百度2014校园招聘笔试题 ——深度学习算法研发工程师.

百度2014校园招聘笔试题 ——深度学习算法研发工程师.
百度2014校园招聘笔试题 ——深度学习算法研发工程师.

一、简答题

1.深度神经网络目前有哪些成功的应用?简述原因。(10分)

2.列举不同进程共享数据的方式(至少三种)。(10分)

3.对于N个样本,每个样本为D维向量,采用欧式距离使用KNN 做类预测。(10分)

1).给出预测时间复杂度。

2).当N很大时,有哪些方法可以降低复杂度?

3).k取值的大小对预测方差和偏差有何影响?

二、算法和程序设计

1.给出一个数据A=[a_0, a_1, a-2, ... a_n](其中n可变),打印出该数值元素的所有组合。(15分)

2.有这样一个数组A,大小为n,相邻元素差的绝对值都是1,如A={4,5,6,5,6,7,8,9,10,9}。现在给定数组A和目标整数t,请找到t在数组中的位置。(15分)

3.在平面上有一组间距为d的平行线,将一根长度为l(l

程语言(C/C++, matlab, python, java),写出模拟投针实验(程序中允许把一个理想的Pi作为常量使用),求解圆周率。(15分)

三、系统设计题(两题中任选一题作答,25分)

2.关于K-means聚类算法,请回答以下问题:

1).写出将N个样本X=(x1, ... xN)聚类成k类的k_means聚类算法的优化目标;

2).描述K-means终止的常用条件;

3).以Kmeans算法为例,描述Expectation-Maximization(EM)算法的基本原理与步骤。

4).用伪代码给出基于MPI或者HADOOP的Kmeans并行算法。

(完整版)深度神经网络全面概述

深度神经网络全面概述从基本概念到实际模型和硬件基础 深度神经网络(DNN)所代表的人工智能技术被认为是这一次技术变革的基石(之一)。近日,由IEEE Fellow Joel Emer 领导的一个团队发布了一篇题为《深度神经网络的有效处理:教程和调研(Efficient Processing of Deep Neural Networks: A Tutorial and Survey)》的综述论文,从算法、模型、硬件和架构等多个角度对深度神经网络进行了较为全面的梳理和总结。鉴于该论文的篇幅较长,机器之心在此文中提炼了原论文的主干和部分重要内容。 目前,包括计算机视觉、语音识别和机器人在内的诸多人工智能应用已广泛使用了深度神经网络(deep neural networks,DNN)。DNN 在很多人工智能任务之中表现出了当前最佳的准确度,但同时也存在着计算复杂度高的问题。因此,那些能帮助DNN 高效处理并提升效率和吞吐量,同时又无损于表现准确度或不会增加硬件成本的技术是在人工智能系统之中广泛部署DNN 的关键。 论文地址:https://https://www.360docs.net/doc/729635829.html,/pdf/1703.09039.pdf 本文旨在提供一个关于实现DNN 的有效处理(efficient processing)的目标的最新进展的全面性教程和调查。特别地,本文还给出了一个DNN 综述——讨论了支持DNN 的多种平台和架构,并强调了最新的有效处理的技术的关键趋势,这些技术或者只是通过改善硬件设计或者同时改善硬件设计和网络算法以降低DNN 计算成本。本文也会对帮助研究者和从业者快速上手DNN 设计的开发资源做一个总结,并凸显重要的基准指标和设计考量以评估数量快速增长的DNN 硬件设计,还包括学界和产业界共同推荐的算法联合设计。 读者将从本文中了解到以下概念:理解DNN 的关键设计考量;通过基准和对比指标评估不同的DNN 硬件实现;理解不同架构和平台之间的权衡;评估不同DNN 有效处理技术的设计有效性;理解最新的实现趋势和机遇。 一、导语 深度神经网络(DNN)目前是许多人工智能应用的基础[1]。由于DNN 在语音识别[2] 和图像识别[3] 上的突破性应用,使用DNN 的应用量有了爆炸性的增长。这些DNN 被部署到了从自动驾驶汽车[4]、癌症检测[5] 到复杂游戏[6] 等各种应用中。在这许多领域中,DNN 能够超越人类的准确率。而DNN 的出众表现源于它能使用统计学习方法从原始感官数据中提取高层特征,在大量的数据中获得输入空间的有效表征。这与之前使用手动提取特征或专家设计规则的方法不同。 然而DNN 获得出众准确率的代价是高计算复杂性成本。虽然通用计算引擎(尤其是GPU),已经成为许多DNN 处理的砥柱,但提供对DNN 计算更专门化的加速方法也越来越热门。本文的目标是提供对DNN、理解DNN 行为的各种工具、有效加速计算的各项技术的概述。 该论文的结构如下:

答深度优先搜索算法的特点是

习题 3 1、答:深度优先搜索算法的特点是 ①一般不能保证找到最优解; ②当深度限制不合理时,可能找不到解,可以将算法改为可变深度限制; ③方法与问题无关,具有通用性; ④属于图搜索方法。 宽度优先搜索算法的特点是 ①当问题有解时,一定能找到解; ②当问题为单位耗散值,并且问题有解时,一定能找到最优解; ③效率低; ④方法与问题无关,具有通用性; ⑤属于图搜索方法。 2、答:在决定生成子状态的最优次序时,应该采用深度进行衡量,使深度大的 结点优先扩展。 3、答:(1)深度优先 (2)深度优先 (3)宽度优先 (4)宽度优先 (5)宽度优先 4、答:如果把一个皇后放在棋盘的某个位置后,它所影响的棋盘位置数少,那 么给以后放皇后留下的余地就大,找到解的可能性也大;反之留下的余地就小,找到解的可能性也小。 并不是任何启发函数对搜索都是有用的。 6、讨论一个启发函数h在搜索期间可以得到改善的几种方法。 7、答:最短路径为ACEBDA,其耗散值为15。 8、解:(1)(S,O,S0,G) S:3个黑色板和3个白色板在7个空格中的任何一种布局都是一个状态。 O:①一块板移入相邻的空格; ②一块板相隔1块其他的板跳入空格; ③一块板相隔2块其他的板跳入空格。 S0: B B B W W W G: W W W B B B W W W B B B W W W B B B

