

.111=?=?=

这时当稳压电源输出的电流()MAX O I 达到最大(即设计最大电流值1A )时。此时变压器次级B1的设计功率为:

()()W

A V I U P MAX

O MAX B B 35.20135.2011=?=?=

为保证变压器留有一定的功率余量,确定变压器B1的额定输出电压为18.5V ,额定功率为20.35W 。实际购买零件时如果没有输出电压为18.5V 的变压器可以选用输出电压为18V 或以上的变压器。当选用较高输出电压的变压器时,后面各部分电路的参数需要重新计算,以免由于电压过高造成元件损坏。设计中选用的变压器为输出电压18V ,额定功率25W 。

4、整流部分参数计算

⑴、相关知识复习

图3.2 单相桥式整流电路电压、电流波形图

上图中L R 为负载电阻,1u 经变压器降压后,t V u ωsin 222=。对2u 用傅里叶级数展开后可得

??

?

?????---=t t t V u L ωπωπωππ2cos 3542cos 1542cos 34222

式中恒定分量即为负载电压的平均值,因此有

22

9.022V V V L ==

π

直流电流为

L

L R V I 2

9.0=

在桥式整流电路中,二极管1D 、4D 和2D 、3D 是两两轮流导通的,所以流过每个二极管的平均电流为

L D I I 2

1=

当处时波形正半周时,二极管2D 、3D 处于截止状态。此时2D 、3D 所承受到的最大反向电压均为2u 的最大值,即

22V V RM =

一般电网电压波动范围为%10±。实际上选用的二极管的最大整流电流

RM DM V I 和最高反向电压应留有大于10%的余量。

⑵、参数计算

这一部分主要计算整流管的最大电流()MAX D I 1和耐压()RM D V 1。由于四个整流管D1~D4参数相同,所以只需要计算D1的参数。整流管D1的最大整流电流为:

()()A

A I I MAX O MAX

D 5.012121

1=?=?= 考虑到取样和放大部分的电流,可选取最大电流(ID1)MAX 为0.8A 。

整流管D1耐压()RM D V 1的计算应取市电上升10%时,D1两端的最大反向峰值电压:

()()V

V U V O B RM D 28181.121.1211≈??=??=

得到这些参数后可以查阅有关整流二极管参数表,这里我们选择额定电流3A ,反向峰值电压1000V 的IN5408作为整流二极管。

5、滤波部分参数计算

这里主要计算滤波电容的电容量C1和其耐压1c V 值。 根据滤波电容选择条件公式可知,滤波电容的电容量为:

()R T C ???-=5.053

一般系数取5,由于市电频率是50Hz ,所以T 为0.02S ,R 为负载电阻。

当最不利的情况下,即输出电压为15V ,负载电流为1A 时:

()()F

V R

T C μ330011502.05.055.0531≈÷÷??=÷??-= 当市电上升10%时整流电路输出的电压值最大,此时滤波电容承受的电压达到最大:

()V

V

U V OMAX

B C 8.19181.111=?== 实际上普通电容都是标准电容值,只能选取相近的容量,这里可以选择3300μF 的铝质电解电容。耐压可选择25V 以上,一般为留有余量并保证长期使用中的安全,可将滤波电容的耐压值选大一点,这里选择35V 。

6、调整部分参数计算

调整部分主要是计算调整管T1和T2的集电极-发射极反向击穿电压

()

CEO

T V 1,最大允许集电极电流()CM T I 1,最大允许集电极耗散功率()CM T P 1。

在最不利的情况下,市电上升10%,同时负载断路,整流滤波后的出电压全部加到调整管T1上,这时调整管T1的集电极-发射极反向击穿电压()CEO T V 1为:

()

()V U V OMAX B T CEO

8.1911==

考虑到留有一定余量,可取()CEO T V 1为25V 。

当负载电流最大时,最大允许集电极电流()CM T I 1为:

()A I I O CM

T 11==

考虑到放大取样电路需要消耗少量电流,同时留有一定余量,可取()CM T I 1为1.2A 。这样最大允许集电极耗散功率()CM T P 1为:

()()()()()W

A

V V I U U P CM

T OMIN OMAX B CM T 8.16138.19111=?-=?-= 考虑到留有一定余量,可取()CM T P 1为20W 。

查询晶体管参数手册后选择2SC2563作为调整管T1。该管参数为:

()W P CM

T 801=,()CM T I 1=8A ,()CEO T V 1≥120V ,完全可以满足要求。选择调整管

T1时需要注意其放大倍数β≥40,设计过程中取401=T β。

调整管T2各项参数的计算原则与T1类似,下面给出各项参数的计算过程。

⑴、调整管T2集电极-发射极反向击穿电压

()

()()()()V

V

V U U U U V BE T OMAX B BE T CEO T T CEO

1.197.08.1911112=-=-=-=

同样考虑到留有一定余量,取()CEO T V 2为25V 。

⑵、调整管T2最大允许集电极电流CM I 为

()()mA

A I I T CMAX

T CMAX T 254011

12=÷=÷=β

⑶、调整管T2最大允许集电极耗散功率()CM T P 2为

()()()()()W

mA

V V I U U P CMAX

T OMIIN OMAX B CM T 592.02538.19212=?-=?-=

考虑到留有一定余量,可取()CM T P 2为600mW 。

查询晶体管参数手册后选择8050作为调整管T2。该管参数为:()CM T P 2=

625mW ,CM I =500mA ,V V CEO 25≥,直流电增益:30 to 100;完全可以满足要求。还可以采用9014作为调整管T2,该管参数为:()CM T P 2=450mW ,CM I =100mA ,V V CEO 45≥,直流电增益:20 to 90;也可以满足要求。

选择调整管T2时需要注意其放大倍数β≥80,设计中取1002=β则此时T2所需要的基极驱动电流为:

()()mA

mA I I T CM T MAX T 25.0100

251

22=÷=÷=β

7、基准电源部分参数计算

基准电源部分主要计算稳压管D7和限流电阻R3的参数。

稳压管D7的稳压值应该小于最小输出电压OMIN U ,但是也不能过小,否则会影响稳定度。这里选择稳压值为2V 的C2V0,该型稳压管的最大工作电流为250mA ,最大功耗为350mW 。为保证稳定度,稳压管的工作电流7D I 应该尽量选择大一些。而其工作电流()CE T R D I I I 337+=,由于()CE T I 3在工作中是变化值,为保证稳定度取()CE T R I I 33>>,则37R D I I ≈。

这里初步确定()mA I MIN R 103=,则R3为:

()()()Ω

=÷-=÷-=1001023353mA V V I U U R MIN R D OMIN

实际选择时可取R2为120Ω。

当输出电压O U 最高时,()MAX R I 3为:

()()()mA

V V R U U I D OMAX MAX R 33.108120

2152

72=÷-=÷-=

这时的电流()MAX R I 2小于稳压管D7的最大工作电流,可见选择的稳压管能够安全工作。

8、取样部分参数计算

取样部分主要计算取样电阻R1、R2、RW1的阻值。

由于取样电路同时接入T3的基极,为避免T3基极电流IT3B 对取样电路分压比产生影响,需要让()1//13RW R B T I I <<。另外为了保证稳压电源空载时调整管T3能够工作在放大区,需要让1//1RW R I 大于调整管T3的最小工作电流()CEMIN T I 1。由于2SC2563最小工作电流()CEMIN T I 1为1mA ,因此取mA I RW R 101//1=。则可得:

Ω

=÷=÷=+300103//1

//1112mA

V I U R R R RW R OMIN W

当调节端位于最下端时,输出电压达到最大O U =15V ,此时

()o W BE T D U R R R R U U 1

122

35//+=

+

V R R R R V V W 15//7.021

122

?+=

+?