W W W B B B W W W B B B W W W B B B W W W B B B (2)1401231231234567333377 =???????????=?P P P (3)定义启发函数h 为每一白色板左边的黑色板数的和。 显然,)()(n h n h *≤,所以该算法具有可采纳性。 又,?? ?≤-=),()()(0)(j i i j n n c n h n h t h ,所以该启发函数h 满足单调限制条件。 9、解: ((( ),( )),( ),(( ),( ))) ((S,( )),( ),(( ),( ))) ((A,( )),( ),(( ),( ))) ((A,S),( ),(( ),( ))) ((A,A),( ),(( ),( ))) ((A),( ),(( ),( ))) (S,( ),(( ),( ))) (A,( ),(( ),( ))) (A,S,(( ),( ))) (A,A,(( ),( ))) (A,(( ),( )))

(完整word版)深度学习-卷积神经网络算法简介

深度学习 卷积神经网络算法简介 李宗贤 北京信息科技大学智能科学与技术系 卷积神经网络是近年来广泛应用在模式识别、图像处理领域的一种高效识别算法,具有简单结构、训练参数少和适应性强的特点。它的权值共享网络结构使之更类似与生物神经网络,降低了网络的复杂度,减少了权值的数量。以二维图像直接作为网络的输入,避免了传统是被算法中复杂的特征提取和数据重建过程。卷积神经网络是为识别二维形状特殊设计的一个多层感知器,这种网络结构对于平移、比例缩放、倾斜和其他形式的变形有着高度的不变形。 ?卷积神经网络的结构 卷积神经网络是一种多层的感知器,每层由二维平面组成,而每个平面由多个独立的神经元组成,网络中包含一些简单元和复杂元,分别记为C元和S元。C元聚合在一起构成卷积层,S元聚合在一起构成下采样层。输入图像通过和滤波器和可加偏置进行卷积,在C层产生N个特征图(N值可人为设定),然后特征映射图经过求和、加权值和偏置,再通过一个激活函数(通常选用Sigmoid函数)得到S层的特征映射图。根据人为设定C层和S层的数量,以上工作依次循环进行。最终,对最尾部的下采样和输出层进行全连接,得到最后的输出。

卷积的过程:用一个可训练的滤波器fx去卷积一个输入的图像(在C1层是输入图像,之后的卷积层输入则是前一层的卷积特征图),通过一个激活函数(一般使用的是Sigmoid函数),然后加一个偏置bx,得到卷积层Cx。具体运算如下式,式中Mj是输入特征图的值: X j l=f?(∑X i l?1?k ij l+b j l i∈Mj) 子采样的过程包括:每邻域的m个像素(m是人为设定)求和变为一个像素,然后通过标量Wx+1加权,再增加偏置bx+1,然后通过激活函数Sigmoid产生特征映射图。从一个平面到下一个平面的映射可以看作是作卷积运算,S层可看作是模糊滤波器,起到了二次特征提取的作用。隐层与隐层之间的空间分辨率递减,而每层所含的平面数递增,这样可用于检测更多的特征信息。对于子采样层来说,有N 个输入特征图,就有N个输出特征图,只是每个特征图的的尺寸得到了相应的改变,具体运算如下式,式中down()表示下采样函数。 X j l=f?(βj l down (X j l?1) +b j l)X j l) ?卷积神经网络的训练过程 卷积神经网络在本质上是一种输入到输出的映射,它能够学习大量的输入和输出之间的映射关系,而不需要任何输入和输出之间的精确数学表达式。用已知的模式对卷积网络加以训练,网络就具有了输

图的深度优先遍历算法课程设计报告

合肥学院 计算机科学与技术系 课程设计报告 2013~2014学年第二学期 课程数据结构与算法 课程设计名称图的深度优先遍历算法的实现 学生姓名陈琳 学号1204091022 专业班级软件工程 指导教师何立新 2014 年9 月 一:问题分析和任务定义 涉及到数据结构遍会涉及到对应存储方法的遍历问题。本次程序采用邻接表的存储方法,并且以深度优先实现遍历的过程得到其遍历序列。

深度优先遍历图的方法是,从图中某顶点v 出发: (1)访问顶点v ; (2)依次从v 的未被访问的邻接点出发,对图进行深度优先遍历;直至图中和v 有路径相通的顶点都被访问; (3)若此时图中尚有顶点未被访问,则从一个未被访问的顶点出发,重新进行深度优先遍历,直到图中所有顶点均被访问过为止。 二:数据结构的选择和概要设计 设计流程如图: 图1 设计流程 利用一维数组创建邻接表,同时还需要一个一维数组来存储顶点信息。之后利用创建的邻接表来创建图,最后用深度优先的方法来实现遍历。 图 2 原始图 1.从0开始,首先找到0的关联顶点3 2.由3出发,找到1;由1出发,没有关联的顶点。 3.回到3,从3出发,找到2;由2出发,没有关联的顶点。 4.回到4,出4出发,找到1,因为1已经被访问过了,所以不访问。