18.0//1

122

=+?

W R R R R

由于Ω=+300//112W R R R ,可得:

Ω=Ω?=5430018.02R Ω=Ω-Ω=24654300//11W R R

根据电阻的并联知识可知,1R 与1W R 都需大于Ω246。设计中取

Ω=4701W R ,则可推算出1R 应取Ω2.516。

实际选择时可取R2为50Ω。这样1W R 为470Ω,R1为534Ω。但实际选择时可取R3为560Ω。

9、放大部分参数计算

放大部分主要是计算限流电阻R4和比较放大管T3的参数。由于这部分电路的电流比较小,主要考虑T3的放大倍数β和集电极-发射极反向击穿电压

()CEO T U 1。

串联负反馈稳压电路是通过输出电压的变化量,经放大后来调节调整管的管压降达到稳压的目的。当放大倍数越高,电源的稳定度就越高。对于三极管放大

器,当集电极电阻越大同时输入电阻越小时,放大倍数就越大。但集电极电阻过大会造成集电极电流过小,会造成输入电阻增大。为解决这个矛盾,可以使用恒流源负载代替集电极电阻。图3.1中是一种使用三极管恒流源的稳压电路。图中虚线框内的T4、D5、R4、R10组成恒流源电路,作为T3发射极负载。

这里需要T3工作在放大区,可通过控制T3的集电极电流()C T I 3来达到。而()C T I 3是由限流电阻R4控制,并且有:

()()B T C T R I I I 234+=

由三极管的输出动态曲线可知,当三极管处于饱和区时,左侧即深度饱和区

C I 是一条向右上方的斜直线,此状态下基极电流远大于β

C

B I I >>

,C I 只服从于三

极管的饱和状态下导通电阻C R 的欧姆定律(在三极管安全功率内),c

cc

C R U I =

,即CC U 大小决定C I 的大小,与B I 无关了(横轴2左边向左)。此时,V U CE 0≈。

⑴、4R I 的计算

在工程上,一般取()mA I B T 102=,取()mA I T 13=,则有mA I R 114=。

⑵、4R U 的计算

在工程上,一般取()()V U U BE T BE T 7.012==,取()V U EC T 34=,则有

()()()V

V

V V V U U U U U O

BE T BE T OMAX B R 4.1537.07.08.191214=---=---=

Ω===

K mA

V

I U R R R 4.1114.15444 设计时取Ω=K R 14,此时

mA K V

I R 4.1514.154=Ω

=

可见当输出电压最大时,4R I 上幅度仅1.4%,对T3工作点影响不大,可满足要求。

⑶、10R 的计算

取()mA I B T 14=,()()mA I I B D B D 1056==,则流过R10的总电流为21mA 。又有V V V V U R 4.187.07.08.1910=--=,可求得R10的值。

Ω===

876214.18101010mA

V

I U R R R 设计时取R10为1K 。由于放电电路的电流并不大,各项电压也都小于调整电路,可以直接选用8050作为放大管T3。

10、保护电路部分计算

工程上一般硅管基极与发射极间的压降为0.7V ,由此可知要使T5管导通,必须使()V U BE T 7.05>。由于设计电路最大工作电流为1A ,取1.4A 进行过流保护。那么可由下式计算需并联的电阻大小:

()Ω==

=

5.04.17.04.13A

V

A

U R BE

T 总保护 由电阻的并联知识可知,可由两个Ω1并联得到。此时电阻R5、R7的功率为

W W A P P R R 149.0124.12

57<=Ω???

?

??==

故选用W 11、Ω的电阻。

11、其它元件部分参数计算

⑴、在T2的基极与地之间并联有电容C2,此电容的作用是为防止发生自激

振荡影响电路工作的稳定性,一般可取0.01μF/35V 。在电源的输出端并联的电容C9是为提高输出电压的稳定度,特别对于瞬时大电流可以起到较好的抑制作用,可选470μF/25V 铝电解电容。

⑵、R9与D14组成电源指示。取发光二极管的工作电流为10mA ,则R9的

计算值为Ω=-=

K mA

V

V R 91.1107.08.199,设计中取R9为2K 。

四、三稳压电源部分

为增加电源的实用性,增加了三路三端集成稳压器构成的电源。输出分别为+5V ,+9V ,-9V 。

图4.1 三端集成稳压器构成的电源

五、结果分析

通过前面的计算,已经得到了所有元件的参数,这样就得到完整的串联负反馈稳压电源电路图。这里计算的其实都还只是初步的参数,实际组装完毕后应该仔细测量电源的各项指标是否符合要求,各部分元件工作是否正常。如果发现问题,应该根据实际情况作出调整。根据调整的结果来修正原理图中的电路参数,最终完成稳压电源的设计。

串联型直流稳压电源设计说明书

电子技术课程设计 电气与电子工程系电气工程及其自动化专业 题目:串联型直流稳压电源 学生姓名:班号:学号: 指导教师; 时间:年月日 ~ 年月日

指导教师评语:成绩:

串联型直流稳压电源设计报告 一、设计题目 题目:串联型直流稳压电源 二、设计任务:设计并制作用晶体管、集成运算放大器电阻、电阻器、电容组成的串联型直流稳压电源。 指标:1、输入电压: 2、输出电压:3- 6V、6-9V、9-12V三档直流电压; 3、输出电流:最大电流为1A; 4、保护电路:过流保护、短路保护。 三、理电路和程序设计: 一电路原理方框图: 二原理说明: (1)单相桥式整流电路可以将单相交流电变换为直流电; (2)整流后的电压脉动较大.需要滤波后变为交流分量较小的直流电压用来供电; (3)滤波后的输出电压容易随电网电压和负载的变化波动不利于设备的稳定运行; (4)将输出电压经过稳压电路后输出电压不会随电网和负载的变化而变化从而提高设备的稳定性和可靠性.保障设备的正常

使用; (5) 关于输出电压在不同档位之间的变换.可以将稳压电源的电 压设置为标准电压再对其进行变换.电压在档位间的调节可以通过调节电位器来进行调节.从而实现对输出电压的调节。 四:方案选择 一:变压、滤波电路 方案一和方案二的变压电路和滤波电路相同.二者的差别主要体现在稳压电路部分。 图1 变压和滤波电路 二:稳压电路 方案一:此方案以稳压管D1的电压作为三极管Q1的基准电压.电路 引入电压负反馈.当电网电压波动引起R 2两端电压的变化增大(减小)时.晶体管发射极电位将随着升高(降低).而稳压管端的电压基本不变.故基极电位不变.所以由E B BE U U U -=可知 BE U 将减小(升高)导致基极电流和发射极电流的减小(增大). 使得R 两端的电压降低(升高).从而达到稳压的效果。负电源部分与正电源相对称.原理一样。