所以最后顺序是0,3,1,2,4 三:详细设计和编码 1.创建邻接表和图 void CreateALGraph (ALGraph* G) //建立邻接表函数. { int i,j,k,s; char y; EdgeNode* p; //工作指针. printf("请输入图的顶点数n与边数e(以逗号做分隔符):\n"); scanf("%d,%d",&(G->n),&(G->e)); scanf("%c",&y); //用y来接收回车符. for(s=0;sn;s++) { printf("请输入下标为%d的顶点的元素:\n",s); scanf("%c",&(G->adjlist[s].vertex)); scanf("%c",&y); //用y来接收回车符.当后面要输入的是和单个字符有关的数据时候要存贮回车符,以免回车符被误接收。 G->adjlist[s].firstedge=NULL; } printf("请分别输入该图的%d条弧\n",G->e); for(k=0;ke;k++) { printf("请输入第%d条弧的起点和终点(起点下标,终点下标):\n",(k+1)); scanf("%d,%d",&i,&j); p=(EdgeNode*)malloc(sizeof(EdgeNode)); p->adjvex=j; p->next=G->adjlist[i].firstedge; G->adjlist[i].firstedge=p; } } 2.深度优先遍历 void DFS(ALGraph* G,int v) //深度优先遍历 { EdgeNode* p;

数据结构实验报告图的深度优先遍历算法

题目: 图的深度优先遍历算法 一、实验题目 前序遍历二叉树 二、实验目的 ⑴掌握图的逻辑结构; ⑵掌握图的邻接矩阵存储结构; ⑶验证图的邻接矩阵存储及其深度优先遍历操作的实现。 三、实验内容与实现 ⑴建立无向图的邻接矩阵存储; ⑵对建立的无向图,进行深度优先遍历;实验实现 #include #include #define MaxVex 255 #define TRUE 1 #define FALSE 0 typedef char VertexType; typedef int Bool; Bool visited[MaxVex];

typedef struct EdgeNode { int adjvex; struct EdgeNode *next; }EdgeNode; typedef struct VertexNode { VertexType data; EdgeNode *firstedge; }VertexNode,AdjList[MaxVex]; typedef struct Graph{ AdjList adjList; int numVertexes,numEdges; }Graph,*GraphAdjList; typedef struct LoopQueue{ int data[MaxVex]; int front,rear; }LoopQueue,*Queue; void initQueue(Queue &Q){ Q->front=Q->rear=0;

} Bool QueueEmpty(Queue &Q){ if(Q->front == Q->rear){ return TRUE; }else{ return FALSE; } } Bool QueueFull(Queue &Q){ if((Q->rear+1)%MaxVex == Q->front){ return TRUE; }else{ return FALSE; } } void EnQueue(Queue &Q,int e){ if(!QueueFull(Q)){ Q->data[Q->rear] = e;

邻接矩阵表示图深度广度优先遍历

*问题描述: 建立图的存储结构(图的类型可以是有向图、无向图、有向网、无向网,学生可以任选两种类型),能够输入图的顶点和边的信息,并存储到相应存储结构中,而后输出图的邻接矩阵。 1、邻接矩阵表示法: 设G=(V,E)是一个图,其中V={V1,V2,V3…,Vn}。G的邻接矩阵是一个他有下述性质的n阶方阵: 1,若(Vi,Vj)∈E 或∈E; A[i,j]={ 0,反之 图5-2中有向图G1和无向图G2的邻接矩阵分别为M1和M2: M1=┌0 1 0 1 ┐ │ 1 0 1 0 │ │ 1 0 0 1 │ └0 0 0 0 ┘ M2=┌0 1 1 1 ┐ │ 1 0 1 0 │ │ 1 1 0 1 │ └ 1 0 1 0 ┘ 注意无向图的邻接是一个对称矩阵,例如M2。 用邻接矩阵表示法来表示一个具有n个顶点的图时,除了用邻接矩阵中的n*n个元素存储顶点间相邻关系外,往往还需要另设一个向量存储n个顶点的信息。因此其类型定义如下: VertexType vertex[MAX_VERTEX_NUM]; // 顶点向量 AdjMatrix arcs; // 邻接矩阵 int vexnum, arcnum; // 图的当前顶点数和弧(边)数 GraphKind kind; // 图的种类标志

若图中每个顶点只含一个编号i(1≤i≤vnum),则只需一个二维数组表示图的邻接矩阵。此时存储结构可简单说明如下: type adjmatrix=array[1..vnum,1..vnum]of adj; 利用邻接矩阵很容易判定任意两个顶点之间是否有边(或弧)相联,并容易求得各个顶点的度。 对于无向图,顶点Vi的度是邻接矩阵中第i行元素之和,即 n n D(Vi)=∑A[i,j](或∑A[i,j]) j=1 i=1 对于有向图,顶点Vi的出度OD(Vi)为邻接矩阵第i行元素之和,顶点Vi 的入度ID(Vi)为第i列元素之和。即 n n OD(Vi)=∑A[i,j],OD(Vi)=∑A[j,i]) j=1j=1 用邻接矩阵也可以表示带权图,只要令 Wij, 若或(Vi,Vj) A[i,j]={ ∞, 否则。 其中Wij为或(Vi,Vj)上的权值。相应地,网的邻接矩阵表示的类型定义应作如下的修改:adj:weightype ; {weightype为权类型} 图5-6列出一个网和它的邻接矩阵。 ┌∞31∞∞┐ │∞∞51∞│ │∞∞∞∞∞│ │∞∞6∞∞│ └∞322∞┘ (a)网(b)邻接矩阵 图5-6 网及其邻接矩阵 对无向图或无向网络,由于其邻接矩阵是对称的,故可采用压缩存贮的方法,