(完整版)串联型直流稳压电源设计

课程设计 课程名称模拟电子技术基础 题目名称串联型直流稳压电源 学生学院物理与光电工程学院 专业班级09级电子科学与技术3班学号3109008668 学生姓名崔文锋 指导教师何榕礼 2010年12 月20 日

目录 一、设计任务与要求。。。。。。1 二、电路原理分析与方案设计。。。。。。1 1、方案比较。。。。。。1 2、电路的整体框图。。。。。。3 3、单元设计及参数计算、元器件选择。。。。。。3 4、电路总图。。。。。。7 5、元器件清。。。。。。7 6、电路仿真过程及结果。。。。。。8 三、电路调试过程及结果。。。。。。10 四、总结。。。。。。10 五、心得体会。。。。。。11 六、组装后的实物电路图。。。。。。12

串联型直流稳压电源设计报告 一、设计任务与要求 要求:设计并制作用晶体管和集成运算放大器组成的串联型直流稳压电源。 指标:1、输出电压6V 、9V 两档,同时具备正负极性输出; 2、输出电流:额定电流为150mA ,最大电流为500mA ; 3、在最大输出电流的时候纹波电压峰值▲V op-p ≤5mv ; 任务:1、了解带有的组成和工作原理: 2、识别的电路图: 3、仿真电路并选取元器件: 4、安装调试带有放大环节串联型稳压电路: 5、用仪器仪表对电路调试和测量相关参数: 6、撰写设计报告、调试。 二、电路原理分析与方案设计 采用变压器、二极管、集成运放、电阻、稳压管、三极管等元器件。220V 的交流电经变压器变压后变成电压值较小的电流,再经桥式整流电路和滤波电路形成直流稳压部分采用串联型稳压电路。比例运算电路的输入电压为稳定电压,且比例系数可调,所以输出电压也可以调节:同时,为了扩大输出电流,集成运放输出端加晶体管,并保持射级输出形式就构成了具有放大环节的串联型稳压电路。 1、方案比较 方案一: 先对输入电压进行降压,然后用单相桥式二极管对其进行整流,整流后利用电容的充放电效应,用电解电容对其进行滤波,将脉动的直流电压变为更加平滑的直流电压,稳压部分的单元电路由稳压管和三极管组成(如图1),以稳压管D1电压作为三极管Q1的基准电压,电路引入电压负反馈,当电网电压波动引起R 2两端电压的变化增大(减小)时,晶体管发射极电位将随着升高(降低),而稳压管端的电压基本不变,故基极电位不变,所以由E B BE U U U -=可知BE U 将

串联反馈型晶体管稳压电路解析分析方法

串联反馈型晶体管稳压电路解析分析方法的研究 时间:2009-02-24 15:45:23 来源:ednchina 作者: 1 串联反馈型晶体管稳压电路的计算模型 串联反馈型晶体管稳压电路中含有的元器件种类繁多,把他作为我们研究问题的对象,使得研究结果具有普遍性。串联反馈型晶体管稳压电路如图1所示。图中,Ui为电网电压经变压、整流、滤波后的输出电压值;VT1为调整管,VT2为放大管,VD为稳压管,内阻为r。假设,VT1的参数为rbe1,β1;VT2的参数为rbe2,β2。 根据电路图可知电路有5个独立节点,输入为节点1,输出为节点5,其余节点按顺序标于图中。 根据放大电路导纳矩阵的建立方法,可以对此电路建立计算模型。 (1)首先去掉晶体管VT1和VT2,写出剩余部分电路的导纳矩阵。 (2)按电路中的实际编号,写出晶体管VT1和VT2的节点导纳矩阵。 (3)将YVT1,YVT2按他的元素所在的行、列位置"对号入座"地补入Y0中,得到串联反馈型晶体管稳压电路的节点导纳矩阵:

此导纳矩阵即是用来描述串联反馈型晶体管稳压电路的数学模型。对于稳压电源而言,我们所关心的是稳压电源的输出电压是否恒定、输出电阻是否很小、稳压系数是否很小。有了稳压电源的数学模型,下一步的问题就是如何对数学模型进行求解。 2串联反馈型晶体管稳压电路性能指标的求解 2.1 串联反馈型晶体管稳压电路性能指标的求解 对于直流稳压电路来说,可以假设有两个外加恒流源电流,分别记为Iω1和Iωn,方向以从外节点流入为正。这样整个电路的方程组包括反映信号源和负载的方程各一个。由于对外只有两个节点,可以用两个方程来描述,再考虑外加恒流源和支路电流关系的两个方程,总共6个方程来描述。利用直流稳压电源的节点导纳矩阵,可以得到端口方程: 由于稳压电路有公共点,所以可以求得节点电压列向量: 式中,△为稳压电路节点导纳矩阵的行列式;△11为此导纳矩阵中位于第1行第1列的元素所对应的代数余子式;△n1为此导纳矩阵中位于第n行第1列的元素所对应的代

串联型直流稳压电源电路设计报告

串联型直流稳压电源设计报告 一、计题目 题目:串联型直流稳压电源 二、计任务和要求 要求:设计并制作用晶体管和集成运算放大器组成的串联型直流稳压电源。 指标:1、输出电压6V 、9V 两档,正负极性输出; 2、输出电流:额定电流为150mA ,最大电流为500mA ; 3、纹波电压峰值▲V op-p ≤5mv ; 三、理电路和程序设计: 1、方案比较 方案一:先对输入电压进行降压,然后用单相桥式二极管对其进行整流,整流后利用电容的充放电效应,用电解电容对其进行滤波,将脉动的直流电压变为更加平滑的直流电压,稳压部分的单元电路由稳压管和三极管组成(如图1),以稳压管D1电压作为三极管Q1的基准电压,电路引入电压负反馈,当电网电压波动引起R 2两端电压的变化增大(减小)时,晶体管发射极电位将随着升高(降低),而稳压管端的电压基本不变,故基极电位不变,所以由E B BE U U U -=可知BE U 将减小(升高)导致基极电流和发射极电流的减小(增大),使得R 两端的电压降低(升高),从而达到稳压的效果。负电源部分与正电源相对称,原理一样。 图1 方案一稳压部分电路 方案二:经有中间抽头的变压器输出后,整流部分同方案一一样擦用四个二极管

组成的单相桥式整流电路,整流后的脉动直流接滤波电路,滤波电路由两个电容组成,先用一个较大阻值的点解电容对其进行低频滤波,再用一个较低阻值的陶瓷电容对其进行高频滤波,从而使得滤波后的电压更平滑,波动更小。滤波后的电路接接稳压电路,稳压部分的电路如图2所示,方案二的稳压部分由调整管,比较放大电路,基准电压电路,采样电路组成。当采样电路的输出端电压升高(降低)时采样电路将这一变化送到A的反相输入端,然后与同相输入端的电位进行比较放大,运放的输出电压,即调整管的基极电位降低(升高);由于电路采用射极输出形式,所以输出电压必然降低(升高),从而使输出电压得到稳定。 图2 方案二稳压部分单元电路 对以上两个方案进行比较,可以发发现第一个方案为线性稳压电源,具备基本的稳压效果,但是只是基本的调整管电路,输出电压不可调,而且输出电流不大,而第二个方案使用了运放和调整管作为稳压电路,输出电压可调,功率也较高,可以输出较大的电流。稳定效果也比第一个方案要好,所以选择第二个方案作为本次课程设计的方案。 2、电路框图 整体电路的框架如下图所示,先有22V-15V的变压器对其进行变压,变压后再对其进行整流,整流后是高低频的滤波电路,最后是由采样电路、比较放大电路和基准电路三个小的单元电路组成的稳压电路,稳压后为了进一步得到更加稳定的电压,在稳压电路后再对其进行小小的率波,最后得到正负输出的稳压电源。

串联反馈调整型稳压电源的设计

1课程设计的目的 通过课程设计,培养综合运用本门课程及有关先修课程的基本知识去解决某一实际问题的实际本领,加深对该课程知识的理解。 主要培养以下能力:查阅资料:搜集与本设计有关部门的资料(包括从已发表的文献中和从生产现场中搜集)的能力;方案的选择:树立既考虑技术上的先进性与可行性,又考虑经济上的合理性,并注意提高分析和解决实际问题的能力;迅速准确的进行工程计算的能力,计算机应用能力;用简洁的文字,清晰的图表来表达自己设计思想的能力。 为以后的毕业设计奠定了坚实的基础。 2课程设计的题目描述和要求 (1)设计要求 ①直流输出电压U O =20V,最大输出电流I Omax =200mA ②稳定程度:当电网电压变化±10%时,输出电压U O 的变化小于±0.5%;电源内阻RO≤0.5Ω(即I O由变到200mA时,输出电压的变化值△U O≤ 0.5Ω×200mA=0.1V,为输出电压U O=20V的0.5%) ③输出端纹波电压有效值小于5mV ④工作温度:-10℃~+40℃ (2)电路可以达到的技术指标 ①输出电压U O =20V,输出电流I O =0~200mA ②电网电压波动±10%,输出电压变化小于±0.1% ③电源内阻R O ≤0.1Ω ④输出纹波电压有效值小于2mV 3课程设计报告内容 3.1设计方案的选用和说明 串联型稳压电路:串联型稳压电路是以稳压管稳压电路为基础,利用晶体管的电流放大作用,增大负载的电流;在电路中引入深度电压负反馈使输出电压稳定;并且,通过改变反馈网络参数使输出电压可调。 串联反馈型晶体管稳压电路:工作在放大区的晶体管,它的集-射极之间的

电压U ce 和集电极电流I c 随基极电流I b 的大小而变动。当基极电流I b 增加时,U ce 将减小,I c 将增大,这相当于晶体管集电极与发射极间的电阻减小;而当基极电 流I b 减小时,U ce 将增大,I c 将减小,这就相当于晶体管集电极与发射极之间所 呈现的电阻增大。由此可见,在线性放大区工作的晶体管,在基极电流的控制下,集-射极之间的电阻是可以改变的。所以,晶体管完全可以充当串联反馈型稳压电路的调整元件,称为调整管。用晶体管作调整管的串联反馈型稳压电路叫做反馈型晶体管稳压电路。 所以,可以选用串联型稳压电路来实现对串联反馈调整型稳压电路的设计。 3.2设计方案的各部分工作原理 单相交流电经过电源变压器,整流电路和稳压电路,滤波电路和稳压电路转换成稳定的直流电压,其方框及各电路的输出电压波形如图3.2.1所示,下面就各部分的作用加以介绍。 图3.2.1 直流稳压电源方框图 直流电源的输入为220V的电网电压,一般情况下,所需直流电压的数值和电网电压的数值相差较大,因而需要通过电源变压器降压后,再对交流电压进行处理。变压器副边电压有效值决定于后面电路的需要。目前有些电路不用变压器,利用其他的方法升压或者降压。 变压器副边电压通过整流电路从交流电压转换成直流电压,即将正弦波电压转换为单一方向的脉动电压。半波整流电路和全波整流电路的波形如图中所画。可以看出,它们均含有较大的交流分量,会影响负载电路的正常工作;例如,交流分量会混入输入信号被放大电路放大,甚至在放大电路的输出端所混入的电源交流分量大于有用信号,因而不能直接作为电子电路的供电电源。应当指出,图中整流电路输出端所画波形是未接滤波电路时的波形,输入滤波电路后将有所变化。 为了减小电压的脉动,需要通过低通滤波电路滤波,使输出电压平滑。理想

串联型稳压电源设计要求

串联型稳压电源电路原理图 串联型稳压电源电路PCB图

串联型稳压电源设计要求 要求: 1.PCB外形尺寸70 mm * 60 mm 2. 图中元件按指定位置摆放出 3.布线线宽>1.5 mm 输入插座IN、输出插座OUT分别位于PCB 的左右两侧。 由于流过BG1的电流大,连接BG1的导线粗些,BG1应靠边安装,以便加装散热器,画PCB时注意E、B、C脚不要画反。 大电位器RW1靠另一边,把手朝外。 加电前先检查线路、焊点、二极管、电解极性。用表检查输入输出,确认没有短路方可加电。 调整管BG1和电位器RW1直接装在外壳上,用导线将各端连到线路板相应的位置。由于流过BG1的电流较大,连接BG1的导线线径要

大些。BG1安装时应处理好它的绝缘和散热措施。 串联型稳压电源元器件清单

考核标准 报告10月8号学习委员按学号排序收齐后交到409。 考核标准(拟): 成绩组成:平时成绩(20%)+ PCB设计(40%)+ 纸质报告(40%) 封面包含: 设计题目、学院名称、专业、班级、姓名、学号、指导教师 报告内容包含: 一. 课程设计目的(5分) 培养学生掌握典型电路设计软件Altium Designer 09 ,具备独立绘制电子线路图、制作PCB电路板的能力。使得同学们在以后的学习和工作中掌握常用电子线路设计软件的使用方法。 1. 熟悉Altium Designer 09软件及环境 2. 掌握PCB设计流程; 3. 能熟练运用印制电路板设计软件Altium Designer9软件进行原理图设计,其中包括原理图图纸的设置、各种报表的生成和原理图的输出等; 4. 能熟练运用印制电路板设计软件Altium Designer9软件进行PCB设计,其中包括PCB 设计步骤、PCB图的设计规则等; 5. 掌握原理图元件库、封装库的创建,会绘制新元件及其封装。 通过此课程的训练,进一步提高对Altium Designer这一软件的综合运用能力,锻炼实际应用能力,巩固所学的知识,为同学们将来走向工作岗位奠定基础。 二. 课程设计要求(5分) 1.设计报告简述设计原理和思路,附上电路原理图、PCB设计图、元器件清单图、自建元件封装、元件连接网络表等;。 2.设计上述印制电路板图PCB尺寸为70mm*60mm,要求元件布局紧凑、科学合理、整齐美观。(单层板\局部手工布线); 3.按照相关要求撰写课程设计报告书。 三. 课程设计内容(5分) 1.了解电路图的原理。