神经网络算法的应用

神经网络算法的应用 别以为名字中带“网络”二字,神经网络就是一种设备,事实上神经网络是一种模拟人脑结构的算法模型。其原理就在于将信息分布式存储和并行协同处理。虽然每个单元的功能非常简单,但大量单元构成的网络系统就能实现非常复杂的数据计算,并且还是一个高度复杂的非线性动力学习系统。1 神经网络的结构更接近于人脑,具有大规模并行、分布式存储和处理、自组织、自适应和自学能力。神经网络的用途非常广泛,在系统辨识、模式识别、智能控制等领域都能一展身手。而现在最吸引IT巨头们关注的就是神经网络在智能控制领域中的自动学习功能,特别适合在需要代入一定条件,并且信息本身是不确定和模糊的情况下,进行相关问题的处理,例如语音识别。 神经网络的发展史 神经网络的起源要追溯到上世纪40年代,心理学家麦克库罗克和数理逻辑学家皮兹首先提出了神经元的数学模型。此模型沿用至今,并且直接影响着这一领域研究的进展。因而,他们两人就是神经网络研究的先驱。随着计算机的高速发展,人们以为人工智能、模式识别等问题在计算机面前都是小菜一碟。再加上当时电子技术比较落后,用电子管或晶体管制作出结构复杂的神经网络是完全不可能的,所以神经网络的研究一度陷于低潮当中。到了20世纪80年代,随着大规模集成电路的发展,让神经网络的应用成为了可能。而且人们也看到了神经网络在智能控制、语音识别方面的潜力。但是这一技术的发展仍然缓慢,而硬件性能的发展以及应用方式的变化,再加上谷歌、微软、IBM等大公司的持续关注,神经网络终于又火了起来。本该在上世纪80年代就出现的诸多全新语音技术,直到最近才与我们见面,神经网络已经成为最热门的研究领域之一。 机器同声传译成真 在国际会议上,与会人员来自世界各地,同声传译就成了必不可少的沟通方式。但是到目前为止,同声传译基本上都是靠人来完成的,译员在不打断讲话者演讲的情况下,不停地将其讲话内容传译给听众。用机器进行同声传译,这个往往只出现在科幻电影中的设备,却成为了现实。 在2012年底天津召开的“21世纪的计算-自然而然”大会上,微软研究院的创始人里克·雷斯特在进行主题演讲时,展示了一套实时语音机器翻译系统。这个系统在里克.雷斯特用英文演讲时,自动识别出英文字词,再实时翻译成中文,先在大屏幕上显示出来,同时用电脑合成的声音读出。最令人惊奇的是,与常见的合成语音声调非常机械不同。在演示之前,雷斯特曾经给这套系统输入过自己长达1个多小时的录音信息,所以由电脑合成的中文语音并不是机械声,而是声调听上去和雷斯特本人一致。 这套实时语音机器翻译系统就是基于神经网络算法,由微软和多伦多大学历时两年共同研发。这个被命名为“深度神经网络”的技术,模仿由不同层次神经元构成的人脑,组成一个多层次的系统。整个系统共分为9层,最底层用来学习将要进行分析的语音有哪些特征,上一层就将这些分析进行组合,并得出新的分析结果,这样经过多次分析处理之后,增加识别的准确性。而最上面的一层用来分析出听到的声音究竟是哪个音组,再通过和已注明音组的语音库里的数据进行比对,从而将正确的结果反馈出来。经过如此复杂精密的处理之后,系统对于语音的识别能力就会有显着的提升,其性能优于以往的办法。 根据微软的测试,运用了这种“深度神经网络”技术的实时语音翻译器,相比旧系统出错率至少降低30%,最好的情况下能达到8个单词仅错1个,这是一个非常不错的成绩了。这个实时语音翻译器已经能支持包括普通话在内的26种语言,不过这个实时语音翻译器目前还不成熟,使用之前必须先在系统中输入1个小时以上的音频资料,让系统识别发言人声

深度优先搜索算法DFS

深度优先搜索算法DFS = = = 1.首先选定图的类别(有向图、无向图),再选定图的存储结构,根据输入的顶点或者边建立图;并把相应的邻接表或者邻接矩阵输出; 2.根据已有的邻接矩阵或邻接表用递归方法编写深度优先搜索遍历算法,并输出遍历结果; [dfs.rar] - 深度优先搜索算法解决八码难题 [Draw1Doc.rar] - 简单的绘图程序,能画点,直线,多边形等,比较简单 = = = =这里的图的深度优先算法利用了栈来实现。 图的深度遍历原则: 1 如果有可能,访问一个领接的未访问的节点,标记它,并把它放入栈中。 2 当不能执行规则1 时,如果栈不为空,则从栈中弹出一个元素。 3 如果不能执行规则1 和规则2 时,则完成了遍历。 代码中的图使用的是Graph 图-邻接矩阵法来表示,其他的表示法请见:Graph 图-邻接表法 代码中的Stack为辅助结构,用来记载访问过的节点。栈的详细描述可以见:ArrayStack 栈,LinkedStack 栈。 Vertex表示图中的节点,其中包含访问,是否访问,清除访问标志的方法。 Graph.main:提供简单测试。代码可以以指定下标的节点开始作深度遍历。 代码比较简单,除了Graph.dsf(int i)深度优先遍历算法外没有过多注释。 = = = =深度优先搜索DFS 正如算法名称那样,深度优先搜索所遵循的搜索策略是尽可能“深”地搜索图。在深度优先搜索中,对于最新发现的顶点,如果它还有以此为起点而未探测到的边,就沿此边继续汉下去。当结点v的所有边都己被探寻过,搜索将回溯到发现结点v有那条边的始结点。这一过程一直进行到已发现从源结点可达的所有结点为止。如果还存在未被发现的结点,则选择其中一个作为源结点并重复以上过程,整个进程反复进行直到所有结点都被发现为止。 和宽度优先搜索类似,每当扫描已发现结点u的邻接表从而发现新结点v时,深度优先搜索将置v的先辈域π[v]为u。和宽度优先搜索不同的是,前者的先辈子图形成一棵树,而后者产生的先辈子图可以由几棵树组成,因为搜索可能由多个源顶点开始重复进行。因此深度优先搜索的先辈子图的定义也和宽度优先搜索稍有不同: Gπ=(V,Eπ),Eπ={(π[v],v)∈E:v∈V∧π[v]≠NIL} 深度优先搜索的先辈子图形成一个由数个深度优先树组成的深度优先森林。Eπ中的边称为树枝。 和宽度优先搜索类似,深度优先在搜索过程中也为结点着色以表示结点的状态。每个顶点开始均为白色,搜索中被发现时置为灰色,结束时又被置成黑色(即当其邻接表被完全检索之后)。这一技巧可以保证每一顶点搜索结束时只存在于一棵深度优先树上,因此这些树都是分离的。 除了创建一个深度优先森林外,深度优先搜索同时为每个结点加盖时间戳。每个结点v有两个时间戳:当结点v第一次被发现(并置成灰色)时记录下第一个时间戳d[v],当结束检查v 的邻接表时(并置v为黑色)记录下第二个时间截f[v]。许多图的算法中都用到时间戳,他们对推算深度优先搜索进行情况是很有帮助的。 下列过程DFS记录了何时在变量d[u]中发现结点u以及何时在变量f[u]中完成对结点u的检