串联型直流稳压电源

1串联型直流稳压电源 为克服稳压管稳压电路输出电流较小,输出电压不可调的缺点,引入串联型稳压电路。串联型稳压电路以稳压管稳压电路为基础,利用由晶体管电流放大作用增大负载电流,并在电路中引入深度电压负反馈,使输出电压稳定,通过改变网络参数使输出电压可调。直流稳压电源主要由四部分组成:变压部分、整流部分、滤波部分、稳压部分。除变压器部分外,其它部分都有多种形式。其中串联反馈型直流稳压电源是比较典型的一种。 1.1整体电路框图 串联型直流稳压电源的整体电路框架图如图1.1所示。 1.2 2 相差较大,因而需要通过电源变压器降压。变压器的副边电压通过整流电路从交流电压转换为直流电压。为了减小电压的脉动,需要通过低通滤波电路滤波,使输出电压平滑。再经过稳压电路使输出的直流电压基本不受电网电压波动和负载电阻变化的影响,从而获得很高的稳定性 整体电路原理图 2.1 基准点压电路、采样电路和比较放大电路等四个部分。此外,为使电路安全工作,还在电路中加保护电路,所以串联想稳压电路的方框图如图 在U2的正半周内,二极管D1、D4导通,D2、D3截止;U2的负半周内,D2、D3导通,D1、D4截止。正负半周内部都有电流流过的负载电阻R L,且方向是一致的。电路的输出波形如图2.4所示。 在桥式整流电路中,每个二极管都只在半个周期内导电,所以流过每个二极管的平均电流等于

输出电流的平均值的一半,即I f=I o1/22(U2是变压副边电压有效值) [1]。

2.4滤波电路 整流电路的输出电压虽然是单一方向的,但含较大的交流成分,不能适应多数电子设备的需要。因此,整流后还需要滤波电路将脉动的直流电压变为平滑的直流电压。 滤波电路分为:电容滤波电路和电感滤波电路。本设计采用电容滤波电路。 2.4.1电容滤波的原理 电容滤波电路利用电容的充电放电作用,使输出电压平滑。其电路如图2.5所示。 2.54直流稳压电源电路图 直流稳压电源电路如图2.9所示。 2.6.3 差分比例运算电路 电路中有两个输入,且参数对称,如图2.12所示,则:

分立式串联稳压电源

第一章串联反馈型稳压电源整体简介制作串联反馈型稳压电源的目的要求 一、基本目的 此次工程训练选择使用分立式元器件构成串联反馈型直流稳压电源。学生通过实训了解相关分立式元器件的基本结构、工作原理、特性和参数以及由它们构成的串联型直流稳压电源的工作原理、原理图的设计和参数的计算、元器件的选用、计算机软件实现硬件的仿真、PCB板的设计、电路的安装和调试,最后完成达到技术指标要求的标准产品。 二、基本要求 1、依据性能指标和器件状况,设计稳压电源电子电路,并计算器件参数确定选择器件。(含散热设计); 2、以本工程训练为实例先学习Protel99SE基本知识,并运用其绘制电源sch原理图和PCB图; 3、学习Proteus知识,对本电源电路进行仿真,最终确定sch和pcb图; 4、掌握电子电路板制作的全过程,实现电源的制作; 5、测量电源相关各项技术指标,完成系统调试。 基本知识介绍 一、电源变压器知识 1.初级(Primary Winding):是指电源变压器的电源输入端。 2.次级(Secondary Winding):是指电源变压器的输出端。

3.额定输入电压U:是指电源变压器的初级所接上的电压,也就是电源变压器的工作电压。对GS变压器来说,U=230V;对BS变压器来说,U=240V。 4.空载电流I:是指电源变压器的初级接上额定输入电压U而次级不带负载(即开路)时,流过初级的电流。I与变压器的设计有关,即使是两个不同厂家生产的相同规格的电源变压器,其I也可能不同。 5.空载电压U:是指变压器初级接受上额定输入电压U次级不带负载(即开路)时,次级两端的电压。U与变压器的设计有关,即使是两个不同厂家生产的相同规格的电源变压器,其U也可能不同。 6.负载电流I:是指变压器初级接上额定输入电压U,次级接上额定负载时,流过负载的电流。 7.负载电压U:是指变压器初级接上额定输入电压U,次级接上额定负载时,负载两端的电压。 8.定输出功率P:是指变压器在额定输入电压U时的输出功率,它表示变压器传送能量的大小。一般来说,在相同频率下,P越大,变压器的尺寸越大;P相同,即使输出电压U不同,变压器的尺寸也相同,即变压器的价格也应相差无几。 由公式P=U*I可知若输出功率P一定,若输出电压U越高,则输出电流I越低。举例来说,一个输出功率P=10VA的变压器,若输出电压U=24V,则输出电流I= P/U=10VA/24V =;若U=12V,则输出电流I=。 电源变压器:将电网交流电压变为整流电路所需的交流电压,一般次级电压u2较小。 变压器副边与原边的功率比为P2/ P1=η,式中η是变压器的效率。 对于本次工程训练对电源变压器的要求主要为次级空载电压大小,额定输出功率,变压器的额定容量,所以在本次工程训练中选择的是小型单相式变压器,有四组输出线分别为7V、

串联反馈式稳压电路

串联反馈式稳压电路 图XX_01 图XX_01是串联反馈式稳压电路的一般结构图,图中V I 是整流滤波电路的输出电压,T为调整管,A为比较放 大电路,V REF 为基准电压,它由稳压管D Z 与限流电阻R串联所构成的简单稳压电路获得(见齐纳二极管一节),R 1 与R 2 组成反馈网络,是用来反映输出电压变化的取样环节。 这种稳压电路的主回路是起调整作用的BJT T与负载串联,故称为串联式稳压电路。输出电压的变化量由反馈 网络取样经放大电路(A)放大后去控制调整管T的c-e极间的电压降,从而达到稳定输出电压V O 的目的。稳压原 理可简述如下:当输入电压V I 增加(或负载电流I O 减小)时,导致输出电压V O 增加,随之反馈电压V F =R 2 V O /(R 1 +R 2 ) =F V V O也增加(F V为反馈系数)。V F与基准电压V REF相比较,其差值电压经比较放大电路放大后使V B和I C减小,调 整管T的c-e极间电压V CE 增大,使V O 下降,从而维持V O 基本恒定。 同理,当输入电压V I 减小(或负载电流I O 增加)时,亦将使输出电压基本保持不变。 从反馈放大电路的角度来看,这种电路属于电压串联负反馈电路。调整管T连接成电压跟随器。因而可得 或