图的深度优先搜索遍历算法分析及其应用

重庆邮电大学 数学大类专业 2008级《数学建模与数学实验》课程设计 设计题目:图的深度优先搜索遍历算法分析及其应用设计时间:2010.9.7-----2010.9. 12 班级: 学号: 指导教师:

图的深度优先搜索遍历算法分析及其应用 摘要:文章介绍了图论,图的基本概念及其图的表示方法。详细的分析了图中以邻接表为存储结构进行的图的深度优先搜索遍历的算法,并且在VC++环境中实现其算法的过程,对运行记过做了一定量的分析,最后介绍了基于该算法的一些应用。 关键词:图;深度优先搜索;遍历;算法 图论〔Graph Theory〕是数学的一个分支。它以图为研究对象。图论中的图是由若干给定的点及连接两点的线所构成的图形,这种图形通常用来描述某些事物之间的某种特定关系,用点代表事物,用连接两点的线表示相应两个事物间具有这种关系。 图(Graph)是一种较线性表和树更复杂的数据结构,图形结构中,结点之间的关系可以是任意的,图中任意两个数据元素之间都可能相关。因此,在研究有关图的问题时,要考虑图中每个顶点的信息,访问图中的各个顶点,而访问图中各个顶点的操作过程即使图的遍历,图的遍历算法是求解图的连通性问题,拓扑排序和求关键路径等算法的基础。 1图的三元组定义 图G是一个三元组由集合V,E和关联函数组成,记为:G=(V,E,W(G))。其中V是顶点的集合,表示V(G)={V1,V2,V3,……Vn},V(G)≠NULL。E是V中的点偶对的有穷集,表示为E(G)={e1,e2,e3……em},其中ei为或{Vj,Vt},若ei为{Vj,Vt},称ei为以V j 和Vt为端点的无向边;若ei 为,称ei为以V j为起点,Vt为终点的有向边;W(G)称为E→VxV的关联函数。 2图的存储结构 图的存储结构除了要存储图中各个顶点的本身的信息外,同时还要存储顶点与顶点之间的所有关系(边的信息),因此,图的结构比较复杂,很难以数据元素在存储区中的物理位置来表示元素之间的关系,但也正是由于其任意的特性,故物理表示方法很多。常用的图的存储结构有邻接矩阵、邻接表、十字链表和邻接多重表。邻接表是图的一种链式存储结构。对图的每个顶点建立一个单链表(n 个顶点建立n个单链表),第i个单链表中的结点包含顶点Vi的所有邻接顶点。 图1 无向图G 该图的G的邻接表表示如下:

算法分析——图的深度优先遍历算法

#include #define INFINITY 32767 #define MAX_VEX 20 //最大顶点个数 #define QUEUE_SIZE (MAX_VEX+1) //队列长度using namespace std; bool *visited; //访问标志数组 //图的邻接矩阵存储结构 typedef struct{ char *vexs; //顶点向量 int arcs[MAX_VEX][MAX_VEX]; //邻接矩阵int vexnum,arcnum; //图的当前顶点数和弧数 }Graph; //队列类 class Queue{ public: void InitQueue(){ base=(int *)malloc(QUEUE_SIZE*sizeof(int)); front=rear=0; } void EnQueue(int e){ base[rear]=e; rear=(rear+1)%QUEUE_SIZE; } void DeQueue(int &e){ e=base[front]; front=(front+1)%QUEUE_SIZE; } public: int *base; int front; int rear; }; //图G中查找元素c的位置 int Locate(Graph G,char c){ for(int i=0;i

实验四:图地深度优先与广度优先遍历

实验报告学院(系)名称:计算机与通信工程学院

一、实验目的 理解图的逻辑特点;掌握理解图的两种主要存储结构(邻接矩阵和邻接表),掌握图的构造、深度优先遍历、广度优先遍历算法 二、实验题目与要求 1. 每位同学按下述要现相应算法:根据从键盘输入的数据创建图(图的存储结构可采用 邻接矩阵或邻接表),并对图进行深度优先搜索和广度优先搜索 1)问题描述:在主程序中提供下列菜单: 1…图的建立 2…深度优先遍历图 3…广度优先遍历图 0…结束 2)实验要求:图的存储可采用邻接表或邻接矩阵;定义下列过程: CreateGraph(): 按从键盘的数据建立图 DFSGrahp():深度优先遍历图 BFSGrahp():广度优先遍历图 3)实验提示: 图的存储可采用邻接表或邻接矩阵; 图存储数据类型定义(邻接表存储) # define MAX_VERTEX_NUM 8 //顶点最大个数 typedef struct ArcNode { int adjvex; struct ArcNode *nextarc; int weight; //边的权 }ArcNode; //表结点 # define VertexType int //顶点元素类型 typedef struct VNode { int degree,indegree; //顶点的度,入度

VertexType data; ArcNode *firstarc; }Vnode /*头结点*/; typedef struct{ Vnode vertices[MAX_VERTEX_NUM]; int vexnum,arcnum;//顶点的实际数,边的实际数 }ALGraph; 4)注意问题: 注意理解各算法实现时所采用的存储结构。 注意区别正、逆邻接。 2. 拓扑排序:给出一个图的结构,输出其拓扑排序序列(顶点序列用空格隔开),要求在同等条 件下,编号小的顶点在前。 3.利用最小生成树算法解决通信网的总造价最低问题 1)问题描述:若在n 个城市之间建通信网络,架设n-1 条线路即可。如何以最低的经济代价建设这个通信网,是一个网络的最小生成树问题。 2)实验要求:利用Prim 算法求网的最小生成树。 3) 实现提示:通信线路一旦建立,必然是双向的。因此,构造最小生成树的网一定是无向 网。为简单起见,图的顶点数不超过10 个,网中边的权值设置成小于100。 三、实验过程与实验结果 应包括如下主要容: ?数据结构定义 ?图是由定点集合及定点间的关系集合组成的一种数据结构,其形式化定义为Graph = (V,E)其中,V = {x|x∈某个数据对象}是定点的有限非空集合;E = {(x,y)|x,y∈V∧Path(x,y)} 是顶点之间关系的有限集合,叫做便集。集合E中的Path(x,y)表示顶点x和顶点y之间 有一条直接连线,即(x,y)表示一条边,它是有方向的。 ?算法设计思路简介 ? ?算法描述:可以用自然语言、伪代码或流程图等方式 ?1、 ?图的深度优先搜索:

深度优先搜索算法

深度优先搜索算法教程 [例1] 有A、B、C、D、E五本书,要分给张、王、刘、赵、钱五位同学,每人只能选一本。事先让每个人将自己喜爱的书填写在下表中。希望你设计一个程序,打印分书的所有可能方案,当然是让每个人都满意。(如下图所示) [分析] 这个问题中喜爱的书是随机的,没有什么规律,所以用穷举法比较合适。 为编程方便,用1、2、3、4、5分别表示这五本书。这五本书的一种全排列就是五本书的一种分法。例如54321表示第5本书(即E)分给张,第4本书(即D 分给王,)……第1本书(即A分给钱)。“喜爱书表”可以用二维数组来表示,1表示喜爱,0表示不喜爱。 [算法设计]: 1、产生5个数字的一个全排列; 2、检查是否符合“喜爱书表”的条件,如果符合就打印出来。 3、检查是否所有排列都产生了,如果没有产生完,则返回1。 4、结束。 [算法改进]:因为张只喜欢第3、4本书,这就是说,1* * * *一类的分法都不符合条件。所以改进后的算法应当是:在产生排列时,每增加一个数,就检查该数是否符合条件,不符合,就立即换一个,符合条件后,再产生下一个数。因为从第i本书到第i+1本书的寻找过程是相同的,所以可以用递归算法。算法如下: procedure try(i); {给第I个同学发书} begin for j:=1 to 5 do begin if 第i个同学分给第j本书符合条件then begin 记录第i个数; {即j值} if i=5 then 打印一个解else try(i+1); 删去第i个数字 end end end;

具体如下: ◆递归算法 program zhaoshu; const like:array[1..5,1..5] of 0..1 =((0,0,1,1,0),(1,1,0,0,1),(0,1,1,0,0),(0,0,0,1,0),(0,1,0,0,1)); name:array[1..5] of string[5] =('zhang','wang','liu','zhao','qian'); var book:array[1..5] of 0..5; flag:set of 1..5; c:integer; procedure print; var i:integer; begin inc(c); writeln('answer',c,':'); for i:=1 to 5 do writeln(name[i]:10,':',chr(64+book[i])); end; procedure try(i:integer); var j:integer; begin for j:=1 to 5 do if not(j in flag) and (like[i,j]>0) then begin flag:=flag+[j]; book[i]:=j; if i=5 then print else try(i+1); flag:=flag-[j]; book[i]:=0; end; end; {=====main====} begin flag:=[]; c:=0; try(1); readln; end. C语言代码: #include #include int like[5][5]={0,0,1,1,0,1,1,0,0,1,0,1,1,0,0,0,0,0,1,0,0,1,0,0,1}; char name[5][10]={"zhang","wang","liu","zhao","qian"}; int flag[5]={1,1,1,1,1}; int book[5],c=0; void print() { int i;