式中A V是比较放大电路的电压增益,是考虑了所带负载的影响,与开环增益A VO 不同。在深度负反馈条件下, 时,可得 上式表明,输出电压V O 与基准电压V REF 近似成正比,与反馈系数F V成反比。当V REF 及F V已定时,V O 也就确定了, 因此它是设计稳压电路的基本关系式。 值得注意的是,调整管T的调整作用是依靠V F 和V REF 之间的偏差来实现的,必须有偏差才能调整。如果V O 绝对 不变,调整管的V CE 也绝对不变,那么电路也就不能起调整作用了。所以V O 不可能达到绝对稳定,只能是基本稳定。 因此,图10.2.1所示的系统是一个闭环有差调整系统。 由以上分析可知,当反馈越深时,调整作用越强,输出电压V O 也越稳定,电路的稳压系数g和输出电阻R o 也越 小。 基准电压V REF 是稳压电路的一个重要组成部分,它直接影响稳压电路的性能。为此要求基准电压输出电阻小,温度稳定性好,噪声低。目前用稳压管组成的基准电压源虽然电路简单,但它的输出电阻大。故常采用带隙基准电压源,其电路如图XX_01所示。由图可知,基准电压为 从原理上说,BJT T 3的发射结电压V BE3 可用作基准电压源,但它具 有较高的负温度系数(–2mV/℃),因而必须增加一个具有正温度系数的电压I C2R 2 来补偿。I C2 是由T 1 、T 2 和R e2 构成 的微电流源电路提代。其值为 故基准电压V REF 可表示为

串联型稳压电源设计

串联型直流稳压电源 要求:设计并制作用晶体管和集成运算放大器组成的串联型直流稳压电源。 指标:1、输出电压6V、9V两档,同时具备正负极性输出; 2、输出电流:额定电流为150mA,最大电流为500mA; 3、在最大输出电流的时候纹波电压峰值▲V op-p≤5mv; 一.原理电路和设计程序 小功率稳压电源由电源变压器、整流电路、滤波电路和稳压电路四个部分组成,如图所示。220V的交流电经变压器后变成电压值比较小的交流,再经桥式整流电路和滤波电路形成直流,稳压部分采用串联型稳压电路。下图为其基本框架 1.方案比较确定 方案一:用晶体管和集成运放组成的基本串联型直流稳压电源 方案二:用晶体管和集成运放组成的具有保护环节的串联型直流稳压电路

上面两种方案中,方案一较简单,但功能较少,没有保护电路和比较放大电路,因而不够实用,故抛弃方案一。从简单、合理、可靠、经济而且便于购买 的前提出发,选择方案二位最终的设计方案。 2.变压电路 (1)电源变压器T 的作用是将电网220V 的交流电压变换成整流滤波电路所需要的交流电压Ui 。变压器副边与原边的功率比为P2/ P1=η,式中η是变压 器的效率。变压器副边电压有效值决定于后面电路的需要。根据经验,稳压电 路的输出电压一般选取U i =(2~3)Uo 。所以选择15V10W 的变压器。 3.整流和滤波电路 整流电路在工作时,电路中的四只二极管都是作为开关运用,根据整流滤波电路工作原理图可知: 当正半周时,二极管D1、D2导通(D5、D4截止),在负载电阻上得到正弦波的正半周; 当负半周时,二极管D5、D4导通(D1、D2截止),在负载电阻上得到正弦波的负半周 滤波电路一般由电容组成,其作用是把脉动直流电压u 3中的大部分纹波加 以滤除,以得到较平滑的直流电压U I 。U I 与交流电压u 2的有效值U 2的关系为: 2)2.1~1.1(U U I = 在整流电路中,每只二极管所承受的最大反向电压为: 22U U RM = 流过每只二极管的平均电流为: R U I I R D 245.02== 4.稳压电路 交流电压经过整流、滤波后虽然变为交流分量较小的直流电压,但是当电网电压波动或负载变化时,其平均值也随机变化。稳压电路的功能是使输出直流电压基本不受电网的电压波动和负载电阻变化的影响,从而获得更高的稳定性。 由于成本、元件和仿真的条件限制,稳压电路只采取一个具有放大环节的基本串联型稳压电路和一个保护电路 由于简易串联稳压电源输出电压受稳压管稳压值得限制无法调节,造成电路

串联型直流稳压电源课程设计

模拟电子技术课程设计报告 学院电子信息与电气工程学院 专业电子信息科学与技术 班级XXXXXXXXXX 学生姓名XXXXXXXX 学号XXXXXXXXXXXXXXXXXXX 指导教师XXXX

串联型直流稳压电源 一、主要指标和要求 1、输出电压:8~15V可调 =1A 2、输出电流:I 3、输入电压:交流220V +/- 10% m =1.2A 4、保护电流:I 5、稳压系数:Sr = 0.05%/V < 0.5 Ω 6、输出电阻:R 7、交流分量(波纹电压):<10mV 二、方案选择及电路工作原理 分析电路组成及工作原理; 我们所设计的串联型直流稳压电源为小功率电源,它将频率为50Hz、有效值为220V的单相交流电压转化为幅值稳定、输出电流为1A以下的可调直流电压。交流电经过电源变压器、整流电路、滤波电路和稳压电路转换成稳定的直流电压,其方框图如图1所示。 1、电源变压器 电源变压器是利用电磁感应原理,将输入的有效值为220V的电网电压转换为所需的交流低电压。变压器的副边电压有效值由后面电路的需要决定。 2、整流电路 整流电路的任务是将经过变压器降压以后的交流电压变换为直流电压。变

压器的选择,除了应满足功率要求外,它的次级输出电压的有效值V2 应略高于要求稳压电路输出的直流电压值。对于高质量的稳压电源,其整流电路一般都选用桥式整流电路。整流电路常见的有单相桥式整流电路,单相半波整流电路,和单相全波整流电路。 (1)工作原理 单相桥式整流电路是最基本的将交流转换为直流的电路,如图(a)所示。在分析整流电路工作原理时,整流电路中的二极管是作为开关运用,具有单向导 电性。根据图1(a)的电路图可知:当正半周时,二极管D 1、D 3 导通,在负载电 阻上得到正弦波的正半周。当负半周时,二极管D 2、D 4 导通,在负载电阻上得到 正弦波的负半周。在负载电阻上正、负半周经过合成,得到的是同一个方向的单向脉动电压。 (2)参数计算 输出电压是单相脉动电压,通常用它的平均值与直流电压等效。输出平均电压为 流过负载的平均电流为 流过二极管的平均电流为

串联型三极管稳压电路。

用三极管V代替图8.2中的限流电阻R,就得到图8.3所示的串联型三极管稳压电路。 在基极电路中,VDZ与R组成参数稳压器。 图8.3 串联型三极管稳压电路 2. 工作原理 〔实验〕: ①按图8.3连接电路,检查无误后,接通电路。 ②保持输入电压Ui不变,改变RL,观察U0。 ③保持负载RL不变,改变UL,观察U0。 结论:输出电压U0基本保持不变。 该电路稳压过程如下: (1)当输入电压不变,而负载电压变化时,其稳压过程如下: (2)当负载不变,输入电压U增加时,其稳压过程如下: (3)当UI增加时,输出电压U0有升高趋势,由于三极管T基极电位被稳压管DZ固定,故U0的增加将使三极管发射结上正向偏置电压降低,基极电流减小,从而使三极管的集射极间的电阻增大,UCE增加,于是,抵消了U0的增加,使U0基本保持不变.