图的深度和广度优先算法

图的深度和广度优先算法 一.图的遍历 假设初始状态是图中所有顶点都未被访问,则深度优先搜索方法的步骤是:1)选取图中某一顶点Vi为出发点,访问并标记该顶点; 2)以Vi为当前顶点,依次搜索Vi的每个邻接点Vj,若Vj未被访问过,则访问和标记邻接点Vj,若Vj已被访问过,则搜索Vi的下一个邻接点; 3)以Vj为当前顶点,重复步骤2),直到图中和Vi有路径相通的顶点都被访问为止; 4)若图中尚有顶点未被访问过(非连通的情况下),则可任取图中的一个未被访问的顶点作为出发点,重复上述过程,直至图中所有顶点都被访问。 二.广度优先搜索算法 使用计算机求解的问题中,有许多问题是无法用数学公式进行计算推导采用模拟方法来找出答案的。这样的问题往往需要我们根据问题所给定的一些条件,在问题的所有可能解中用某种方式找出问题的解来,这就是所谓的搜索法或搜索技术。 通常用搜索技术解决的问题可以分成两类:一类问题是给定初始结点,要求找出符合约束条件的目标结点;另一类问题是给出初始结点和目标结点,找出一条从初始结点到达目标结点的路径。 常见的搜索算法有枚举法、广度优先搜索法、深度优先搜索法、双向广度优先搜索法,A*算法、回溯法、分支定界法等。这里来讨论一下广度优先搜索法。 一般来说,可以采用搜索算法解决的这类问题的特点是: 1.有一组具体的状态,状态是问题可能出现的每一种情况。全体状态所构成的状态空间是有限的,问题规模较小。 2.在问题的解答过程中,可以从一个状态按照问题给定的条件,转变为另外的一个或几个状态。 3.可以判断一个状态的合法性,并且有明确的一个或多个目标状态。 4.所要解决的问题是:根据给定的初始状态找出目标状态,或根据给定的初始状态和结束状态,找出一条从初始状态到结束状态的路径。 采用广度优先搜索算法解答问题时,需要构造一个表明状态特征和不同状态之间关系的数据结构,这种数据结构称为结点。根据问题所给定的条件,从一个结点出发,可以生成一个或多个新的结点,这个过程通常称为扩展。结点之间的关系一般可以表示成一棵树,它被称为解答树。搜索算法的搜索过程实际上就是根据初始条件和扩展规则构造一棵解答树并寻找符合目标状态的结点的过程。 广度优先搜索算法中,解答树上结点的扩展是沿结点深度的“断层”进行,也就是说,结点的扩展是按它们接近起始结点的程度依次进行的。首先生成第一层结点,同时检查目标结点是否在所生成的结点中,如果不在,则将所有的第一层结点逐

实验三 图的广度优先遍历和深度优先遍历算法的设计

实验三 图的广度优先遍历和深度优先遍历算法的设计 一、实验目的 本实验的目的是通过理解图的逻辑结构和存储结构,进一步提高使用理论知识指导解决实际问题的能力。 二、实验内容 1.分别编写BFS 、DFS 算法。 2.判断无向图G 是否连通,若连通则返回1,否则返回0。 3.判断无向图G 是否是一棵树。若是树,返回1;否则返回0。 4.判断有向图中是否存在回路。 5.假设图G 采用邻接表存储,求距离顶点vO 的最短路径长度为k 的所有顶点,要求尽可能节省 时间。 三、实验类型 验证性 四、实验要求和提示 1.实验前充分预习实验指导书内容及相关理论知识内容:实验中严格遵守实验室规范和制度,认真完成实验内容并做好实验纪录:实验后必须按照要求独立完成实验报告。 2.以上6个题中,题1是必做题,题2—5可任意选作l 或2题。 3.提示: (1)最好使用邻接表法建立无向图和有向图的存储结构,然后实现图的遍历。 (2)结点结构: typedef struct node { int adjvex ; //邻接点域,存放与Vi 邻接的结点在表头数组中的位置 struct node * next ; //链域,指示下一条边或弧 )JD : 表头接点: typedef struct tnode { int vexdata ;//存放顶点信息 struct node *firstarc ;//指示第一个邻接点 }TD ; 4.程序实现方面的提示:

(1)可采用遍历方式判断无向图是否连通。先给visited[]数组置初值O,然后从O 开始遍历该图,之后若所有顶点i的visited[i]均为1,则该图是连通的,否则不连通。 (2)一个无向图G是一棵树的条件是:G必须是无回路的连通图或者是有n—l条边的连通图(注:本题可以只给出算法) (3)判断有向图中是否存在回路时,若一个有向图拓扑排序不成功,则一定存在回路;反之,若拓扑排序成功,则一定不存在回路。 (3)采用宽度优先搜索方法,找出第k层的所有顶点即为所求(宽度优先搜索保证找到的路径是最短路径)。X-fl:',qu[]为队列,qu[][0]存放顶点编号,qu[][1]存放当前顶点距离项点vO的最短路径。 五、实验报告 1.写出每个算法的思想。 2.画出算法流程图。 3.调试程序出现的问题及解决的方法。 4.打印实验报告及程序清单。 5.报告给出测试的结果并写出设计体会。 六、范例(略)

图的深度广度遍历(算法与数据结构课程设计)

图的操作 一、问题描述 图是一种较线性表和树更为复杂的数据结构。在图形结构中,节点间的关系可以是任意的,图中任意两个数据元素之间都可以相关。由此,图的应用极为广泛。现在邻接矩阵和邻接表的存储结构下,完成图的深度、广度遍历。 二、基本要求 1、选择合适的存储结构完成图的建立; 2、建立图的邻接矩阵,能按矩阵方式输出图,并在此基础上,完成图的深度和广度遍历,输出遍历序列; 3、建立图的邻接表,并在此基础上,完成图的深度和广度遍历,输出遍历序列; 三、测试数据 四、算法思想 1、邻接矩阵 顶点向量的存储。用两个数组分别存储数据(定点)的信息和数据元素之间的关系(边或弧)的信息。 2、邻接表 邻接表是图的一种链式存储结构。在邻接表中,对图中每个定点建立一个单链表,第i 个单链表中的节点表示依附于定点vi的边。每个节点由3个域组成,其中邻接点域(adjvex)指示与定点vi邻接的点在图中的位置,链域(nextarc)指示下一条边或弧的节点;数据域(info)存储和边或弧相关的信息,如权值等。每个链表上附设一个头节点。在表头节点中,