上述电路虽然对输出电压具有稳压作用,但此电路控制灵敏度不高,稳压性能不理想。 8.3.2 带有放大环节的串联型稳压电路 1.电路组成 在图8.3电路加放大环节.如图8.4所示。可使输出电压更加稳定。 图8.4带放大电路的串联型稳压电路 取样电路:由R1、RP、R2组成,当输出电压变大时,取样电阻将其变化量的一部分送到比较放大管的基极,基极电压能反映出电压的变化,称为取样电压;取样电压不宜太大,也不宜太小,若太大,控制的 灵敏度下降;若太小,带负载能力减弱。 基准电路:由RZ、VDZ组成,给V2发射极提供一个基准电压,RZ为限流电阻,保证VDZ有一个合 适的工作电流。 比较放大管V2:R4既是V2的集电极负载电阻,又是V1的基极偏置电阻,比较放大管的作用是将输出电压的变化量,先放大,然后加到调整管的基极,控制调整管工作,提高控制的灵敏度和输出电压的稳定 性。 调整管V1:它与负载串联,故称此电路为串联型稳压电路,调整管V1受比较放大管控制,集射极间相 当于一个可变电阻,用来抵消输出电压的波动。 2.工作原理 (1)当负载RL不变,输入电压UI减小时,输出电压U0有下降趋势,通过取样电阻的分压使比较放大管的基极电位UB2下降,而比较放大管的发射极电压不变(UE2=UZ),因此UBE2也下降,于是比较放大管导通能力减弱,UC2升高,调整管导通能力增强,调整管V1集射之间的电阻RCE1减小,管压降UCE1下降,使输出电压U0上升,保证了U0基本不变。其过程表示如下: (2)当输入电压不变,负载增大时,引起输出电压有增长趋势,则电路将产生下列调整过程: 当负载RL减小时,稳压过程相反。

串联型直流稳压电源实验报告

模电课程设计实验报告 学校:XX 专业:XXXX 课题:串联型直流稳压电源 指导老师: XXX 设计学生: XXXXXXX XXX 学号:XXXX XXX XXXX 2011/7/4 惠州学院 HUIZHOU UNIVERSITY

目录 一、课题--------------------------------------------------3 二、课题技术指标--------------------------------------------------3 三、设计要求--------------------------------------------------3 四、元件器件清单--------------------------------------------------3 五、设计方案--------------------------------------------------3 六、直流稳压电源的元器件--------------------------------------------------4 七、设计计算--------------------------------------------------6 八、焊接实图--------------------------------------------------8 九、心得体会--------------------------------------------------9

一、课题:串联型直流稳压电源 二、课题技术指标 1、输出电压:8~15V可调 2、输出电流:I O=1A 3、输入电压:交流220V +/- 10% 4、保护电流:I Om =1.2A 5、稳压系数:S r = 0.05%/V 6、输出电阻:R O < 0.5 Ω 7、交流分量(波纹电压):<10mV 三、设计要求 1、分析电路组成及工作原理; 2、单元电路设计计算; 3、采用分立元件电路; 4、画出完整电路图; 5、调试方法; 6、小结与讨论。 四、元件器件清单 先对输入电压进行降压,然后用单相桥式二极管对其进行整流,整流后利用电容的充放电效应,用电解电容对其进行滤波,将脉动的直流电压变为更加平滑的直流电压,稳压部分的单元电路由稳压管和三极管组成(如图1),以稳压管D1电压作为三极管Q1的基准电压,电路引入电压负反馈,当电网电压波动引起R2两端电压的变化增大(减小)时,晶体管发射极电位将随着升高(降低),而稳压管端的电压基本不变,故基极电位不变,所以由可知将减小(升高)导致基极电流和发射极电流的减小(增大),使得R两端的电压降低(升高),从而达到稳压的效果。负电源部分与正电源相对称,原理一样。 直流稳压电源一般由电源变压器,整流滤波电路及稳压电路组成。变压器吧市电交流电压变所需要的低压交流电。整流器把交流电变为直流电。经滤波后,稳压器再把不稳定的直流电压变为稳定的直流电压输出。本次设计主要采用串联型直流稳压电路,通过220V 、50HZ交流电压经电源变压器降压后,通过桥式整

串联型稳压直流电源课程设计实验报告

串联型稳压直流电源课程 设计实验报告 The Standardization Office was revised on the afternoon of December 13, 2020

串联型直流稳压电源的设计报告 一. 题目: 串联型直流稳压电源的设计。 二. 要求:设计并制作用晶体管和集成运算放大器组成的串联型直流稳压电源。 指标:1、输出电压6V、9V两档,同时具备正负极性输出; 2、输出电流:额定电流为150mA,最大电流为500mA; 3、在最大输出电流的时候纹波电压峰值▲Vop-p≤5mv; 三. 电路原理分析与方案设计 采用变压器、二极管、集成运放,电阻、稳压管、三极管等元件器件。220V的交流电经变压器变压后变成电压值较少的交流,再经过桥式整流电路和滤波电路形成直流,稳压部分采用串流型稳压电路。比例运算电路的输入电压为稳定电压,且比例系数可调,所以其输出电压也可以调节;同时,为了扩大输出电流,集成运放输出端加晶体管,并保持射极输出形式,就构成了具有放大环节的串联型稳压电路。 1.方案比较: 方案一.用晶体管和集成运放组成基本串联型直流稳压电源

方案二.用晶体管和集成运放组成的具有保护换届的串联型直流稳压电源. 方案三:用晶体管和集成运放组成的实用串联型直流稳压电压 可行性分析:上面三种方案中,方案一最简单,但功能也最少,没有保护电路和比较放大电路,因而不够实用,故抛弃方案一。方案三功能最强大,但是由于实验室条件和经济成本的限制,我们也抛弃方案三,因为它牺牲了成本来换取方便。所以从简单、合理、可靠、经济从简单而且便于购买的前提出发,我选择方案二未我们最终的

串联型直流稳压电源设计报告

串联型直流稳压电源设计报告 (2009-06-18 14:59:21) 转载 标签: 杂谈 串联型直流稳压电源设计报告 一、计题目 题目:串联型直流稳压电源 二、计任务和要求 要求:设计并制作用晶体管和集成运算放大器组成的串联型直流稳压电源。 指标:1、输出电压6V、9V两档,正负极性输出; 2、输出电流:额定电流为150mA,最大电流为500mA; 3、纹波电压峰值▲Vop-p≤5mv; 三、理电路和程序设计: 1、方案比较 方案一:先对输入电压进行降压,然后用单相桥式二极管对其进行整流,整流后利用电容的充放电效应,用电解电容对其进行滤波,将脉动的直流电压变为更加平滑的直流电压,稳压