除了设有链域(firstarc)指向链表中第一个节点之外,还设有存储定点vi的名或其他有关信息的数据域(data)。 3、图的深度遍历 深度优先搜索遍历类似于树的先根遍历,是树的先跟遍历的推广。假设初始状态是图中所有顶点未曾被访问,则深度优先搜索可从图中某个顶点v出发,访问此顶点,然后依次从v的未被访问的邻接点出发深度优先遍历图,甚至图中所有和v相通的顶点都被访问到;若此时图中尚有顶点未被访问,则另选图中一个未曾被访问的顶点作起始点,重复上述过程,直至图中所有顶点都被访问到为止。 4、图的广度遍历 广度优先遍历类似于树的按层次遍历过程。假设从图中某顶点v出发,在访问了v之后依次访问v的各个未曾访问过的邻接点,然后分别从这些邻接点出发依次访问它们的邻接点,并使“先被访问的顶点的邻接点”先与“后被访问的顶点的邻接点”被访问,直至图中所有已被访问的顶点的邻接点都被访问到。若此时图中尚有顶点未被访问,则另选图中一个 曾被访问的顶点作起始点,重复上述过程,直至图中所有顶点都被访问到为止。 五、模块划分 一、基于邻接矩阵的深广度遍历 1.Status InitQueue(LinkQueue *Q) 根据已知Q初始化队列 2.Status QueueEmpty (LinkQueue Q) 判断队列是否为空 3.Status EnQueue(LinkQueue *Q, QElemType e) 将e压入队尾 4.Status DeQueue(LinkQueue *Q, QElemType *e) 取队头元素e 5.int LocateVex(MGraph G,VertexType v) 定位定点v 6.void CreateGraph(MGraph *G) 建立无向图的邻接矩阵 7.void PrintGraph(MGraph G) 输出邻接矩阵的无向图 8.int FirstAdjVex(MGraph G,int v) 第一个邻接点的定位 9.int NextAdjVex(MGraph G,int v,int w) 查找下一个邻接点

掌握图的两种遍历算法深度优先搜索和广度优先搜索算

教学重点: 图的两种遍历算法:深度优先搜索和广度优先搜索算法 教学难点: 图的两种遍历算法:深度优先搜索和广度优先搜索算法 授课内容 5.3 图的遍历 和树的遍历类似,在此,我们希望从图中某一顶点出发访遍图中其余顶点,且使每一个顶点仅被访问一次。这一过程就叫做图的遍历(TraversingGraph)。图的遍历算法是求解图 的连通性问题、拓扑排序和求关键路径等算法的基础。 然而,图的遍历要比树的遍历复杂得多。因为图的任一顶点都可能和其余的顶点相邻接。所以在访问了某个顶点之后,可能沿着某条路径搜索之后,又回到该顶点上。[例如]图7.1(b)中的G2,由于图中存在回路,因此在访问了v1,v2,v3,v4之后,沿着边(v4 , v1)又可访问到v1。为了避免同一顶点被访问多次,在遍历图的过程中,必须记下每个已访问过的顶点。为此,我们可以设一个辅助数组visited[0..n-1],它的初始值置为“假”或者零,一旦访问了顶点vi ,便置visited[i]为“真”或者为被访问时的次序号。 通常有两条遍历图的路径:深度优先搜索和广度优先搜索。它们对无向图和有向图都适用。 5.3.1 深度优先搜索 深度优先搜索(Depth-First Search)遍历类似于树的先根遍历,是树的先根遍历的推广。 其基本思想如下:假定以图中某个顶点vi 为出发点,首先访问出发点,然后选择一个vi 的未访问过的邻接点vj ,以vj 为新的出发点继续进行深度优先搜索,直至图中所有顶点都被访问过。显然,这是一个递归的搜索过程。

现以图5-3-1中G为例说明深度优先搜索过程。假定v0是出发点,首先访问v0。因v0有两个邻接点v1、v2均末被访问过,可以选择v1作为新的出发点,访问v1之后,再找v1的末访问过的邻接点。同v1邻接的有v0、v3和v4,其中v0已被访问过,而v3、v4尚未被访问过,可以选择v3作为新的出发点。重复上述搜索过程,继续依次访问v7、v4 。访问v4之后,由于与v4相邻的顶点均已被访问过,搜索退回到v7。由于v7、v3和v1都是没有末被访问的邻接点,所以搜索过程连续地从v7退回到v3,再退回v1,最后退回到v0。这时再选择v0的末被访问过的邻接点v2,继续往下搜索,依次访问v2、v5和v6,止此图中全部顶点均被访问过。遍历过程见图5-3-1(b),得到的顶点的访问序列为:v0 → v1 →v3 → v7 → v4 → v2 → v5 → v7。 (a)无向图G (b) G的深度优先搜索过程 图5-3-1 深度优先搜索遍历过程示例 因为深度优先搜索遍历是递归定义的,故容易写出其递归算法。下面的算法5.3是以邻接矩阵作为图的存储结构下的深度优先搜索遍历算法;算法5.4是以邻接表作为图的存储结构下的深度优先搜索遍历算法。 算法5.3 int visited[NAX_VEX]={0}; void Dfs_m( Mgraph *G,int i){ /* 从第i个顶点出发深度优先遍历图G,G以邻接矩阵表示*/ printf("%3c",G->vexs[i]); visited[i]=1; for (j=0;jarcs[i][j]==1)&& (!visited[j])) Dfs_m(G,j); } /*Dfs_m */ 算法5.4 int visited[VEX_NUM]={0}; void Dfs_L(ALgraph G,int i){ /* 从第i个顶点出发深度优先遍历图G,G以邻接表表示 */ printf("%3c",G[i].data); visited[i]=1; p=G[i].firstarc; while (p!=NULL) { if(visited[p->adjvex]==0)

相关文档
最新文档