部分的单元电路由稳压管和三极管组成(如图1),以稳压管D1电压作为三极管Q1的基准电压,电路引入电压负反馈,当电网电压波动引起R

两端电压的变化增大(减小)时,晶体管发射极电位将随着升高(降低),而稳压管端的2 电压基本不变,故基极电位不变,所以由可知将减小(升高)导致基极电流和发射极电流的 减小(增大),使得R两端的电压降低(升高),从而达到稳压的效果。负电源部分与正 电源相对称,原理一样。 图1 方案一稳压部分电路 方案二:经有中间抽头的变压器输出后,整流部分同方案一一样擦用四个二极管组成的单相 桥式整流电路,整流后的脉动直流接滤波电路,滤波电路由两个电容组成,先用一个较大阻 值的点解电容对其进行低频滤波,再用一个较低阻值的陶瓷电容对其进行高频滤波,从而使 得滤波后的电压更平滑,波动更小。滤波后的电路接接稳压电路,稳压部分的电路如图2 所示,方案二的稳压部分由调整管,比较放大电路,基准电压电路,采样电路组成。当采样 电路的输出端电压升高(降低)时采样电路将这一变化送到A的反相输入端,然后与同相 输入端的电位进行比较放大,运放的输出电压,即调整管的基极电位降低(升高);由于电 路采用射极输出形式,所以输出电压必然降低(升高),从而使输出电压得到稳定。

串联稳压源的设计

串联稳压源的设计 兰州职业技术学院 电子产品生产工艺课程设计报告串联型稳压电源的设计 电子与信息工程系 应用电子 2013 尹如云任钊 20132491 20130939 指导教师单位指导教师姓名电子与信息工程系 马玲

2014年7月

1、电路指标 ①直流输出电压U o:6V?15V ; ②最大输出电流Io : 500mA ; ③电网电压变化±10%时,输出电压变化小于±1 %; 2、电路初选 图1 :直流稳压电源电路设计初选电路图 由于桥式整流、电容滤波电路十分成熟,这里我们选择桥式整流、电容滤波电路作为电源的

整流、滤波部分。由于要求电源输出电压有一定的调整范围, 稳压电源部分选择串联负反馈 3、变压部分 这一部分主要计算变压器B1次级输出电压(U B1 )0和变压器的功率P BI。 般整流滤波电路有2V以上的电压波动(设为AU)。调整管T1的管压降(U T1)CE 应维持在3V以上,才能保证调整管T1工作在放大区。整流输出电压最大值为15V。根据 第二章《常用整流滤波电路计算表》可知,桥式整流输出电压是变压器次级电压的 1.2 倍。 当电网电压下降一10%时,变压器次级输出的电压应能保证后续电路正常工作, 那么变压器B1次级输出电压(U B1 )OMIN应该是: (U B1)OMIN =( AU D +( U T1)CE+(U O) MAX ) +1.2 (U B1)OMIN =( 2V + 3V + 15V) +.2= 20V+1.2= 16.67V 则变压器B1次级额定电压为: (U B1)0=( U B1 ) OMIN +0.9 (U B1)O= 16.67V +.9 = 18.5V

串联型直流稳压电源

模拟电子技术课程设计报告 设计名称:串联型直流稳压电源。 学生班级: 学生姓名: 学生学号: 设计时间:2018年1月5日 一、设计任务和要求 1)用晶体管组成设计串联式直流稳压电源电路 2)要求输出: 输出直流电压Vo=12V±0.2V在此基础上电压值可调。 输出直流电流Io=0-200mA 电网电压(220V>波动范围为10% 输出内阻ro<=0.1Ω 输出纹波电压Voac<=2mV 有过流保护 3> 画出电路图,写总结报告《模拟电子技术课程设计》二.原理与实现思路

本设计设计的是直流稳压电源,直流稳压电源一般是由电源变压器,整流电路,滤波电路,和稳压电路组成。 三.电路方案<理论计算) A.变压器的设计和选择 本次课程设计的要求是输出输出直流电压Vo=12V±0.2V,输出电压较低,而一般的调整管的饱和管压降在2-3伏左右,由, 为饱和管压降,以饱和管压降=3伏计算,为了使调整管工作在放大 区,输入电压最小不能小于12V,为保险起见,可以选择220V-15V的变压器,再由P=UI可知,变压器的功率应该为0.2A×12V=2.4w,所以变压器的功率绝对不能低于2.4w,并且串联稳压电源工作时产生的热量较大,效率不高,所以变压器功率需要选择相对大些的变压器。结合市场上常见的变压器的型号,可以选择常见的变压范围为220V-15V,额定功率5W,额定电流1A的变压器。

B.整流电路的分析与理论计算。 整流二极管的伏安特性 ;正向导通为0,正向电阻为0. 方案一:单相半波整流电路 u 2 的正半周,D导通,A→D→R L→B,u O= u2。 u 2的负半周,D截止,承受反向电压,为u 2; u O =0。 <2)U O

串联反馈型稳压电路设计要点

模拟电子技术课程设计 院 部 名 称 机电工程学院 专 业 电气工程及其自动化 班 级 学 生 姓 名 学 号 成绩

目录 第一章设计目的和要求..................................................... 1.1 实验目的 1.2 实验要求 第二章电路原理及分析....................................................... 2.1 题目分析 2.2 电路原理构成 2.3 稳压原理与输出电压的调节 第三章电路设计及构成................................................................ 3.1 设计思想 3.2 原件参数表 第四章仿真分析................................................................ 4.1 静态测量 4.2 动态测量 第五章实验结果分析................................................. 5.1 误差分析 第六章设计小结.................................................

串联反馈型稳压电路 第一章·设计要求和目的 1.1实验目的 (1) 通过实验进一步掌握稳压电路的工作原理。 (2) 学会电源电路的设计与调试方法。 1.2 实验要求 (1) 性能指示要求: a. 输入220V 交流电压,具有输出电压可调功能,输出电压范围3~18V 。 b. 电路具有自身保护功能,具有一定的带负载能力。输出电流大于500mA c. 负载电流为500mA 时,过流保护电路工作 d. 电路具有一定的抗干扰能力 (2) 报告要求: a. 作出电路设计与分析 b. 检验所设计电路是否满足设计要求。若改变电路或元件参数值,写出原因根系及调整后的电路或元件参数值 第二章.题目分析 2.1 电路框图 (1) 电子电路工作时都需要直流电源提供能量,电池因使用费用高,一般只用于低功耗便携式的仪器设备中。 电源变压器: 将交流电网电压v1变为合适的交流电压 整流电路: 将交流电压v2变为脉动的直流电压 滤波电路: 将脉动直流电压v3转变为平滑的直流电压v4 稳压电路: 清除电网波动及负载变化的影响,保持输出电压vo 的稳定。 四个环节的工作原理如下: 整 流 电 路 滤 波 电 路 稳 压 电 路 v 1 v 2 v 3 v 4 v o

相关文档
最新文档